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The efficiency of nanopore-based polymer sensing devices depends on the fast capture of anionic
polyelectrolytes by negatively charged pores. This requires the cancellation of the electrostatic barrier
associated with repulsive polymer-pore interactions. We develop a correlation-corrected theory to
show that the barrier experienced by the polymer can be efficiently overcome by the addition of
multivalent cations into the electrolyte solution. Cation adsorption into the pore enhances the screening
ability of the pore medium with respect to the bulk reservoir which translates into an attractive
force on the polymer. Beyond a critical multivalent cation concentration, this correlation-induced
attraction overcomes the electrostatic barrier and triggers the adsorption of the polymer by the like-
charged pore. It is shown that like-charge polymer-pore attraction is suppressed by monovalent salt but
enhanced by the membrane charge strength and the pore confinement. Our predictions may provide
enhanced control over polymer motion in translocation experiments. Published by AIP Publishing.
https://doi.org/10.1063/1.4994018

I. INTRODUCTION

The interaction of charged solutes with membrane
nanopores plays a central role in biological processes and
the functioning of biosensing methods.1 Among these tech-
niques, drift-driven polymer translocation through biological
and synthetic nanopores has been a central focus for over
the past two decades.2–6 This approach consists of reading
the polymer sequence through the ionic current alterations
induced by the translocating polyelectrolyte. The precision
of the method requires an accurate control over the poly-
mer dynamics governed by entropic and electrohydrodynamic
polymer-pore and polymer-liquid interactions. The character-
ization of these interactions is thus of major importance for
the optimization of polymer translocation based sequencing
devices.

The electrohydrodynamics of polymer-liquid interactions
and entropic effects associated with conformational polymer
fluctuations have been scrutinized by simulations7–11 and the-
oretical models.12–18 However, the direct electrostatic cou-
pling between the polymer and the membrane nanopore has
been mostly overlooked. This is a strong theoretical limita-
tion; the majority of translocation experiments involve nega-
tively charged polymers driven through anionic silicon based
membrane nanopores.19–23 Thus, the like-charge polymer-
pore interactions are expected to induce a barrier that may
severely limit polymer capture by the pore. This was indeed
explicitly shown by our recent mean-field (MF) polymer
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translocation model.24 At this point, it should be noted that the
presence of the electrostatic barrier hinders the optimal func-
tioning of the polymer translocation method whose efficiency
requires the fast capture of the polymer from the reservoir.
Thus, the optimization of this sequencing technique necessi-
tates the removal of the electrostatic barrier induced by direct
like-charge polymer-pore interactions.

In this article, we show that the electrostatic barrier
experienced by the polymer can be efficiently overcome by
adding multivalent counterions into the solution. The counte-
rion attraction by the anionic pore walls results in a cationic
excess in the pore. Due to this ionic abundance, the pore elec-
trolyte can screen the polymer charges more efficiently than
the reservoir solution. This lowers the polymer’s free energy
in the pore with respect to the reservoir medium and translates
into an attractive force. Beyond a critical concentration of mul-
tivalent cations, this correlation-induced force takes over the
repulsive barrier and triggers an electrostatic attraction on the
polymer by the like-charged pore.

Similar macromolecular like-charge attraction phenom-
ena induced by multivalent cations have been previously
observed in experiments. For example, the experimental stud-
ies of Refs. 25–32 showed that the presence of trivalent counte-
rions in the solution is a necessary condition for the occurrence
of like-charge polymer condensation. Moreover, recent experi-
ments observed that the addition of divalent cations to the elec-
trolyte solution switches the like-charge polymer-membrane
interactions from repulsive to attractive.33–35 Different theoret-
ical approaches have been developed to explain the like-charge
macromolecular attraction. References 36–38 investigated
this effect from a Landau-Ginzburg-like phenomenological
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approach. Within gaussian path-integral techniques and free-
energetic models, charge correlations were explicitly included
in Refs. 39–43. Recently, one of us developed a correlation-
corrected test-charge theory of macromolecular interac-
tions.44,45 We showed that the test-charge approach can con-
sistently reproduce and explain the experimentally observed
like-charge polymer-polymer25–32 and polymer-membrane
attraction.33–35

