Arithmetical rank of binomial ideals

Anargyros Katsabekis

Abstract

In this paper, we investigate the arithmetical rank of a binomial ideal J. We provide lower bounds for the binomial arithmetical rank and the J-complete arithmetical rank of J. Special attention is paid to the case where J is the binomial edge ideal of a graph. We compute the arithmetical rank of such an ideal in various cases.

Mathematics Subject Classification. 13F20, 14M12, 05C25.
Keywords. Arithmetical rank, Binomial ideals, Graphs, Indispensable monomials.

1. Introduction. Consider the polynomial ring $K\left[x_{1}, \ldots, x_{m}\right]$ in the variables x_{1}, \ldots, x_{m} over a field K. For the sake of simplicity, we will denote by $\mathbf{x}^{\mathbf{u}}$ the monomial $x_{1}^{u_{1}} \cdots x_{m}^{u_{m}}$ of $K\left[x_{1}, \ldots, x_{m}\right]$, with $\mathbf{u}=\left(u_{1}, \ldots, u_{m}\right) \in \mathbb{N}^{m}$, where \mathbb{N} stands for the set of non-negative integers. A binomial in the sense of [12, Chapter 8] is a difference of two monomials, i.e. it is of the form $\mathbf{x}^{\mathbf{u}}-\mathbf{x}^{\mathbf{v}}$. A binomial ideal is an ideal generated by binomials.

Toric ideals serve as important examples of binomial ideals. Let $\mathcal{A}=$ $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right\}$ be a subset of \mathbb{Z}^{n}. The toric ideal $I_{\mathcal{A}}$ is the kernel of the K algebra homomorphism $\phi: K\left[x_{1}, \ldots, x_{m}\right] \rightarrow K\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ given by

$$
\phi\left(x_{i}\right)=\mathbf{t}^{\mathbf{a}_{i}}=t_{1}^{a_{i, 1}} \cdots t_{n}^{a_{i, n}} \quad \text { for all } i=1, \ldots, m
$$

where $\mathbf{a}_{i}=\left(a_{i, 1}, \ldots, a_{i, n}\right)$.
We grade $K\left[x_{1}, \ldots, x_{m}\right]$ by the semigroup $\mathbb{N} \mathcal{A}:=\left\{l_{1} \mathbf{a}_{1}+\cdots+l_{m} \mathbf{a}_{m} \mid l_{i} \in \mathbb{N}\right\}$ setting $\operatorname{deg}_{\mathcal{A}}\left(x_{i}\right)=\mathbf{a}_{i}$ for $i=1, \ldots, m$. The \mathcal{A}-degree of a monomial $\mathbf{x}^{\mathbf{u}}$ is defined by

$$
\operatorname{deg}_{\mathcal{A}}\left(\mathbf{x}^{\mathbf{u}}\right)=u_{1} \mathbf{a}_{1}+\cdots+u_{m} \mathbf{a}_{m} \in \mathbb{N} \mathcal{A}
$$

A polynomial $F \in K\left[x_{1}, \ldots, x_{m}\right]$ is \mathcal{A}-homogeneous if the \mathcal{A}-degrees of all the monomials that occur in F are the same. An ideal is \mathcal{A}-homogeneous if it is generated by \mathcal{A}-homogeneous polynomials. The ideal $I_{\mathcal{A}}$ is generated by all
the binomials $\mathbf{x}^{\mathbf{u}}-\mathbf{x}^{\mathbf{v}}$ such that $\operatorname{deg}_{\mathcal{A}}\left(\mathbf{x}^{\mathbf{u}}\right)=\operatorname{deg}_{\mathcal{A}}\left(\mathbf{x}^{\mathbf{v}}\right)$ (see [11, Lemma 4.1]), thus $I_{\mathcal{A}}$ is \mathcal{A}-homogeneous.

Let $J \subset K\left[x_{1}, \ldots, x_{m}\right]$ be a binomial ideal. There exist a positive integer n and a vector configuration $\mathcal{A}=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right\} \subset \mathbb{Z}^{n}$ such that $J \subset I_{\mathcal{A}}$, see for instance [7, Theorem 1.1]. We say that a polynomial $F=c_{1} M_{1}+\cdots+c_{s} M_{s} \in J$, where $c_{i} \in K$ and M_{1}, \ldots, M_{s} are monomials, is J-complete if $M_{i}-M_{l} \in J$ for every $1 \leq i<l \leq s$. Clearly every J-complete polynomial F is also \mathcal{A} homogeneous.

Computing the least number of polynomial equations defining an algebraic set is a classical problem in Algebraic Geometry which goes back to Kronecker [9]. This problem is equivalent, over an algebraically closed field, with the corresponding problem in Commutative Algebra of the determination of the smallest integer s for which there exist polynomials F_{1}, \ldots, F_{s} in J such that $\operatorname{rad}(J)=\operatorname{rad}\left(F_{1}, \ldots, F_{s}\right)$. The number s is commonly known as the arithmetical rank of J and will be denoted by $\operatorname{ara}(J)$. Since J is generated by binomials, it is natural to define the binomial arithmetical rank of J, denoted by $\operatorname{bar}(J)$, as the smallest integer s for which there exist binomials B_{1}, \ldots, B_{s} in J such that $\operatorname{rad}(J)=\operatorname{rad}\left(B_{1}, \ldots, B_{s}\right)$. Furthermore we can define the J complete arithmetical rank of J, denoted by $\operatorname{ara}_{c}(J)$, as the smallest integer s for which there exist J-complete polynomials F_{1}, \ldots, F_{s} in J such that $\operatorname{rad}(J)=\operatorname{rad}\left(F_{1}, \ldots, F_{s}\right)$. Finally we define the \mathcal{A}-homogeneous arithmetical rank of J, denoted by $\operatorname{ara}_{\mathcal{A}}(J)$, as the smallest integer s for which there exist \mathcal{A} homogeneous polynomials F_{1}, \ldots, F_{s} in J such that $\operatorname{rad}(J)=\operatorname{rad}\left(F_{1}, \ldots, F_{s}\right)$. From the definitions and [2, Corollary 3.3.3] we deduce the following inequalities:

$$
\operatorname{cd}(J) \leq \operatorname{ara}(J) \leq \operatorname{ara}_{\mathcal{A}}(J) \leq \operatorname{ara}_{c}(J) \leq \operatorname{bar}(J)
$$

where $\operatorname{cd}(J)$ is the cohomological dimension of J.
In Sect. 2 we introduce the simplicial complex Δ_{J} and use combinatorial invariants of the aforementioned complex to provide lower bounds for the binomial arithmetical rank and the J-complete arithmetical rank of J. In particular we prove that $\operatorname{bar}(J) \geq \delta\left(\Delta_{J}\right)_{\{0,1\}}$ and $\operatorname{ara}_{c}(J) \geq \delta\left(\Delta_{J}\right)_{\Omega}$, see Theorem 2.6.

