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In the present work, the behavior of heterogeneous magnetorheological composites subjected to large 

deformations and external magnetic fields is studied. Computational homogenization is used to derive 

the macroscopic material response from the averaged response of the underlying microstructure. The mi- 

crostructure consists of two materials and is far smaller than the characteristic length of the macroscopic 

problem. Different types of boundary conditions based on the primary variables of the magneto-elastic 

enthalpy and internal energy functionals are applied to solve the problem at the micro-scale. The over- 

all responses of the RVEs with different sizes and particle distributions are studied under different loads 

and magnetic fields. The results indicate that the application of each set of boundary conditions presents 

different macroscopic responses. However, increasing the size of the RVE, solutions from different bound- 

ary conditions get closer to each other and converge to the response obtained from periodic boundary 

conditions. 
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. Introduction 

Magneto-active elastomers consist of a soft polymer matrix

lled with magneto-active particles. They change their properties

ith the application of a magnetic field. The non-linear elastic

haracteristics of the matrix and the magnetic properties of the

articles enable them to undergo very large and adjustable de-

ormations in response to relatively low external magnetic fields.

ue to such specifications these materials are of special interest

or several engineering applications and attracted significant re-

earch attention ( Kordonsky, 1993; Jolly et al., 1996; Carlson and

olly, 20 0 0 ). 

The theoretical aspects of the magneto-mechanical response of

olids have been thoroughly studied in the past. The general equa-

ions of magneto-elasticity and the solution of the resulting bound-

ry value problems have been considered in the literature ( Kovetz,

0 0 0; Vu and Steinmann, 20 07; Bustamante et al., 2008; Vu and

teinmann, 2010; Bustamante et al., 2011 ). In particular, the de-

elopment of constitutive laws for magnetorheological elastomers

re considered in Brigadnov and Dorfmann (2003) , Kankanala and

riantafyllidis (2004) , Steigmann (2004) , Dorfmann and Og-
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en (2004) and Danas et al. (2012) , among others, where the

agnetorheological composites have been modeled on a macro-

copic level. However, the strong dependency of the material re-

ponse of the composites on their microstructure (e.g. shape, dis-

ribution, volume fraction and orientation of the particles) re-

eals the importance of multi-scale modeling techniques, where

he macroscopic response is determined from the response of

he material microstructure. Comprehensive reviews of various

ulti-scale modeling techniques are given in Saeb et al. (2016) ,

indera et al. (2009) and Matous et al. (2017) . 

One of the most widely used multi-scale tools to predict the be-

avior of inhomogeneous materials is computational homogeniza-

ion which is based on Hill (1963) and Hill and Rice (1972) and

llows to study the effective behavior of composite materials

 Kouznetsova et al., 20 01; Miehe and Koch, 20 02; Zohdi and Wrig-

ers, 2001 ). The modeling of the behavior of composites based

n computational homogenization in the context of the small

train as well as the finite strain setting has been studied ex-

ensively ( Terada and Kikuchi, 1995; Ponte Castañeda, 1996; Ter-

da and Kikuchi, 2001; Yvonnet et al., 2009; Miehe et al., 1999;

ouznetsova et al., 2002; Costanzo et al., 2005; Hirschberger

t al., 2008; Temizer and Wriggers, 2008; Javili et al., 2013b ),

mong others. Very recently, homogenization techniques have been

tilized to study multiphysics problems. Extensions to coupled

lectro-mechanical response have been addressed in Schröder and

eip (2012) , Kuznetsov and Fish (2012) , Castañeda and Si-
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boni (2012) and Keip et al. (2014) and thermo-mechanical

problems have been studied in Özdemir et al. (2008) and

Temizer and Wriggers (2011) . Moreover, magneto-mechanical ho-

mogenization of magnetorheological elastomers is considered in

Borcea and Bruno (2001) , Wang et al. (2003) , Yin et al. (2006) ,

Ponte Castañeda and Galipeau (2011) and Galipeau and Ponte Cas-

tañeda (2013) . In the field of magneto-elasticity for finite de-

formations, Castañeda and Galipeau (2011) , Ponte Castañeda and

Galipeau (2011) and Galipeau and Ponte Castañeda (2013) intro-

duced a finite-strain variational formulation where magnetoelas-

tic effects are handled by means of the deformation-dependent

magnetic susceptibility of the material. Danas (2017) proposed

an augmented vector potential variational formulation to carry

out numerical periodic homogenization studies on the mag-

netoelastic composites at finite strains and magnetic fields.

Chatzigeorgiou et al. (2014) presented a general homogenization

framework for magnetorheological elastomers under finite strains.

They showed that the use of kinematic and magnetic field po-

tentials, i.e. the variables of the enthalpy formulation, instead of

kinetic field and magnetic induction potentials provides a more

appropriate homogenization framework and convenient numeri-

cal implementation procedure. Based on this result, the numer-

ical implementation of the homogenization procedure in finite

strain magneto-mechanics is studied in Javili et al. (2013a ) and

Keip and Rambausek (2016) . However, Miehe et al. (2016) showed

that the computational framework based on the saddle-point-type

magneto-elastic enthalpy functional is not advisable in order to

detect instability points which occur in magnetorheological elas-

tomers. 1 On the other hand, compared to the internal energy-

based computational framework, the enthalpy-based formulation

is very convenient for numerical implementation due to the re-

duction of the magnetic vector potential to a magnetic scalar po-

tential . Therefore they proposed an internal energy-based com-

putational homogenization framework based on scalar potentials

by reformulation of the energy in terms of an averaged enthalpy

functional. In the similar context, Gil and Ortigosa (2016) pro-

posed a convex multi-variable framework for the analysis of the

electro-active polymers undergoing large deformations and elec-

tric fields which satisfies material stability for the entire range

of deformations and electric fields. These considerations of the

internal energy density functional in terms of a convex multi-

variable function of electromechanical arguments are inevitable in

problems where the electro-mechanical enthalpy based formula-

tion fails and yields non-physical material responses ( Ortigosa and

Gil, 2016b ). Using the same analogy, the behavior of the incom-

pressible electro-active polymers and electro-active shells under-

going large deformations and electric fields have been studied in

Ortigosa et al. (2016) and Ortigosa and Gil. (2017) . The extension

of the variational convex multi-variable framework for the analysis

of electro-magneto-mechanical internal energy functionals is car-

ried on in Ortigosa and Gil (2016a ) where the material stability of

convex and non-convex multi-variable constitutive models is stud-

ied. 

Central to computational homogenization is the Hill–Mandel

condition which has to be satisfied by choosing appropriate bound-

ary conditions for the microscopic problem. In the field of small

strains Borcea and Bruno (2001) considered several types of

boundary conditions and used prescribed displacements or trac-

tions and an applied magnetic field at the boundary of the RVE.

The application of a magnetic field as a boundary condition has

also been considered in other micro-scale models together with
1 The stability analysis of the enthalpy based framework can be carried out us- 

ing complex arc-length methods where the control variable is a combination of the 

magnetic potential and the magnetic field. See Belytschko et al. (2013) and Gil and 

Ortigosa (2016) for further details. 

t  

m  

t

F  
oundary tractions ( Yin et al., 2006 ) and strains ( Yin et al., 2002 ).

he homogenization of magnetostrictive particle-filled elastomers

nder periodic boundary conditions and constant magnetostrictive

igen-deformation in the ferromagnetic particles has been studied

n Wang et al. (2003) . Ponte Castañeda and Galipeau (2011) pre-

cribed the deformation gradient tensor and the magnetic induc-

ion vector on the boundary of the microstructure and proposed

 new homogenization framework for magneto-elastic composites

hich accounts for the effect of magnetic dipole interactions, as

ell as finite strains. Chatzigeorgiou et al. (2014) identified several

ases of uniform boundary conditions on the RVE under which the

ill–Mandel condition holds. 

The current contribution is an extension to the theory devel-

ped by Chatzigeorgiou et al. (2014) . We numerically analyze the

omputational magneto-mechanical homogenization framework in

he finite deformation setting with special focus on the two dif-

erent sets of formulations based on the primary variables of the

agneto-elastic enthalpy W (F , H ) and the magneto-elastic internal

nergy W 

∗(F , B ) functionals. For each set, we investigate several

ombinations of boundary conditions that satisfy the Hill–Mandel

ondition. Several numerical examples are given to study the mi-

roscopic and macroscopic responses of the RVEs with magneto-

echanical constituents which are different in sizes and particle

istributions. Furthermore, the influence of the boundary condi-

ions on the overall response of various microstructures, under dif-

erent loads and magnetic fields, are studied and discussed in de-

ail. 