The main novelty in the present work concerns the fact
that treating the electrostatics from multivalent ions requires
the formulation of polymer-pore interactions beyond the MF-
Poisson-Boltzmann level. To this end, we make use of the
test-charge approach introduced in Refs. 44 and 45 for gen-
eral geometry. At this point, the question arises on whether
the test-charge theory can handle the case of multivalent
cations where the electrostatic coupling parameter may be
significantly high. The test-charge approach is based on two
approximations: the one-loop (1l) theory of electrostatic inter-
actions and the expansion of the electrostatic free energy
in terms of the polymer charge density. In Ref. 46, by
comparison with Monte Carlo simulation data for multiva-
lent ion partition in nanopores, the quantitative reliability of
the underlying 1l-theory was shown, and its validity regime
was identified. Then, in Ref. 18, the coupled solution of
the 1l-theory and the hydrodynamic transport equations pre-
dicted the polyvalent cation-induced DNA mobility reversal.
This effect was subsequently observed in polymer translo-
cation experiments.22 Finally, in Ref. 45, we showed that
the test-charge approach can reproduce with good qualita-
tive accuracy the experimental phase diagrams for multivalent
cation-induced DNA condensation.26 This indicates that the 1l
test-charge theory can properly capture the beyond-MF elec-
trostatic interactions between macromolecules in polyvalent
electrolytes. Possible roadmaps for the quantitative verifica-
tion and improvement of our theory are elaborated in the
conclusion part.

Our article is organized as follows. In Sec. II A, we express
the characteristic equations of the test-charge theory in the
specific geometry of the polymer-pore complex. The poly-
mer grand potential characterizing electrostatic polymer-pore
interactions is composed of the MF-level interaction term and
the polymer self-energy bringing 1l-level charge correlations.
The MF component is calculated within an improved Donnan
approximation in Sec. II B. In the computation of the poly-
mer self-energy, the main technical complication arises from
the cylindrical geometry of the system where the 1l-level ker-
nel equation satisfied by the electrostatic propagator cannot
be solved analytically. In order to overcome this difficulty,
we develop an analytical Wentzel-Kramers-Brillouin (WKB)
solution scheme explained in Sec. II C in detail. Within this
beyond-MF theory, in Sec. III, we thoroughly investigate elec-
trostatic correlation effects on polymer-pore interactions. We
summarize our results and discuss potential improvements to
our theory in Sec. IV.

II. THEORY

In this section, we introduce a beyond-MF electrostatic
theory of polymer-pore interactions in mixed electrolytes.

FIG. 1. Schematic representation of the polyelectrolyte with line charge den-
sity τ located on the axis of the cylindrical nanopore. The pore has radius
d and fixed negative surface charge density σm. The polymer portion inside
the pore has length lp. The membrane and pore dielectric permittivities are,
respectively, εm = 2 and εw = 80.

To this end, we calculate the polymer grand potential that
determines the electrostatic cost for the capture of the poly-
mer by the nanopore. Figure 1 displays the charge compo-
sition of the system. The cylindrical nanopore of radius d
and negative wall charge density σm is connected to a bulk
ion reservoir. The pore and the reservoir contain a mixed
electrolyte solution. The solution is composed of p ionic
species. The species i has valency qi and reservoir concen-
tration ρbi. For the sake of simplicity, we consider the poly-
mer as a line charge with density τ = 2πaσp located along
the pore axis. Here, a = 1 nm and σp = 0.4 e/nm2 corre-
spond, respectively, to the radius and surface charge density
of the corresponding cylindrical double-stranded (ds) DNA
molecule.47

The calculation of the polymer grand potential will be
based on the test-charge approach previously developed for
the general geometry in Refs. 44 and 45. In Sec. II A, we
briefly review the test-charge theory and recast the character-
istic equations of state in the cylindrical geometry associated
with the polymer-pore complex. The polymer grand potential
includes a repulsive MF term accounting for the direct inter-
action between the polymer and pore charges and the polymer
self-energy that brings charge correlation effects. The MF and
self-energy components are derived, respectively, in Secs. II B
and II C.