In Sect. 3 we study the arithmetical rank of the binomial edge ideal J_{G} of a graph G. This class of ideals generalizes naturally the determinantal ideal generated by the 2-minors of the matrix

$$
\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
x_{n+1} & x_{n+2} & \ldots & x_{2 n}
\end{array}\right) .
$$

We prove (see Theorem 3.3) that, for a binomial edge ideal J_{G}, both the binomial arithmetical rank and the J_{G}-complete arithmetical rank coincide with the number of edges of G. If G is the complete graph on the vertex set $\{1, \ldots, n\}$, then, from [3, Theorem 2], the arithmetical rank of J_{G} equals $2 n-3$. It is still an open problem to compute $\operatorname{ara}\left(J_{G}\right)$ when G is not the complete graph. We show that $\operatorname{ara}\left(J_{G}\right) \geq n+l-2$, where n is the number of vertices of G and l is the vertex connectivity of G. Furthermore we prove that in several cases $\operatorname{ara}\left(J_{G}\right)=\operatorname{cd}\left(J_{G}\right)=n+l-2$, see Theorems 3.7, 3.9, Corollary 3.10, and Theorem 3.13.
2. Lower bounds. First we will use the notion of indispensability to introduce the simplicial complex Δ_{J}. Let $J \subset K\left[x_{1}, \ldots, x_{m}\right]$ be a binomial ideal containing no binomials of the form $\mathbf{x}^{\mathbf{u}}-1$, where $\mathbf{u} \neq \mathbf{0}$. A binomial $B=M-N \in J$ is called indispensable of J if every system of binomial generators of J contains B or $-B$, while a monomial M is called indispensable of J if every system of binomial generators of J contains a binomial B such that M is a monomial of B. Let \mathcal{M}_{J} be the ideal generated by all monomials M for which there exists a nonzero $M-N \in J$. By [7, Proposition 1.5] the set $G\left(\mathcal{M}_{J}\right)$ of indispensable monomials of J is the unique minimal generating set of \mathcal{M}_{J}.

The support of a monomial $\mathbf{x}^{\mathbf{u}}$ of $K\left[x_{1}, \ldots, x_{m}\right]$ is $\operatorname{supp}\left(\mathbf{x}^{\mathbf{u}}\right):=\left\{i \mid x_{i}\right.$ divides $\left.\mathbf{x}^{\mathbf{u}}\right\}$. Let \mathcal{T} be the set of all $E \subset\{1, \ldots, m\}$ for which there exists an indispensable monomial M of J such that $E=\operatorname{supp}(M)$. Let $\mathcal{T}_{\text {min }}$ denote the set of minimal elements of \mathcal{T}.

Definition 2.1. We associate to J a simplicial complex Δ_{J} with vertices the elements of $\mathcal{T}_{\text {min }}$. Let $T=\left\{E_{1}, \ldots, E_{k}\right\}$ be a subset of $\mathcal{T}_{\text {min }}$, then $T \in \Delta_{J}$ if there exist $M_{i}, 1 \leq i \leq k$, such that $\operatorname{supp}\left(M_{i}\right)=E_{i}$ and $M_{i}-M_{l} \in J$ for every $1 \leq i<l \leq k$.

Next we will study the connection between the radical of J and Δ_{J}. The induced subcomplex Δ^{\prime} of Δ_{J} by certain vertices $\mathcal{V} \subset \mathcal{T}_{\text {min }}$ is the subcomplex of Δ_{J} with vertices \mathcal{V} and $T \subset \mathcal{V}$ is a simplex of the subcomplex Δ^{\prime} if T is a simplex of Δ_{J}. A subcomplex H of Δ_{J} is called a spanning subcomplex if both have exactly the same set of vertices.

Let F be a polynomial in $K\left[x_{1}, \ldots, x_{m}\right]$. We associate to F the induced subcomplex $\Delta_{J}(F)$ of Δ_{J} consisting of those vertices $E_{i} \in \mathcal{T}_{\min }$ with the property: there exists a monomial M_{i} in F such that $E_{i}=\operatorname{supp}\left(M_{i}\right)$. The next theorem provides a necessary condition under which a set of polynomials in the binomial ideal J generates the radical of J up to radical.

Proposition 2.2. Let K be any field. If $\operatorname{rad}(J)=\operatorname{rad}\left(F_{1}, \ldots, F_{s}\right)$ for some polynomials F_{1}, \ldots, F_{s} in J, then $\cup_{i=1}^{s} \Delta_{J}\left(F_{i}\right)$ is a spanning subcomplex of Δ_{J}.

Proof. Let $E=\operatorname{supp}\left(\mathbf{x}^{\mathbf{u}}\right) \in \mathcal{T}_{\min }$, where $B=\mathbf{x}^{\mathbf{u}}-\mathbf{x}^{\mathbf{v}} \in J$ and $\mathbf{x}^{\mathbf{u}}$ is an indispensable monomial of J. We will show that there exists a monomial M in some $F_{l}, 1 \leq l \leq s$, such that $E=\operatorname{supp}(M)$. Since $\operatorname{rad}(J)=\operatorname{rad}\left(F_{1}, \ldots, F_{s}\right)$, there is a power $B^{r}, r \geq 1$, which belongs to the ideal generated by F_{1}, \ldots, F_{s}. Thus there is a monomial M in some F_{l} dividing the monomial $\left(\mathrm{x}^{\mathbf{u}}\right)^{r}$ and therefore $\operatorname{supp}(M) \subseteq \operatorname{supp}\left(\mathbf{x}^{\mathbf{u}}\right)$. But $F_{l} \in J$ and J is generated by binomials, so there exists $\mathbf{x}^{\mathbf{z}}-\mathbf{x}^{\mathbf{w}} \in J$ such that $\mathbf{x}^{\mathbf{z}}$ divides M. Since $\mathbf{x}^{\mathbf{z}} \in \mathcal{M}_{J}$ and $G\left(\mathcal{M}_{J}\right)$ generates \mathcal{M}_{J}, there is an indispensable monomial N dividing $\mathbf{x}^{\mathbf{z}}$, thus

$$
\operatorname{supp}(N) \subseteq \operatorname{supp}\left(\mathbf{x}^{\mathbf{z}}\right) \subseteq \operatorname{supp}(M) \subseteq E
$$

Since $E \in \mathcal{T}_{\text {min }}$, we deduce that $E=\operatorname{supp}(N)$, and therefore $E=\operatorname{supp}(M)$.

Remark 2.3. (1) If F is a J-complete polynomial of J, then $\Delta_{J}(F)$ is a simplex. To see that $\Delta_{J}(F)$ is a simplex, suppose that $\Delta_{J}(F) \neq \emptyset$ and let $T=\left\{E_{1}, \ldots, E_{k}\right\}$ be the set of vertices of $\Delta_{J}(F)$. For every $1 \leq i \leq k$ there exists a monomial $M_{i}, 1 \leq i \leq k$, in F such that $E_{i}=\operatorname{supp}\left(M_{i}\right)$. Since F is J-complete, we have that $M_{i}-M_{l} \in J$ for every $1 \leq i<l \leq k$. Thus $\Delta_{J}(F)$ is a simplex.
(2) If B is a binomial of J, then $\Delta_{J}(B)$ is either a vertex, an edge, or the empty set.

