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Abstract. In this paper, we investigate the arithmetical rank of a binomial
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1. Introduction. Consider the polynomial ring K[x1, . . . , xm] in the variables
x1, . . . , xm over a field K. For the sake of simplicity, we will denote by xu the
monomial xu1

1 · · · xum
m of K[x1, . . . , xm], with u = (u1, . . . , um) ∈ N

m, where
N stands for the set of non-negative integers. A binomial in the sense of [12,
Chapter 8] is a difference of two monomials, i.e. it is of the form xu − xv. A
binomial ideal is an ideal generated by binomials.

Toric ideals serve as important examples of binomial ideals. Let A =
{a1, . . . ,am} be a subset of Z

n. The toric ideal IA is the kernel of the K-
algebra homomorphism φ : K[x1, . . . , xm] → K[t±1

1 , . . . , t±1
n ] given by

φ(xi) = tai = t
ai,1
1 · · · tai,n

n for all i = 1, . . . ,m,

where ai = (ai,1, . . . , ai,n).
We grade K[x1, . . . , xm] by the semigroup NA := {l1a1+· · ·+lmam|li ∈ N}

setting degA(xi) = ai for i = 1, . . . ,m. The A-degree of a monomial xu is
defined by

degA(xu) = u1a1 + · · · + umam ∈ NA.

A polynomial F ∈ K[x1, . . . , xm] is A-homogeneous if the A-degrees of all the
monomials that occur in F are the same. An ideal is A-homogeneous if it is
generated by A-homogeneous polynomials. The ideal IA is generated by all
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the binomials xu −xv such that degA(xu) = degA(xv) (see [11, Lemma 4.1]),
thus IA is A-homogeneous.

Let J ⊂ K[x1, . . . , xm] be a binomial ideal. There exist a positive integer n
and a vector configuration A = {a1, . . . ,am} ⊂ Z

n such that J ⊂ IA, see for
instance [7, Theorem 1.1]. We say that a polynomial F = c1M1+· · ·+csMs ∈ J ,
where ci ∈ K and M1, . . . ,Ms are monomials, is J-complete if Mi − Ml ∈ J
for every 1 ≤ i < l ≤ s. Clearly every J-complete polynomial F is also A-
homogeneous.

Computing the least number of polynomial equations defining an algebraic
set is a classical problem in Algebraic Geometry which goes back to Kronecker
[9]. This problem is equivalent, over an algebraically closed field, with the
corresponding problem in Commutative Algebra of the determination of the
smallest integer s for which there exist polynomials F1, . . . , Fs in J such that
rad(J) = rad(F1, . . . , Fs). The number s is commonly known as the arith-
metical rank of J and will be denoted by ara(J). Since J is generated by
binomials, it is natural to define the binomial arithmetical rank of J , denoted
by bar(J), as the smallest integer s for which there exist binomials B1, . . . , Bs

in J such that rad(J) = rad(B1, . . . , Bs). Furthermore we can define the J-
complete arithmetical rank of J , denoted by arac(J), as the smallest inte-
ger s for which there exist J-complete polynomials F1, . . . , Fs in J such that
rad(J) = rad(F1, . . . , Fs). Finally we define the A-homogeneous arithmetical
rank of J , denoted by araA(J), as the smallest integer s for which there exist A-
homogeneous polynomials F1, . . . , Fs in J such that rad(J) = rad(F1, . . . , Fs).
From the definitions and [2, Corollary 3.3.3] we deduce the following inequal-
ities:

cd(J) ≤ ara(J) ≤ araA(J) ≤ arac(J) ≤ bar(J)

where cd(J) is the cohomological dimension of J .
In Sect. 2 we introduce the simplicial complex ΔJ and use combinatorial

invariants of the aforementioned complex to provide lower bounds for the bino-
mial arithmetical rank and the J-complete arithmetical rank of J . In particular
we prove that bar(J) ≥ δ(ΔJ ){0,1} and arac(J) ≥ δ(ΔJ )Ω, see Theorem 2.6.

In Sect. 3 we study the arithmetical rank of the binomial edge ideal JG of
a graph G. This class of ideals generalizes naturally the determinantal ideal
generated by the 2-minors of the matrix(

x1 x2 . . . xn

xn+1 xn+2 . . . x2n

)
.