The structure of the paper is as follows. In Section 2 , we de-

cribe the theoretical homogenization framework by presenting

he field variables, the balance equations, the magneto-mechanical

onstitutive model that accounts for large deformations and the

cale transition. Different sets of boundary conditions that satisfy

he Hill–Mandel condition are described. In Section 3 , the response

f various composite materials which differ in particle size and dis-

ribution are studied under various magneto-mechanical loadings.

inally, Section 4 concludes this work. 

. Magneto-mechanical homogenization 

The objective of this section is to summarize certain key con-

epts in the coupled magneto-mechanical homogenization frame-

ork and nonlinear continuum mechanics. Due to the inhomoge-

eous structure of composite materials, it is essential to consider

eparately micro and macro scales. The macro-scale describes the

ontinuum body and the micro-scale describes the representative

olume element (RVE) of the microstructure. As it is depicted in

ig. 1 , both macro-scale and micro-scale can be expressed in the

aterial or in the spatial configuration. In the current work we

ormulate the problem in the material description. 

.1. Micro-problem definition 

In the undeformed configuration B 0 at the micro-scale, the RVE

ccupies the volume V 0 with boundary ∂ B 0 ( Fig. 1 ) and consists

f two materials. In the deformed configuration B t the RVE occu-

ies the volume V t with boundary ∂ B t . The normal vectors to the

oundaries ∂ B 0 and ∂ B t are denoted N and n , respectively. The

onlinear deformation map x = φ( X ) describes the position vector

 of a point in the spatial configuration B t in terms of the posi-

ion vector X of the point in the material configuration B 0 . The

icroscopic deformation gradient F is connected to the deforma-

ion map φ through the relation 

 = ∇ X φ . (1)
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Fig. 1. Macro-scale and micro-scale in the material and the spatial configuration, 

enthalpy-based formulation. 
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2 It should be mentioned that for very large volumetric strains the strain energy 

functional (8) does not fulfill the polyconvexity condition in F when ( H = 0 ), i.e. 

∂ JJ W ( F ) ≥ 0, see Doll and Schweizerhof (1999) . However, in our study the volumetric 

strain is always small and therefore the polyconvexity condition is not violated. 
n the absence of inertia and mechanical body forces at the micro-

cale, the conservation of linear momentum reads 

iv P = 0 in B 0 . (2) 

here P is the Piola stress. It consists of the sum of the mechanical

tress, the Maxwell stress and the stress due to material magne-

ization, see e.g. Steigmann (2004) . The divergence operator with

espect to the material coordinates X is denoted Div • . 
Ignoring any free current density at the micro-scale, the La-

rangian magnetic field H is connected with the scalar magnetic

otential in the undeformed configuration ϕ( X ) through the rela-

ion 

 = ∇ X ϕ . (3) 

oreover, the conservation of magnetic flux is written as 

iv B = 0 in B 0 , (4) 

ith the magnetic induction B . The microscopic problem has to be

ompleted by constitutive equations for the Piola stress P and the

agnetic induction B and boundary conditions which follow from

he scale-transition and will be discussed in detail in Section 2.3 . 

.1.1. Microscopic magneto-mechanical constitutive model 

With the help of magneto-elastic internal energy functionals,

e can identify the constitutive relations that connect the Piola

tress P and the magnetic induction B with the deformation gra-

ient F and the magnetic field H . Using the (saddle-point-type)

agneto-elastic enthalpy function W ( F , H ) the Piola stress and the

agrangian magnetic induction are given by 

 = P ( F , H ) = 

∂W ( F , H ) 

∂ F 
, B = B ( F , H ) = −∂W ( F , H ) 

∂H 

. (5) 

sing a Legendre transformation the magneto-elastic internal en-

rgy density function W 

∗( F , B ) , which is poly-convex in F when
 B = 0 ) and convex in the magnetic induction B , see Gil and Or-

igosa (2016) , can be identified as 

 

∗( F , B ) = sup 
H 

[ W ( F , H ) + B · H ] . (6)

urthermore, the constitutive relations for the Piola stress and the

agnetic field can be derived based on the magneto-elastic inter-

al energy density function W 

∗( F , B ) as 

 = P ( F , B ) = 

∂W 

∗( F , B ) 

∂ F 
, H = H ( F , B ) = 

∂W 

∗( F , B ) 

∂B 

. (7) 

e assume an isotropic elastic material and an isotropic linear

agnetic response for the matrix material and the magnetic par-

icles, respectively. In order to establish appropriate constitutive

elations and a convenient numerical implementation, the for-

ulations are firstly derived in terms of a magneto-elastic en-

halpy functional W ( F , H ) , which for the sake of demonstration is

ere based on Neo-Hookean hyperelasticity, compare ( Javili et al.,

013a ) 

 ( F , H ) = 

1 

2 

λ1 [ F : F − Dim − 2 ln J ] + 

1 

2 

λ2 ln 

2 
J 

−1 

2 

μ J H · C 

- 1 · H , (8) 

here λ1 and λ2 are the Lamé parameters, μ is the magnetic per-

eability and Dim is the problem dimension. Also, C = F t · F de-

otes the right Cauchy–Green deformation tensor and J = det ( F )

 

2 From the constitutive relation (5) the Piola stress P reads 

 = 

∂W ( F , H ) 

∂F 
= λ1 F + [ λ2 ln J − λ1 ] F 

−t − 1 

2 

μ J H �H : M , (9)

ith M defined as 

M := C 

- 1 
�F −t + 

∂ C 

- 1 

∂ F 
. (10) 

urthermore, the magnetic induction B can be computed from

5) as 

 = −∂W ( F , H ) 

∂H 

= μ J C 

- 1 · H . (11)

s can be seen in Fig. 2 (a) the enthalpy is a saddle-point-type

unction which does not permit in a straightforward manner the

olution of stability problems or the derivation of bounds on the

omogenized solution. A quasi-convex magneto-elastic internal en-

rgy density functional, which is also shown in Fig. 2 (b), can be

epresented using Eq. (6) as 

W 

∗( F , B ) = sup 
H 

[ W ( F , H ) + B · H ] 

= 

1 

2 

λ1 [ F : F − Dim − 2 ln J ] + 

1 

2 

λ2 ln 

2 
J + 

1 

2 

1 

μ J 
B · C · B . 

(12) 

rom Eq. (7) the Piola stress P then reads 

 = 

∂W 

∗( F , B ) 

∂F 
= λ1 F + [ λ2 ln J − λ1 ] F 

−t + 

1 

μ J 
F · [ B �B ] 

− 1 

2 μ J 
[ B · C · B ] F −t . (13) 

oreover, the magnetic field H is derived from (7) as 

 = 

∂W 

∗( F , B ) 

∂B 

= 

1 

μ J 
C · B . (14) 

ote that (9) and (13) as well as (11) and (14) are equivalent ex-

ressions, however in different parameterization. 
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Fig. 2. Plots of (left) the macroscopic saddle-point magneto-elastic enthalpy W (F , H ) and (right) the macroscopic magneto-elastic internal energy W 

∗
(F , B ) functionals with 

respect to [ F ] xx , [ H ] x and [ B ] x . 
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2.2. Macro-problem definition 

A macroscopic continuum body occupies the material configu-

ration B 0 with boundary ∂ B 0 and the spatial configuration B t with

boundary ∂ B t , see Fig. 1 . For stationary applications, the macro-

scopic equilibrium equation in the material configuration is writ-

ten as 

Div P + b 0 = 0 in B 0 subject to φ = φ
p 

on ∂ B 0 
D mech and 

[[ T ]] = [[ P · N ]] = T 

p 
on ∂ B 0 

N mech 
, (15)

with b 0 and P are the macroscopic body force density and the

macroscopic Piola stress in the material configuration, respectively.

φ and T define the macroscopic deformation and tractions. More-

over, φ
p 

is the prescribed deformation on the mechanical Dirich-

let boundary and T 
p 

denotes the macroscopic prescribed tractions

on the mechanical Neumann boundary, with ∂ B 0 = ∂ B 0 
D mech ∪

∂ B 0 
N mech and ∂ B 0 

D mech ∩ ∂ B 0 
N mech = ∅ . 