Remark 2.4. If the equality $\operatorname{rad}(J)=\operatorname{rad}\left(F_{1}, \ldots, F_{s}\right)$ holds for some J-complete polynomials F_{1}, \ldots, F_{s} in J, then $\cup_{i=1}^{s} \Delta_{J}\left(F_{i}\right)$ is a spanning subcomplex of Δ_{J} and each $\Delta_{J}\left(F_{i}\right)$ is a simplex.

For a simplicial complex Δ we denote by r_{Δ} the smallest number s of simplices T_{i} of Δ, such that the subcomplex $\cup_{i=1}^{s} T_{i}$ is spanning and by b_{Δ} the smallest number s of simplices T_{i} of Δ, such that the subcomplex $\cup_{i=1}^{s} T_{i}$ is spanning and each T_{i} is either an edge, a vertex, or the empty set.

Theorem 2.5. Let K be any field, then $b_{\Delta_{J}} \leq \operatorname{bar}(J)$ and $r_{\Delta_{J}} \leq \operatorname{ara}_{c}(J)$.
It turns out that both $b_{\Delta_{J}}$ and $r_{\Delta_{J}}$ have a combinatorial interpretation in terms of matchings in Δ_{J}.

Let Δ be a simplicial complex on the vertex set $\mathcal{T}_{\text {min }}$ and Q be a subset of $\Omega:=\{0,1, \ldots, \operatorname{dim}(\Delta)\}$. A set $\mathcal{N}=\left\{T_{1}, \ldots, T_{s}\right\}$ of simplices of Δ is called a Q-matching in Δ if $T_{k} \cap T_{l}=\emptyset$ for every $1 \leq k, l \leq s$ and $\operatorname{dim}\left(T_{k}\right) \in Q$ for every $1 \leq k \leq s$; see also [8, Definition 2.1]. Let $\operatorname{supp}(\mathcal{N})=\cup_{i=1}^{s} T_{i}$, which is a subset of the vertices $\mathcal{T}_{\min }$. We denote by $\operatorname{card}(\mathcal{N})$ the cardinality s of the set \mathcal{N}. A Q-matching \mathcal{N} in Δ is called a maximal Q-matching if $\operatorname{supp}(\mathcal{N})$ has the maximum possible cardinality among all Q-matchings. By $\delta(\Delta)_{Q}$, we denote the minimum of the set

$$
\{\operatorname{card}(\mathcal{N}) \mid \mathcal{N} \text { is a maximal } Q-\text { matching in } \Delta\}
$$

Theorem 2.6. Let K be any field, then $\operatorname{bar}(J) \geq \delta\left(\Delta_{J}\right)_{\{0,1\}}$ and $\operatorname{ara}_{c}(J) \geq$ $\delta\left(\Delta_{J}\right)_{\Omega}$.

Proof. By [8, Proposition 3.3], $b_{\Delta_{J}}=\delta\left(\Delta_{J}\right)_{\{0,1\}}$ and $r_{\Delta_{J}}=\delta\left(\Delta_{J}\right)_{\Omega}$. Now the result follows from Theorem 2.5.

Proposition 2.7. Let J be a binomial ideal. Suppose that there exists a minimal generating set \mathcal{S} of J such that every element of \mathcal{S} is a difference of two squarefree monomials. Assume that J is generated by the indispensable binomials, namely \mathcal{S} consists precisely of the indispensable binomials (up to sign). Then $\operatorname{bar}(J)=\operatorname{card}(\mathcal{S})$.

Proof. Let $\operatorname{card}(\mathcal{S})=t$. Since \mathcal{S} is a generating set of J, we have that $\operatorname{bar}(J) \leq$ t. It is enough to prove that $t \leq \operatorname{bar}(J)$. Let $\left|\mathcal{T}_{\text {min }}\right|=g$. By [4, Corollary 3.6] it holds that $\operatorname{card}\left(G\left(\mathcal{M}_{J}\right)\right)=2 t$, so $g=2 t$. For every maximal $\{0,1\}$-matching \mathcal{M} in Δ_{J}, we have that $\operatorname{supp}(\mathcal{M})=\mathcal{T}_{\text {min }}$, so $\delta\left(\Delta_{J}\right)_{\{0,1\}} \geq\left\lfloor\frac{g}{2}\right\rfloor$ and therefore $\delta\left(\Delta_{J}\right)_{\{0,1\}} \geq t$. Thus, from Theorem 2.6, $\operatorname{bar}(J) \geq t$.

Example 2.8. Let J be the binomial ideal generated by $f_{1}=x_{1} x_{6}-x_{2} x_{5}$, $f_{2}=x_{2} x_{7}-x_{3} x_{6}, f_{3}=x_{1} x_{8}-x_{4} x_{5}, f_{4}=x_{3} x_{8}-x_{4} x_{7}$, and $f_{5}=x_{1} x_{7}-x_{3} x_{5}$. Actually J is the binomial edge ideal of the graph G with edges $\{1,2\},\{2,3\}$, $\{1,4\},\{3,4\}$, and $\{1,3\}$, see Sect. 3 for the definition of such an ideal. Note that J is \mathcal{A}-homogeneous where $\mathcal{A}=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{8}\right\}$ is the set of columns of the matrix

$$
D=\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

By [4, Theorem 3.3] every binomial f_{i} is indispensable of J. Thus

$$
\begin{aligned}
\mathcal{T}_{\min } & =\left\{E_{1}=\{1,6\}, E_{2}=\{2,5\}, E_{3}=\{2,7\}, E_{4}=\{3,6\}, E_{5}=\{1,8\},\right. \\
E_{6} & \left.=\{4,5\}, E_{7}=\{3,8\}, E_{8}=\{4,7\}, E_{9}=\{1,7\}, E_{10}=\{3,5\}\right\}
\end{aligned}
$$

By Proposition 2.7 the binomial arithmetical rank of J equals 5 . The simplicial complex Δ_{J} has 5 connected components and all of them are 1-simplices, namely $\Delta_{1}=\left\{E_{1}, E_{2}\right\}, \Delta_{2}=\left\{E_{3}, E_{4}\right\}, \Delta_{3}=\left\{E_{5}, E_{6}\right\}, \Delta_{4}=\left\{E_{7}, E_{8}\right\}$, and $\Delta_{5}=\left\{E_{9}, E_{10}\right\}$. Consequently

$$
\delta\left(\Delta_{J}\right)_{\Omega}=\sum_{i=1}^{5} \delta\left(\Delta_{i}\right)_{\Omega}=1+1+1+1+1=5
$$

and therefore $5 \leq \operatorname{ara}_{c}(J)$. Since $\operatorname{ara}_{c}(J) \leq \operatorname{bar}(J)$, we get that $\operatorname{ara}_{c}(J)=5$. We will show that $\operatorname{ara}_{\mathcal{A}}(J)=5$. Suppose that $\operatorname{ara}_{\mathcal{A}}(J)=s<5$, and let F_{1}, \ldots, F_{s} be \mathcal{A}-homogeneous polynomials in J such that $\operatorname{rad}(J)=\operatorname{rad}\left(F_{1}, \ldots, F_{s}\right)$. For every vertex $E_{i} \in \mathcal{T}_{\text {min }}$ there exists, from Proposition 2.2, a monomial M_{i} in F_{k} such that $E_{i}=\operatorname{supp}\left(M_{i}\right)$. But $s<5$, so there exist $E_{i} \in \mathcal{T}_{\text {min }}$ and $E_{j} \in \mathcal{T}_{\text {min }}$ such that
(1) $\left\{E_{i}, E_{j}\right\}$ is not a 1-simplex of Δ_{J},
(2) $E_{i}=\operatorname{supp}\left(M_{i}\right), E_{j}=\operatorname{supp}\left(M_{j}\right)$, and
(3) M_{i} and M_{j} are monomials of some F_{k}.

