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Homogenization in
Hydrodynamic Lubrication:
Microscopic Regimes and
Re-Entrant Textures
The form of the Reynolds-type equation which governs the macroscopic mechanics of
hydrodynamic lubrication interfaces with a microscopic texture is well-accepted. The
central role of the ratio of the mean film thickness to the texture period in determining
the flow factor tensors that appear in this equation had been highlighted in a pioneering
theoretical study through a rigorous two-scale derivation (Bayada and Chambat, 1988,
“New Models in the Theory of the Hydrodynamic Lubrication of Rough Surfaces,” ASME
J. Tribol., 110, pp. 402–407). However, the resulting homogenization theory still remains
to be numerically investigated. For this purpose, after a comprehensive review of the lit-
erature, three microscopic regimes of lubrication will be outlined, and the transition
between these three regimes for different texture types will be extensively demonstrated.
In addition to conventional textures, representative re-entrant textures will also be
addressed. [DOI: 10.1115/1.4036770]
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1 Introduction

1.1 Multiscale Interface Problem. The pressure that is
generated due to the relative motion of two surfaces in close
proximity when the interface between them is occupied by a fluid
is responsible for the hydrodynamic lubrication effect. The varia-
tion of this pressure can be accurately predicted by the Reynolds
equation that is formulated with respect to the intrinsically two-
dimensional geometry of the interface [1,2], the central geometri-
cal information being the local thickness of the fluid film and the
primary solution variable being the pressure—see also Ref. [3] for
a recent generalization. The original derivation of the Reynolds
equation from Navier–Stokes equations assumes smooth surfaces,
i.e., rapid local (microscopic) variations in the film thickness as
the global (macroscopic) interface geometry is traversed are omit-
ted from the outset, which leads to an isotropic interface response
with respect to pressure gradients and surface velocities. Such
microscopic variations naturally occur with surface roughness,
leading to a multiscale interface problem (Fig. 1). It is now gener-
ally accepted that this multiscale problem will again be governed
by a Reynolds-type equation which is still two-dimensional but,
due to roughness effects, contains additional terms and is gener-
ally anisotropic. It is also established that these differences can be
linked with the microscopic effects in a quantitative manner. The
formulation of the relevant microscopically informed macroscopic
boundary value problem, i.e., a complete two-scale formulation,
has been a central challenge in lubrication. Many key problems in
this challenge have been resolved, and the homogenization theory
based on asymptotic expansion, pioneered by Sanchez-Palencia
[4], has emerged as a rigorous approach to the formulation of the
two-scale problem. However, with recent advances in surface tex-
turing technologies which can construct geometrically complex

features in a highly controllable fashion over larger scales and at
finer sizes than ever before, the interest in a proper capturing of
microscopic effects has been renewed. The investigation of micro-
scopic effects on the macroscopic lubrication response of conven-
tional and representative modern re-entrant textures based on
homogenization constitutes the central goal of the present study.
For this purpose, the previous work that forms a basis for this
investigation will first be reviewed extensively. This review will
assume and concentrate on multiscale modeling based on an
incompressible flow with a constant viscosity and will omit effects
associated with cavitation as well as dissipative heating. The inter-
ested reader is referred to the cited works for relevant references
which concentrate on such effects.

1.2 Limits of Homogenization. In order to guide the upcom-
ing discussions, it is useful to introduce a number of representa-
tive geometrical parameters (Fig. 1). Specifically, L will represent
a macroscopic dimension, for instance indicating the size of the
lubricated interface, and k will represent the maximum wave-
length associated with the local variations in the film thickness
along one or both of the surface coordinates, with an amplitude a.
The local average value of the film thickness will be denoted by
h0. One may then define three key dimensionless parameters

g ¼ h0=L" 1; e ¼ k=L" 1; f ¼ a=h0 ¼ Oð0:5Þ (1.1)

The first inequality in Eq. (1.1) is essentially required if a two-
dimensional Reynolds-type equation is supposed to govern the
macroscopic physics at the interface. For a microscopically
smooth interface, this condition is explicitly enforced in the deri-
vation of the Reynolds equation—see Ref. [1] for a traditional
dimensional analysis based on Navier–Stokes equations and
Ref. [5] for a mathematical analysis in the context of an asymp-
totic expansion approach applied to Stokes equations. Here, it is
important to highlight that in either type of approach g does not
physically go to zero but is only employed to extract the limit
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trend in the pressure variation, as for homogenization in porous
media [4,6], i.e., the actual value of h0 does matter. The second
inequality in Eq. (1.1) is required for a two-scale formulation to
make sense. In other words, it is assumed that the macroscopic
and the microscopic scales of the problem are clearly separated,
and hence, a microscopically informed macroscale differential
equation may be formulated [7]. However, unlike g, e is actually
allowed to go to zero although this is not necessary. When it
occurs, it physically corresponds to roughness with impenetrable
gaps and therefore to an effectively smaller local film thickness
hmin < h0. Finally, the order of magnitude interval provided for
the third parameter is simply an indication [8] that there is a need
to consider local roughness effects, which would be negligible for
f" 1, while avoiding contact between the surfaces, which might
occur as f approaches Oð1Þ.

Combination of the first two parameters in Eq. (1.1) delivers a
fourth key dimensionless parameter

c ¼ h0=k ¼ g=e (1.2)

The central role of this parameter in the derivation of the two-
scale problem appears to have been first pointed out in Ref. [7]
and subsequently given further mathematical treatment in
Ref. [9]. These studies, which will constitute the basis of the
numerical investigations in this work, begin the homogenization-
based multiscale analysis of the interface with the premise that the
actual three-dimensional fluid flow is sufficiently accurately
described by Stokes equations, an assumption that will be further
addressed shortly. Although e and g are very small, no explicit
restriction is placed on their ratio. Consequently, three different
microscopic regimes are obtained in the process of deriving the
two-scale formulation from the original three-dimensional one
under the inequalities (1.1):

(1) Reynolds regime is where c" 1, i.e., g decreases much
faster than e. Consequently, one may first decrease g to
obtain the classical two-dimensional Reynolds equation in
terms of h which governs the fluid mechanics at a wavy
interface then decrease e to obtain a macroscopic
Reynolds-type equation that is microscopically governed
by this classical equation.

(2) Stokes regime is where c ¼ Oð1Þ, i.e., g and e decrease at
the same rate. Consequently, the microscopic problem is
still governed by the Stokes equations although the general
form of the macroscopic Reynolds-type equation is
retained.

(3) Congested regime is where c% 1, i.e., e decreases much
faster than g. Because the rapid reduction in e effectively
leads to a globally smooth variation of the film thickness
with a locally reduced value hmin, the slower reduction of g
essentially leads to the classical Reynolds equation, with
the important exception that h is replaced by hmin.

Therefore, the first two cases require a two-scale formulation,
whereas the last one is essentially a single-scale setting and hence

straightforward to handle. Overall, the two-scale formulation of
the Stokes regime is the most general framework since one can
consistently obtain the Reynolds and congested limits of homoge-
nization by, respectively, further decreasing or increasing c. How-
ever, it is also the most demanding framework with respect to
computational cost so that, if possible, it is advantageous to make
explicit use of the conventions which are induced by the first and
the last regimes. As already indicated earlier, it is assumed that
there is a single wavelength associated with both surface coordi-
nates, and therefore, that the value of c applies to both of these
directions. In some sense, one may in general have combinations
of these scenarios where the flow is congested along one direction
but is in either of the two remaining regimes along the other. This
highlights another advantage of the Stokes regime, since it is
capable of addressing such complications. It is noted that Bayada
and Chambat [7] referred to the regime c% 1 as high-frequency
roughness. Since it is not only the roughness frequency but also
the film thickness that determines the particular regime, in view of
the nondimensional parameter c, the alternative terminology con-
gested is employed in the present study.

