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Research Article

Modeling of dielectrophoretic particle
motion: Point particle versus finite-sized
particle
Dielectrophoresis (DEP) is a very popular technique for microfluidic bio-particle manip-
ulation. For the design of a DEP-based microfluidic device, simulation of the particle
trajectory within the microchannel network is crucial. There are basically two approaches:
(i) point-particle approach and (ii) finite-sized particle approach. In this study, many
aspects of both approaches are discussed for the simulation of direct current DEP, al-
ternating current DEP, and traveling-wave DEP applications. Point-particle approach is
implemented using Lagrangian tracking method, and finite-sized particle is implemented
using boundary element method. The comparison of the point-particle approach and finite-
sized particle approach is presented for different DEP applications. Moreover, the effect
of particle–particle interaction is explored by simulating the motion of closely packed
multiple particles for the same applications, and anomalous-DEP, which is a result of
particle–wall interaction at the close vicinity of electrode surface, is illustrated.
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1 Introduction

In microfluidic technology, manipulation of the bioparti-
cles is the main ingredient for many of the diagnostic and
clinical applications. Among several techniques available
for the microfluidic manipulation of bioparticles, electroki-
netic (EK) based methods such as electrophoresis and dielec-
trophoresis (DEP) are popular due to their favorable scaling
with the reduced size of the system. DEP is the movement of a
particle in a nonuniform electric field due to the interaction of
the particle’s dipole with the electric field gradient [1]. When
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the particle is placed in a nonuniform electric field, depend-
ing on the polarizibility of the particle and the medium, the
particle may experience a net force in the direction of the elec-
trical field gradient minima (negative-DEP, n-DEP) or max-
ima (positive-DEP, p-DEP). DEP has been studied extensively
in the literature for particle manipulation in microfluidic sys-
tems mainly due to several advantages such as (i) its label-free
nature, (ii) high selectivity, (iii) its favorable scaling effects,
and (iv) the simplicity of the instrumentation [1].

DEP is applicable even for nonconducting particles and
can be generated either by using direct current (DC) or alter-
nating current (AC) field. In DC-DEP applications, electric
field is applied by using external electrodes that are sub-
merged into the reservoirs, and the flow is also induced
by the electric field (i.e., electroosmotic flow). The nonuni-
form electric field is generated by means of the specially
designed structures inside the microchannel network. In
AC-DEP applications, an array of metal electrodes is placed in-
side the microchannel network. In the design of a DEP-based
microfluidic system for the manipulation of particles, sim-
ulation (or numerical prototyping) is an important step in
order to determine the most feasible and optimum geometry
of the electrodes and the microchannel network. To assess
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the performance of the design, simulation of the particle tra-
jectories is required. Since the trajectory of the particles is a
result of interaction of particles with the fields, corresponding
field variables need to be determined. For the DEP applica-
tions in microfluidics, the electrical potential field, flow field,
and temperature field (if appreciable temperature gradients
are present) have to be considered. To simulate the particle
trajectories, there are two approaches.

(i) Point-particle approach: In this approach, the particles
are treated as point particles, and Lagrangian tracking
method (LTM) is implemented. The field variables solved
without the presence of the particles, and the effect of the
particle on the field variables is ignored, only the effect
of the field variables on the particle is considered. Only
the translational motion is taken into account and the
rotational dynamics of the particles are ignored. To evalu-
ate the particle trajectory, Newton’s second law motion is
applied for the particles. The external force on the particle
is calculated by using prederived equations that calculate
the drag force and DEP force. Therefore, these expres-
sions needs to be know a priori. Typically, these kind of
analytical expressions are known for some regular ge-
ometries such as spheres and ellipsoids; however, their
derivations are usually based on a strong assumption
that the particle is located in an infinite medium with-
out any neighboring particle. Although there are some
expressions to include effect of a single planar surface, a
general expression that includes the confinement effect
of a microchannel is not possible. Furthermore, point-
particle approach does not include particle–particle in-
teraction that can be quite important for creeping flow
(strictly speaking, the volume fraction of the particles
needs to be less than 1% to ignore the particle–particle
interaction; [2], p. 576). Despite the ignorance of some
these important effects, LTM has been applied for the
simulation of particle motion in the literature for both
DEP [3–8] and acoustophoretic applications [9, 10]. One
major advantage of point-particle approach is that it does
not require relatively high computational cost. Once the
field variables are obtained without the presence of the
particle, particle trajectories can be evaluated at the post-
processing step. Therefore, LTM can be implemented for
the motion of many particles that may allow statistical
analysis [9, 10]. Researchers also proposed the use of an
empirical correction factor that takes into account the
particle–particle and particle–wall interaction. Using an
empirical correction factor, a very good agreement has
been observed with the experimental and numerical re-
sults [3–8]. This correction factor is between 0 and 1.0,
depending on the size of the particle. If the particle size
is small compared to the channel size, and the particle
concentration is low enough (i.e., negligible particle–wall
and particle–particle interactions), the correction factor
becomes unity. If the particle size is large compared
to the channel size and if the particle concentration is
high, the correction factor tends to be different than zero.