The conservation of the macroscopic magnetic flux is written 

Div B = 0 in B 0 subject to ϕ = ϕ 

p on ∂ B 0 
D mag 

and 

[[ T ]] = [[ B · N ]] = T 

p 
on ∂ B 0 

N mag 
. (16)

where T 

p 
is the prescribed macroscopic magnetic flux on the

magnetic Neumann boundary ∂ B 0 
N mag 

. The macroscopic prescribed

magnetic potential is described with ϕ 

p . 

Due to the complex microstructure of composite materials,

the constitutive relations between macroscopic stress, macroscopic

deformation gradient, the macroscopic magnetic induction and

macroscopic magnetic field are not explicitly expressed here, in-

stead they are determined by means of computational homoge-

nization i.e. using the solutions of the RVE problem at the micro-

scale. The focus of the current work is on the microscopic re-

sponse of the RVEs while studying the macro-scale solution is out

of the scope of this paper. For complete two-scale solutions for

magneto-active composites see e.g. Javili et al. (2013a ), Keip and

Rambausek (2016) and Sridhar et al. (2016) . 

2.3. Micro-to-macro transition 

In order to establish a consistent transition between the micro-

and macro-scale, the Hill–Mandel condition is required to be

satisfied which stipulates the equivalence of the macroscopic

variational enthalpy and the averaged microscopic variational

enthalpy 3 
3 The Hill–Mandel condition could also be formulated in form of the variational 

magneto-elastic internal energy density as δW 

∗ = F : δP + H · δB which results in 

the same boundary conditions and is therefore not described. 

T  

a  

fl

1 

V 0 

∫ 
B 0 

δW d V − δW 

= 

1 

V 0 

∫ 
B 0 

[ P : δF + B · δH ] d V − [ P : δF + B · δH ] = 0 . (17)

he mechanical and the magnetic terms of the Hill–Mandel condi-

ion can be separated as 

1 

V 0 

∫ 
B 0 

P : δF d V − P : δF = 0 , (18a)

1 

V 0 

∫ 
B 0 

B · δH d V − B · δH = 0 , (18b)

espectively. 

.3.1. Mechanical average variables and boundary conditions 

We assume that the microscopic motion φ is linked to the

acroscopic deformation gradient by the standard first-order

nsatz φ = F · X + ̃

 φ(X ) , where ̃  φ is the vector fluctuation field. Us-

ng Eq. (1) yields the microscopic deformation gradient F = F + ̃

 F ,

ith the gradient of the fluctuations ̃  F = ∇ X 
˜ φ(X ) . Substituting this

nto (18a) results in [
1 

V 0 

∫ 
B 0 

P d V − P 

]
: δF + 

[
1 

V 0 

∫ 
B 0 

P : δ˜ F d V 

]
= 0 . (19)

he first term in Eq. (19) vanishes if the macroscopic Piola stress is

qual to the volume average of its micro-scale counterpart, i. e. 

 = 

1 

V 0 

∫ 
B 0 

P d V. (20)

he second term in (19) is reformulated as a boundary integral 

1 

V 0 

∫ 
B 0 

P : δ˜ F d V = 

1 

V 0 

∫ 
∂ B 0 

δ˜ φ · T d A = 0 with 

δ˜ φ = δφ − F · X , (21)

nd becomes zero by imposing one of the following constraints on

he fluctuation field: 

• Voigt’s assumption φ = F · X in B 0 , 

• Linear deformations φ = F · X on ∂B 0 (22)

• Periodic deformations ˜ φ
+ = ̃

 φ
−

and 

anti-periodic tractions T + = −T − on ∂B 0 . 

he Neumann-type constraints can be derived by a priori assuming

n additive decomposition of the Piola stress into macroscopic and

uctuating parts, P = P + ̃

 P . Substituting this result in (18a) gives 

1 

V 0 

∫ 
B 0 

[ P + ̃

 P ] : δF d V − P : δF = P : 

[
1 

V 0 

∫ 
B 0 

δF d V − δF 

]
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P  
+ 

1 

V 0 

∫ 
B 0 ̃

 P : δF d V = 0 . (23) 

t follows that the macroscopic deformation gradient is the volume

verage of the microscopic deformation gradient 

 = 

1 

V 0 

∫ 
B 0 

F d V, (24) 

nd that the fluctuation term of the relation (23) should vanish.

sing the divergence theorem and Eq. (2) yields the boundary in-

egral 

1 

V 0 

∫ 
B 0 ̃

 P : δF d V = 

1 

V 0 

∫ 
B 0 

Div (δφ ·˜ P ) d V 

= 

1 

V 0 

∫ 
∂ B 0 

δφ ·˜ P · N d A = 0 . (25) 

hich vanishes if one of the following constraints is satisfied: 

• Reuss’ assumption P = P in B 0 . , 

• Constant tractions P · N = P · N on ∂B 0 (26)

.3.2. Magnetic average variables and boundary conditions 

In a similar fashion to the mechanical problem, we assume a

inear first-order ansatz for the microscopic magnetic potential,

 = H · X + ̃

 ϕ (X ) , where ˜ ϕ is the scalar fluctuation field. Therefore,

qs. (3) yields the microscopic magnetic field H = H + ̃

 H with the

uctuation term 

˜ H = ∇ X ˜ ϕ (X ) . Considering these equations and

18b) the Hill–Mandel condition can be written as [
1 

V 0 

∫ 
B 0 

B d V − B 

]
· δH + 

[
1 

V 0 

∫ 
B 0 

B · δ˜ H d V 

]
= 0 , (27) 

hereby the first term vanishes if the macroscopic magnetic in-

uction is equal to its averaged microscopic counterpart 

 = 

1 

V 0 

∫ 
B 0 

B d V , (28) 

nd the second term is formulated as a boundary integral 

1 

V 0 

∫ 
B 0 

B · δ˜ H d V = 

1 

V 0 

∫ 
∂ B 0 

δ˜ ϕ · T d A = 0 with 

δ˜ ϕ = δϕ − H · X . (29) 

q. (29) can be satisfied by imposing one of the following con-

traints on the microscopic magnetic field: 

• Voigt’s assumption ϕ = H · X in B 0 

• Linear magnetic potential ϕ = H · X on ∂B 0 (30)

• Periodic magnetic potential ˜ ϕ 

+ = 

˜ ϕ 

− and 

anti-periodic magnetic flux T 

+ = −T 

− on ∂B 0 . 

he Neumann-type magnetic constraints can be obtained by a pri-

ri assuming an additive decomposition of the magnetic induction

nto macroscopic and fluctuating parts B = B + ̃

 B . Inserting this

efinition into (18b) gives 

1 

V 0 

∫ 
B 0 

[ B + ̃

 B ] · δH d V − B · δH = B ·
[

1 

V 0 

∫ 
B 0 

δH d V − δH 

]

+ 

1 

V 0 

∫ 
B 0 ̃

 B · δH d V = 0 . (31) 

atisfaction of the Hill–Mandel condition requires that the macro-

copic magnetic field is the volume average of the microscopic

agnetic field 

 = 

1 

V 0 

∫ 
B 0 

H d V , (32) 

nd that the fluctuation term of the relation (31) should vanish.

sing the divergence theorem and Eq. (4) yields a boundary inte-

ral 

1 

V 0 

∫ 
B 

˜ B · δH d V = 

1 

V 0 

∫ 
B 

Div (δϕ · ˜ B ) d V 
0 0 
= 

1 

V 0 

∫ 
∂ B 0 

δϕ · ˜ B · N d A = 0 , (33) 

hich becomes zero on the boundary ∂ B 0 if one of the following

onstraints is satisfied: 

• Reuss’ assumption B = B in B 0 , 

• Constant magnetic induction B · N = B · N on ∂B 0 . (34)

able 1 summarizes different combinations of the boundary condi-

ions, derived in Eqs. (22), (26), (30), (34). The first set is based on

he primary variables of the magneto-elastic enthalpy functional

 (F , H ) . This formulation results in a saddle-point problem which

s not straightforward to perform a classical stability analysis and

lso is not capable of tracking postcritical solution paths associated

ith instabilities. Therefore, stability analysis should be based on

he energetic formulation ( Miehe et al., 2016 ). The second group of

oundary conditions in Table 1 are based on the primary variables

f the magneto-elastic internal energy functional W 

∗(F , B ) . 