Scale separation and different regimes are depicted in Fig. 2,
where it is assumed that {h0, L, a} are fixed, with g" 1 and
f ¼ Oð0:5Þ satisfied from the outset, and k is decreased gradually
so that e will also decrease while c increases. For any given tex-
ture geometry, at large values of k, e" 1 does not hold, and
therefore, the texture actually represents global variations in the
interface geometry, similar to waviness. Here, a full numerical
resolution of the problem across the interface is feasible. Below a
sufficiently small k when e takes a value e0 " 1, a full resolution
becomes prohibitively expensive in a numerical setting due to a
large number of texture features. However, one observes that a
representative solution variable such as the pointwise pressure
reaches a limit, i.e., scale separation holds, and hence, a two-scale
formulation of the problem is now possible. Up to e0, realizations
of the same periodic texture which only differ by a phase may
show different responses (e.g., textures 1a and 1b). Such differen-
ces vanish beyond e0 where different textures may display either
partially (e.g., textures 1 and 2) or entirely (e.g., textures 2 and 3)
different macroscopic responses. It should be emphasized that
scale separation is governed by e and not c. However, the value of
c at e¼ e0, denoted by c0, is almost certainly smaller than 0.1 and
lies within the Reynolds regime. As c further increases with
decreasing k, scale separation continues to hold but eventually a
transition between microscopic regimes will occur, first to the
Stokes regime at roughly c¼ 0.1 and subsequently to the con-
gested regime at roughly c¼ 10. The macroscopic pressure will
increase in a typical wedge problem toward the congested regime
since this limit is represented by an effectively homogeneous one
at the local minimum film thickness. Although this discussion is
qualitative, representative quantitative results which support it
may be found in Sec. 3.

The important role of c has been explicitly recognized very
early, apparently first in Ref. [10], where the terms Reynolds
roughness and Stokes roughness have been coined to refer to the

Fig. 1 The multiscale interface problem is depicted, where the numerical solution of the mac-
roscopic problem requires the consideration of the microscale. Here, among representative
quantities, L is a macroscopic dimension, k is the wavelength for film thickness variations, h0

is the local average film thickness, and a is the amplitude of the oscillations.
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two-scale formulations. Therein, the Stokes equations were identi-
fied with c% 1, and hence no reference was made to a congested
regime. Moreover, this and the overwhelming proportion of stud-
ies on multiscale lubrication studies have concentrated solely on
the Reynolds regime. In a limited number of studies, a computa-
tional fluid dynamics (CFD) study was carried out at the micro-
scale. However, to the best of our knowledge, despite the rigorous
approach of Refs. [7] and [9] and the implications of their
analysis, a numerical implementation of their Stokes regime
homogenization framework has not been carried out in the litera-
ture. Consequently, an investigation of how this framework con-
nects with the Reynolds/congested limit, an identification of
major variables which influence this transition between the three
microscopic regimes within this particular homogenization
approach, and, therefore, a basis for possibly tailoring this
transition by varying the texture are missing in the literature. The
present contribution aims to fill precisely this gap and will addi-
tionally propose an approach for establishing a relation between
the three microscopic regimes for complex re-entrant textures
where, specifically, the evaluation of the Reynolds limit is not
well-defined without further approximation.

1.3 Reynolds Regime. Earliest attempts at incorporating
roughness effects have been in the Reynolds regime where both
the macroscopic and the microscopic problems are governed by
two-dimensional equations—see Refs. [10–13] among others. The
pioneering statistical averaging studies in Refs. [8] and [14] pro-
posed a form of the macroscopic Reynolds-type equation which,
however, was restricted to an isotropic response or a specific class
of anisotropic responses. This restriction was subsequently
removed in Refs. [15] and [16] by replacing the scalar constitutive
coefficients (flow factors [8]) in the Reynolds-type equation with
tensorial ones, thereby establishing the final structural form which
can represent microscopic roughness effects such as anisotropy on
the macroscale. In order to highlight the nonscalar nature of these
quantities in the general anisotropic setting, Elrod [15] employed

the terminology flow-coefficient dyads, whereas Tripp [16]
employed flow factor tensors, which is the one that will be
preferred in the present study. A more recent derivation of this
generalization is provided in Ref. [17]. All of these works
address random roughness. In particular, Refs. [8] and [14–17]
assign roughness and motion to both of the interacting surfaces.
Moreover, starting with Ref. [10], the approaches in Refs.
[13,15,16] employ some type of an asymptotic expansion
combined with averaging in order to arrive at the macroscopic
equation. As such, these works constitute precursors to more
recent homogenization studies where the two-scale structure of
the interface problem is clearly exposed—see Ref. [7] for an
early example, where each surface is either rough or moving
(unilateral setting) and [18] for an extension to the case where
roughness and motion are assigned to both surfaces (bilateral
setting). Although homogenization explicitly invokes a periodic
film thickness within the derivation of the two-scale problem,
the form of the macroscopic Reynolds-type equation is structur-
ally essentially the same as those obtained from statistical aver-
aging, and the approaches to the determination of the flow
factor tensors are also mechanically equivalent. Hence, one may
employ random microstructures within the two-scale setting of
homogenization as well [19] without any loss of accuracy with
respect to the predictive capability of statistical averaging
results. However, the loss of accuracy in the overall predictive
capability of these two-scale approaches with respect to the
deterministic solution of the problem based on a full resolution
of random roughness across the whole interface remains an
open question. By comparison, the answer to this question in the
case of periodicity is rigorously addressed in the context of
homogenization.

In the present work, either texture or motion will be assigned to
each surface. Moreover, only periodic textures will be considered.
CFD studies of lubrication to be reviewed below commonly
invoke these assumptions as well, exceptions to which will be
noted. Consequently, the unilateral setting of Bayada and Cham-
bat [7] applies in both Reynolds and Stokes regimes. An attempt

Fig. 2 Scale separation and different regimes are depicted qualitatively for three different tex-
tures. Cases 1a and 1b are two realizations of the same periodic texture which only differ by a
phase. Here, it is assumed that {h0, L, a} are fixed and only k is varied. The variation of the
pressure with k may depend on the particular problem. The depicted variation is not based on
the numerical results but, where scale separation holds, is only qualitatively associated with
the classical wedge problem in a one-dimensional setting with zero Dirichlet boundary condi-
tions and a periodic texture.
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to generalize homogenization in the Stokes regime toward the
bilateral setting based on Ref. [7], the Reynolds limit of which
would be [18], has recently been presented in Refs. [20] and [21].

1.4 Stokes Regime. Roughness influence has a long history
in fluid mechanics. Among recent studies, those concerning the
formulation of appropriate effective boundary conditions associ-
ated with flows over periodic textures [22,23] are particularly
relevant, specifically with respect to the multiscale structure of
the problem. Presently, the aim is to provide a fairly comprehen-
sive chronological review of microscopic CFD studies which
attempt to characterize the macroscopic response of the interface
quantitatively, e.g., in terms of quantities which appear in the
macroscopic Reynolds-type equation, or qualitatively, e.g., in
comparison to the Reynolds limit. Some closely related CFD
studies will additionally be mentioned even if they do not
directly concentrate on implications for a two-scale analysis.
Most studies are two-dimensional and assume incompressibility,
unless otherwise noted, which are assumptions that are also
invoked in the present study. They often simultaneously address
micro-inertia effects as well, mostly only through the incorpora-
tion of the convective part of the acceleration term and without
an attempt to resolve turbulence. The investigation of micro-
inertia effects in hydrodynamic lubrication are outside the scope
of the present study—see Ref. [24] for an early study with an
experimental focus.