We prove (see Theorem 3.3) that, for a binomial edge ideal JG, both the
binomial arithmetical rank and the JG-complete arithmetical rank coincide
with the number of edges of G. If G is the complete graph on the vertex set
{1, . . . , n}, then, from [3, Theorem 2], the arithmetical rank of JG equals 2n−3.
It is still an open problem to compute ara(JG) when G is not the complete
graph. We show that ara(JG) ≥ n+ l − 2, where n is the number of vertices of
G and l is the vertex connectivity of G. Furthermore we prove that in several
cases ara(JG) = cd(JG) = n+ l−2, see Theorems 3.7, 3.9, Corollary 3.10, and
Theorem 3.13.
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2. Lower bounds. First we will use the notion of indispensability to introduce
the simplicial complex ΔJ . Let J ⊂ K[x1, . . . , xm] be a binomial ideal contain-
ing no binomials of the form xu −1, where u �= 0. A binomial B = M −N ∈ J
is called indispensable of J if every system of binomial generators of J contains
B or −B, while a monomial M is called indispensable of J if every system of
binomial generators of J contains a binomial B such that M is a monomial of
B. Let MJ be the ideal generated by all monomials M for which there exists
a nonzero M −N ∈ J . By [7, Proposition 1.5] the set G(MJ ) of indispensable
monomials of J is the unique minimal generating set of MJ .

The support of a monomial xu of K[x1, . . . , xm] is supp(xu) := {i|xi divides
xu}. Let T be the set of all E ⊂ {1, . . . , m} for which there exists an indis-
pensable monomial M of J such that E = supp(M). Let Tmin denote the set
of minimal elements of T .

Definition 2.1. We associate to J a simplicial complex ΔJ with vertices the
elements of Tmin. Let T = {E1, . . . , Ek} be a subset of Tmin, then T ∈ ΔJ if
there exist Mi, 1 ≤ i ≤ k, such that supp(Mi) = Ei and Mi−Ml ∈ J for every
1 ≤ i < l ≤ k.

Next we will study the connection between the radical of J and ΔJ . The
induced subcomplex Δ′ of ΔJ by certain vertices V ⊂ Tmin is the subcomplex
of ΔJ with vertices V and T ⊂ V is a simplex of the subcomplex Δ′ if T is a
simplex of ΔJ . A subcomplex H of ΔJ is called a spanning subcomplex if both
have exactly the same set of vertices.

Let F be a polynomial in K[x1, . . . , xm]. We associate to F the induced
subcomplex ΔJ (F ) of ΔJ consisting of those vertices Ei ∈ Tmin with the
property: there exists a monomial Mi in F such that Ei = supp(Mi). The
next theorem provides a necessary condition under which a set of polynomials
in the binomial ideal J generates the radical of J up to radical.

Proposition 2.2. Let K be any field. If rad(J) = rad(F1, . . . , Fs) for some
polynomials F1, . . . , Fs in J , then ∪s

i=1ΔJ(Fi) is a spanning subcomplex of
ΔJ .

Proof. Let E = supp(xu) ∈ Tmin, where B = xu − xv ∈ J and xu is an
indispensable monomial of J . We will show that there exists a monomial M in
some Fl, 1 ≤ l ≤ s, such that E = supp(M). Since rad(J) = rad(F1, . . . , Fs),
there is a power Br, r ≥ 1, which belongs to the ideal generated by F1, . . . , Fs.
Thus there is a monomial M in some Fl dividing the monomial (xu)r and
therefore supp(M) ⊆ supp(xu). But Fl ∈ J and J is generated by binomials,
so there exists xz − xw ∈ J such that xz divides M . Since xz ∈ MJ and
G(MJ ) generates MJ , there is an indispensable monomial N dividing xz,
thus

supp(N) ⊆ supp(xz) ⊆ supp(M) ⊆ E.

Since E ∈ Tmin, we deduce that E = supp(N), and therefore E = supp(M).

�
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Remark 2.3. (1) If F is a J-complete polynomial of J , then ΔJ(F ) is a sim-
plex. To see that ΔJ (F ) is a simplex, suppose that ΔJ (F ) �= ∅ and let
T = {E1, . . . , Ek} be the set of vertices of ΔJ (F ). For every 1 ≤ i ≤ k
there exists a monomial Mi, 1 ≤ i ≤ k, in F such that Ei = supp(Mi).
Since F is J-complete, we have that Mi−Ml ∈ J for every 1 ≤ i < l ≤ k.
Thus ΔJ (F ) is a simplex.

(2) If B is a binomial of J , then ΔJ (B) is either a vertex, an edge, or the
empty set.