This correction factor depends on the channel geometry,
flow rate, and the electric field; therefore, the prediction
of this correction factor is based solely on experimental
results.

(ii) Finite-sized particles: In this approach, the field variables
are solved with the presence of the finite-sized particle,
and the particle is moved as a result of this interaction.
In each incremental movement of the particle, the field
variables have to be resolved. The effect of the parti-
cle geometry, channel geometry, and particle–wall and
particle–particle interactions can be captured. Once the
field variables are obtained with the presence of finite
particle size, the drag force on the particle can be de-
termined by integrating the hydrodynamic stress tensor
(HST), and an EK force can be determined by integrating
the Maxwell stress tensor (MST). Furthermore, the torque
induced on the particle can be obtained. This approach
relaxes all the assumptions of LTM, and requires only
the material properties of the medium and particle as a
priori. However, since the HST and MST depend on the
field variables’ gradient on the particle surface, the field
variables at the vicinity of the particle surface need to be
obtained accurately. Since as the particles move within a
microchannel, the mesh of the solution domain has to be
deformed and/or remeshed. Therefore, from simulation
point of view, these kind of simulations are challenging
and computationally expensive. If numerical techniques
based on domain mesh are implemented for these kind
of problems, the meshing can be problematic to resolve
the particle–particle and particle–wall interactions in a
large domain and/or for many particles.

Although numerical techniques based on domain mesh-
ing such as finite element and finite volume have been
implemented for simulations with finite-sized particles, to
capture the physics of the particle–particle interaction and
the movement of the particle within the domain differ-
ent techniques have been implemented such as arbitrary
Lagrangian-Eulerian method [11–14], immersed interface
method/immersed boundary method [15–17], fictitious do-
main method [18, 19], sharp interface method [15–17] (the
list of methods used for DEP modeling in the form of a ta-
ble can be found elsewhere [17]). However, all those studies
either include very few particles (one or two) or several par-
ticles in a relatively simple solution domain that does not re-
semble a microfluidic channel setting for DEP-based particle
separation and/or sorting. Besides, the simulation settings
include particles with relative large separation distance. At
this point, boundary element method (BEM), which is a nu-
merical technique based on boundary discretization, offers a
unique advantage for simulations with finite-sized particles
since it does not require remeshing. As the particle moves
in the microchannel, the mesh elements on the particles
translate and rotate. BEM is a very important numerical tool
for the solution of the linear partial differential equations.
Since the fluid flow inside the microchannels is governed by
the Stoke’s flow due to the low Reynolds number nature of
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the flow, and electric field is governed by the Laplace equa-
tion, both field variables can be obtained using BEM. This
unique feature of BEM has been exploited for the numeri-
cal design of electrical-mechanical traps for AC-DEP applica-
tions [20], the investigation of nonlinear EK particle–particle
interactions [21], and the simulation of EK particle motion
inside microchannels for DC-DEP applications [22, 23]. Re-
cently, our group has developed a BEM-based solver for the
simulation of particulate flow in microchannels [24–26]. In
this study, we have extended our 2D solver to simulate DC-
DEP, AC-DEP, and traveling-wave DEP (tw-DEP) applica-
tions. To verify our BEM solver, three benchmark problems
are simulated, and our BEM solutions are compared with
the experimental results and/or LTM results which is ob-
tained using COMSOL Multiphysics. Moreover, the effect of
particle–particle interaction has been explored by simulating
the motion of nine closely-packed particles for DC-DEP, AC-
DEP, and tw-DEP applications. The behavior of the particles
at close vicinity of the electrode surface is a result of strong
particle–wall interaction, which is named as anomalous DEP
(a-DEP) [27], is also demonstrated. The unique contribution
of this study is the comparison of the point-particle approach
and finite-sized particle approach, and the demonstration of
the particle–particle interaction for several DEP applications
in microchannel settings that resemble DEP-based particle
separation and/or sorting. In addition to these, this is the
first time tw-DEP with finite-sized particle approach and a-
DEP inside a microchannel setting that includes both the
hydrodynamic and electric interaction of the particles with
wall is demonstrated.