1.4.1 Early Studies. The necessity of considering an explicit
microscopic CFD study depending on the value of c¼ ho/k from
Eq. (1.2) was first highlighted by Elrod [10]. The earliest pub-
lished CFD study appears to be in Ref. [25], where the Stokes
regime was addressed explicitly but only in a deterministic setting
on a model lubrication problem with random roughness and with-
out an exact resolution of the flow. However, in a report from the
same year, Elrod carried out a comparison of Reynolds and Stokes
regimes [26]. This study was closely followed much later by
Mitsuya and Fukui [27], by additionally addressing compressibil-
ity, on a sinusoidal periodic texture. After Ref. [26], this was the
second study where the Reynolds limit was clearly demonstrated
by monitoring the load bearing capacity of the interface while
varying the periodic texture wavelength k. Their results, which
were compared with those in Ref. [26], indicated that the Stokes
regime starts above a value of c¼ 0.1, although the limit toward
the congested regime was not addressed.

1.4.2 Conventional Textures. Due to the challenges in the
deterministic resolution of the flow for complex interfaces, atten-
tion was shifted to a limited number of unit-cells from a sinusoidal
texture in a subsequent numerical and experimental study by Hu
and Leutheusser [28] based on the finite element method, but with
a sole focus on micro-inertia. Similarly, in Ref. [29], the flow
within a unit-cell from a sawtooth texture was analyzed by
solving Navier–Stokes equations with a collocation method, how-
ever, with only a minor emphasis on the influence of texture
dimensions. The suitability of Stokes equations for CFD studies
within a texture unit-cell was studied in Ref. [30] based on
two-dimensional sinusoidal and sawtooth textures as well as on
three-dimensional cubic and cylindrical ones. Here, the monitored
quantity was the pressure within the unit-cell, and the discussion
was centered on the lift-generating effect of inertia at high flow
velocities and not on a homogenized response. The study of Song
et al. [31] also did not concentrate on the homogenization
response but rather on the differences between the pressure distri-
butions, within a unit-cell of periodicity from a sinusoidal texture,
obtained from the Navier–Stokes equations through a stream func-
tion formulation and from the Reynolds equation.

The comprehensive work of van Odyck and Venner [32] is the
third study after Refs. [26] and [27] with an explicit focus on the
transition between the Stokes regime and the Reynolds limit, but
also without an explicit consideration of the congested limit. This

work was based on the analysis of a microgeometry with a local
sinusoidal feature through a finite volume discretization of three
different microscopic equations: Reynolds equation, Stokes
equations, and perturbation equations which link the former to the
latter. The results indicated that, in agreement with Refs. [7] and
[10], c is the major parameter which controls the transitions
between the three microscopic regimes, apart from the particular
shape of the transition curve. Also, in close agreement with Ref.
[27], a visible transition to the Stokes regime was identified with
c> 0.1. The observations in the present study will mostly be in
agreement with these results.

1.4.3 Micro-Inertia Effects. A number of studies carried out
microscopic analyses without a major focus on homogenization
limits but rather on micro-inertia, which are mentioned for
completeness. In Ref. [33], finite volume analysis was applied to a
single ridge geometry to compare CFD predictions with micro-
inertia against the Reynolds equation results. This comparison
was made by monitoring the pressure field and by including non-
Newtonian effects. Sahlin et al. [34] carried out an investigation
of the importance of micro-inertia within a unit-cell by comparing
the solutions from Stokes and Navier–Stokes equations. The study
of Feldman et al. [35] focused on the deviation of Reynolds and
CFD solutions in a unit-cell for realistic geometry parameters
associated specifically with laser surface texturing and indicated
that, even if large differences are observed in the microscopic
pressure distribution, the macroscopic load carrying capacities do
not differ significantly. Investigations regarding such macroscopic
performance metrics will be outside the scope of the present
study. Reference [36] is a rare three-dimensional study of a statis-
tically representative interface with bilateral random roughness,
which also appears to be one of the first studies where the flow
factors in the theory of Patir and Cheng [8] have been computed
using the Lattice Boltzmann method which incorporates micro-
inertia effects, but without an explicit concern for homogenization
limits. A second such study is by de Kraker et al. [37], where
three-dimensional computations were also carried out but within a
unit-cell of periodicity and with an emphasis on microcavitation
and micro-inertia. It was additionally highlighted that the conven-
tional approach of characterizing pressure-gradient and shear
effects individually but then reflecting their combined effect to the
macroscale through a linear combination will fail due to the nonli-
nearity associated with micro-inertia. Subsequent detailed studies
and comparisons by Dobrica and Fillon [38] in the presence of
micro-inertia indicated that other geometrical parameters in addi-
tion to c may be an important factor in the differences between
Reynolds equation predictions and those from Navier–Stokes,
which was also concluded earlier in Refs. [27] and [32]. In partic-
ular, they demonstrated how the shifted choices of the unit-cell
may actually influence the results in a periodic setting due to
micro-inertia, thereby questioning the validity of some of the ear-
lier findings in the literature. They also investigated the determin-
istic solution with a partially textured interface, which was then
followed in Ref. [39] where the emphasis was on the difference
between Stokes and Navier–Stokes solutions, similar to Ref. [34].
Following Refs. [36] and [37], de Kraker et al. [40] explicitly cal-
culated the flow factors of an interface in the presence of micro-
inertia based on a unit-cell via Navier–Stokes, and compared their
values to those obtained via Stokes and Reynolds equations with a
focus on nonlinearity effects which were earlier discussed in Ref.
[37]. More recently, Scaraggi [41] has also presented a compari-
son of calculations based on Stokes and Reynolds equations
within a larger study which concentrated on the influence of the
geometric parameters of grooved surfaces on the lubrication
response in the Reynolds regime.

1.5 Present Contribution. The summarized review demon-
strates various gaps in the literature. First, comparisons between
the predictions of Stokes and Reynolds equations without any
ambiguity due to micro-inertia effects are scarce [26,27,32,40].
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Such a comparison is important since a consensus does not appear
to have been reached regarding the influence of micro-inertia.
Second, when carried out, comparisons of Reynolds equation pre-
dictions with CFD results are rarely pursued in terms of flow fac-
tor tensors which appear in the macroscopic Reynolds-type
equation [36,37]. Rather, metrics of macroscopic performance are
presented, such as the load capacity of the interface, leading to
uncertainties in the conclusions with respect to the influence of
the boundary conditions and the geometry of the macroscopic
problem. Third, in the few sample studies when such calculations
are carried out, they are based on the averaging of the microscopic
fluid flux rather than on the rigorous Stokes regime scale transition
theory of Bayada and Chambat [7] which, therefore, remains
unexplored in the literature. Finally, only conventional textures
are considered in the literature, such as square/triangular/sinusoi-
dal patterns where complex flow features are missing, and a clear
local film thickness definition exists throughout the unit-cell for
use within a microscopic Reynolds equation in order to compare
its predictions with CFD results. In nonconventional re-entrant
textures that display a higher-degree of complexity, leading to an
ambiguous film thickness definition, an explicit evaluation of the
Reynolds limit remains an open question. The present work
attempts to address these shortcomings. In addition, various
numerical methods have been applied in these studies, ranging
from finite element to finite volume and stream function to Lattice
Boltzmann formulations. In the Stokes regime where the ratio of
the surface area of the unit-cell to its volume is minimal compared
to the two neighboring regimes, the boundary element method
(BEM) is a particularly appealing numerical approach in terms of
efficiency, yet this method has not been employed so far. There-
fore, a side goal of the present study is to explore the application
of BEM to homogenization studies in lubrication.

Remark. It was brought to our attention that, while our manu-
script was still under review, a study with a similar goal as the
present study was very recently accepted for publication [42].
Overall, while the two studies share the same major goal, their
scopes are not identical but rather complementary in nature, and
future readers will benefit from both of them. On the numerical
side, the study in Ref. [42] employs a commercially available
software package to carry out representative two- and three-
dimensional analyses in order to demonstrate the convergence of
the Stokes regime predictions to the two limits. In the three-
dimensional case, only a single macroscopic quantity, namely A11

with the present notation, was computed due to the high cost asso-
ciated with multiple cell problems in the Stokes regime. In our
study, we have developed our own BEM code, which enabled us
to rapidly carry out a large number of computations, thereby
resulting in a comprehensive picture of the texture geometry
influence, albeit in two dimensions. On the analysis side, we have
systematically and extensively addressed various geometrical
parameters on conventional textures which differ from Ref. [42],
and finally, took an additional step towards re-entrant textures.
Together, these two studies demonstrate the implications of the
theory of Bayada and Chambat [7] for the first time.