Remark 2.4. If the equality rad(J) = rad(F1, . . . , Fs) holds for some J-compl-
ete polynomials F1, . . . , Fs in J , then ∪s

i=1ΔJ(Fi) is a spanning subcomplex
of ΔJ and each ΔJ(Fi) is a simplex.

For a simplicial complex Δ we denote by rΔ the smallest number s of
simplices Ti of Δ, such that the subcomplex ∪s

i=1Ti is spanning and by bΔ the
smallest number s of simplices Ti of Δ, such that the subcomplex ∪s

i=1Ti is
spanning and each Ti is either an edge, a vertex, or the empty set.

Theorem 2.5. Let K be any field, then bΔJ
≤ bar(J) and rΔJ

≤ arac(J).

It turns out that both bΔJ
and rΔJ

have a combinatorial interpretation in
terms of matchings in ΔJ .

Let Δ be a simplicial complex on the vertex set Tmin and Q be a subset of
Ω := {0, 1, . . . ,dim(Δ)}. A set N = {T1, . . . , Ts} of simplices of Δ is called a
Q-matching in Δ if Tk ∩ Tl = ∅ for every 1 ≤ k, l ≤ s and dim(Tk) ∈ Q for
every 1 ≤ k ≤ s; see also [8, Definition 2.1]. Let supp(N ) = ∪s

i=1Ti, which is a
subset of the vertices Tmin. We denote by card(N ) the cardinality s of the set
N . A Q-matching N in Δ is called a maximal Q-matching if supp(N ) has the
maximum possible cardinality among all Q-matchings. By δ(Δ)Q, we denote
the minimum of the set

{card(N )|N is a maximal Q − matching in Δ}.

Theorem 2.6. Let K be any field, then bar(J) ≥ δ(ΔJ ){0,1} and arac(J) ≥
δ(ΔJ )Ω.

Proof. By [8, Proposition 3.3], bΔJ
= δ(ΔJ ){0,1} and rΔJ

= δ(ΔJ )Ω. Now the
result follows from Theorem 2.5. �

Proposition 2.7. Let J be a binomial ideal. Suppose that there exists a mini-
mal generating set S of J such that every element of S is a difference of two
squarefree monomials. Assume that J is generated by the indispensable bino-
mials, namely S consists precisely of the indispensable binomials (up to sign).
Then bar(J) = card(S).

Proof. Let card(S) = t. Since S is a generating set of J , we have that bar(J) ≤
t. It is enough to prove that t ≤ bar(J). Let |Tmin| = g. By [4, Corollary 3.6] it
holds that card(G(MJ )) = 2t, so g = 2t. For every maximal {0, 1}-matching
M in ΔJ , we have that supp(M) = Tmin, so δ(ΔJ ){0,1} ≥

⌊
g
2

⌋
and therefore

δ(ΔJ ){0,1} ≥ t. Thus, from Theorem 2.6, bar(J) ≥ t. �
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Example 2.8. Let J be the binomial ideal generated by f1 = x1x6 − x2x5,
f2 = x2x7 − x3x6, f3 = x1x8 − x4x5, f4 = x3x8 − x4x7, and f5 = x1x7 − x3x5.
Actually J is the binomial edge ideal of the graph G with edges {1, 2}, {2, 3},
{1, 4}, {3, 4}, and {1, 3}, see Sect. 3 for the definition of such an ideal. Note
that J is A-homogeneous where A = {a1, . . . ,a8} is the set of columns of the
matrix

D =

⎛
⎜⎜⎝

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

⎞
⎟⎟⎠ .

By [4, Theorem 3.3] every binomial fi is indispensable of J . Thus

Tmin = {E1 = {1, 6}, E2 = {2, 5}, E3 = {2, 7}, E4 = {3, 6}, E5 = {1, 8},

E6 = {4, 5}, E7 = {3, 8}, E8 = {4, 7}, E9 = {1, 7}, E10 = {3, 5}}.