Remark: Note that the Voigt’s and Reuss’ assumptions based on

rescribed deformation gradient F and magnetic field H are dif-

erent from the Voigt ∗ and Reuss ∗ assumptions based on variables

f the internal energy function -prescribed deformation gradient F

nd magnetic induction B - and they shall not be mistaken. 

The numerical implementation of the microscopic problem

ased on the finite element method and the algorithms to

rescribe the various boundary conditions are described in

ppendix A . 

. Numerical examples 

The objective of this section is to present numerical exam-

les in order to study the influence of different microstructures,

oundary conditions and RVE sizes on the macroscopic response

f magneto-mechanical composites. The composites are considered

n a plane-strain setting and consist of a matrix material and cir-

ular inclusions. In the following numerical examples the mate-

ial parameters of the matrix are assumed to be: Lamé param-

ters λmat. 
1 

= 8 , λmat. 
2 

= 12 , magnetic permeability μmat. = 0 . 001 ,

nd the material parameters of the inclusion are: Lamé parame-

ers λinc. 
1 

= 80 , λinc. 
2 

= 120 and magnetic permeability μinc. = 0 . 01 .

imple-extension and simple shear loads are prescribed by impos-

ng the deformation gradient in x -direction or in the xy -plane, 

 = 

[
[ F ] xx 0 

0 1 

]
, F = 

[
1 [ F ] xy 

0 1 

]
. 

urthermore, a magnetic loading is applied by imposing either the

agnetic field or the magnetic induction in x -direction 

 = 

[
[ H ] x 

0 

]
, B = 

[
[ B ] x 

0 

]
. 

ll examples are solved using our in-house finite element code and

re discretized with bilinear quadrilateral Q 1 elements. The solu-

ion procedure is robust and shows for all examples asymptotically

he quadratic rate of convergence associated with the Newton-

aphson scheme. 

.1. Unit cell under magnetic field, stretching and shearing 

The aim of this first example is to demonstrate the influence of

ifferent boundary conditions on the effective and the microscopic

esponse of the RVE. A composite consisting of a matrix material

nd periodically aligned inclusions is represented by means of the

wo-dimensional unit cell illustrated in Fig. 3 . 

Fig. 4 shows the distributions of the microscopic normalized

iola stress and the microscopic normalized magnetic induction
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Table 1 

Conditions for satisfying the Hill–Mandel condition. 

Constraint Conditions based on prescribed ( F , H ) 

Voigt Lin. displacement: φ = F · X Lin. magnetic potential: ϕ = H · X in B 0 
LD-LP Lin. displacement: φ = F · X Lin. magnetic potential: ϕ = H · X on ∂B 0 Alg. 1 

PD-PP Per. displacements: ˜ φ
+ = ̃

 φ
−

Per. magnetic potential: ˜ ϕ + = ̃

 ϕ − on ∂B 0 Alg. 2 

CT-CI Const. traction: P · N = P · N Const. magnetic induction: B · N = B · N on ∂B 0 Alg. 3 

Reuss Const. traction: P = P Const. magnetic induction: B = B in B 0 

Constraint Conditions based on prescribed ( F , B ) 

Voigt ∗ Lin. displacement: φ = F · X Const. magnetic induction: B = B in B 0 
LD-CI Lin. displacement: φ = F · X Const. magnetic induction: B · N = B · N on ∂B 0 Alg. 4 

PD-PP Per. displacements: ˜ φ
+ = ̃

 φ
−

Per. magnetic potential: ˜ ϕ + = ̃

 ϕ − on ∂B 0 Alg. 5 

CT-LP Const. traction: P · N = P · N Lin. magnetic potential: ϕ = H · X on ∂B 0 Alg. 6 

Reuss ∗ Const. traction: P = P Lin. magnetic potential: ϕ = H · X in B 0 

Fig. 3. Unit cell of a fiber composite and the associated finite element discretiza- 

tion. The volume fraction of the inclusion fiber is f = 25% . 
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in the unit-cell microctructure which undergoes 10% of simple-

stretch in x -direction [ F ] xx = 1 . 1 and a magnetic field in x -direction

[ H ] x = 50 . It can be observed that the three different boundary

conditions result in very similar homogenized stresses and mag-
netic inductions. The maximum difference between them is below 

Fig. 4. Macroscopic stretching [ F ] xx = 1 . 1 and magnetic field [ H ] x = 50 : distribution of m

tion in x -direction for applied LD-LP, PD-PP and CT-CI boundary conditions. 
%. The microscopic answers are also similar, although the CT-CI

oundary conditions result in slightly lower maximal stress and in-

uction values. 

In the next example, the same unit cell is subject to 10% of

imple-shear deformation in the xy-plane [ F ] xy = 0 . 1 and a mag-

etic field in the x -direction [ H ] x = 50 . The distributions of the

icroscopic shear stress, normalized by its macroscopic counter-

art, and the microscopic magnetic induction in the x -direction,

ormalized by the macroscopic magnetic induction, are presented

n Fig. 5 . It is again found that the homogenized stresses and

agnetic inductions are very similar for all three boundary condi-

ions. However, the macroscopic magnetic inductions are approxi-

ately 16% higher than in the previous simple-extension example.

his is due to the magneto-mechanical coupling effect in simple-

xtension. The distances between the particles increase and there-

ore the homogenized magnetic permeability decreases. The mi-

roscopic distributions of the stresses and the magnetic inductions

nd their maximum values show small differences for the three

ifferent boundary condition. The highest microscopic stress and

nduction values are obtained for the LD-LP boundary conditions.

he influence of the different boundary conditions on the homog-
icroscopic normalized Piola stress ( xx -component) and normalized magnetic induc- 
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Fig. 5. Macroscopic shearing [ F ] xy = 0 . 1 and magnetic field [ H ] x = 50 : distribution of microscopic normalized Piola stress ( xy -component) and normalized magnetic induction 

in x -direction for applied LD-LP, PD-PP and CT-CI boundary conditions. 

Fig. 6. Variations of the (a) macroscopic Piola stress ( xx -component) and macroscopic magnetic induction (in x -direction) due to the increase of the stretch for the simple- 

extension under magnetic field [ H ] x = 50 and (b) macroscopic Piola stress ( xx -component) and magnetic induction (in x -direction) due to the increase of the magnetic field 

under simple-extension [ F ] xx = 1 . 1 load, for applied LD-LP, PD-PP and CT-CI boundary conditions. 
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Fig. 7. Three different (a) periodic, (b) random mono-disperse and (c) random poly- 

disperse RVEs with the same volume fraction of f = 25% . 

d  

m  

a

 

n  

c  
nized stress and magnetic induction is not very high in this unit

ell example, however the differences in the microscopic fields and

heir maximum values are more pronounced. 

Fig. 6 compares the graphs of the macroscopic macroscopic Pi-

la stress ( xx -component) and macroscopic magnetic induction (in

 -direction) obtained from the increase of the stretch [ F ] xx for the

imple-extension and magnetic field [ H ] x . It can be observed that,

lso under increasing mechanical and magnetic loads, the three

ifferent boundary conditions result in very similar homogenized

tresses and magnetic inductions. The highest difference belongs

o the variation of the macroscopic Piola stress versus the mag-

etic field, where the CT-CI b.c. underestimates the results ob-

ained from the other boundary conditions, Fig. 6 b (left). 

.2. Periodic, random mono-disperse and poly-disperse 

icrostructures under magnetic field, stretching and shearing 

In this section the microscopic behavior of three different mi-

rostructures, periodic, random mono-disperse and random poly-
isperse, compare Fig. 7 , is analyzed. The volume fraction of all

icrostructures is 25% and periodic (PD-PP) boundary conditions

re applied. 

Fig. 8 shows the obtained microscopic Piola stress and the mag-

etic induction in x -direction, normalized by their macroscopic

ounterparts, for the RVEs that undergo 10% of simple-extension
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Fig. 8. Macroscopic stretching [ F ] xx = 1 . 1 and magnetic field [ H ] x = 50 : distribution of microscopic normalized Piola stress ( xx -component) and normalized magnetic induc- 

tion in x -direction for different periodic, random mono-disperse and random poly-disperse microstructures. 
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deformation and a magnetic field of [ H ] x = 50 . The homogenized

values for the Piola stress and the magnetic induction are very

similar for all three microstructures and differ at most by 2%. How-

ever, the microscopic distributions of stress and induction show

large variations: the periodic microstructure represents a more

uniform distribution of the microscopic quantities, whereas the

random mono-disperse and random poly-disperse RVEs show quite

different microscopic responses. 