2 Theory

2.1 Governing equations

2.1.1 Point-particle approach

Assuming (i) constant thermophysical properties for the fluid
and no thermal effect on flow field and particle velocity, (ii)
the particle and the channel walls are nonporous and do not
react with the surrounding liquid, (iii) the rotation of the
particle does not affect the particle’s translation motion, and
(iv) the solution is dilute enough to neglect the electrostatic
interaction between the particles, the particle position xp can
be determined, by integrating the particle velocity together
with the initial position,

xp(t) = xo +
∫ t

0
up(! )d!, (1)

where xo is the initial position of the particle, up is the particle
velocity, and t is the time. For a fixed frame of reference, the
translational motion of a particle under the action of hydro-
dynamic drag and DEP force can be written as

mp
dup

dt
= FH + FEK, (2)

where mp is the particle mass, FH is the hydrodynamic drag
force, and FEK is the EK force (eletrophoretic and/or DEP)
on the particle. The hydrodynamic drag force on a spherical
particle is given by Stoke’s law:

Fdrag = 6"#R(u − up), (3)

at the creeping-flow limit, where R is the particle radius, u is
the fluid velocity, and up is the particle velocity.

By using the phasor notation, time-averaged DEP force
on a spherical particle in an AC-field (AC-DEP) can be ex-
pressed as [1]
〈
FDEP(t)

〉
= 2"εmRe [ fCM]R3∇E2

rms

+ 4"εm Im[ fCM]R3 (
E2

rms,i∇$i
)
, (4)

where Erms is the root-mean-square magnitude of the ap-
plied AC electric field, εm is the absolute permittivity of the
suspending medium, and $ is the phase of the AC-field. Sub-
script i refers to each component of the electric field and the
phase gradient. The last term in the parenthesis is a tensor
notation and refers to the summation of the components of
the vector quantities inside the bracket. fCM is the Clausius–
Mossotti (CM) factor, Re [·] refers to the real part of CM and
Im[·] refers to the imaginary part of CM. The first term de-
pends on the nonuniformity in the electric field strength, and
the second term depends on the nonuniformity in the phase
of the electric field, which is the driving force for the twDEP
applications. CM factor is given by

fCM(εp, %p, εm, %m, &) =
(εp − εm) + j/&(%p − %m)

(εp + 2εm) + j/&(%p + 2%m)
, (5)

where ε is the permittivity, % is the electrical conductivity, and
subscripts p and m stand for the particle and the medium,
respectively. Note that when εp ' εm, fCM becomes positive,
and when εp ( εm, fCM becomes negative. CM factor has nu-
merical limits as −0.5 and 1.0. When DC-field is applied,
the DEP force (DC-DEP) expressions remain the same; how-
ever, CM factor depends solely on electrical conductivities
of the medium, and the frequency dependency of the CM
disappears.

For the particle size considered in microfluidic applica-
tions, the characteristic time scale of acceleration is in the
order of 10−4 s [3], which is much smaller than the time scale
of the variation of the field variables. Therefore, the acceler-
ation term can be safely neglected. Substituting Eqs. (4) and
(3) into the Eq. (2), the particle velocity can be obtained as

up = u − εm R2

3#

[
Re

[
fCM(&)

]
∇E2

rms

+ 2 Im [ fCM]
(
E2

rms,i∇$i
)]

. (6)

The trajectories of the particles can easily be obtained as a
streamline plot, once the x- and y-component of the above
equation are introduced as the x- and y-component of the
stream function. As discussed earlier, this approach does
not include the effect of any particle–wall and/or particle–
particle interaction. Strictly speaking, this expression was de-
rived based on the assumption that particles are embedded
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in an infinite medium. To include effect of particle–particle
and/or particle–wall interactions, an empirical correction fac-
tor can be introduced:

up = u − C
εm R2

3#

[
Re

[
fCM(&)

]
∇E2

rms

+ 2 Im[ fCM]
(
E2

rms,i∇$i
)]

. (7)

It is expected that for small particles, the correction factor
approaches to unity, and for larger particles, it is between 0
and 1.0 depending on the size of the particle and microchan-
nel, and needs to be determined experimentally. To be able
to calculate the particle velocity, flow and electric field (i.e.
u, E) have to be determined. However, the simplicity is that
this field variables need to be obtained within the micro-
channel with the absence of any particles once by solving the
Laplace, Navier–Stokes, and continuity equation with appro-
priate boundary conditions:

∇2)̂ = 0, (8)

∇ · u = 0, (9)

* (u · ∇)u = −∇ p + #∇2u, (10)

where * and # are the density and the viscosity of the liquid
medium, u is the flow field, p is the pressure field, )̂ is the
phasor of the electrical potential. These set of equations can
be solved with any partial differential equations solver without
any problem.