A. Electrostatic theory of polymer-pore interactions

Here we briefly review the test-charge approach of
Refs. 44 and 45 and express the polymer grand potential in
the geometry corresponding to Fig. 1. In the following cal-
culation, we approximate the nanopore as an infinitely long
cylinder in the z direction. According to the test-charge theory,
the polymer grand potential is composed of two components,
namely,

∆Ωp = ΩMF + ∆Ωs. (1)

The first term of Eq. (1) is the MF component associated with
the direct coupling between the polymer and pore charges.
Rescaled by the thermal energy, this term reads

βΩMF =

∫
drσp(r)φm(r). (2)
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In Eq. (2), the charge density function of the polymer is

σp(r) = −
τ

r
δ(r − rp)δ(ϕ − ϕp)θ(z)θ(lp − z), (3)

where rp stands for the radial distance of the polymer from
the pore axis and the polar angle ϕp indicates its the location
on the xy plane. Thus, for the time being, we do not restrict
the polymer position to the pore axis but simply assume that
the polymer is oriented parallel with the z axis. In Eq. (3),
φm(r) is the average potential induced exclusively by the fixed
charges on the membrane wall. Thus, this potential solves the
Poisson-Boltzmann (PB) equation,

∇ε(r)∇φm(r) +
e2

kBT

p∑
i=1

qini(r) = −
e2

kBT
σm(r), (4)

where we introduced the dielectric permittivity profile

ε(r) = εwθ(d − r) + εmθ(r − d), (5)

with the membrane permittivity εm = 2 and the pore permit-
tivity εw = 78. In Eq. (4), e is the electron charge, k B the
Boltzmann constant, and T = 300 K the solvent temperature.
Furthermore, the function

ni(r) = ρbie
−qiφm(r)θ(d − r) (6)

corresponds to the ion number density distribution in the pore,
with θ(x) being the Heaviside step function. Finally, in Eq. (4),
the density distribution of the fixed charges on the membrane
wall reads

σm(r) = −σmδ(r − d). (7)

We note that in the bulk reservoir where the average potential
vanishes, i.e., φm(r)= 0, the MF grand potential of Eq. (2)
vanishes as well, i.e., ΩMF = 0.

The second term in Eq. (1) corresponds to the difference
between the self-energy of the polymer located in the pore and
the bulk reservoir. This self-energy rescaled with the thermal
energy reads

β∆Ωs =
1
2

∫
drdr′σp(r)

[
v(r, r′) − vb(r − r′)

]
σp(r′), (8)

where the electrostatic propagator v(r, r′) solves the 1l-level
kernel equation

∇ε(r)∇v(r, r′) −
e2

kBT

p∑
i=1

q2
i ni(r)v(r, r′) = −

e2

kBT
δ(r − r′).

(9)

In Eq. (8), we used the electrostatic propagator in the bulk. This
corresponds to the spherically symmetric Debye-Hückel (DH)
potential vb(r − r′)= `Be−κb |r−r′ |/|r − r′ |, with the Bjerrum
length `B ≈ 7 Å and the DH screening parameter

κ2
b = 4π`B

p∑
i=1

ρbiq
2
i . (10)

We also note that Eqs. (4) and (9) should be solved with the
electroneutrality condition in the reservoir, given by

p∑
i=1

ρbiqi = 0. (11)

Due to the cylindrical symmetry of Eqs. (5)–(7), the
electrostatic potential depends solely on the radial distance
r, i.e., φm(r)= φm(r). Moreover, within the same symmetry,
the electrostatic Green’s function can be Fourier expanded
as

v(r, r′) =
+∞∑

n=−∞

ein(ϕ−ϕ′)
∫ ∞
−∞

dk

4π2
eik(z−z′) ṽn(r, r ′; k). (12)