Since F_{k} is \mathcal{A}-homogeneous, it holds that $\operatorname{deg}_{\mathcal{A}}\left(M_{i}\right)=\operatorname{deg}_{\mathcal{A}}\left(M_{j}\right)$. Considering all possible combinations of E_{i} and E_{j}, we finally arrive at a contradiction. Thus $\operatorname{ara}_{\mathcal{A}}(J)=5$. Note that J is \mathcal{B}-homogeneous where \mathcal{B} is the set of columns of the matrix

$$
N=\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Since every row of D is a row of N, we deduce that every \mathcal{B}-homogeneous polynomial in J is also \mathcal{A}-homogeneous. So $\operatorname{ara}_{\mathcal{B}}(J)$ is an upper bound for $\operatorname{ara}_{\mathcal{A}}(J)$, therefore $\operatorname{ara} \mathcal{B}(J)=5$. We have that $\operatorname{rad}(J)=\operatorname{rad}\left(f_{1}, f_{2}+f_{3}, f_{4}, f_{5}\right)$, since the second power of both binomials f_{2} and f_{3} belongs to the ideal generated
by the polynomials $f_{1}, f_{2}+f_{3}, f_{4}, f_{5}$. Remark that the polynomials $f_{1}, f_{2}+f_{3}$, f_{4}, and f_{5} are \mathcal{C}-homogeneous, where \mathcal{C} is the set of columns of the matrix

$$
\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 & 5 & 6 & 7 & 8
\end{array}\right) .
$$

Thus $\operatorname{ara}_{\mathcal{C}}(J) \leq 4$, so $\operatorname{ara}(J) \leq 4$. A primary decomposition of J is

$$
J=\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, x_{2} x_{8}-x_{4} x_{6}\right) \cap\left(x_{1}, x_{3}, x_{5}, x_{7}\right) .
$$

Hence, by [2, Proposition 19.2.7], it follows that $\operatorname{ara}(J) \geq 4$. Thus

$$
\operatorname{ara}(J)=\operatorname{ara}_{\mathcal{C}}(J)=4<5=\operatorname{ara}_{\mathcal{A}}(J)=\operatorname{ara}_{\mathcal{B}}(J)=\operatorname{ara}_{c}(J)=\operatorname{bar}(J)
$$

3. Binomial edge ideals of graphs. In this section we consider a special class of binomial ideals, namely binomial edge ideals of graphs. This ideal was introduced in [6] and independently at the same time in [10].

Let G be an undirected connected simple graph on the vertex set $[n]:=$ $\{1, \ldots, n\}$ and with edge set $E(G)$. Consider the polynomial ring

$$
R:=K\left[x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{2 n}\right]
$$

in $2 n$ variables, $x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{2 n}$, over K.
Definition 3.1. The binomial edge ideal $J_{G} \subset R$ associated to the graph G is the ideal generated by the binomials $f_{i j}=x_{i} x_{n+j}-x_{j} x_{n+i}$, with $i<j$, such that $\{i, j\}$ is an edge of G.

Remark 3.2. From [7, Corollary 1.13] every binomial $f_{i j}$, where $\{i, j\}$ is an edge of G, is indispensable of J_{G}. Thus

$$
\mathcal{T}_{\text {min }}=\left\{E_{i j}^{1}=\{i, n+j\}, E_{i j}^{2}=\{j, n+i\} \mid\{i, j\} \in E(G)\right\} .
$$

We recall some fundamental material from [6]. Let G be a connected graph on $[n]$ and let $S \subset[n]$. By $G \backslash S$, we denote the graph that results from deleting all vertices in S and their incident edges from G. Let $c(S)$ be the number of connected components of $G \backslash S$, and let $G_{1}, \ldots, G_{c(S)}$ denote the connected components of $G \backslash S$. Also let \tilde{G}_{i} denote the complete graph on the vertices of G_{i}. We set

$$
P_{S}(G)=\left(\cup_{i \in S}\left\{x_{i}, x_{n+i}\right\}, J_{\widetilde{G}_{1}}, \ldots, J_{\widetilde{G}_{c(S)}}\right) R
$$

Then $P_{S}(G)$ is a prime ideal for every $S \subset[n]$. The ring $R / P_{\emptyset}(G)$ has Krull dimension $n+1$. For $S \neq \emptyset$ the ring $R / P_{S}(G)$ has Krull dimension $n-\operatorname{card}(S)+$ $c(S)$. The ideal $P_{S}(G)$ is a minimal prime of J_{G} if and only if $S=\emptyset$ or $S \neq \emptyset$, and for each $i \in S$ one has $c(S \backslash\{i\})<c(S)$. Moreover J_{G} is a radical ideal and it admits the minimal primary decomposition $J_{G}=\cap_{S \in \mathcal{M}(G)} P_{S}(G)$, where $\mathcal{M}(G)=\left\{S \subset[n]: P_{S}(G)\right.$ is a minimal prime of $\left.J_{G}\right\}$.

Theorem 3.3. Let G be a connected graph on the vertex set $[n]$ with m edges. Then $\operatorname{bar}\left(J_{G}\right)=\operatorname{ara}_{c}\left(J_{G}\right)=m$.

Proof. Every binomial $f_{i j}$, where $\{i, j\}$ is an edge of G, is indispensable of J_{G}, thus, from Proposition 2.7, $\operatorname{bar}\left(J_{G}\right)=m$. Note that, for every edge $\{i, j\}$ of G, $\left\{E_{i j}^{1}, E_{i j}^{2}\right\}$ is a 1-simplex of $\Delta_{J_{G}}$. Furthermore $\Delta_{J_{G}}$ has exactly m connected components and all of them are 1-simplices. Thus $\delta\left(\Delta_{J_{G}}\right)_{\Omega}=m$ and therefore, from Theorem 2.6, $\operatorname{ara}_{c}\left(J_{G}\right) \geq m$. Consequently $\operatorname{ara}_{c}\left(J_{G}\right)=m$.