It can be observed that the proximity of particles aligned in the

direction of the applied magnetic field and also the existence of a

small particle in the vicinity of a bigger one, lead to higher values

of the microscopic magnetic induction and consequently to higher

microscopic stresses. The maximum stress values in the random

RVEs are two times higher than the maximum stress in the peri-

odic microstructure. 

Fig. 9 presents the distributions of the microscopic shear stress

and the microscopic magnetic induction in x direction, normalized

by their macroscopic counterparts. The RVEs are loaded by 10% of

simple-shear deformation in the xy-plane, [ F ] xy = 0 . 1 and a mag-

netic field in x -direction, [ H ] x = 50 . 

The homogenized Piola stresses and magnetic inductions are

again very similar for all three microstructures. The macroscopic

induction is for all RVEs higher than in the previous example with

simple-extension although the same magnetic field is applied. The

reason is the same as in the unit cell example: The distances be-

tween the particles are increased in simple-extension and there-

fore the homogenized magnetic permeability decreases. The mi-

croscopic distributions of the shear stress and the magnetic induc-

tions differ significantly: the maximum magnetic induction in the

periodic microstructure is half of that in the random microstruc-

tures. The normalized microscopic shear stress in the periodic mi-

crostructure ranges from −4.90 to 5.17 whereas the random mono-

disperse microstructure shows normalized shear stresses between

−12.37 and 11.83. The decisive factor for the magnitude of the mi-

croscopic induction and consequently also for the magnitude of the

stress is the distance between two particles in the direction of the

magnetic field. Therefore, high magnetic induction and stress val-

p  
es are obtained for the random microstructures at certain points,

hich are canceled out during homogenization but are crucial for

he microscopic behavior of the material. 

The curves of homogenized Piola stress and magnetic in-

uction for the periodic, mono-disperse and poly-disperse mi-

rostructures obtained from PD-PP b.c. are compared in Fig. 10 .

he numerical results prove that the homogenized Piola stresses

nd magnetic inductions are very similar for the three different

icrostructures. 

It can be summarized, that the microscopic material behavior

f a magneto-active composite strongly depends on the distribu-

ion of the particles. The macroscopic material behavior, e.g. the

omogenized stresses, strains or magnetic fields observed in an

xperiment, might be similar for various microstructures, but the

icroscopic loading can be significantly different depending on

he minimum distances of particles. Considering the modeling and

imulation of magneto-active materials, it seems to be very impor-

ant to represent the microstructures as accurately as possible to

ompute the correct maximum values of stresses and magnetic in-

uctions on the micro-scale. If one is mainly interested in the ho-

ogenized material answer a periodic unit cell gives sufficiently

ccurate results. 

.3. Convergence of homogenized variables for different boundary 

onditions 

The objective of this section is to compare the numerical results

btained from the application of different boundary conditions for

ncreasing sizes of the RVEs. Fig. 11 (a) and (b) illustrates multiple

izes of periodic and random poly-disperse RVEs. Note that their

ize increases in such a way that the higher level includes the un-

erlying lower levels. The response of the random microstructure

f a particular size is obtained by solving and averaging ten differ-

nt poly-disperse RVEs. Fig. 11 (c) shows an example of those ten

amples for the size 1x1. In the first step the same boundary con-

itions as in the previous unit cell example are applied, i.e. de-

ending on the primary variables of the magneto-elastic enthalpy
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Fig. 9. Macroscopic shearing [ F ] xy = 0 . 1 and magnetic field [ H ] x = 50 : distribution of microscopic normalized Piola stress ( xy -component) and normalized magnetic induction 

in x -direction for different periodic, random mono-disperse and random poly-disperse microstructures. 

Fig. 10. Variations of the (a) macroscopic Piola stress ( xx -component) and macroscopic magnetic induction (in x -direction) due to the increase of the stretch for the simple- 

extension under magnetic field [ H ] x = 50 and (b) macroscopic Piola stress ( xx -component) and magnetic induction (in x -direction) due to the increase of the magnetic field 

under simple-extension [ F ] xx = 1 . 1 load, for periodic, mono-disperse and poly-disperse RVEs. 
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unction W (F , H ) . Secondly, boundary conditions are prescribed in

erms of the primary variables of the magneto-elastic internal en-

rgy function W 

∗(F , B ) . 

.3.1. Boundary conditions based on primary variables of enthalpy 

unction W (F , H ) 

Fig. 12 illustrates the variation of macroscopic quantities, i.e. the

nthalpy W , the Piola stress [ P ] xx and the magnetic induction [ B ] x ,

ersus the size of a periodic RVE. The microstructures are subject

o two different load cases, one with simple-extension [ F ] xx = 1 . 1

nd a magnetic field [ H ] x = 7 . 6 in x -direction and the second one

ith no deformation [ F ] = I and a magnetic field [ H ] x = 6 . 6 in x -

irection. The top row of Fig. 12 shows the numerical results ob-

ained for the first load case, the bottom row those for the second

oad case. 

In the top row of Fig. 12 , it is firstly observed that the re-

ults of all boundary conditions converge to the results of the pe-

iodic boundary conditions, as expected. The LD-LP boundary con-

itions render higher averaged quantities than the PD-PP bound-
ry conditions, and the CT-CI boundary conditions result in lower

veraged values. The results converge for increasing sizes of the

VEs at different rates for the various boundary conditions. For the

agneto-elastic enthalpy and the stress, the LD-LP boundary con-

itions converge much faster than the CT-CI boundary conditions.

n contrast, for the magnetic induction, the CT-CI boundary condi-

ions show a slightly faster convergence. The Voigt’s approximation

ives the highest results in all three cases, the Reuss’ approxima-

ion the lowest one. The second load case, i.e. with a prescribed

eformation gradient of [ F ] = I , is considered in the bottom row

f Fig. 12 . The results for all boundary conditions also converge to

he results of the periodic boundary conditions for increasing sizes

f the RVEs. However, some differences in the order of the results

an be observed. The homogenized magneto-elastic enthalpy, com-

uted with the LD-LP boundary conditions is always smaller than

he result of the PD-PP boundary conditions, and the magneto-

lastic enthalpy derived with the CT-CI boundary conditions is al-

ays higher. The Voigt’s and Reuss’ approximations show a simi-

ar behavior, i.e. Voigt’s approximation renders a smaller enthalpy
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Fig. 11. Different sizes (levels) of (a) periodic and (b) random poly-disperse microstructures with the same volume fraction of f = 25% . The size increases in such a way that 

the higher level includes the underlying lower levels and the volume fraction remains constant.(c) shows ten random poly-disperse RVE of size 1x1. 

Fig. 12. Comparison of the macroscopic enthalpy W , macroscopic magnetic induction [ B ] x and macroscopic Piola stress [ P ] xx , obtained from the application of LD-LP, PD-PP, 

CT-CI b.cs. and Voigt’s and Reuss’ approximation to the periodic microstructures. The size of the RVE increases from a unit-cell to a 10x10 periodic microstructure that 

contains all underlying lower size RVEs. 
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Fig. 13. Comparison of the macroscopic enthalpy W , macroscopic magnetic induction [ B ] x and macroscopic Piola stress [ P ] xx , obtained from the application of LD-LP, PD-PP, 

CT-CI b.cs. and Voigt’s and Reuss’ bounds to the random microstructures. The size of the RVE increases from a 1x1 to a 10x10 random poly-disperse microstructure that 

contains all underlying lower size RVEs. Macroscopic responses are obtained from the solution and averaging ten different random poly-disperse microstructures. The bars 

in the diagrams indicate the standard deviation of the results of poly-disperse microstructures from the average solution. 
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nd Reuss’ approximation a higher one. The reason for these un-

sual results is founded in the magneto-elastic enthalpy function

tself, which is poly-convex in F (when H = 0 ) but concave in H

n the magneto-mechanical case, compare Fig. (2) . Therefore, the

oigt approximation does in general not result in the maximum

agneto-elastic enthalpy values. This is not observed in the top

ow of Fig. 12 , since that example is dominated by the mechan-

cal response. Considering the stress, the results for both the LD-

P and the CT-CI boundary conditions approach the periodic result

rom below, whereby the LD-LP converge faster. This is due to the

addle-point structure of the enthalpy function together with the

onlinearity of the stress response. 