2 Two-Scale Formulation

2.1 Microscopic and Macroscopic Scales. In this section,
the governing microscopic and macroscopic equations of the two-
scale hydrodynamic lubrication problem are outlined within the
limitations of the assumptions stated earlier, based on the analysis
in Ref. [7]. For brevity, only the final results of the homogeniza-
tion analysis will be noted. The numerical investigations will be
carried out in a reduced-dimensional setting. In this setting, the
interface is one-dimensional in the Reynolds regime so that the
microscopic problems may be solved analytically. However, in
the Stokes regime, the reduced dimension of the interface is two,
so that a numerical solution is still necessary. Therefore, the
homogenization results are presented for a three-dimensional
setup in order to maintain generality (Fig. 3).

On the macroscale, the two-dimensional interface is spanned by
the position vector x. Within the Reynolds regime, the microscale
analysis is associated with a two-dimensional unit-cell YR which
is spanned by a position vector y. Within the Stokes regime, the
unit-cell is three-dimensional and will be denoted by YS. The
same notation for the position vector will be employed in both
regimes with the understanding that the position vector y has only
two components in the Reynolds regime and three components in
the Stokes regime. Two types of averages of a quantity over YR

and YS will be defined

h&iR ¼
1

jYRj

ð

YR

& da; h&iS ¼
1

jYRj

ð

YS

& dv (2.1)

The former is a surface average, while the second is a surface-
projected average. The latter definition is based on the observa-
tion that YR represents a domain which is obtained by projecting
YS onto the plane spanned by the in-plane (y1 and y2) coordinates.
It should be emphasized that presently YS represents the physical
geometry of the texture and not its scaled version, the latter being
a common convention in homogenization analysis.

When well-defined, the film thickness variation across the inter-
face may be expressed as

hðx; yÞ ¼ h0ðxÞ ' h'ðyÞ (2.2)

where h0 is the macroscopic variation, and h'represents the height
distribution of the texture on the lower surface with zero mean.
Hence, on the three-dimensional Stokes geometry of the unit-cell
h0 ¼ h1iS and on the two-dimensional Reynolds geometry
h0 ¼ hhiR. The minimum value of h over a unit-cell will be indi-
cated by hmin.

2.2 Macroscopic Problem. The macroscopic interface
mechanics is governed by the Reynolds-type equation which is
specialized to the unilateral homogenization setting, subject to
standard boundary conditions

Fig. 3 The physical unit-cell geometry with relevant problem variables, the three-dimensional
fluid domain for the solution of the Stokes problem, and its two-dimensional projection onto
the in-plane coordinates for the solution of the Reynolds problem are depicted
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'rx & 'Arxp0 þ CUþ
" #

¼ @h0

@t
(2.3)

Here, the right-hand side is associated with the normal velocity of
the upper surface, Uþ is the tangential velocity of the smooth
upper surface, and p0ðxÞ is the pressure at the interface, which
represents the solution to the homogenized problem.

The flow factor tensors AðxÞ and CðxÞ embody all texture influ-
ence, and due to a varying h0ðxÞ, their values change across the
macroscopic interface. The former represents the sensitivity of
the interface fluid flux to a macroscopic pressure gradient in a
Poiseuille problem, whereas the latter represents the sensitivity to
boundary motion in a Couette problem. For a homogeneous inter-
face (i.e., no texture: h'¼ 0), indicating the identity tensor by I
and the fluid viscosity by l, they have the classical forms

A0 ¼
h3

0

12l
I; C0 ¼

h0

2
I (2.4)

such that Eq. (2.3) condenses back to the classical Reynolds equa-
tion. Otherwise, in general, the solution of a set of microscopic
cell problems is necessary in order to determine the values for A
and C. This is numerically challenging in a two-scale setting
because at every point across the interface a separate set of cell
problems must be solved, due to the dependence of fA;Cg on h0.
These problems are presented in increasing order of complexity. It
should be noted that the constant viscosity l will be retained
within the cell problems. An alternative approach would be to fil-
ter it out of these problems and directly express its influence
within the definition of the flow factor tensors, thereby highlight-
ing the fact that texture influence is geometrical. Indeed, in all
regimes, A is inversely proportional to l, and C is independent
from it.

2.3 Microscopic Problems

2.3.1 Congested Regime. In the congested (C) regime, an
explicit solution of a microscopic problem is not required. The
particular expressions for A and C in this regime have forms
which are similar to Eq. (2.4)

AC ¼
h3

min

12l
I; CC ¼

hmin

2
I (2.5)

2.3.2 Reynolds Regime. In the Reynolds (R) regime, one con-
structs two decoupled cell problems posed over YR

ry & u ¼ 0; ry &U ¼ 0 (2.6)

where

u ¼ h3

12l
I þ h3

12l
ryx; U ¼ h

2
I þ h3

12l
ryX (2.7)

Using ð&ÞT to indicate transpose, the particular expressions for A
and C in this regime then follow from the solutions of these cell
problems for the two-dimensional vectors x and X, subject to per-
iodic boundary conditions on the boundary @YR

AR ¼ huiTR; CR ¼ hUiTR (2.8)

2.3.3 Stokes Regime. In the Stokes (S) regime, two sets of
decoupled Stokes-type cell problems are solved for a¼ {1, 2}:

(1) Poiseuille problem: The first set is driven by Poiseuille con-
ditions and governed by

lDyx
a ¼ rypa þ ea and ry & xa ¼ 0 in YS (2.9)

which are to be solved for the three-dimensional vector xa

and the scalar pa. These equations are subject to periodic
boundary conditions for both variables on the lateral
boundary @Y‘S as well as xa ¼ 0 on the bottom/top
boundary @Y'=þS . It is noted that this problem appears in
essentially identical form within the homogenization of
two-dimensional porous media [6].

(2) Couette problem: The second set is driven by Couette con-
ditions and governed by

lDyXa ¼ ryPa and ry &Xa ¼ 0 in YS (2.10)

which are to be solved for the three-dimensional vector Xa

and the scalar Pa. These equations are subject to periodic
boundary conditions for both variables on the lateral
boundary @Y‘S as well as Xa ¼ 0 on the bottom boundary
@Y'S and Xa ¼ ea on the top boundary @YþS .

In these problems, ea represents unit vectors along the two in-
plane coordinates ya of YS. Defining two tensors with components

uab ¼ xa
b; Uab ¼ Xa

b (2.11)

the particular expressions for A and C in this regime are

AS ¼ huiTS ; CS ¼ hUiTS (2.12)

Note that the presented formulation of the microscopic problems
takes one step beyond the presentation of Bayada and Chambat
[7] and explicitly delivers the tensor CS. In the original formula-
tion of Bayada and Chambat [7], an effective Couette contribution
b ¼ CSUþ to the fluid flux is calculated (see Eq. (2.3)). This is dis-
advantageous if the problem geometry does not change but only
Uþ changes, because a re-calculation of b would be required
every time.

2.4 Conversion Between Volume and Surface Integrals.
For the evaluation of AS and CS, it is advantageous to convert the
volume integrals to surface integrals by making use of the
divergence-free constraints on the solution fields. Specifically, if v
is a vector field such that r & v ¼ 0 then, denoting the outward
unit normal to @YS by n

ð

@YS

y ðv & nÞ da ¼
ð

YS

r & ðy) vÞ dv ¼
ð

YS

v dv (2.13)

Upon making use of this expression and observing that xa & n and
Xa & n are nonzero on only @Y‘S due to the boundary conditions,
one obtains the following expressions as alternatives to Eq. (2.12):

AS ¼
1

jYRj

ð

@Y‘S
y) uð Þn da; CS ¼

1

jYRj

ð

@Y‘S
y) Uð Þn da (2.14)

These expressions are particularly convenient in the present study,
because only the boundary of the unit-cell is discretized in the
context of BEM.