Theorem 3.4. Let G be a connected graph on the vertex set [n] with m edges. Consider the canonical basis $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ of \mathbb{Z}^{n} and the canonical basis $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n+1}\right\}$ of \mathbb{Z}^{n+1}. Let $\mathcal{A}=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{2 n}\right\} \subset \mathbb{N}^{n}$ be the set of vectors where $\mathbf{a}_{i}=\mathbf{e}_{i}, 1 \leq i \leq n$, and $\mathbf{a}_{n+i}=\mathbf{e}_{i}$ for $1 \leq i \leq n$. Let $\mathcal{B}=$ $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{2 n}\right\} \subset \mathbb{N}^{n+1}$ be the set of vectors where $\mathbf{b}_{i}=\mathbf{w}_{1}+\mathbf{w}_{i+1}, 1 \leq i \leq n$, and $\mathbf{b}_{n+i}=\mathbf{w}_{i+1}$ for $1 \leq i \leq n$. Then $\operatorname{ara} \mathcal{A}_{\mathcal{A}}\left(J_{G}\right)=\operatorname{ara}_{\mathcal{B}}\left(J_{G}\right)=m$.

Proof. Suppose that $\operatorname{ara}_{\mathcal{A}}\left(J_{G}\right)=t<m$, and let F_{1}, \ldots, F_{t} be \mathcal{A}-homogeneous polynomials in J_{G} such that $J_{G}=\operatorname{rad}\left(F_{1}, \ldots, F_{t}\right)$. For every edge $\{i, j\}$ of G with $i<j$ there exist, from Proposition 2.2, monomials $M_{i j}^{k}$ and $N_{i j}^{l}$ in F_{k} and F_{l}, respectively, such that $E_{i j}^{1}=\operatorname{supp}\left(M_{i j}^{k}\right)$ and $E_{i j}^{2}=\operatorname{supp}\left(N_{i j}^{l}\right)$. But $t<m$, so there exists $E_{r s}^{1} \in \mathcal{T}_{\text {min }}$, where $\{r, s\}$ is an edge of G with $r<s$, such that
(1) $\left\{E_{i j}^{1}, E_{r s}^{1}\right\}$ is not a 1-simplex of $\Delta_{J_{G}}$,
(2) $E_{i j}^{1}=\operatorname{supp}\left(M_{i j}^{k}\right), E_{r s}^{1}=\operatorname{supp}\left(M_{r s}^{k}\right)$, and
(3) $M_{i j}^{k}$ and $M_{r s}^{k}$ are monomials of some F_{k}.

Let $M_{i j}^{k}=x_{i}^{g_{i}} x_{n+j}^{g_{j}}$ and $M_{r s}^{k}=x_{r}^{g_{r}} x_{n+s}^{g_{s}}$. Since F_{k} is \mathcal{A}-homogeneous, we deduce that $\operatorname{deg}_{\mathcal{A}}\left(M_{i j}^{k}\right)=\operatorname{deg}_{\mathcal{A}}\left(M_{r s}^{k}\right)$, and therefore $g_{i} \mathbf{e}_{i}+g_{j} \mathbf{e}_{j}=g_{r} \mathbf{e}_{r}+g_{s} \mathbf{e}_{s}$. Consequently $i=r, j=s$, and also $M_{i j}^{k}=M_{r s}^{k}$ is a contradiction. Let D and Q be the matrices with columns \mathcal{A} and \mathcal{B}, respectively. Since every row of D is a row of Q, we deduce that every \mathcal{B}-homogeneous polynomial in J_{G} is also \mathcal{A}-homogeneous. Thus $\operatorname{ara}_{\mathcal{B}}\left(J_{G}\right)$ is an upper bound for $\operatorname{ara}_{\mathcal{A}}\left(J_{G}\right)$, so $m \leq \operatorname{ara\mathcal {B}}\left(J_{G}\right)$ and therefore $\operatorname{ara}_{\mathcal{B}}\left(J_{G}\right)=m$.

The graph G is called l-vertex-connected if $l<n$ and $G \backslash S$ is connected for every subset S of $[n]$ with $\operatorname{card}(S)<l$. The vertex connectivity of G is defined as the maximum integer l such that G is l-vertex-connected.

In [1] the authors study the relationship between algebraic properties of a binomial edge ideal J_{G}, such as the dimension and the depth of R / J_{G}, and the vertex connectivity of the graph. It turns out that this notion is also useful for the computation of the arithmetical rank of a binomial edge ideal.

Theorem 3.5. Let K be a field of any characteristic and G be a connected graph on the vertex set $[n]$. Suppose that the vertex connectivity of G is l. Then $\operatorname{ara}\left(J_{G}\right) \geq n+l-2$.

Proof. If G is the complete graph on the vertex set [n], its vertex connectivity is $n-1$, then $\operatorname{ara}\left(J_{G}\right)=2 n-3=n+l-2$ by [3, Theorem 2]. Assume now that G is not the complete graph. Let $P_{\emptyset}(G), W_{1}, \ldots, W_{t}$ be the minimal primes of J_{G}. It holds that $J_{G}=P_{\emptyset}(G) \cap L$ where $L=\cap_{i=1}^{t} W_{i}$. First we will prove that $\operatorname{dim}\left(R /\left(P_{\emptyset}(G)+L\right)\right) \leq n-l+1$. For every prime ideal Q such that $P_{\emptyset}(G)+L \subseteq$ Q, we have that $L \subseteq Q$, so there is $1 \leq i \leq t$ such that $W_{i} \subseteq Q$. Thus
$P_{\emptyset}(G)+W_{i} \subseteq Q$ and therefore $\operatorname{dim}\left(R /\left(P_{\emptyset}(G)+L\right)\right) \leq \operatorname{dim}\left(R /\left(P_{\emptyset}(G)+W_{i}\right)\right)$. It is enough to show that $\operatorname{dim}\left(R /\left(P_{\emptyset}(G)+W_{i}\right)\right) \leq n-l+1$. Let $W_{i}=P_{S}(G)$ for $\emptyset \neq S \subset[n]$. We have that $P_{\emptyset}(G)+P_{S}(G)$ is generated by

$$
\left\{x_{i} x_{n+j}-x_{j} x_{n+i}: i, j \in[n] \backslash S\right\} \cup\left\{x_{i}, x_{n+i}: i \in S\right\}
$$