2.1.2 Finite-sized particle approach

In this approach, the flow and electric field need to be cal-
culated together with the presence of the particle within the
solution domain. Assuming rigid particle, the flow field is
solved in the fluid domain; however, the electric field should
be obtained both within the liquid domain and within the par-
ticle. The corresponding permittivity and conductivity values
need to be assigned for both domains. Considering the low
Reynolds number nature of the flow, Stokes equation can be
solved to determine the flow field. Since the field variables are
solved over and over again, such a simplification has a signif-
icant impact on the solution algorithm. The electric and flow
fields can be obtained by solving the following equations with
the appropriate boundary conditions:

∇ ·
[
(% + i&ε)∇)̂

]
= 0, (11)

∇ · u = 0, (12)

0 = −∇ p + #∇2u. (13)

Once the flow field and the electric field are determined,
the hydrodynamic drag and EK force can be determined by in-
tegrating HST and MST (neglecting magnetic effects), which
are given by

FH =
∮

S
(%H · n) d S, FEK =

∮

S
(%MST · n) d S. (14)

Similarly, the hydrodynamic torque and EK torque can be
determined by integrating moment on the particle due to
HST and MST:

TH =
∮

S
(x − xp) × (%H · n) d S,

TEK =
∮

S
(x − xp) × (%MST · n) d S, (15)

where xp is the position of the center of the particle and n is
unit vector normal to the surface. %h and %MST are defined
as

%H = −pU + #
[
∇u + (∇u)T] ,

%MST = ε
(

E ⊗ E − 1
2

E2U
)

, (16)

where U is the unit tensor and symbol ⊗ denotes the dyadic
product.

2.2 Boundary conditions

The boundary conditions applied in this study are summa-
rized as follows:! For DC-DEP applications, electric potential difference is

applied at the channel inlet and exit. For the channel walls,
electric insulation is assigned. For the flow field, pressure
is equated to zero (if there exists a pressure driven flow
on top of electroosmotic flow, pressure values can be as-
signed) at the channel inlet and exit. Using thin-double
layer assumption, the slip velocity boundary condition is
applied at the channel walls as

uslip,|| = − εm+w

#
(∇))||, (17)

where +w is the zeta potential of the channel wall. The
same slip velocity is also defined on the particle surface by
replacing the zeta potential with that of the particle.! For AC-DEP simulations, electric potential is applied one
electrode ()̂o) and zero potential is applied on the other
electrode. All other boundaries assigned as insulated since
the conductivity and emissitivity of the channel materials
are low compared to the aqueous solution. For the flow
field, since the solution domain is part of the larger mi-
crofluidic network, parabolic, fully-developed velocity pro-
file with an average velocity of Uaverage is applied at the inlet,
pressure is equated zero at the exit, and no-slip boundary
condition is applied on the channel walls.! For tw-DEP applications, periodic boundary condition is
applied for the electric field at the inlet and the exit, since
the solution domain is the part of a reported microflu-
idic structure. Electric potential with a phase difference
($) is assigned on the electrode surfaces. For the remain-
ing boundaries, insulated boundary condition is applied.
Considering the frequency and the conductivity of the
medium [1], no-slip boundary condition is applied both
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on the electrodes and the channel walls. Parabolic velocity
profile with an average velocity of Uaverage is applied at the
inlet, pressure is equated zero at the exit.

3 Boundary element formulation

Modeling of DEP motion of with BEM requires two explicit
steps: (i) solution of the electric field equation that presents
the EK forces to the particle(s) and (ii) solution of the Stokes
flow equation that determines the velocity of the particle that
can be integrated to obtain the particle trajectory. The bound-
ary element equation for electric field equation (i.e., Laplace
Equation) can be written as

C(A))(A) +
∫

S
q ∗(A, P))̂(P)dS =

∫

S
)∗(A, P)q̂ (P)dS, (18)

where A is the source point and P is the field point. In
Eq. (18), )̂ represents the phasor of the electric potential, and
q̂ represents the corresponding normal flux on the boundary.
The first and second fundamental solutions of the Laplace
equation are represented by )∗ and q ∗, respectively, and the
constant C(A) takes values depending on the position of the
source point A: If A is inside the solution domain, C(A) = 1,
if A is on a smooth boundary C(A) = 1/2, if A is outside the
solution domain C(A) = 0. In this study, only constant ele-
ments are employed, which means all nodes are on smooth
boundary. When the boundary of the solution domain is dis-
cretized using N constant elements, the integral equation
becomes

H) · ! = Gu · q. (19)

Here, ! represents the column vector that is composed of the
boundary quantities (at the boundary nodes) of the phasor of
the electric potential, q represents the corresponding fluxes at
the boundary nodes and H) and G) are the system matrices
constructed using the fundamental solutions of the Laplace
equation. Note that for AC-DEP and tw-DEP applications, the
components of these matrices and vectors are complex val-
ued. The number of equations in this system of equations is
equal to the number of nodes on the boundary; and since in
this study, constant elements are employed, it is equal to the
number of elements that are used to discretize the boundaries
of the solution domain. The total number of unknowns pre-
sented with Eq. (19) is 2N, where N is the number of nodes on
the boundaries. Through the imposition of proper boundary
conditions, N of these quantities are pre-determined lead-
ing to a solvable system of linear equations. The solution
of the equations lead to the determination of the phasor of
the electric potential ()̂) at each boundary node along
with the normal flux. For the evaluation of the MST that
leads to the FEK, the proper determination of E (= −∇)̂) is re-
quired. The solution, on the other hand, gives only the normal
flux. Thus, the tangential variation of )̂ has to be evaluated
for tangential components of E. Finite difference scheme with
central differencing is employed within the nodal values of )̂
for the determination of the tangential component.