2.5 Scalar Flow Factors. In the Reynolds and Stokes
regimes, the macroscopic interface response is possibly aniso-
tropic. Although A is symmetric positive-definite, C is not neces-
sarily symmetric [43] unless the texture response is isotropic. For
an isotropic response, the flow factor tensors may be expressed as
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A ¼ A I; C ¼ C I (2.15)

In the congested regime, the response is necessarily isotropic (see
Sec. 1.2) such that it is sufficient to calculate the scalar flow fac-
tors A and C, which is also the case for the reduced-dimensional
framework of the numerical investigations that is discussed
further next.

Remark. In the particular unilateral setting described, it will be
numerically observed that both A and C decrease from the Reyn-
olds regime toward the congested regime. This reduction is also
monotonic in most cases. Moreover, when compared with the
homogeneous interface response (2.4), AC*A0 and CC*C0

clearly also hold. In general, the relative location of A0 and C0

with respect to the homogenized response in the Reynolds or
Stokes regimes depends on which surface is rough and which one
is moving. Nevertheless, as a largely representative guide to the
results of the present study, one may state the following ordering
relations:

AC < AS < AR < A0; CC < CS < CR < C0 (2.16)

Although these relations are satisfied by almost all of the results
in upcoming sections, they are not formal statements, and there
may be cases where they are significantly violated.

2.6 Simplifications for Reduced-Dimensional Investigations.
The Reynolds regime in a one-dimensional setting leads to ana-
lytically solvable cell problems for scalar unknowns {x, X},
delivering the following explicit expressions:

AR ¼
12l
h3

$ %'1

R

; CR ¼ AR
6l
h2

$ %

R

(2.17)

Similar arithmetic- and harmonic-type averages appear within
bounds on AR and CR [44], closely following similar bounds in
the micromechanics of materials [45].

The two-dimensional Stokes regime, with horizontal coordinate
y1 and vertical coordinate y2, still requires a numerical solution
for two-dimensional vectors fx;Xg as well as for the scalars

{p, P}, and only a single set of each because the macroscopic
reduced-dimension is one. However, the surface integrals (2.14)
are now considerably simplified. Decomposing the lateral
boundary @Y‘S into periodically linked left/right portions @Y‘;l=r

S ,
the following expressions hold:

AS ¼
ð

@Y‘;rS

x1dy2; CS ¼
ð

@Y‘;rS

X1dy2 (2.18)

2.7 Texture Classification and Geometry Simplification.
In this work, textures which have a well-defined film thickness in
the Reynolds regime are classified as conventional, whereas those
which do not will be referred to as re-entrant. The latter type of
textures can display a physically rich behavior in particular when
surface tension is present [46–48]. An example is depicted in
Fig. 4. For conventional textures that are widely employed in
surface engineering, a line through the fluid domain along the y3-
direction is unbroken by the solid domain. For re-entrant textures
which have more intricate geometries, however, such a line may
be broken. Although this is not a problem in CFD analysis, it ren-
ders Reynolds equation inapplicable. Hence, fAS;CSg can be
evaluated but not fAR;CRg.

Within the numerical investigations, re-entrant textures will be
modified through geometry simplification in order to obtain a
well-defined film thickness (Fig. 4). Subsequently, the limit
response obtained from the Stokes regime with increasing texture
wavelength k (or, more properly, decreasing c) will be compared
with an explicit evaluation of the Reynolds limit from the simpli-
fied texture geometry. Denoting the flow factor tensors obtained
from the simplified texture with fA;Cg, it is clear that fAS;CSg
will approach fAR;CRg as a limit. The physical motivation, how-
ever, is to assess (i) where fAS;CSg fall with respect to fAR;CRg
in the Reynolds regime, i.e., to see if the proposed simplification
is meaningful, and (ii) where fAS;CSg fall with respect to
fAS;CSg in general, i.e., to evaluate the degree to which the re-
entrant features of a texture influence its macroscopic response.

It is highlighted, and will be explicitly demonstrated, that the
geometry simplification is for analysis purposes only. The real

Fig. 4 Conventional/re-entrant texture unit-cells are depicted in two dimensions, and a modi-
fication of the original re-entrant texture toward a conventional one with a well-defined film
thickness is proposed. In conventional textures, a vertical line (e.g., the solid blue line) across
the fluid domain is unbroken by the solid domain, whereas it is broken in re-entrant textures
(see color figure version online).

Fig. 5 Unit-cell geometries for conventional textures. For all textures, the only free geometry variables are {k,
h0, a}. For the ellipsoidal and V-shaped textures, b is adjusted to obtain a desired h0 once {k, a} are specified.
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Fig. 7 For the sinusoidal texture, normalization of the homogenized response with the homogeneous one col-
lapses the three curves in Fig. 6 onto the black curves in (a-1) and (b-1). This normalization will be employed in
all subsequent figures. This curve depends on the nondimensional parameter f. The boxes indicate the Reyn-
olds and congested limits, as in Fig. 6. The variation of the response with varying f at fixed values of c is shown
explicitly in Eqs. (a-2) and (b-2): (a-1) AS variation at fixed a/h0 values, (b-1) CS variation at fixed a/h0 values, (a-2)
AS variation at fixed h0/k values, and (b-2) CS variation at fixed h0/k values.

Fig. 6 For the sinusoidal texture with k 5 1 lm, the variation of {AS, CS} with c is shown at differ-
ent {h0, a} combinations that all share the same value of f 5 a/h0 5 0.5. Here, and in several sub-
sequent plots, the Reynolds/congested limit is evaluated explicitly and plotted as an empty/filled
square with the same color as the corresponding curve: (a) AS variation at different {h0, a} combi-
nations and (b) CS variation at different {h0, a} combinations (see color figure version online).
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texture is the re-entrant one, and it is on this texture that h0 ¼
h1iS ¼ hhiR should be satisfied (see Sec. 2.1), not on the virtual
simplified one. If one attempts to satisfy this mean film thickness
relation on the simplified texture by moving the surfaces apart
from each other, it will be observed that inferior results will be
obtained. The physical reason behind this observation is the fact
that fluid is retained within pockets of the re-entrant texture,
thereby contributing to the total interface fluid volume, but its
motion is restricted such that these pockets effectively act as a
part of the texture.

3 Conventional Textures

In the remaining portion of this work, a series of numerical
investigations will demonstrate how the macroscopic response of
microtextures is influenced by the governing physical parameters
of the multiscale problem, starting with conventional geometries
and continuing with re-entrant ones, with an emphasis on the tran-
sition between the three regimes of lubrication. The solution in
the Stokes regime is based on BEM, which is briefly reviewed in
Appendix A. The choice of the default numerical discretization
and exceptions to this choice are noted in Appendix B. In all
investigations, l ¼ 1 Pa&s is employed without the loss of general-
ity (Sec. 2.2). The solutions to the cell problems (2.9) and (2.10)
of the Stokes regime for representative configurations of the tex-
tures employed are provided in Appendix C.

The five types of conventional textures employed are shown in
Fig. 5. Except for the ellipsoidal and V-shaped textures, the tex-
ture geometry is solely controlled by the wavelength k and the
amplitude a. The latter parameter also has a significant influence
on the macroscopic response and hence will be varied—see
Refs. [49] and [50] among others. Therefore, for a given texture,
the macroscopic response is influenced by these geometry varia-
bles together with the mean film thickness h0. As previously
emphasized in Sec. 1.5, the macroscopic response will be moni-
tored directly in terms of the flow factors {A, C} that are
obtained from homogenization, thereby eliminating any effects
that are associated with the values of macroscopic local varia-
bles such as the pressure gradient rxp0 or the surface velocity
Uþ as well as the influence of the particular macroscopic prob-
lem setup such as the lubrication interface geometry or the
boundary conditions employed in the solution of the macro-
scopic Reynolds-type equation. The macroscopic response will
be monitored directly through the Stokes regime formulation in
the majority of examples, since this formulation is capable of
capturing the neighboring Reynolds and congested regimes as
limit cases.