Then $\operatorname{dim}\left(R /\left(P_{\emptyset}(G)+P_{S}(G)\right)\right)=n-\operatorname{card}(S)+1$. If $l=1$, then $\operatorname{card}(S) \geq 1$ since $S \neq \emptyset$, and therefore $\operatorname{dim}\left(R /\left(P_{\emptyset}(G)+W_{i}\right)\right) \leq n$. Suppose that $l \geq 2$ and also that $\operatorname{card}(S)<l$. Since $P_{S}(G)$ is a minimal prime, for every $i \in S$ we have that $c(S \backslash\{i\})<c(S)$. But G is l-vertex-connected, namely $G \backslash S$ is connected, so $P_{\emptyset}(G) \subset P_{S}(G)$, a contradiction to the fact that $P_{S}(G)$ is a minimal prime. Thus $\operatorname{dim}\left(R /\left(P_{\emptyset}(G)+W_{i}\right)\right) \leq n-l+1$ and therefore $\operatorname{dim}\left(R /\left(P_{\emptyset}(G)+L\right)\right) \leq$ $n-l+1$. Next we will show that $\min \left\{\operatorname{dim}\left(R / P_{\emptyset}(G)\right), \operatorname{dim}(R / L)\right\}>\operatorname{dim}$ $\left(R /\left(P_{\emptyset}(G)+L\right)\right)$. Recall that $\operatorname{dim}\left(R / P_{\emptyset}(G)\right)=n+1, \operatorname{so} \operatorname{dim}\left(R /\left(P_{\emptyset}(G)+L\right)\right)$ $<\operatorname{dim}\left(R / P_{\emptyset}(G)\right)$. Since $L \subset P_{\emptyset}(G)+L$, we deduce that $\operatorname{dim}\left(R /\left(P_{\emptyset}(G)+L\right)\right)$ $\leq \operatorname{dim}(R / L)$. Suppose that $\operatorname{dim}\left(R /\left(P_{\emptyset}(G)+L\right)\right)=\operatorname{dim}(R / L)$, say equal to s, and let $Q_{1} \varsubsetneqq Q_{2} \varsubsetneqq \cdots \varsubsetneqq Q_{s}$ be a chain of prime ideals containing $P_{\emptyset}(G)+L$. Then there is $1 \leq j \leq t$ such that $Q_{1}=W_{j}$. So $P_{\emptyset}(G) \subset W_{j}$, a contradiction. By [2, Proposition 19.2.7] it holds that

$$
\begin{aligned}
& \operatorname{cd}\left(J_{G}\right) \geq \operatorname{dim}(R)-\operatorname{dim}\left(R /\left(P_{\emptyset}(G)+L\right)\right)-1=2 n-\operatorname{dim}\left(R /\left(P_{\emptyset}(G)+L\right)\right) \\
& \quad-1 \geq 2 n-(n-l+1)-1=n+l-2
\end{aligned}
$$

Consequently $\operatorname{ara}\left(J_{G}\right) \geq n+l-2$.
Example 3.6. Let G be the graph on the vertex set [5] with edges $\{1,2\},\{2,3\}$, $\{1,3\},\{2,4\},\{4,5\}$, and $\{3,5\}$. Here the vertex connectivity is $l=2$. By Theorem 3.5, $\operatorname{ara}\left(J_{G}\right) \geq 5$. The ideal J_{G} is generated up to radical by the polynomials $f_{12}, f_{23}, f_{13}+f_{24}, f_{35}$, and f_{45}, since both f_{13}^{2} and f_{24}^{2} belong to the ideal generated by $f_{12}, f_{23}, f_{13}+f_{24}, f_{35}$, and f_{45}. Thus ara $\left(J_{G}\right)=5<6=$ $\operatorname{bar}\left(J_{G}\right)$.

Theorem 3.7. If G is a cycle of length $n \geq 3$, then $\operatorname{ara}\left(J_{G}\right)=\operatorname{bar}\left(J_{G}\right)=n$.
Proof. The vertex connectivity of G is 2 , so, from Theorem 3.5, the inequality $n \leq \operatorname{ara}\left(J_{G}\right)$ holds. Since G has n edges, we have that $\operatorname{ara}\left(J_{G}\right) \leq \operatorname{bar}\left(J_{G}\right)=n$ and therefore $\operatorname{ara}\left(J_{G}\right)=n$.

Proposition 3.8. Let G be a connected graph on $[n]$, with m edges and $n \geq 4$. If G contains an odd cycle of length 3, then $\operatorname{ara}\left(J_{G}\right) \leq m-1$.

Proof. Let C be an odd cycle of G of length 3 , with edge set $\{\{1,2\},\{2,3\}$, $\{1,3\}\}$. Since G is connected, without loss of generality, there is a vertex $4 \leq i \leq n$ such that $\{1, i\}$ is an edge of G. We will show that $\left(x_{1} x_{n+i}-x_{i} x_{n+1}\right)^{2}$ belongs to the ideal L generated by the polynomials $f_{12}, f_{13}, f_{1 i}+f_{23}$. We have that

$$
\begin{aligned}
& x_{1}^{2} x_{n+i}^{2} \equiv x_{1} x_{n+i} x_{i} x_{n+1}-x_{1} x_{2} x_{n+i} x_{n+3}+x_{1} x_{3} x_{n+i} x_{n+2} \equiv x_{1} x_{i} x_{n+i} x_{n+1} \\
& \quad-x_{2} x_{n+i} x_{3} x_{n+1}+x_{2} x_{3} x_{n+1} x_{n+i} \equiv x_{1} x_{i} x_{n+i} x_{n+1} \bmod L .
\end{aligned}
$$

Similarly we have that $x_{i}^{2} x_{n+1}^{2} \equiv x_{1} x_{i} x_{n+i} x_{n+1} \bmod L$. Thus $x_{1}^{2} x_{n+i}^{2}+x_{i}^{2} x_{n+1}^{2}$ $\equiv 2 x_{1} x_{i} x_{n+i} x_{n+1} \bmod L$, so $\left(x_{1} x_{n+i}-x_{i} x_{n+1}\right)^{2}$ belongs to L. Next we prove
that $\left(x_{2} x_{n+3}-x_{3} x_{n+2}\right)^{2}$ belongs to L. We have that

$$
\begin{aligned}
x_{2}^{2} x_{n+3}^{2} & \equiv x_{2} x_{n+3} x_{3} x_{n+2}-x_{2} x_{n+3} x_{1} x_{n+i}+x_{2} x_{n+3} x_{i} x_{n+1} \\
& \equiv x_{2} x_{n+3} x_{3} x_{n+2}-x_{2} x_{n+i} x_{3} x_{n+1}+x_{n+3} x_{i} x_{1} x_{n+2} \\
& \equiv x_{2} x_{n+3} x_{3} x_{n+2}-x_{1} x_{n+2} x_{n+i} x_{3}+x_{i} x_{n+2} x_{3} x_{n+1} \bmod L .
\end{aligned}
$$

Furthermore

$$
x_{3}^{2} x_{n+2}^{2} \equiv x_{2} x_{n+3} x_{3} x_{n+2}-x_{3} x_{n+2} x_{i} x_{n+1}+x_{3} x_{n+2} x_{1} x_{n+i} \bmod L
$$

Thus $x_{2}^{2} x_{n+3}^{2}+x_{3}^{2} x_{n+2}^{2} \equiv 2 x_{2} x_{n+3} x_{3} x_{n+2} \bmod L$, so $\left(x_{2} x_{n+3}-x_{3} x_{n+2}\right)^{2} \in L$. Let H be the subgraph of G consisting of the cycle C and the edge $\{1, i\}$. Then J_{G} is generated up to radical by the following set of $m-1$ binomials:

$$
\left\{f_{k l} \mid\{k, l\} \in E(G) \backslash E(H)\right\} \cup\left\{f_{12}, f_{13}, f_{1 i}+f_{23}\right\}
$$