It is analyzed in the next example if the same behavior can be

bserved for random poly-disperse microstructures. In Fig. 13 the

omogenized magneto-elastic enthalpy, magnetic induction and

tress are depicted for increasing sizes of random poly-disperse

VEs. The same load cases and boundary conditions as in the pre-

ious example are analyzed. 

For the poly-disperse RVEs the periodic boundary conditions do

ot provide the exact solution and, therefore, the results of the

eriodic boundary conditions also change with an increasing size

f the RVE. However, it can be observed in all cases, that they

onverge to a constant value (which is in general not the same

s for the periodic microstructure). The results of the LD-LP and

he CT-CI boundary conditions also converge to the periodic ones.

he curves are not as smooth as in the example with the peri-

dic microstructure which comes from the randomness of the par-

icle distributions. Each curve represents the average values of 10

andom poly-disperse RVEs of the same size. The error bars in-

icate the standard deviation, which decreases for the larger RVE

izes. Similar observations have been reported by Bayat and Gor-

aninejad (2017) . They observed that for small RVE sizes the ran-

om positioning of inclusions has high influence on the effective

esponses. However, by increasing the RVE size and number of par-

icles the oscillations and deviations of the effective responses sig-

ificantly reduce. The order of the results for the different bound-

ry conditions in Fig. 13 is similar as for the periodic microstruc-
ures. In the top row of Fig. 13 the magneto-mechanical load case

s presented, where the mechanical loading dominates the prob-

em and therefore the usual behavior is observed, i.e. Voigt’s ap-

roximation gives the highest values, followed by the LD-LP, PD-PP

nd CT-CI boundary conditions, and Reuss’ approximation results

n the lowest values. For the poly-disperse RVEs the convergence

ates of the LD-LP and CT-CI boundary conditions are similar. In

he bottom row the results for magnetic loading with F = I are de-

icted. Again, the saddle-point structure of the magneto-elastic en-

halpy becomes apparent, since the Reuss’ approximation gives the

ighest magneto-elastic enthalpy values, followed by the CT-CI, PD-

P and LD-LP boundary conditions and Voigt’s approximation. For

he magnetic induction and the stress LD-LP boundary conditions

nd Voigt’s approximation overestimate the response while the CT-

I boundary conditions and Reuss’ approximation underestimate

hem. The behavior of the stresses is different as compared to the

eriodic microstructure, since the LD-LP boundary conditions now

pproach the periodic ones from above as expected. This is not

nly observed for the average values but also for all random RVEs

nd therefore the observation made for periodic microstructures

eems to be a peculiarity resulting from the regular microstructure.

It can be summarized for the random poly-disperse RVEs that

he homogenized values obtained for different boundary condi-

ions and various microstructures converge to certain similar val-

es when the size of the RVE is increased. The maximum devia-

ions occur in the RVE levels between 1 × 1 and 6 × 6 and the dif-

erent curves start to show a more stable and smoother behavior

or the RVE sizes above 7 × 7 cells. Periodic boundary conditions

how as expected the fastest convergence to the homogenized val-

es, whereas the convergence rates of the LD-LP and the CT-CI

oundary conditions are similar. 

The observations for the magneto-elastic enthalpy and the

tresses in the purely magnetic load case for periodic and random

icrostructures show that it is not possible for the present setting

f the coupled magneto-mechanical problem to ensure that e.g.

oigt’s approximation or the LD-LP boundary conditions always

verestimate the homogenized quantities as it holds for purely me-
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Fig. 14. Comparison of the macroscopic enthalpy W , macroscopic magnetic induction [ B ] x and macroscopic Piola stress [ P ] xx , obtained from the application of LD-CI, PD-PP, 

CT-LP b.cs. and Voigt ∗ and Reuss ∗ bounds to the periodic microstructures. The size of the RVE increases from a unit-cell to a 10x10 periodic microstructure that contains all 

underlying lower size RVEs. 
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chanical problems. This motivates the analysis of a second set of

boundary conditions, formulated in the primary variables of the

magneto-elastic internal energy function W 

∗(F , B ) which is poly-

convex in F when ( B = 0 ) and convex in B , in the next subsection.

3.3.2. Boundary conditions based on primary variables of energy 

function W 

∗(F , B ) 

In this subsection, boundary conditions formulated in F and B ,

the primary variables of the magneto-elastic internal energy func-

tion W 

∗ are applied, as introduced in Section 2.3 . This is motivated

by the fact that the magneto-elastic internal energy is poly-convex

in F when ( B = 0 ) and convex in B . Therefore, it is expected that

the Voigt ∗ and Reuss ∗ approximations deliver bounds on the ho-

mogenized behavior. The following combinations of boundary con-

ditions result: linear displacements and constant magnetic induc-

tion (LD-CI), periodic displacements and periodic magnetic poten-

tial (PD-PP) and constant tractions and linear magnetic potential

(CT-LP). For Voigt ∗ approximation, constant strains and a constant

magnetic induction are assumed everywhere in the RVE, whereas

Reuss ∗ approximation prescribes constant stresses and a constant

magnetic field in the RVE. Fig. 14 presents the evolution of the

averaged magneto-elastic energy W 

∗
, the averaged magnetic field

[ H ] x and the averaged Piola stress [ P ] xx versus the size of a pe-

riodic RVE. The composites undergo a magneto-mechanical load

with [ F ] xx = 1 . 1 and [ B ] x = 0 . 01 (results in top row), and a mag-

netic load with [ F ] = I and [ B ] x = 0 . 01 (bottom row). 

The upper plots of Fig. 14 show that the results of all boundary

conditions lie between Voigt ∗ and Reuss ∗ approximations where

the LD-CI b.c. overestimate the results of the periodic boundary

conditions and the CT-LP b.c. yield lower averaged values than

the other two boundary conditions. Furthermore, all results con-

verge to the (constant) results related to the periodic boundary

conditions, whereby convergence is faster for the LD-CI b.c. than

for the CT-LP boundary conditions. For the second load case in

the bottom row, a similar behavior is observed for the averaged

magneto-elastic internal energy and the averaged magnetic field.

Since the magneto-elastic internal energy W 

∗
is poly-convex in F

(when B = 0 ) and convex in B , Voigt ∗ and Reuss ∗ assumptions de-
iver as expected the highest or lowest values, respectively. How-

ver, for the averaged stresses the Voigt ∗ assumption does not ren-

er the maximum value since the deformation gradient is pre-

cribed as [ F ] = I in the whole domain of B 0 which cancels out

he mechanical term of the Piola stress in Eq. (9) . Furthermore, the

esults of both the LD-CI and the CT-LP boundary conditions ap-

roach the periodic ones from below. This behavior is again a con-

equence of the nonlinearity of the coupled constitutive relations

nd depends on the microstructure and the material parameters. 

The homogenized magneto-elastic internal energy W 

∗
, the ho-

ogenized magnetic field [ H ] x and the homogenized Piola stress

 P ] xx for poly-disperse RVEs of different sizes are considered in

ig. 15 . The error bars indicate again the standard deviations. The

op row shows the results for the magneto-mechanical load case,

he bottom row the results for the magnetic load case with [ F ] = I .

he three different boundary conditions are compared, comple-

ented by the Voigt ∗ and Reuss ∗ approximations. Due to the ran-

omness of the poly-disperse microstructure, the curves are not as

mooth as in Fig. 14 for the periodic case, but the variations of the

esults and the convergence behavior are quite similar. Concern-

ng the order of the results, all homogenized values, but the Pi-

la stress in the second load case, show the highest values for the

oigt ∗ approximation, followed by LD-CI, PD-PP, CT-LP and Reuss ∗

pproximation. For the Piola stress in the magnetic load case, the

rder is different and Voigt ∗ approximation does not give the high-

st value. 