A well-established literature stands for the solution of
Stokes equation using BEM [24]. The boundary element equa-
tion for Stokes equations can be written as

Cij(A)uj(A) +
∫

S
t∗
ij (A, P)ui(P)dS =

∫

S
u∗

ij(A, P)ti(P)dS, (20)

where ui are the components of the velocity vector and ti are
the components of the traction vector at the given point. The
first and second fundamental solutions of Stokes equation
are represented by u∗

ij and t∗
ij , respectively. Constants Cij(A)

take values depending on the position of the point A: If A is
inside the solution domain, Cij(A) = ,ij; if A is on a smooth
boundary Cij(A) = ,ij/2; and if A is outside the solution do-
main Cij(A) = 0. The resulting system of equations are very
similar to those of Eq. (19):

Hu · u = Gu · t, (21)

where u is a vector that involves the components of the ve-
locity field vector at each boundary node (which would be
2 × 2 vectors for each node) and t is a vector that involves
the components of the corresponding traction vector at the
same boundary nodes. The system matrices, Hu and Gu are
2N × 2N matrices constructed using the fundamental solu-
tions of the Stokes equation. The system of equations pre-
sented in matrix for in Eq. (21) contains 2N + 2N = 4N un-
knowns, 2N of which is expected to be determined through
the boundary conditions imposed on the system. It is a com-
mon practice to impose either the component of the velocity
or the component of the traction or a combination in a given
direction at each node as boundary condition. But, in case
of particle flow, neither of these three is explicitly known.
Thus, the imposition of the boundary conditions requires the
physical insight to the kinetics of the flowing particle. At this
point, it is assumed that the particles are buoyant, thus the
only external force imposed on the particle(s) would be FEK

other than hydrodynamic interaction. Furthermore, assum-
ing rigid particles, the motion characteristic is 2D rigid-body
motion, which means each boundary point has a velocity
given by

ui = ub
i + &r t̂i, (22)

ui are the components of the velocity vector at a node on the
boundary of the particle (with i representing the direction),
ub

i are the components of the velocity vector at the selected
center of the rigid particle, & is the angular velocity of the
particle, r is the distance between the selected center and
the boundary node, and t̂ are the components of the unit-
perpendicular vector to the vector drawn from the center to
the node. The imposition of this rigid-body motion (the sum-
mation of the forces and the moments are equal to zero)
condition is discussed in detail in [24], where the matrix Hu

should be augmented with three columns per particle—the
components of the first column are evaluated by summing up
the corresponding components of the odd columns, the com-
ponents of the second column are evaluated by summing up
the corresponding components of the even columns, and the
third column is evaluated by summing up the corresponding
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components of the odd columns after multiplication with r t̂1

and the even columns after multiplication with r t̂2. After aug-
menting the matrix Hu with three columns, for the system of
equations to be solvable, three additional equations should be
imposed. These three equations are obtained using the static
equilibrium equations that lead to the determination of the
translational velocity of the particle’s center and the angular
velocity of the particle. Once the translational and angular
velocity of the particle is obtained, the trajectory and the rota-
tion of the particle is achieved through time integration. The
fundamental solutions for Laplace and Stokes equation can
be found in BEM literature [28].

4 Results and discussion

In BEM analysis, unless otherwise stated, one boundary el-
ement per micrometer is used for discretizing the channel
walls, and two boundary elements per micrometer is used for
discretizing the particle boundary. Constant elements are im-
plemented. Euler’s method is implemented for time integra-
tion. The convergence of the particle trajectory is achieved by
the time step of dt = 0.001 s for all the simulations. The con-
vergence criteria are set as the deviation of the final position
of the particle is less than the 10% of the particle diameter,
which is well-below the uncertainty limit of a measurement of
a particle’s location in an experiment. Numerical integrations
are performed using Gauss-quadrature with 24 points. Sin-
gular integrals are evaluated analytically. All the dimensions
given in the figures are in #m unless otherwise is stated.

4.1 Benchmark solutions

The boundary element formulation developed has been tested
for three different benchmark problems that are for DC-DEP,
AC-DEP, and tw-DEP applications. For the LTM results, the
flow and electric field is simulated without the presence of the
particles as described in Section 2.1, and at the postprocessing
step the particle trajectories are generated. For the simulation
of the flow and electric field, COMSOL multiphysics simula-
tion environment is implemented.