Therefore $\operatorname{ara}\left(J_{G}\right) \leq m-1$.
Let $G_{1}=\left(V\left(G_{1}\right), E\left(G_{1}\right)\right), G_{2}=\left(V\left(G_{2}\right), E\left(G_{2}\right)\right)$ be graphs such that $G_{1} \cap$ G_{2} is a complete graph. The new graph $G=G_{1} \bigoplus G_{2}$ with the vertex set $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$ is called the clique sum of G_{1} and G_{2} in $G_{1} \cap G_{2}$. If the cardinality of $V\left(G_{1}\right) \cap V\left(G_{2}\right)$ is $k+1$, then this operation is called a k-clique sum of the graphs G_{1} and G_{2}. We write $G=G_{1} \bigoplus_{\hat{v}} G_{2}$ to indicate that G is the clique sum of G_{1} and G_{2} and that $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\widehat{v}$.

Theorem 3.9. Let G be a connected graph on the vertex set $[n]$. Suppose that G has exactly one cycle C. If $n \geq 4$ and C is odd of length 3 , then $\operatorname{ara}\left(J_{G}\right)=n-1$.

Proof. The graph G can be written as the 0 -clique sum of the cycle C and some trees. More precisely,

$$
G=C \bigoplus_{v_{1}} T_{1} \bigoplus_{v_{2}} \cdots \bigoplus_{v_{s}} T_{s}
$$

for some vertices v_{1}, \ldots, v_{s} of C. The vertex connectivity of G is 1 . By Theorem 3.5 , the inequality $n-1 \leq \operatorname{ara}\left(J_{G}\right)$ holds. Since G has exactly one cycle, we have that $\operatorname{card}(E(G))=n$. From Proposition 3.8, $\operatorname{ara}\left(J_{G}\right) \leq n-1$, and therefore $\operatorname{ara}\left(J_{G}\right)=n-1$.

Let $\operatorname{ht}\left(J_{G}\right)$ be the height of J_{G}, then we have, from the generalized Krull's principal ideal theorem, that $\operatorname{ht}\left(J_{G}\right) \leq \operatorname{ara}\left(J_{G}\right)$. We say that J_{G} is a settheoretic complete intersection if $\operatorname{ara}\left(J_{G}\right)=\operatorname{ht}\left(J_{G}\right)$.

Corollary 3.10. Let G be a connected graph on the vertex set $[n]$ with $n \geq 4$. Suppose that G has exactly one cycle C and its length is 3. Then the following properties are equivalent:
(a) J_{G} is unmixed,
(b) J_{G} is Cohen-Macaulay,
(c) J_{G} is a set-theoretic complete intersection,
(d) $G=C \bigoplus_{v_{1}} T_{1} \bigoplus_{v_{2}} \cdots \bigoplus_{v_{s}} T_{s}$, where $\left\{v_{1}, \ldots, v_{s}\right\} \subset V(C), s \geq 1$, v_{h} are pairwise distinct and T_{h} are paths.

In particular, if one of the above conditions is true, then $\operatorname{ara}\left(J_{G}\right)=\operatorname{ht}\left(J_{G}\right)$ $=n-1$.

Proof. The implication $(\mathrm{b}) \Rightarrow(\mathrm{a})$ is well known. If J_{G} is a set-theoretic complete intersection, then, from Theorem 3.9, $\operatorname{ht}\left(J_{G}\right)=n-1$ and $\operatorname{dim}\left(R / J_{G}\right)=n+1$. Also depth $\left(R / J_{G}\right)=n+1$ by [5, Theorem 1.1], so J_{G} is Cohen-Macaulay, whence $(\mathrm{c}) \Rightarrow(\mathrm{b})$. Recall that $\mathcal{M}(G)=\left\{S \subset[n]: P_{S}(G)\right.$ is a minimal prime of $\left.J_{G}\right\}$. If J_{G} is unmixed, then every vertex v of $T_{h}, v \neq v_{h}$, has degree at most 2. In fact, $\{v\} \in \mathcal{M}(G)$ and, if $\operatorname{deg}_{G}(v) \geq 3$, then by [6, Lemma 3.1], one has $\operatorname{ht}\left(P_{\{v\}}(G)\right)=n+\operatorname{card}(\{v\})-c(\{v\})=n+1-\operatorname{deg}_{G}(v) \leq n-2<n-1=$ $\operatorname{ht}\left(P_{\emptyset}(G)\right)$, a contradiction. Moreover, v_{h} has degree at most 3 for every h. In fact, $\left\{v_{h}\right\} \in \mathcal{M}(G)$ and, if $\operatorname{deg}_{G}\left(v_{h}\right) \geq 4$, then by [6, Lemma 3.1], one has $\operatorname{ht}\left(P_{\left\{v_{h}\right\}}(G)\right)=n+\operatorname{card}\left(\left\{v_{h}\right\}\right)-c\left(\left\{v_{h}\right\}\right)=n+1-\left(\operatorname{deg}_{G}\left(v_{h}\right)-1\right) \leq n-2<$ $n-1=\operatorname{ht}\left(P_{\emptyset}(G)\right)$, a contradiction. Thus, (d) follows. Finally, assuming (d), J_{G} is unmixed by [5, Theorem 1.1] and $\operatorname{ht}\left(J_{G}\right)=n-1$. By Theorem 3.9, it follows that

$$
\operatorname{ara}\left(J_{G}\right)=n-1=\operatorname{ht}\left(J_{G}\right)
$$

If C_{1} and C_{2} are cycles of G having no common vertex, then a bridge between C_{1} and C_{2} is an edge $\{i, j\}$ of G with $i \in V\left(C_{1}\right)$ and $j \in V\left(C_{2}\right)$.

Proposition 3.11. Let G be a connected graph on the vertex set $[n]$ with m edges. Suppose that G contains a subgraph H consisting of two vertex disjoint odd cycles of length 3, namely C_{1} and C_{2}, and also two bridges between the cycles C_{1} and C_{2}. Then $\operatorname{ara}\left(J_{G}\right) \leq m-2$.

Proof. Let $E\left(C_{1}\right)=\{\{1,2\},\{2,3\},\{3,1\}\}$ and $E\left(C_{2}\right)=\{\{4,5\},\{5,6\},\{4,6\}\}$. Suppose first that the bridges have no common vertex. Let $e_{1}=\{1,4\}$ and $e_{2}=\{3,6\}$ be the bridges of the two cycles. Then f_{14}^{2} belongs to the ideal generated by the polynomials $f_{12}, f_{13}, f_{14}+f_{23}$. Furthermore f_{36}^{2} belongs to the ideal generated by the polynomials $f_{46}, f_{56}, f_{36}+f_{45}$. Thus J_{G} is generated up to radical by the union of $\left\{f_{12}, f_{13}, f_{14}+f_{23}, f_{46}, f_{56}, f_{36}+f_{45}\right\}$ and $\left\{f_{i j} \mid\{i, j\} \in\right.$ $E(G)$ and $\{i, j\} \notin E(H)\}$. If the bridges have a common vertex, then without loss of generality, we can assume that $e_{1}=\{1,4\}$ and $e_{2}=\{3,4\}$ are the bridges of the two cycles. Applying similar arguments as before, we deduce that $\operatorname{ara}\left(J_{G}\right) \leq m-2$.