By Proposition 2.7 the binomial arithmetical rank of J equals 5. The simplicial
complex ΔJ has 5 connected components and all of them are 1-simplices,
namely Δ1 = {E1, E2}, Δ2 = {E3, E4}, Δ3 = {E5, E6}, Δ4 = {E7, E8}, and
Δ5 = {E9, E10}. Consequently

δ(ΔJ )Ω =
5∑

i=1

δ(Δi)Ω = 1 + 1 + 1 + 1 + 1 = 5,

and therefore 5 ≤ arac(J). Since arac(J) ≤ bar(J), we get that arac(J) = 5. We
will show that araA(J) = 5. Suppose that araA(J) = s < 5, and let F1, . . . , Fs

be A-homogeneous polynomials in J such that rad(J) = rad(F1, . . . , Fs). For
every vertex Ei ∈ Tmin there exists, from Proposition 2.2, a monomial Mi in Fk

such that Ei = supp(Mi). But s < 5, so there exist Ei ∈ Tmin and Ej ∈ Tmin

such that

(1) {Ei, Ej} is not a 1-simplex of ΔJ ,
(2) Ei = supp(Mi), Ej = supp(Mj), and
(3) Mi and Mj are monomials of some Fk.

Since Fk is A-homogeneous, it holds that degA(Mi) = degA(Mj). Considering
all possible combinations of Ei and Ej , we finally arrive at a contradiction.
Thus araA(J) = 5. Note that J is B-homogeneous where B is the set of columns
of the matrix

N =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

⎞
⎟⎟⎟⎟⎠ .

Since every row of D is a row of N , we deduce that every B-homogeneous poly-
nomial in J is also A-homogeneous. So araB(J) is an upper bound for araA(J),
therefore araB(J) = 5. We have that rad(J) = rad(f1, f2 + f3, f4, f5), since
the second power of both binomials f2 and f3 belongs to the ideal generated
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by the polynomials f1, f2 +f3, f4, f5. Remark that the polynomials f1, f2 +f3,
f4, and f5 are C-homogeneous, where C is the set of columns of the matrix(

1 2 3 4 1 2 3 4
5 6 7 8 5 6 7 8

)
.

Thus araC(J) ≤ 4, so ara(J) ≤ 4. A primary decomposition of J is

J = (f1, f2, f3, f4, f5, x2x8 − x4x6) ∩ (x1, x3, x5, x7).

Hence, by [2, Proposition 19.2.7], it follows that ara(J) ≥ 4. Thus

ara(J) = araC(J) = 4 < 5 = araA(J) = araB(J) = arac(J) = bar(J).

3. Binomial edge ideals of graphs. In this section we consider a special class
of binomial ideals, namely binomial edge ideals of graphs. This ideal was in-
troduced in [6] and independently at the same time in [10].

Let G be an undirected connected simple graph on the vertex set [n] :=
{1, . . . , n} and with edge set E(G). Consider the polynomial ring

R := K[x1, . . . , xn, xn+1, . . . , x2n]

in 2n variables, x1, . . . , xn, xn+1, . . . , x2n, over K.

Definition 3.1. The binomial edge ideal JG ⊂ R associated to the graph G is
the ideal generated by the binomials fij = xixn+j − xjxn+i, with i < j, such
that {i, j} is an edge of G.

Remark 3.2. From [7, Corollary 1.13] every binomial fij , where {i, j} is an
edge of G, is indispensable of JG. Thus

Tmin =
{
E1

ij = {i, n + j}, E2
ij = {j, n + i}|{i, j} ∈ E(G)

}
.

We recall some fundamental material from [6]. Let G be a connected graph
on [n] and let S ⊂ [n]. By G\S, we denote the graph that results from deleting
all vertices in S and their incident edges from G. Let c(S) be the number
of connected components of G\S, and let G1, . . . , Gc(S) denote the connected

components of G\S. Also let
∼
Gi denote the complete graph on the vertices of

Gi. We set

PS(G) =
(

∪i∈S{xi, xn+i}, J ∼
G1

, . . . , J∼
Gc(S)

)
R.

Then PS(G) is a prime ideal for every S ⊂ [n]. The ring R/P∅(G) has Krull
dimension n+1. For S �= ∅ the ring R/PS(G) has Krull dimension n−card(S)+
c(S). The ideal PS(G) is a minimal prime of JG if and only if S = ∅ or S �= ∅,
and for each i ∈ S one has c(S\{i}) < c(S). Moreover JG is a radical ideal and
it admits the minimal primary decomposition JG = ∩S∈M(G)PS(G), where
M(G) = {S ⊂ [n] : PS(G) is a minimal prime of JG}.