For the DC-DEP application, the experimental results
of Kang et al. [3] is used where the experiments were con-
ducted with a dilute solution in terms of particle concentra-
tion (particle concentration was reported as 105 particles/mL,
and the flow rate is estimated as 0.12 #L/min). First, all the
results are digitized. A total of 5.7 and 15.7 #m particles are
released from different y-locations, for different electric field
values as seen in Fig. 1. The simulation parameters are as
follows: %m = 10−3 S/m, %p = 10−6 S/m, +w = −80 mV, +p =
−32 mV, and εm = 80εo. The y-locations are normalized with
respect to the width of the channel. The solid lines show the
LTM results with an empirical constant. This empirical con-
stant was taken from the reported results. As seen from the
results, BEM can predict the particle trajectories without any
need for an empirical constant at this dilute limit where the

particle–particle interaction does not play an essential role.
Furthermore, the final position of the particles for each elec-
tric field is obtained in a good agreement with the exper-
imental results. For the larger particles and for the initial
y-locations close to the lower and upper walls, BEM re-
sults predict the final position of the particle better than the
LTM results. This effect is more pronounced for the case of
lower electric field strength. Actually, for this application, the
particle–wall interaction is a key parameter, which was taken
care of with a separate term in LTM formula in [3]. BEM does
not need any addition information to resolve this interaction.

For the AC-DEP application, the experimental results of
Cetin and Li [7], which demonstrated the size-based DEP sep-
aration of latex particles, are used. Again, the experiments
were conducted at the dilute limit (particle concentration was
reported as 105 particles/mL, and the flow rate is estimated
as 0.08 #L/min). Since the volumetric flow rate was not spec-
ified, the velocity of 5 and 10 #m particles is obtained from
the digitized data. Then, the flow field is adjusted to match
the velocity of the particles for the initial time steps. The ex-
perimental results together with BEM and LTM results are
presented in Fig. 2. The LTM results are generated with the
empirical constants reported in [7]. The simulation param-
eters are as follows: εm = 80εo, εp = 2.5εo, %m = 10−4 S/m,
%p = 8 × 10−4 S/m (for 5 #m particles), %p = 4 × 10−4 S/m
(for 10 #m particles), )̂o = 10 V, f = 500 kHz. It can be
clearly seen that BEM can capture motion of both particles
successfully. The n-DEP behavior of the particles also mim-
icked without assigning any value for the CM factor. The
force predicted as a result of the integration of the MST.
Again, without any need for predescribed empirical constant,
BEM can predict the particle trajectories at the dilute limit.

For the tw-DEP application, the benchmark problem gen-
erated using the geometry reported in [29]. For the com-
parison, LTM is also implemented. The simulation parame-
ters are the following: εm = 80εo, εp = 2.5εo, %m = 10−4 S/m,
%p = 8 × 10−4 S/m (for 5 #m particles), %p = 4 × 10−4 S/m
(for 10 #m particles), )̂o = 10 V, f = 1 MHz (for n-DEP),
f = 100 kHz (for p-DEP). The correction factor is determined
to match the BEM results, and the results are turned out to
be as expected. The correction factor is close to unity for the
smaller particles. It can clearly be seen from Figure 3, the cor-
rection factor is function of the flow velocity, too. As the flow
velocity increases, the velocity gradients increase within the
flow field which means a larger disturbance with the presence
of the particles. It is clear that tuning the correction factor,
the actual trajectories can be predicted.

One important conclusion regarding these benchmark
simulations is that BEM can predict the particle trajectory
without any correction factor at the dilute particle concen-
tration limit. Furthermore, BEM can also predict the rota-
tional motion of the particles, which is neglected for the
point-particle approach (please see Supporting Information
Video S1 and Video S2). BEM can also predict the empir-
ical correction factor without any need for actual experi-
ments. For a given particle size and flow conditions, a correc-
tion factor can be predicted based on BEM simulations of a
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Figure 1. Comparison of BEM results with experiments and LTM (DC-DEP).

single particle for each particle may be at a relative small do-
main. Then, the particle trajectory of particles released from
different locations for a larger domain can be generated by
using point-particle approach that would allow researchers to
have realistic particle trajectory predictions at the design step
without any extensive computational cost. Moreover, BEM
supported LTM simulations can be performed to analyze the
effect of any size and/or release point variation.

4.2 Multiparticle simulations

In the design of the DEP-based microfluidic devices, typi-
cally point-particle approach is utilized that ignores particle–
particle interactions. However, the experiments are usually
conducted with relative large particle concentrations, which
makes the neglection of particle–particle interaction ques-
tionable. In this section, a new numerical setting is prepared
to demonstrate the effect of the particle–particle interactions
on the particle trajectory for all three applications. All the

simulation parameters are kept the case, only the number
of particles inside the microchannel is increased to discuss
the effect of multiparticles. Nine 15 #m particles with a par-
ticle spacing of dp = 15 #m are released from different y–
locations. The geometric parameters are given in the caption
of the figure. To compare, single particles are also released
from the same y-locations. The result of the single-particle
simulations are given with the solid lines. The schematic
drawing of the set-up problems together with the normalized
y-locations for the initial and final states are plotted in Fig. 4.