It is advantageous to demonstrate features of the macroscopic
response via nondimensional variables. For the sinusoidal texture,
different combinations of {h0, a} at a fixed value of k¼ 1 lm
deliver different response curves, as shown in Fig. 6. However, all
these combinations share the same value of f¼ a/h0¼ 0.5, which

Fig. 8 For different conventional textures, the variation of the macroscopic response with c at a fixed value of
f 5 0.5 and the variation with f at a fixed value of c 5 1 are shown. The boxes in (a-1) and (b-1) indicate the Reyn-
olds and congested limits, as in Fig. 6: (a-1) AS variation for conventional textures (f 5 0.5), (b-1) CS variation for
conventional textures (f 5 0.5), (a-2) AS variation for conventional textures (c 5 1), and (b-2) CS variation for con-
ventional textures (c 5 1).
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is a major nondimensional variable from Eq. (1.1). To benefit
from this observation, {AS, CS} values can be normalized by rep-
resentative quantities. Three immediate choice sets are {A0, C0},
{AR, CR}, and {AC, CC}. Presently, the response of the homogene-
ous interface, i.e., {A0, C0}, will be chosen for normalization,
with which all three curves from Fig. 6 collapse onto the same
curves in Figs. 7(a-1) and 7(b-1) for, respectively, AS and CS. The
limits of these curves are consistent with the Reynolds and con-
gested limits, in agreement with the theoretical predictions. Due
to this nondimensionalization, the only remaining control variable
is f¼ a/h0, the variation of which is observed to shift the curve
along the vertical direction without a significant change in the
range of c values where the rapid change in the macroscopic
response is observed (roughly centered around c¼ 1). Alternative
normalization choices would make curves with different f values
meet at either end: (i) at c" 1 for normalization with the
Reynolds limit where AS/AR ! 1 and CS/CR ! 1, and (ii) at
c% 1 for normalization with the congested limit where
AS/AC! 1 and CS/CC ! 1. However, it has been observed that
the variation of the macroscopic response with f at a fixed value
of c is more clearly assessed when the present choice is made.
This is demonstrated in Figs. 7(a-2) and 7(b-2) for different
choices of c, again for the same sinusoidal texture, where the
Reynolds and congested limit curves serve as bounding envelopes.
The texture influence is diminished as f decreases, and the flow is
fully obstructed when f¼ 1. Overall, and consistent with earlier
observations in the literature as summarized in Sec. 1, neighbor-
hood of c ¼ Oð1Þ is where the Stokes regime must necessarily be
employed. Within one order of magnitude change in c in either
direction, the limiting regimes start to become dominant: below
c¼ 0.1, the Reynolds limit is representative of the macroscopic
response while above c¼ 10 the congested limit is a good
approximation.

With the summarized choices for nondimensionalization, the
macroscopic response of different conventional textures with
varying c at fixed f as well as with varying f at fixed c are sum-
marized in Fig. 8. Clearly, different textures display different sen-
sitivities to dimensional changes. For instance, the square and
sawtooth textures display similar behavior with changing f but the
sawtooth texture displays stronger variations with c than the
square one. In different applications, different degrees of sensitiv-
ity may be desirable from an engineering point of view. Conse-
quently, it is advantageous to work fully in the Stokes regime
setting in order to fully benefit from the whole range of macro-
scopic responses that a texture geometry can deliver, in particular
if a new texture is being designed to engineer the macroscopic
lubrication response of the interface. Note that as f! 1, the flow
in sinusoidal, square, and sawtooth textures become completely
obstructed which is reflected by vanishing macroscopic flow fac-
tors (Figs. 8(a-2) and 8(b-2)). The ellipsoidal and V-shaped tex-
tures, on the other hand, remain unobstructed due to their
geometry description. Again due to the geometry construction, the
first three types of textures shared the same congested limit, which
differs from the congested limits of the last two textures.

4 Re-Entrant Textures

In this section, the macroscopic response of two types of tex-
tures which can display a variable degree of re-entrant features
will be investigated (Fig. 9). Specifically, the ratio

n ¼ b=k (4.1)

will control the re-entrant features of trapezoidal and T-shaped
geometries, which is a new nondimensional control degree-of-
freedom in addition to c ¼ h0=k and f ¼ a=h0. Both textures are

Fig. 9 Unit-cell geometries for two re-entrant textures. The case of b 5 c 5 k/2 recovers the
geometry of the square texture from Fig. 5. With respect to this reference configuration, to con-
trol the degree to which the texture is re-entrant, the angle of the vertical surfaces is changed in
the trapezoidal surface at fixed values of {k, h0, a} by varying {b, c} accordingly. Hence, the trap-
ezoidal texture approaches the sawtooth texture in the limit as b/k fi 0. Similarly, for the
T-shaped texture, the width of the top portion is changed so that c decreases as b increases.
The trapezoidal texture is re-entrant only for b/k > 0.5 but the whole range of 0–1 will be tested.
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re-entrant for the range of n 2 ð0:5; 1Þ. The trapezoidal texture
retains a conventional geometry in n 2 ð0; 0:5Þ, which will be
helpful in the last investigations of this section. In this section, f
will be fixed at a value of 0.5 since its influence has been demon-
strated in Sec. 3. Similarly, the Reynolds and congested limits
will not be explicitly indicated on the figures, since the consis-
tency of these limiting formulations with the limit behavior of the
Stokes regime formulation has already been verified.

The influence of the control variable n is demonstrated in
Fig. 10 at different c values. As expected, at large values of c the
flow is closer to the congested limit and hence is less sensitive to
further changes in the geometry. Moreover, increasing n has a
quantitatively similar effect to f since it leads to an increasing
obstruction to fluid flow between the re-entrant texture features
and thereby to a uniform film thickness that is effectively equiva-
lent to hmin. Hence, the limit response as n ! 1 can be evaluated
via the congested limit. The trend in the transition to this limit is
identical for both textures.

In order to provide an alternative point of view, as in Fig. 8 for
conventional textures, Fig. 11 demonstrates the macroscopic
response variation with c at different values of n. Due to flow
obstruction, the sensitivity to c decreases with increasing values
of n. Although the variations in CS may be small, in particular for

the T-shaped texture, AS displays significant variations which fur-
ther highlight the importance of distinguishing between the lubri-
cation regimes.

Despite the comparatively more complicated geometry of re-
entrant textures with respect to a square texture, which is recov-
ered at n¼ 0.5, it is intriguing to question the importance of fully
capturing the re-entrant geometry. For this purpose, the geometry
simplification procedure described in Fig. 4 has been applied to
re-entrant textures at selected values of n. Figure 12 clearly shows
that, for both types of re-entrant textures, predictions based on
geometry simplification are in excellent agreement with the
results from the original re-entrant textures. This is a verification
of the previous assertion that the pockets of the re-entrant textures
are not domains of active flow so that the fluid in these regions
effectively acts as a part of the texture. Note that rapid conver-
gence to the Reynolds limit is also expected for these textures as c
becomes smaller. Presently, a very fine numerical discretization
near this limit is required to clearly observe this convergence, as
demonstrated in Appendix B. In practice, it would be undesirable
to employ very fine resolutions. Thanks to the results to be dem-
onstrated next, it turns out that this is not necessary, because it is
possible to switch to the Reynolds equation at small c values even
for re-entrant textures.