Theorem 3.3. Let G be a connected graph on the vertex set [n] with m edges.
Then bar(JG) = arac(JG) = m.
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Proof. Every binomial fij , where {i, j} is an edge of G, is indispensable of JG,
thus, from Proposition 2.7, bar(JG) = m. Note that, for every edge {i, j} of G,
{E1

ij , E
2
ij} is a 1-simplex of ΔJG

. Furthermore ΔJG
has exactly m connected

components and all of them are 1-simplices. Thus δ(ΔJG
)Ω = m and therefore,

from Theorem 2.6, arac(JG) ≥ m. Consequently arac(JG) = m. �

Theorem 3.4. Let G be a connected graph on the vertex set [n] with m
edges. Consider the canonical basis {e1, . . . , en} of Z

n and the canonical ba-
sis {w1, . . . ,wn+1} of Z

n+1. Let A = {a1, . . . ,a2n} ⊂ N
n be the set of vec-

tors where ai = ei, 1 ≤ i ≤ n, and an+i = ei for 1 ≤ i ≤ n. Let B =
{b1, . . . ,b2n} ⊂ N

n+1 be the set of vectors where bi = w1 + wi+1, 1 ≤ i ≤ n,
and bn+i = wi+1 for 1 ≤ i ≤ n. Then araA(JG) = araB(JG) = m.

Proof. Suppose that araA(JG) = t < m, and let F1, . . . , Ft be A-homogeneous
polynomials in JG such that JG = rad(F1, . . . , Ft). For every edge {i, j} of G
with i < j there exist, from Proposition 2.2, monomials Mk

ij and N l
ij in Fk and

Fl, respectively, such that E1
ij = supp(Mk

ij) and E2
ij = supp(N l

ij). But t < m,
so there exists E1

rs ∈ Tmin, where {r, s} is an edge of G with r < s, such that
(1) {E1

ij , E
1
rs} is not a 1-simplex of ΔJG

,
(2) E1

ij = supp(Mk
ij), E1

rs = supp(Mk
rs), and

(3) Mk
ij and Mk

rs are monomials of some Fk.

Let Mk
ij = xgi

i x
gj
n+j and Mk

rs = xgr
r xgs

n+s. Since Fk is A-homogeneous, we
deduce that degA(Mk

ij) = degA(Mk
rs), and therefore giei + gjej = grer + gses.

Consequently i = r, j = s, and also Mk
ij = Mk

rs is a contradiction. Let D
and Q be the matrices with columns A and B, respectively. Since every row
of D is a row of Q, we deduce that every B-homogeneous polynomial in JG

is also A-homogeneous. Thus araB(JG) is an upper bound for araA(JG), so
m ≤ araB(JG) and therefore araB(JG) = m. �

The graph G is called l-vertex-connected if l < n and G\S is connected for
every subset S of [n] with card(S) < l. The vertex connectivity of G is defined
as the maximum integer l such that G is l-vertex-connected.

In [1] the authors study the relationship between algebraic properties of a
binomial edge ideal JG, such as the dimension and the depth of R/JG, and the
vertex connectivity of the graph. It turns out that this notion is also useful for
the computation of the arithmetical rank of a binomial edge ideal.

Theorem 3.5. Let K be a field of any characteristic and G be a connected
graph on the vertex set [n]. Suppose that the vertex connectivity of G is l.
Then ara(JG) ≥ n + l − 2.

Proof. If G is the complete graph on the vertex set [n], its vertex connectivity
is n−1, then ara(JG) = 2n−3 = n+ l−2 by [3, Theorem 2]. Assume now that
G is not the complete graph. Let P∅(G), W1, . . . ,Wt be the minimal primes of
JG. It holds that JG = P∅(G) ∩ L where L = ∩t

i=1Wi. First we will prove that
dim (R/(P∅(G) + L)) ≤ n−l+1. For every prime ideal Q such that P∅(G)+L ⊆
Q, we have that L ⊆ Q, so there is 1 ≤ i ≤ t such that Wi ⊆ Q. Thus
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P∅(G)+Wi ⊆ Q and therefore dim (R/(P∅(G) + L)) ≤ dim (R/(P∅(G) + Wi)).
It is enough to show that dim (R/(P∅(G) + Wi)) ≤ n − l + 1. Let Wi = PS(G)
for ∅ �= S ⊂ [n]. We have that P∅(G) + PS(G) is generated by

{xixn+j − xjxn+i : i, j ∈ [n]\S} ∪ {xi, xn+i : i ∈ S}.