To summarize the convergence analysis for the second set of

oundary conditions, formulated in F and B , it can be stated that

s expected the results of all boundary conditions converge to the

ame homogenized quantities for an increasing size of RVEs. The

oigt ∗ and Reuss ∗ approximations yield bounds for the homoge-

ized energy due to its convexity, but not for the homogenized Pi-

la stress. This is due to the fact that the deformation gradient is

rescribed as [ F ] = I in the whole domain of B 0 which cancels out

he mechanical term of the Piola stress in Eq. (9) and therefore the

oigt ∗ assumption does not render the maximum value of the Pi-

la stress. 
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Fig. 15. Comparison of the macroscopic enthalpy W , macroscopic magnetic induction [ B ] x and macroscopic Piola stress [ P ] xx , obtained from the application of LD-CI, PD-PP, 

CT-LP b.cs. and Voigt ∗ and Reuss ∗ bounds to the random microstructures. The size of the RVE increases from a 1x1 to a 10x10 random poly-disperse microstructure that 

contains all underlying lower size RVEs. Macroscopic responses are obtained from the solution and averaging ten different random poly-disperse microstructures. The bars 

on the diagrams indicate the standard deviation of the results of poly-disperce microstructures from the average solution. 
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. Conclusion 

The behavior of heterogeneous magneto-rheological compos-

tes subjected to large deformations and external magnetic fields

s studied. Computational homogenization is used to derive the

acroscopic material response from the averaged response of

he underlying microstructure. The microstructure consists of two

aterials and is far smaller than the characteristic length of

he macroscopic problem. Different types of boundary conditions

ased on the primary variables of the magneto-elastic enthalpy

nd internal energy functionals are applied to solve the problem at

he micro-scale. The overall responses of the RVEs with different

izes and particle distributions are studied under different loads

nd magnetic fields. 

The finite element results indicate that the periodic RVEs rep-

esent a uniform microscopic response for the application of dif-

erent boundary conditions and magneto-mechanical loads. How-

ver, the microscopic fields obtained from random microstructures

how large variations and differ from the results of periodic RVEs.

hereby microscopic material behavior of a magneto-active com-

osite strongly depends on the distribution of the particles and

an be significantly different depending on the distances between

he magnetic particles. Considering the modeling and simulation of

agneto-active materials, it is very important to represent the mi-

rostructures as accurately as possible to compute the correct max-

mum values of stresses and magnetic inductions on the micro-

cale. 

A convergence study of the homogenized macroscopic fields for

he boundary conditions based on the primary variables of the

agneto-elastic enthalpy function W (F , H ) shows the dependency

f the macroscopic results on the magneto-mechanical loading and

he microstructure of the RVE. For instance, under purely mag-

etic loading Voigt’s approximation renders the smallest enthalpy

nd Reuss’ approximation the highest one. However, for the RVEs

ndergoing magneto-mechanical loads Voigt’s and Reuss’ approx-

mations result in the expected highest and lowest macroscopic

agneto-elastic enthalpy, respectively. The reason for these un-

d

sual results is founded in the magneto-elastic enthalpy function

tself, which is poly-convex in F (when H = 0 ) but concave in H

n the magneto-mechanical case. The same study is carried out for

he boundary conditions based on the magneto-elastic internal en-

rgy function W 

∗(F , B ) . The results represent a consistent response

f the homogenized fields for different magneto-elastic loadings

nd microstructures. Since the magneto-elastic energy W 

∗(F , B ) is

oly-convex in F (when B = 0 ) and convex in B , Voigt ∗ and Reuss ∗

ssumptions always deliver the highest and the lowest values of

he homogenized energy as expected, respectively. However, this

esult can not be transferred to the stresses, which show the high-

st values for the periodic boundary condition. 

Furthermore, increasing the sizes of the RVEs, the homogenized

esponses obtained from non-periodic boundary conditions based

n W (F , H ) and W 

∗(F , B ) converge to the results associated with

eriodic boundary conditions. However, for the poly-disperse ran-

om microstructures the convergence behavior is not as smooth

s the behavior when the particles are uniformly distributed. It is

lso observed that the larger the size of the RVE (bigger than 7x7

n our study), the smoother the oscillatory response of the random

icrostructures. 
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ppendix A. Numerical implementation 

In the appendix the FE-formulation and numerical implemen-

ation of the homogenization problem are presented. Initially the

E-formulation for solving the magneto-mechanical homogeniza-

ion problem is given and afterwards the algorithms for the im-

lementation of various types of mixed boundary conditions are

iscussed. 
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4 〈 {•} 〉 = 

1 
∫ 

{•} dV denotes averaging over the RVE. 
A1. Finite element discretization 

In the absence of microscopic inertia and mechanical body

forces, the weak form of the microscopic equilibrium equation in

the material configuration (2) is written as ∫ 
B 0 

P : ∇ X δφ d V −
∫ 
∂ B 0 N mech 

δφ · T 

p d A = 0 ∀ δφ ∈ H 0 
1 ( B 0 ) . 

(A.1)

In a near-identical fashion, the weak form of the magneto-static

problem can be derived by testing the local conservation of mag-

netic flux (4) with a scalar test function δϕ ∈ H 

1 
0 
(B 0 ) and then in-

tegrating the result over the corresponding domain in the material

configuration. The global weak form of the magnetic balance equa-

tion reads ∫ 
B 0 

B · ∇ X δϕ d V −
∫ 
∂ B 0 N mag 

δϕ T 

p d A = 0 ∀ δϕ ∈ H 0 
1 ( B 0 ) . 

(A.2)

The geometry of the problem is discretized with finite elements

and the unknown field values are approximated by means of

element-wise polynomial shape functions. The spatial discretiza-

tion of the problem domain is performed using the Bubnov–

Galerkin finite element method. The geometry of the body in the

reference configuration B 0 is subdivided into a set of elements 

B 0 
h ≈

nel ⋃ 

β=1 

B 0 
β

where nel denotes the number of elements. The geometry, the de-

formation and the magnetic potential (and their test functions) are

approximated element-wise with the shape functions N 

i and nodal

values ( • ) i at the nN element nodes. 

X 

∣∣∣
B 0 β

≈ X 

h = 

nN ∑ 

i =1 

N 

i X 

i 
, φ

∣∣∣
B 0 β

≈ φh = 

nN ∑ 

i =1 

N 

i φi 
, 

ϕ 

∣∣∣
B 0 β

≈ ϕ 

h = 

nN ∑ 

i =1 

N 

i ϕ 

i . (A.3)

The discrete forms of the balance equations are obtained by in-

serting the approximations (A.3) into the weak forms (A.1) and

(A.2) and result in the mechanical and magnetic residuals associ-

ated with the global node I 

This global system of equations is solved using the Newton–

Raphson scheme. For further details regarding the discretization

see Javili et al. (2013a ). 

A2. Boundary conditions 

In this section various algorithms to apply the boundary con-

ditions specified in Table 1 are discussed in detail. We focus on

the two categories based on either prescribing ( F , H ) (i.e. the pri-

mary variables of the magneto-elastic enthalpy function) or pre-

scribing ( F , B ) (i.e. the primary variables of the magneto-elastic

energy function), respectively. For boundary conditions based on

( F , H ) we assume that the macroscopic input consists of F and H

and for the second set of boundary conditions based on ( F , B ) the

macroscopic variables F and B are the input variables. However,
he algorithms could be easily adapted to other macroscopic input

arameters. 

2.1. Boundary conditions based on prescribed ( F , H ) 

LD-LP boundary condition: The deformation and the magnetic

otential of the boundary nodes are prescribed using the input

alues of the macroscopic deformation gradient F and the macro-

copic magnetic field H . The algorithm to implement LD-LP b.c. is

iven in the Algorithm 1 4 : 

Algorithm 1: Linear displacement-linear magnetic potential 

boundary condition b.c. 

input: F and H 

prescribe φi = F · X 

i and ϕ 

i = H · X 

i to the boundary nodes 

solve the nonlinear system of equations (A.4) and (A.5) using 

the Newton-Raphson method 

compute the macroscopic stress P = 〈 P 〉 and magnetic 

induction B = 〈 B 〉 . 

PD-PP boundary condition: The boundary of the RVE is de-

omposed into positive, ∂B 0 
+ , and negative, ∂B 0 

−, parts with

 B 0 
+ ∪ ∂ B 0 

− = ∂ B 0 and ∂ B 0 
+ ∩ ∂ B 0 

− = {∅} . Periodic boundary

onditions require the equivalence of the micro-fluctuation fields

n each opposite pair of boundary nodes, ̃  φ
i + = ̃

 φ
i −

and 

˜ ϕ 

i + = 

˜ ϕ 

i −,

hich can be written in general format as 

i + − φi − = F · [ X 

i + − X 

i −] and ϕ 

i + − ϕ 

i − = H · [ X 

i + − X 

i −] . 