Example 3.12. Suppose that G is a graph with 6 vertices and 8 edges consisting of two vertex disjoint odd cycles of length 3 , namely C_{1} and C_{2}, and also two vertex disjoint bridges between the cycles C_{1} and C_{2}. Here the vertex connectivity is $l=2$. Thus $\operatorname{ara}\left(J_{G}\right) \geq 6$. By Proposition 3.11, ara $\left(J_{G}\right) \leq 6$ and therefore $\operatorname{ara}\left(J_{G}\right)=6$.

Theorem 3.13. Let G_{k} be a graph containing k odd cycles C_{1}, \ldots, C_{k} of length 3 such that the cycles C_{i} and C_{j} have disjoint vertex sets, for every $1 \leq i<j \leq$ k. Suppose that there exists exactly one path $P_{i, i+1}$ of length $r_{i} \geq 2$ connecting a vertex of C_{i} with a vertex of $C_{i+1}, 1 \leq i \leq k-1$. If G_{k} has no more vertices
or edges, then $\operatorname{ara}\left(J_{G_{k}}\right)=\operatorname{ht}\left(J_{G_{k}}\right)=2 k+\sum_{i=1}^{r-1} r_{i}$. In particular, $J_{G_{k}}$ is a set-theoretic complete intersection.
Proof. The graph G_{k} has $3 k+\sum_{i=1}^{k-1}\left(r_{i}-1\right)$ vertices. Here the vertex connectivity is $l=1$, so

$$
2 k+\sum_{i=1}^{k-1} r_{i}=3 k+\sum_{i=1}^{k-1}\left(r_{i}-1\right)+1-2 \leq \operatorname{ara}\left(J_{G_{k}}\right) .
$$

We will prove that $\operatorname{ara}\left(J_{G_{k}}\right) \leq 2 k+\sum_{i=1}^{k-1} r_{i}$ by induction on $k \geq 2$. Suppose that $k=2$ and let $E\left(C_{1}\right)=\{\{1,2\},\{2,3\},\{1,3\}\}, P_{1,2}=\{\{3,4\},\{4,5\}, \ldots$, $\{r+2, r+3\}\}$, and $C_{2}=\{\{r+3, r+4\},\{r+4, r+5\},\{r+3, r+5\}\}$. Then $J_{G_{2}}$ is generated up to radical by the union of

$$
\left\{f_{12}+f_{34}, x_{r+2} x_{n+r+3}-x_{r+3} x_{n+r+2}+x_{r+4} x_{n+r+5}-x_{r+5} x_{n+r+4}\right\}
$$

and

$$
\left\{f_{i j} \mid\{i, j\} \in E\left(G_{2}\right) \backslash\{\{1,2\},\{3,4\},\{r+2, r+3\},\{r+4, r+5\}\}\right\}
$$

Thus ara $\left(J_{G_{2}}\right) \leq 4+r$. Assume that the inequality $\operatorname{ara}\left(J_{G_{k}}\right) \leq 2 k+\sum_{i=1}^{k-1} r_{i}$ holds for k, and we will prove that $\operatorname{ara}\left(J_{G_{k+1}}\right) \leq 2(k+1)+\sum_{i=1}^{k} r_{i}$. We have that $J_{G_{k+1}}=J_{G_{k}}+J_{H}$ where H is the graph consisting of the path $P_{k, k+1}$ and the cycle C_{k+1}. By Theorem 3.9, $\operatorname{ara}\left(J_{H}\right)=r_{k}+2$. Then, from the induction hypothesis,
$\operatorname{ara}\left(J_{G_{k+1}}\right) \leq \operatorname{ara}\left(J_{G_{k}}\right)+\operatorname{ara}\left(J_{H}\right) \leq 2 k+\sum_{i=1}^{k-1} r_{i}+r_{k}+2=2(k+1)+\sum_{i=1}^{k} r_{i}$.
Since $J_{G_{k}}$ is unmixed by [5, Theorem 1.1], we have that

$$
\operatorname{ht}\left(J_{G_{k}}\right)=\operatorname{card}\left(V\left(G_{k}\right)\right)-1=2 k+\sum_{i=1}^{r-1} r_{i} .
$$

Remark 3.14. All the results presented are independent of the field K.

Acknowledgements. The author is grateful to an anonymous referee for useful suggestions and comments that helped improve an earlier version of the manuscript. This work was supported by the Scientific and Technological Research Council of Turkey (TÜBITAK) through BIDEB 2221 Grant.

References

[1] A. Banerjee and L. Núnez-Betancourt, Graph connectivity and binomial edge ideals, Proc. Amer. Math. Soc. 145 (2017), 487-499.
[2] M. P. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Mathematics, 60, Cambridge University Press, Cambridge, 1998.
[3] W. Bruns and R. SchwÄnzl, The number of equations defining a determinantal variety, Bull. London Math. Soc. 22 (1990), 439-445.
[4] H. Charalambous, A. Thoma, and M. Vladoiu, Binomial fibers and indispensable binomials, J. Symbolic Comput. 74 (2016), 578-591.
[5] V. Ene, J. Herzog, and T. Hibi, Cohen-Macaulay binomial edge ideals, Nagoya Math. J. 204 (2011), 57-68.
[6] J. Herzog, T. Hibi, F. Hreinsdóttir, T. Kahle, and J. Rauh, Binomial edge ideals and conditional independence statements, Adv. in Appl. Math. 45 (2010), 317-333.
[7] A. Katsabekis and I. Ojeda, An indispensable classification of monomial curves in $\mathbb{A}^{4}(K)$, Pacific J. Math. 268 (2014), 95-116.
[8] A. Katsabekis and A. Thoma, Matchings in simplicial complexes, circuits and toric varieties, J. Comb. Theory Ser. A 114 (2007), 300-310.
[9] L. Kronecker, Grundzüge einer arithmetischen Theorie der algebraischen Grössen, J. Reine Angew. Math. 92 (1882), 1-122.
[10] M. Ohtani, Graphs and ideals generated by some 2-minors, Comm. Algebra 39 (2011), 905-917.
[11] B. Sturmfels, Gröbner Bases and Convex Polytopes, University Lecture Series, 8, American Mathematical Society, Providence, RI, 1995.
[12] R. Villarreal, Monomial Algebras, Second Edition, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2015.

Anargyros Katsabekis
Department of Mathematics
Bilkent University
06800 Ankara
Turkey
e-mail: katsampekis@bilkent.edu.tr

Received: 20 March 2017