Then dim (R/(P∅(G) + PS(G))) = n − card(S) + 1. If l = 1, then card(S) ≥ 1
since S �= ∅, and therefore dim (R/(P∅(G) + Wi)) ≤ n. Suppose that l ≥ 2 and
also that card(S) < l. Since PS(G) is a minimal prime, for every i ∈ S we have
that c(S\{i}) < c(S). But G is l-vertex-connected, namely G\S is connected,
so P∅(G) ⊂ PS(G), a contradiction to the fact that PS(G) is a minimal prime.
Thus dim (R/(P∅(G) + Wi)) ≤ n− l +1 and therefore dim (R/(P∅(G) + L)) ≤
n − l + 1. Next we will show that min{dim (R/P∅(G)) ,dim (R/L)} > dim
(R/(P∅(G) + L)) . Recall that dim (R/P∅(G)) = n+1, so dim (R/(P∅(G) + L))
< dim (R/P∅(G)). Since L ⊂ P∅(G)+L, we deduce that dim (R/(P∅(G) + L))
≤ dim (R/L). Suppose that dim (R/(P∅(G) + L)) = dim (R/L), say equal to
s, and let Q1 � Q2 � · · · � Qs be a chain of prime ideals containing P∅(G)+L.
Then there is 1 ≤ j ≤ t such that Q1 = Wj . So P∅(G) ⊂ Wj , a contradiction.
By [2, Proposition 19.2.7] it holds that

cd(JG) ≥ dim(R) − dim (R/(P∅(G) + L)) − 1 = 2n − dim (R/(P∅(G) + L))
−1 ≥ 2n − (n − l + 1) − 1 = n + l − 2.

Consequently ara(JG) ≥ n + l − 2. �

Example 3.6. Let G be the graph on the vertex set [5] with edges {1, 2}, {2, 3},
{1, 3}, {2, 4}, {4, 5}, and {3, 5}. Here the vertex connectivity is l = 2. By
Theorem 3.5, ara(JG) ≥ 5. The ideal JG is generated up to radical by the
polynomials f12, f23, f13 + f24, f35, and f45, since both f2

13 and f2
24 belong to

the ideal generated by f12, f23, f13 +f24, f35, and f45. Thus ara(JG) = 5 < 6 =
bar(JG).

Theorem 3.7. If G is a cycle of length n ≥ 3, then ara(JG) = bar(JG) = n.

Proof. The vertex connectivity of G is 2, so, from Theorem 3.5, the inequality
n ≤ ara(JG) holds. Since G has n edges, we have that ara(JG) ≤ bar(JG) = n
and therefore ara(JG) = n. �

Proposition 3.8. Let G be a connected graph on [n], with m edges and n ≥ 4.
If G contains an odd cycle of length 3, then ara(JG) ≤ m − 1.

Proof. Let C be an odd cycle of G of length 3, with edge set {{1, 2}, {2, 3},
{1, 3}}. Since G is connected, without loss of generality, there is a vertex
4 ≤ i ≤ n such that {1, i} is an edge of G. We will show that (x1xn+i−xixn+1)2

belongs to the ideal L generated by the polynomials f12, f13, f1i+f23. We have
that

x2
1x

2
n+i ≡ x1xn+ixixn+1 − x1x2xn+ixn+3 + x1x3xn+ixn+2 ≡ x1xixn+ixn+1

−x2xn+ix3xn+1 + x2x3xn+1xn+i ≡ x1xixn+ixn+1 mod L.

Similarly we have that x2
ix

2
n+1 ≡ x1xixn+ixn+1 mod L. Thus x2

1x
2
n+i+x2

ix
2
n+1

≡ 2x1xixn+ixn+1 mod L, so (x1xn+i − xixn+1)2 belongs to L. Next we prove
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that (x2xn+3 − x3xn+2)2 belongs to L. We have that

x2
2x

2
n+3 ≡ x2xn+3x3xn+2 − x2xn+3x1xn+i + x2xn+3xixn+1

≡ x2xn+3x3xn+2 − x2xn+ix3xn+1 + xn+3xix1xn+2

≡ x2xn+3x3xn+2 − x1xn+2xn+ix3 + xixn+2x3xn+1 mod L.

Furthermore

x2
3x

2
n+2 ≡ x2xn+3x3xn+2 − x3xn+2xixn+1 + x3xn+2x1xn+i mod L.

Thus x2
2x

2
n+3 + x2

3x
2
n+2 ≡ 2x2xn+3x3xn+2 mod L, so (x2xn+3 − x3xn+2)2 ∈ L.