Fig. 10 For the two re-entrant textures, the variation of the macroscopic response with an increasing degree
n 5 b/k of re-entrant features is shown at different c 5 h0/k values. Despite the value of c 5Oð1Þ; nfi1 effectively
leads to flow obstruction, the limit of which was evaluated explicitly via the congested limit and indicated by the
dashed line as a lower bound: (a-1) AS variation for trapezoidal texture, (b-1) CS variation for trapezoidal texture,
(a-2) AS variation for T-shaped texture, and (b-2) CS variation for T-shaped texture (see color figure version online).
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The observations of Fig. 12 essentially enable the application
of the Reynolds equation to re-entrant geometries where, without
geometry simplification, the film thickness would be ill-defined.
Such a conclusion would be advantageous since the solution of
the Reynolds equation, when applicable, is significantly less
costly compared to Stokes equations. This possibility is investi-
gated in Fig. 13. Note that for both types of re-entrant textures,
the Stokes regime formulation is applicable at all values of n,
which forms a reference. For the trapezoidal texture, the values
of n< 0.5 actually lead to conventional geometries where the
Reynolds equation is already feasible due to a well-defined film
thickness. The good agreement with the Stokes regime formula-
tion shows that the chosen value of c¼ 2+ 10–2 falls within the
Reynolds regime. As n is increased beyond 0.5 for the two tex-
tures, fAS;CSg , fAS;CSg will hold at all values of n, i.e.,
Stokes regime predictions based on the original and the simpli-
fied textures are in excellent agreement. This observation was
already verified earlier in Fig. 12 for fixed values of n and is not
explicitly shown in Fig. 13. Moreover, it is now additionally
observed that the application of the Reynolds equation to the
simplified geometry delivers similar results as well, i.e.,
fAS;CSg , fAR;CRg. This good agreement removes the obstacle
in the application of the Reynolds equation to re-entrant texture
geometries. Finally, as remarked earlier in Sec. 2.7, geometry
simplification should not be accompanied by a re-adjustment of
the distance between the surfaces in order to recover the same

value of h0 when it is calculated on the simplified texture, i.e., as
if the texture had a rectangular geometry. Indeed, as demon-
strated for the trapezoidal texture, such a re-adjustment leads to a
completely wrong trend in the predicted macroscopic response.
Here, the Stokes predictions are also displayed to further show
that the wrong trend is not due to the use of the Reynolds equa-
tion. This result also emphasizes that the good performance of
geometry simplification does not indicate that re-entrant texture
features are not important—they do lead to a macroscopic
response that significantly differs from a rectangular texture with
the same h0 value, however, this response can be approximated
to good accuracy through a proper simplification instead of a full
resolution of the geometrical details.

5 Conclusion

Regimes of roughness in lubrication have been an ongoing
source of debate in the multiscale mechanics of lubrication inter-
faces, ever since first attempts to address microscopic effects due
to roughness. In particular, the focus of the debate has centered
around the suitability of employing the numerically convenient
Reynolds equation on the microscopic scale and cases have been
identified where computational fluid dynamics analysis has a
superior predictive capability with respect to the macroscopic
response. This higher predictive capability may have a number of
sources, ranging from an ability to capture micro-inertia effects to

Fig. 11 The variation of the macroscopic response with c is shown with different degrees n 5 b/k of re-entrant
features: (a-1) AS variation for trapezoidal texture, (b-1) CS variation for trapezoidal texture, (a-2) AS variation for
T-shaped texture, and (b-2) CS variation for T-shaped texture
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offering a general framework for incorporating complex non-
Newtonian fluid behavior. Among such advantages, a funda-
mental capability is associated with accurately resolving flow
characteristics when the texture wavelength is of the order of
the film thickness. In this so-called Stokes regime, employing
Stokes equations is essentially required. In a pioneering study
[7], a two-scale formulation was proposed where Stokes equa-
tions were employed on the microscale, and a Reynolds-type
equation is employed on the macroscale, together with a rigor-
ous link between the two scales based on homogenization.
Moreover, the relation between this formulation and two
extreme cases, namely Reynolds and congested limits, was
established. The numerical implementation of this theory has
been realized for the first time in the present study, based on
the numerically efficient boundary element method. Moreover,
ambiguities associated with re-entrant textures due to an ill-
defined film thickness have been addressed, and an approach to
analyzing such complex textures based on geometry simplifica-
tion has been proposed. Extensive numerical investigations,
based on both conventional and re-entrant textures, have clearly
demonstrated the link between the three (Reynolds, Stokes, con-
gested) microscopic regimes of hydrodynamic lubrication and

how this link depends on the type of the texture. These investi-
gations were carried out strictly based on flow factors which
represent the constitutive response of the microtextured inter-
face, thereby eliminating any ambiguities in the conclusions
with respect to the macroscopic geometry and the boundary
conditions.

A number of studies stand out among various possible future
investigations. Among these, a generalization toward a three-
dimensional numerical setting is clearly necessary in order to
properly assess how the transitions between the three microscopic
regimes occur, in particular for anisotropic textures where repre-
sentative texture wavelengths along each direction may differ.
Such an assessment may be carried out not only in terms of flow
factor tensors associated with the macroscopic Reynolds-type
equation but also in terms of homogenized quantities that charac-
terize frictional heating. In such a setting, it will additionally be
possible to design textures which deliver a range of desired mac-
roscopic responses, such as a particular type of anisotropy or a
reduced degree of friction, and also assess how the original
designs themselves display a geometrical transition through the
microscopic regimes. Such investigations will contribute to cur-
rent widespread efforts in modern surface engineering which aim

Fig. 12 The macroscopic responses {A, C}5{AS, CS} of the original re-entrant textures and the responses
fA;Cg5 fAS ;C Sg of the simplified textures are compared at two different re-entrant configurations (controlled
by n 5 b/k) from the Reynolds limit to the congested limit based on the formulation of the Stokes regime. The
lines toward the Reynolds and congested limits can be further straightened by employing finer mesh
discretizations—see Appendix B: (a-1) AS variation for trapezoidal texture, (b-1) CS variation for trapezoidal tex-
ture, (a-2) AS variation for T-shaped texture, and (b-2) CS variation for T-shaped texture.
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to simultaneously incorporate multiple and often conflicting
demands through complex texture geometries that rely on novel
manufacturing techniques.
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Appendix A: Boundary Element Method

Boundary element method is a numerical technique which is
based on a boundary-only discretization and originates from the
integration of the free space Green’s function over the elements
on the boundaries. If necessary, the solution inside the domain is
obtained by postprocessing. In this section, a brief summary of
BEM is provided in order to outline the solution of the cell prob-
lems in the Stokes regime. For details, the reader is referred to
Refs. [51–53].

The governing equations of a steady Stokes flow through a
two-dimensional domain D with position vector x and boundary
@D, in the absence of an external force, is represented as

'rpþ lDu ¼ 0 and r & u ¼ 0 in D (A1)

where p is the pressure, and u is the velocity. When there is a
constant external force f per unit volume, p is related to the
actual pressure p0 via p ¼ p0 ' f & x. As such, both Eqs. (2.9)
and (2.10) can readily be associated with the form in
Eq. (A1).

Two-dimensional Stokes flow at a point x0 2 D admits the
boundary integral representation

uj x0ð Þ ¼ '
1

4pl

ð

@D
Gji x0; xð Þ ti xð Þdl xð Þ

þ 1

4p

ð

@D
ui xð ÞTijk x; x0ð Þ nk xð Þdl xð Þ (A2)

where t is the surface traction, G is the velocity Green’s function,
and T is the stress Green’s function. Similarly, the pressure can be
expressed through its boundary integral representation

p x0ð Þ ¼ '
1

4p

ð

@D
pj x0; xð Þ tj xð Þdl xð Þ

þ l
4p

ð

@D
ui xð ÞPik x; x0ð Þ nk xð Þdl xð Þ (A3)

Fig. 13 Near the Reynolds limit (c 5 h0/k 5 2 3 1022), macroscopic predictions from different formulations are
compared for different degrees n 5 b/k of re-entrant features. For the trapezoidal texture, fixing h0 corresponds
to the adjustment of the gap between the surfaces so as to keep the mean film thickness a constant during
geometry simplification which, however, leads to an incorrect trend prediction: (a-1) A variation for trapezoidal
texture, (b-1) C variation for trapezoidal texture, (a-2) A variation for T-shaped texture, and (b-2) C variation for
T-shaped texture.
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Fig. 14 For the sinusoidal texture configuration with f 5 a/h0 5 0.5, the influence of regular edge refinement is
demonstrated for an increasing total number of elements. The default regular mesh employs 3200 elements: (a)
AS variation and (b) CS variation.