The results for DC-DEP application is presented in
Fig. 4A. As seen from the figure, when multiparticles are
released at the same time, the final y-locations of the parti-
cles are quite different than that of the single-particle, which
is due to the distortion of the electric and flow field with the
presence of the other particles at the vicinity of a particle. This
final y-location is very important when the manipulation of
the particles is concerned. The video of this simulation can
be found in the Supporting Information Video S1). More-
over, it can be observed in the video that the effect of the
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Figure 2. Comparison of BEM results with ex-
periments and LTM (AC-DEP): (A) experimental,
(B) comparison.

Figure 3. Comparison of BEM results with LTM (tw-
DEP).

rotation of the particles is quite important and affected by the
particle–particle interactions. At this point, it should be noted
that the thin-double layer assumption is questionable for the
particles with very small particle separation; therefore, the ac-
tual particle dynamics may also be different especially when
the particles pass the hurdle structure. But, one important

conclusion based on this simulation is that LTM cannot pre-
dict the actual picture for the multiple particles since group
of particles have a significant disturbance on the flow and
electrical field together with complex particle–particle inter-
actions. The disturbance induced by the multiple particles
on the electric and flow fields is more severe than that of a
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Figure 4. Effect of particle–particle
interaction: (A) DC-DEP, (B) AC-DEP,
(C) tw-DEP.

single particle. Besides, presence of multiple particles in-
cludes also particle–particle interaction, which additionally
affects the particle trajectories in the microchannel.

The results for AC-DEP application are illustrated in
Fig. 4B. Both n-DEP and p-DEP particles are released. n-
DEP particles are released from the locations closer to the
lower wall, and the p-DEP particles are released from the
locations closer to the upper wall (since the trajectory of a

n-DEP particle moving closer to the upper wall is not inter-
esting, so is the p-DEP particle moving closer to the lower
wall). It can be observed that the particle–particle interaction
may affect the final location of the particles quite significantly,
again. This variation can significantly alter the performance
of a microfluidic device designed for particle separation or
sorting. The video of this simulation can be found in Sup-
porting Information Video S2). It can be observed in the

C⃝ 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.electrophoresis-journal.com
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Figure 5. Effect of particle-wall interaction (a-DEP): (A) 5 #m, (B) 10 #m (W5 = 100 #m, L8 = 200 #m, L9 = 50 #m, de = 50 #m).

video the particles at the same y–locations tend to create a
chain that enhances the DEP force since chained particles
tend to behave like a particle with a larger size for the n-DEP
case. However, for the p-DEP case, the particles tend to create
a chain of two particles that enhances the DEP force, again.
The chained particles have totally different translational and
rotational dynamics.

The results for tw-DEP application are illustrated in
Fig. 4C. n-DEP particles are released from the locations closer
to the lower wall, and the p-DEP particles are released from
the locations closer to the upper wall. Likewise in AC-DEP ap-
plication, the deviation of the multiparticle behavior is signifi-
cantly different than that of single-particle, since the particles
at the same y-locations tend to create a chain of three parti-
cles that enhances the DEP force for n-DEP case (please see
Supporting Information Video S3). For p-DEP case, although
there is no chain formation, the particles dynamics are quite
different than that of single particle due to the strong particle–
particle interactions.

The MST formulation is valid for particles with any arbi-
trary geometry. Therefore, as a final simulation, the motion of
fifteen particles with different size and geometry is simulated
for an AC-DEP application. Different conductivity values are

assigned for the particles. The results of the simulation can be
seen in Supporting Information Video S4. The particle trajec-
tories are obtained without defining any empirical constant
and any CM factor value. The motion is solely result of the
interaction of the particles with the electric and flow fields.
The prediction of the CM factor for geometries other than
sphere also needs some special care. The CM factor needs to
be predicted based on the expression valid for a given shape.
In the case of BEM, the response is calculated based on the
stress induced on the particle surface, as long as the MST
calculated on the particle surface, the response of the particle
can be predicted with the solely based on the physics of the
problem. It should also be noted that when the particles form
a chain-like structures, the CM factor of this structure is also
different than the CM factor of the isolated particles.