Let H be the subgraph of G consisting of the cycle C and the edge {1, i}. Then
JG is generated up to radical by the following set of m − 1 binomials:

{fkl|{k, l} ∈ E(G)\E(H)} ∪ {f12, f13, f1i + f23}.

Therefore ara(JG) ≤ m − 1. �

Let G1 = (V (G1), E(G1)), G2 = (V (G2), E(G2)) be graphs such that G1 ∩
G2 is a complete graph. The new graph G = G1

⊕
G2 with the vertex set

V (G) = V (G1) ∪ V (G2) and edge set E(G) = E(G1) ∪ E(G2) is called the
clique sum of G1 and G2 in G1 ∩ G2. If the cardinality of V (G1) ∩ V (G2) is
k + 1, then this operation is called a k-clique sum of the graphs G1 and G2.
We write G = G1

⊕
v̂ G2 to indicate that G is the clique sum of G1 and G2

and that V (G1) ∩ V (G2) = v̂.

Theorem 3.9. Let G be a connected graph on the vertex set [n]. Suppose that G
has exactly one cycle C. If n ≥ 4 and C is odd of length 3, then ara(JG) = n−1.

Proof. The graph G can be written as the 0-clique sum of the cycle C and
some trees. More precisely,

G = C
⊕
v1

T1

⊕
v2

· · ·
⊕
vs

Ts

for some vertices v1, . . . , vs of C. The vertex connectivity of G is 1. By Theo-
rem 3.5, the inequality n − 1 ≤ ara(JG) holds. Since G has exactly one cycle,
we have that card(E(G)) = n. From Proposition 3.8, ara(JG) ≤ n − 1, and
therefore ara(JG) = n − 1. �

Let ht(JG) be the height of JG, then we have, from the generalized Krull’s
principal ideal theorem, that ht(JG) ≤ ara(JG). We say that JG is a set-
theoretic complete intersection if ara(JG) = ht(JG).

Corollary 3.10. Let G be a connected graph on the vertex set [n] with n ≥ 4.
Suppose that G has exactly one cycle C and its length is 3. Then the following
properties are equivalent:
(a) JG is unmixed,
(b) JG is Cohen–Macaulay,
(c) JG is a set-theoretic complete intersection,
(d) G = C

⊕
v1

T1

⊕
v2

· · ·
⊕

vs
Ts, where {v1, . . . , vs} ⊂ V (C), s ≥ 1, vh are

pairwise distinct and Th are paths.
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In particular, if one of the above conditions is true, then ara(JG) = ht(JG)
= n − 1.

Proof. The implication (b)⇒(a) is well known. If JG is a set-theoretic complete
intersection, then, from Theorem 3.9, ht(JG) = n−1 and dim(R/JG) = n+1.
Also depth(R/JG) = n + 1 by [5, Theorem 1.1], so JG is Cohen–Macaulay,
whence (c)⇒(b). Recall that M(G) = {S ⊂ [n] : PS(G) is a minimal prime of
JG}. If JG is unmixed, then every vertex v of Th, v �= vh, has degree at most
2. In fact, {v} ∈ M(G) and, if degG(v) ≥ 3, then by [6, Lemma 3.1], one has
ht(P{v}(G)) = n + card({v}) − c({v}) = n + 1 − degG(v) ≤ n − 2 < n − 1 =
ht(P∅(G)), a contradiction. Moreover, vh has degree at most 3 for every h. In
fact, {vh} ∈ M(G) and, if degG(vh) ≥ 4, then by [6, Lemma 3.1], one has
ht(P{vh}(G)) = n + card({vh}) − c({vh}) = n + 1 − (degG(vh) − 1) ≤ n − 2 <
n − 1 = ht(P∅(G)), a contradiction. Thus, (d) follows. Finally, assuming (d),
JG is unmixed by [5, Theorem 1.1] and ht(JG) = n − 1. By Theorem 3.9, it
follows that

ara(JG) = n − 1 = ht(JG).

�

If C1 and C2 are cycles of G having no common vertex, then a bridge
between C1 and C2 is an edge {i, j} of G with i ∈ V (C1) and j ∈ V (C2).

Proposition 3.11. Let G be a connected graph on the vertex set [n] with m
edges. Suppose that G contains a subgraph H consisting of two vertex disjoint
odd cycles of length 3, namely C1 and C2, and also two bridges between the
cycles C1 and C2. Then ara(JG) ≤ m − 2.