(A.6)

oreover, on each opposite part of the RVE boundary, the normal

ectors are N 

+ = −N 

−. Therefore, the tractions and magnetic fluxes

re anti-periodic at corresponding points on ∂B 0 
+ and ∂B 0 

−, 

 

+ = −T 

− and T 

+ = −T 

−. (A.7)

he implementation of the periodic boundary condition

s given in Algorithm 2 , see Tyrus et al. (2007) and

Algorithm 2: Periodic displacements-periodic magnetic po- 

tential b.c. 

input: F and H 

prescribe φi = F · X 

i and ϕ 

i = H · X 

i to the corner nodes 

prescribe φi + = F · [ X 

i + − X 

i −] + φi −
and 

ϕ 

i + = H · [ X 

i + − X 

i −] + ϕ 

i − on the boundary nodes at ∂B 0 
+ 

(using static condensation) 

solve the nonlinear system of equations (A.4) and (A.5) using 

the Newton-Raphson method 

compute the macroscopic stress P = 〈 P 〉 and magnetic 

induction B = 〈 B 〉 . 

ouznetsova et al. (2001) for further details. 

CT-CI boundary condition: The application of CT-CI boundary

onditions follows an algorithm introduced in Javili et al. (2017) . It

s based on the idea that the rigid body rotation of the RVE has to

e constrained in such a manner that no additional stresses result

ue to these constraints. In the present two-dimensional setting,

ne corner of the RVE is fixed to prohibit rigid body translation,

oint I in Fig. A.16 . Another degree of freedom at a second corner

f the RVE, point II in Fig. A.16 , has to be prescribed as a still un-

nown value d to avoid rigid body rotation. The unknown value
V 0 B 0 
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Fig. A.16. Representative volume element for CT-CI boundary condition. 
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m  
 follows from the requirement that the additionally introduced

tress P 

d due to this constraint has to vanish. 

To apply the CT-CI boundary conditions (for prescribed macro-

copic deformation gradient F and magnetic induction H ), initial

alues for the constant traction and the constant magnetic flux

re applied to the RVE’s boundary. The boundary value problem is

olved and the resulting averaged deformation gradient and mag-

etic induction are compared with their macroscopic input values.

dditionally, the stress P 

d due to the artificial constraint has to

anish. Therefore, the constant traction and the constant magnetic

ux on the boundary are incrementally updated until the following

rror E vanishes 

 = ‖ F − 〈 F 〉‖ + ‖ H − 〈 H 〉‖ + ‖ P 

d ‖ = 0 . (A.8)

he implementation of the constant traction-constant magnetic

eld boundary condition is given in the Algorithm 3 . 

Algorithm 3: Constant traction-constant magnetic induction 

b.c. 

input: F and H 

initialize P and B 

while E > tol do 

apply T = P · N and T = B · N to the boundary nodes 

fix corner nodes I,II (Fig. A.16) 

solve the nonlinear system of equations (A.4) and (A.5) 

using the Newton-Raphson method 

compute E 

update P , B , d 
end 

Voigt’s and Reuss’ assumptions: Voigt’s assumption is an ap-

roximate solution which assumes that the deformation gradient F

nd the magnetic field H are constant throughout the whole do-

ain. In other words, the inclusion and the matrix undergo the

ame linear mapping and magnetic potential. Therefore, the Piola

tress and the magnetic induction can be obtained directly from

qs. (9) and (11) for the matrix and inclusion materials, individ-

ally. The total macroscopic variables are then calculated as the

eighted average of their counterparts in matrix and inclusion 

〈 P 〉 = f P 

inc. + [1 − f ] P 

mat. and 

 B 〉 = f B 

inc. + [1 − f ] B 

mat. with f being the volume fraction 

of the inclusion. (A.9) 

euss’ approximation assumes a uniform stress and magnetic in-

uction throughout the RVE domain. Since Eqs. (9) and (11) can

ot easily be inverted, the Reuss’ approximation is computed iter-

tively. Initial value for the stress and the magnetic induction are

rescribed for the matrix and the inclusion. These values are iter-

tively updated until the resulting averaged deformation gradient
nd the averaged magnetic field 

〈 F 〉 = f F inc. + [1 − f ] F mat. , 

〈 H 〉 = f H 

inc. + [1 − f ] H 

mat. 
(A.10) 

re equal to the macroscopic input parameters F and H . 

.2.2. Algorithms for boundary value problems based on prescribed 

( F , B ) 

LD-CI boundary condition: Using the input parameters F and

 , the deformation and the magnetic induction are imposed on the

oundary nodes. The algorithm to implement LD-CI b.c. is given in

he Algorithm 4 . 

Algorithm 4: Linear displacement-constant magnetic induc- 

tion b.c. 

input: F and B 

prescribe φi = F · X 

i and T = B · N to the boundary nodes 

solve the nonlinear system of equations (A.4) and (A.5) using 

the Newton–Raphson method 

compute the macroscopic stress P = 〈 P 〉 and magnetic field 

H = 〈 H 〉 . 

PD-PP boundary condition: Essentially, the implementation of

he PD-PP b.c. based on the primary variables of the magneto-

lastic internal energy function is similar to the one based on

he primary variables of the magneto-elastic enthalpy function, see

lgorithm 2 . However, here the input parameters are the macro-

copic deformation gradient F and the macroscopic induction B .

herefore, the algorithm is equipped with an extra iteration loop

hich ensures that the macroscopic induction is equal to the aver-

ged one. The deformation gradient and initial magnetic field are

rescribed to the boundary nodes. In the next step, the initial H

as to be updated incrementally until the average of the magnetic

nduction 〈 B 〉 is equivalent to the macroscopic induction B . This

rocedure is done by the minimization of the following error E 

 = ‖ B − 〈 B 〉‖ = 0 . (A.11)

he implementation of the periodic boundary condition is given in

lgorithm 5 . 

Algorithm 5: Periodic displacements-periodic magnetic po- 

tential b.c. 

input: F and B 

initialize H 

while E > tol do 

prescribe φi = F · X 

i and ϕ 

i = H · X 

i to the corner nodes 

prescribe φi + = F · [ X 

i + − X 

i −] + φi −
, 

ϕ 

i + = H · [ X 

i + − X 

i −] + ϕ 

i − on the boundary nodes at ∂B 0 
+ 

solve the nonlinear system of equations (A.4) and (A.5) 

using the Newton–Raphson method 

compute E 

update H 

end 

compute the macroscopic stress P = 〈 P 〉 . 

CT-LP boundary condition: An initial traction T = P · N and

agnetic field H are imposed to the boundary nodes. Similar to

he CT-CI condition, an initial displacement d is applied to a corner

ode to prevent rigid body motion. In the next step, the prescribed

 , H and d have to be updated iteratively until the averaged defor-

ation gradient 〈 F 〉 and magnetic induction 〈 B 〉 are equal to their
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macroscopic counterparts F and B and the artificial stress P 

d van-

ishes. The following error E is iteratively minimized 

E = ‖ F − 〈 F 〉‖ + ‖ B − 〈 B 〉‖ + ‖ P 

d ‖ = 0 . (A.12)

The implementation of the constant traction-linear magnetic po-

tential boundary condition is given in Algorithm 6 . 

Algorithm 6: Constant traction-linear magnetic potential b.c. 

input: F and B 

initialize P , H 

while E > tol do 

apply T = P · N and ϕ 

i = H · X 

i to the boundary nodes 

fix corner nodes I,II (Fig. A.16) 

solve the nonlinear system of equations (A.4) and (A.5) 

using the Newton–Raphson method 

compute E 

update P , H , d 
end 

Voigt ∗ and Reuss ∗ assumptions: In Voigt ∗ assumption F and B

are prescribed to be constant in B 0 . The Piola stress and the mag-

netic field are obtained directly from the Eqs. (13) and (14) for the

matrix and inclusion materials, individually. The averaged (macro-

scopic) variables are then calculated as the weighted average of

their counterparts in matrix and inclusion 

〈 P 〉 = f P 

inc. + [1 − f ] P 

mat. , 

〈 H 〉 = f H 

inc. + [1 − f ] H 

mat. . 
(A.13)

In the Reuss ∗ assumption, P and H are constant in B 0 such that

〈 F 〉 and 〈 B 〉 are equal to their macroscopic counterparts. Therefore,

Eqs. (13) and (14) have to be solved iteratively for the unknown

B 

mat. , B 

inc. , F mat . and F inc . until 

F = 〈 F 〉 = f F inc. + [1 − f ] F mat. , 

B = 〈 B 〉 = f B 

inc. + [1 − f ] B 

mat. . 
(A.14)
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