4.3 Anomalous DEP (a-DEP) simulations

The DEP force acting on a particle given by Eq. (4) is valid
for the particles embedded in an infinite medium. For the
cases where there is strong particle-wall interaction (i.e., par-
ticle moving at the close vicinity of the channel wall), the
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motion of the particle cannot be modeled with this expres-
sion. Recently, Camarda et al. [27] defined a region at the
close vicinity of the electrode and defined the phenomena as
a-DEP. To demonstrate the a-DEP in a micro-channel setting
with flow, a simulation setup is generated for 5 and 10 #m
particles. The schematic drawing of the simulation setup is
given in Fig. 5. The simulation parameters are the following:
εm = 80εo, εp = 2.5εo, %m = 10−4 S/m, %p = 8 × 10−4 S/m
(for 5 #m particles), %p = 4 × 10−4 S/m (for 10 #m particles),
)̂o = 10 V, f = 1 MHz. Since the particles may be very close
to the wall, the boundary element size is dropped to four ele-
ments per micrometer, and the time step is dropped to 10−4 s,
and the same convergence criteria is set. The particles with
negative CM factor (i.e., n-DEP) are released from different
height locations. The results are shown in Fig. 5, a-DEP re-
gion is also indicated with dashed line on the figure. Only the
results for two particles are demonstrated in the figure for
clarity of the figure. As predicted by Camarda et al. [27], the
particles released from outside the a-DEP region, behaves like
a n-DEP particle and pushed by the electrode, and the par-
ticles released within a-DEP region, regardless of their CM
factor, they are attracted by the electrode and reach an equi-
librium position at the vicinity of the electrode. The results of
the LTM are also included. For the particles released outside
the a-DEP region, LTM can predict the particle motion; how-
ever, careful inspection reveals that at the close vicinity of the
a-DEP region, there exists some deviation between LTM and
BEM that does not effect the final position of the particles.
The situation is more complex for the particle released within
the a-DEP region. Several LTM results are also included. It
is clear that LTM needs a negative coefficient to predict the
behavior, however simple correction factor cannot predict
the particle motion. Since the particle-wall interaction is very
dominant, a simple correction factor cannot include the effect
of the particle–wall interaction. The particles are attracted by
the electrode surface and then they reach an equilibrium po-
sition that is approximately 200 nm away from the wall, and
particles no longer have translational motion but only a ro-
tational motion (see Supporting Information Video S5). This
equilibrium position is the result of strong hydrodynamic
and electrical interaction between the particle and the wall.
As long as small enough elements and small enough time
step are used, BEM can model these interactions physically
without any need for additional contact models.

5 Concluding remarks

In this study, we discussed the modeling of DEP particle
motion in a micro-channel. Point-particle approach is imple-
mented by LTM, and finite-sized particle is implemented by
BEM. Formulations are discussed for DC-DEP, AC-DEP, and
tw-DEP applications. It is observed that BEM results can pre-
dict the particle trajectories without any need for any tuning
parameter. Moreover, BEM can also predict the value of the
tuning parameter without any need for experimental data.
In the BEM analysis, it is also observed that single-particle

behavior is quite different than that of the multiparticle be-
havior. The disturbance induced by the multiple particles on
the electric and flow fields is more severe than that of a sin-
gle particle. Besides, presence of multiple particles includes
also particle–particle interaction, which additionally affects
the particle trajectories in the microchannel. One of the sig-
nificant conclusion of this study is that the LTM method
without/with correction factor is valid at the dilute limit of
the particle concentration. As many particles are introduced
in the domain, the particle–particle interactions dominate the
particle motion, and the resulting trajectories well beyond the
capabilities of the LTM.

The particle–wall interaction is also demonstrated for a-
DEP case. Without any need for hydrodynamic and electric
field interaction, BEM can predict the a-DEP behavior. The
particles released within a-DEP region are found to be trapped
at the vicinity of the electrode surface, and the particles re-
leased from the outside of the a-DEP region are found to
behave like a regular particle. The behavior of the multiparti-
cles in a-DEP has not been explored; however, we believe that
very interesting particle behavior can be observed when the
hydrodynamic and electric interaction couples. The investi-
gation of behavior of multiparticles in a-DEP region will be
one of our future research directions.

The behavior of high-concentration suspensions flowing
through micro-channels in the presence of external forces
is a challenging problem. For such a case, the monitor of
behavior of each particle is a quite challenging and requires
a very high computational cost. The computational cost can
be reduced significantly by continuum modeling based on
effective-medium theory [30,31]. The key parameter for such
models is the effective transport properties as a function of
particle concentration such as density, viscosity, and DEP mo-
bility. These parameters can be determined in a simulation
setup for a certain region of the microchannel, and the ex-
tended picture can be obtained with the continuum model
for the entire system. Once we extent our study to 3D, the
transport properties of a particle suspension with different
particle concentration can be predicted for continuum type
modeling. Furthermore, different physical phenomena other
than DEP such as acoustophoresis and thermophoresis may
also be included

BEM has a very favorable parallelization nature that can
significantly speed up the simulations especially for 3D prob-
lems. Therefore, CPU/GPU parallelization of our BEM for-
mulation will also be studied in the near future. We would
like to also focus our attention for the preparation of an exper-
imental setup for the verification of the multiparticle cases.

The authors have declared no conflict of interest.
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