Proof. Let E(C1) = {{1, 2}, {2, 3}, {3, 1}} and E(C2) = {{4, 5}, {5, 6}, {4, 6}}.
Suppose first that the bridges have no common vertex. Let e1 = {1, 4} and
e2 = {3, 6} be the bridges of the two cycles. Then f2

14 belongs to the ideal
generated by the polynomials f12, f13, f14+f23. Furthermore f2

36 belongs to the
ideal generated by the polynomials f46, f56, f36 +f45. Thus JG is generated up
to radical by the union of {f12, f13, f14+f23, f46, f56, f36+f45} and {fij |{i, j} ∈
E(G) and {i, j} /∈ E(H)}. If the bridges have a common vertex, then without
loss of generality, we can assume that e1 = {1, 4} and e2 = {3, 4} are the
bridges of the two cycles. Applying similar arguments as before, we deduce
that ara(JG) ≤ m − 2. �

Example 3.12. Suppose that G is a graph with 6 vertices and 8 edges consisting
of two vertex disjoint odd cycles of length 3, namely C1 and C2, and also
two vertex disjoint bridges between the cycles C1 and C2. Here the vertex
connectivity is l = 2. Thus ara(JG) ≥ 6. By Proposition 3.11, ara(JG) ≤ 6 and
therefore ara(JG) = 6.

Theorem 3.13. Let Gk be a graph containing k odd cycles C1, . . . , Ck of length
3 such that the cycles Ci and Cj have disjoint vertex sets, for every 1 ≤ i < j ≤
k. Suppose that there exists exactly one path Pi,i+1 of length ri ≥ 2 connecting
a vertex of Ci with a vertex of Ci+1, 1 ≤ i ≤ k − 1. If Gk has no more vertices
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or edges, then ara(JGk
) = ht(JGk

) = 2k +
∑r−1

i=1 ri. In particular, JGk
is a

set-theoretic complete intersection.

Proof. The graph Gk has 3k +
∑k−1

i=1 (ri − 1) vertices. Here the vertex connec-
tivity is l = 1, so

2k +
k−1∑
i=1

ri = 3k +
k−1∑
i=1

(ri − 1) + 1 − 2 ≤ ara(JGk
).

We will prove that ara(JGk
) ≤ 2k +

∑k−1
i=1 ri by induction on k ≥ 2. Suppose

that k = 2 and let E(C1) = {{1, 2}, {2, 3}, {1, 3}}, P1,2 = {{3, 4}, {4, 5}, . . . ,
{r + 2, r + 3}}, and C2 = {{r + 3, r + 4}, {r + 4, r + 5}, {r + 3, r + 5}}. Then
JG2 is generated up to radical by the union of

{f12 + f34, xr+2xn+r+3 − xr+3xn+r+2 + xr+4xn+r+5 − xr+5xn+r+4}
and

{fij |{i, j} ∈ E(G2)\{{1, 2}, {3, 4}, {r + 2, r + 3}, {r + 4, r + 5}}}.

Thus ara(JG2) ≤ 4 + r. Assume that the inequality ara(JGk
) ≤ 2k +

∑k−1
i=1 ri

holds for k, and we will prove that ara(JGk+1) ≤ 2(k + 1) +
∑k

i=1 ri. We have
that JGk+1 = JGk

+JH where H is the graph consisting of the path Pk,k+1 and
the cycle Ck+1. By Theorem 3.9, ara(JH) = rk + 2. Then, from the induction
hypothesis,

ara(JGk+1) ≤ ara(JGk
) + ara(JH) ≤ 2k +

k−1∑
i=1

ri + rk + 2 = 2(k + 1) +
k∑

i=1

ri.

Since JGk
is unmixed by [5, Theorem 1.1], we have that

ht(JGk
) = card(V (Gk)) − 1 = 2k +

r−1∑
i=1

ri.

�

Remark 3.14. All the results presented are independent of the field K.
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[11] B. Sturmfels, Gröbner Bases and Convex Polytopes, University Lecture Series,

8, American Mathematical Society, Providence, RI, 1995.

[12] R. Villarreal, Monomial Algebras, Second Edition, Monographs and Research

Notes in Mathematics, CRC Press, Boca Raton, FL, 2015.

Anargyros Katsabekis

Department of Mathematics
Bilkent University
06800 Ankara
Turkey
e-mail: katsampekis@bilkent.edu.tr

Received: 20 March 2017


	Arithmetical rank of binomial ideals
	Abstract
	1. Introduction
	2. Lower bounds
	3. Binomial edge ideals of graphs
	Acknowledgements
	References