Fig. 15 For re-entrant textures, presently for the trapezoidal texture, switching from a regular to a compatible
mesh with the same number of elements (3200) delivers qualitatively better results: (a) AS variation and (b) CS

variation

Fig. 16 The compatible mesh results from Fig. 15 are improved by increasing the total number of elements
employed from the default value of 3200–9600 in the range c ‰ ð1022; 1021Þ. The region near the congested limit
is excluded to highlight refinement effects more clearly: (a) AS variation and (b) CS variation.
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where p and P are pressure terms that are associated with G and
T, respectively. Defining r ¼ x' x0 and r ¼ jrj, the Green’s func-
tions have the explicit forms

Gij x; x0ð Þ ¼ 'dijlnr þ
rirj

r2
; Tijk x; x0ð Þ ¼ '4

rirjrk

r4
(A4)

with the associated terms

pj x; x0ð Þ ¼ 2
rj

r2
; Pik x; x0ð Þ ¼ 4 ' dik

r2
þ 2

rirk

r4

& '
(A5)

Therefore, once the velocity and traction distributions on @D are
known, the complete velocity and pressure fields throughout D
can be obtained using the boundary integral representations (A2)
and (A3). The visualizations of the cell problems in Appendix C
have been generated based on these expressions.

Now, to solve for the distributions on @D, the boundary integral
representation (A2) may first be converted into an integral equa-
tion by taking the limit as the point x0 approaches @D. After
accounting for the singularities in G and T, one obtains

uj x0ð Þ ¼ '
1

2pl

ð

@D
Gji x0; xð Þ ti xð Þdl xð Þ

þ 1

2p

ð

@D
ui xð ÞTijk x; x0ð Þ nk xð Þdl xð Þ (A6)

The line integrals may then be approximated as the sum of integrals
over boundary elements En, n¼ 1,…, N. Assuming element-wise
constant values un

i and tni for the velocity and the traction along xi-
direction on element En, the definition of the element integrals

an
ji x0ð Þ ¼

1

2pl

ð

En

Gji x0; xð Þdl xð Þ (A7)

Fig. 17 The solution to the Poiseuille cell problem (2.9) of the Stokes regime is provided for representative texture configura-
tions. The arrows indicate the magnitude and direction of x while the background color represents p variation (red: high, blue:
low) (see color figure version online).
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bn
ij x0ð Þ ¼

1

2p

ð

En

Tijk x0; xð Þnk xð Þdl xð Þ (A8)

leads to the following discretized form of Eq. (A6) for the velocity
degree-of-freedom over element Em with xm

0 as its midpoint:

um
j ¼ '

XN

n¼1

an
jiðx

m
0 Þ t

n
i þ

XN

n¼1

bn
ijðx

m
0 Þ u

n
i (A9)

This result may be expressed as a linear system of equations

½B/fug ¼ ½C/ftg (A10)

where {u} and {t} are vectors of dimension 2N which incorporate
all the velocity and traction components while [B] and [C] are
2N+ 2N matrices. After the imposition of the boundary condi-
tions, the system of equations can be converted into the form

½A/fxg ¼ fbg (A11)

where {x} is a vector of dimension 2N which includes the remain-
ing unknown values of velocity and traction degrees-of-freedom,
[A] is a 2N+ 2N matrix, and the vector {b} contains all the known
quantities. The boundary conditions are imposed in a standard
manner. Here, it is only noted that periodic boundary conditions
on the lateral boundary @Y‘S in Eqs. (2.9) and (2.10) require the
antiperiodicity of the tractions as well.

Appendix B: Numerical Discretization

For the reproducibility of the presented results, BEM discreti-
zation is shortly commented upon in this section. Throughout
the numerical investigations, effort has been made to employ
the same boundary discretization for different textures and con-
figurations. In general, an efficient and simple discretization is
to regularly assign the same number of elements to each edge of

Fig. 18 The solution to the Couette cell problem (2.10) of the Stokes regime is provided for representative texture configura-
tions. The arrows indicate the magnitude and direction of X, while the background color represents P variation (red: high,
blue: low) (see color figure version online).
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the unit-cell. The optimum number of elements is chosen in
order to ensure sufficiently converged results in all cases. How-
ever, it has been detected that a well-converged regular discreti-
zation for the range c ¼ h0=k ¼ Oð0:1' 10Þ may deliver
nonconverged results outside of this range toward the Reynolds
and congested limits. In such cases, instead of refining the mesh
further, switching to a mesh that is compatible with the aspect
ratio of the unit-cell, specifically one that preserves the element
length along the whole boundary, was found to be numerically
more efficient. On the other hand, such a discretization will lead
to a changing number of elements per edge as c¼ h0/k is varied,
which was found to deliver nonsmooth macroscopic response
curves at coarse resolutions. Hence, a regular edge discretization
will be employed by default, and a switch to a compatible edge
discretization will be made when a deterioration in the solution
quality is detected.

Figure 14 demonstrates the higher sensitivity of the solution to
the mesh in the Reynolds and congested regimes as the number of
elements is changed. Only the sinusoidal texture is provided as an
example, other conventional textures display similar behavior.
Within the Stokes regime, the solution is efficiently captured even
with very coarse boundary meshes. The reason for the sensitivity
of the solution to the mesh resolution within the limiting regimes
is the very large difference in element lengths along each edge.
Even then, a total number of 3200 elements already delivers a
well-converged solution that differs by at most 1% from the finest
discretization solution and was therefore employed for all conven-
tional textures.

The re-entrant trapezoidal and T-shaped textures were found
to be much more sensitive to the mesh resolution, which is dem-
onstrated in Fig. 15. The default mesh that was well-converged
for conventional textures is not only delivering nonconverged
results, indicated by the continuously varying values toward the
two limits instead of straight horizontal lines, but can also lead
to oscillations in the curve for certain configurations. Keeping
the total element number the same, switching to a compatible
mesh eliminates the oscillations, although the results are
observed to be still nonconverged near the Reynolds and con-
gested limits. The deficiency near the Reynolds regime is more
significant, hence further refinement is pursued only in the range
c 2 ð10'2; 10'1Þ, as summarized in Fig. 16. Only the trapezoi-
dal texture is analyzed, and the T-shaped one displays similar
behavior. The total number of elements in the compatible mesh
is further increased first to 4800 and then further doubled, lead-
ing to a solution quality near the Reynolds limit that is compara-
ble to the solution quality near the congested limit. Hence, for
re-entrant textures, the default mesh is compatible and has 3200
elements, except near the Reynolds regime where 9600 elements
will be employed. Employing even finer meshes near both limits
will clearly further straighten the lines which, however, will not
be pursued to limit the computational cost in view of the large
number of configurations tested.

Appendix C: Representative Cell Problem Solutions

The solutions to the cell problems of the Stokes regime for rep-
resentative configurations of conventional (Fig. 5) and re-entrant
(Fig. 9) textures employed are provided in Fig. 17 for the Pois-
euille problem (2.9) and in Fig. 18 for the Couette problem (2.10).
Note that these solutions depend only on the geometrical configu-
ration of the unit-cell and not on the values of macroscopic local
variables or the particular macroscopic problem setup. Because
the provided results are representative only, the magnitudes of the
solution variables are not explicitly indicated.
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