Evaluating the integrals in Eqs. (2) and (8) with Eqs. (3) and
(12), the grand potential components simplify to

βΩMF(rp, lp) = −lpτφm(rp), (13)

β∆Ωs(rp, lp) =
lpτ2

4π

+∞∑
n=−∞

∫ ∞
−∞

dk
2 sin2(klp/2)

πk2lp

×
[
ṽn(rp, rp; k) − ṽb,n(rp, rp; k)

]
. (14)

Moreover, the PB equation (4) and the kernel equation (9) take
the radial form

kBT

e2

1
r
∂r

[
rε(r)∂rφm(r)

]
+

p∑
i=1

qini(r) = σmδ(r − d), (15){
1
r
∂rrε(r)∂r − ε(r)

[
n2

r2
+ k2 + κ2(r)

]}
ṽn(r, r ′; k)

= −
e2

kBT
1
r
δ(r − r ′), (16)

with the local screening function

κ2(r) = 4π`B

p∑
i=1

q2
i ni(r). (17)

The boundary conditions associated with the PB equation (15)
are Gauss’ law at the pore wall and the vanishing electric field
condition in the mid-pore,

φ′m(d−) = −4π`Bσm, φ′(0) = 0. (18)

Finally, the matching conditions to be satisfied by the solution
of the kernel equation (16) read

lim
r→d+

ṽn(r, r ′; k) = lim
r→d−

ṽn(r, r ′; k), (19)

lim
r→r′+

ṽn(r, r ′; k) = lim
r→r′−

ṽn(r, r ′; k), (20)

lim
r→d+

ε(r)∂r ṽn(r, r ′; k) = lim
r→d−

ε(r)∂r ṽn(r, r ′; k), (21)

lim
r→r′+

∂r ṽn(r, r ′; k) − lim
r→r′−

∂r ṽn(r, r ′; k) = −
4π`B

r ′
. (22)

In order to evaluate the polymer grand potential compo-
nents in Eqs. (13) and (14), we have to calculate the average
potential φm(r) by solving Eq. (15) and the electrostatic prop-
agator ṽn(r, r ′; k) solution to Eq. (16). We do not have exact
analytic solutions to Eqs. (15) and (16). Below, we explain the
analytical solution of these electrostatic equations within the
Donnan and WKB approximations.

B. Computing the mean field grand potential
ΩMF(rp, lp) within Donnan approximation

In order to compute the MF component in Eq. (13), we
will solve the PB equation (15) within an improved Donnan
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approximation. At the first step, in Eq. (15), we set φm(r)
= φD, where φD is the constant Donnan potential, and inte-
grate the resulting equation over the cross section of the pore.
This leaves us with the relation

p∑
i=1

ρbiqie
−qiφD =

2σm

d
, (23)

whose solution yields the Donnan potential φD. At the next
step, we improve the Donnan approximation by accounting
for the potential variations in the pore. We express the average
potential as

φm(r) = φD + δφ(r), (24)

inject Eq. (24) into the PB equation (15), and Taylor expand
the latter in terms of the correction term δφ(r). Using Eq. (23)
and defining the Donnan screening parameter

κ2
D = 4π`B

p∑
i=1

ρbiq
2
i e−qiφD , (25)

one gets the differential equation
(
r−1∂rr∂r − κ

2
D

)
δφ(r)

= −8π`Bσm/d. Imposing the boundary conditions in Eq. (18),
the solution to this differential equation reads

δφ(r) =
4π`Bσm

κD

[
2
κDd

−
I0(κDr)
I1(κDd)

]
, (26)

where In(x) is the modified Bessel function of the first kind.48

Inserting Eq. (24) together with Eq. (26) into the MF grand
potential (13), the latter takes the form

βΩMF(rp, lp) = −lpτφD

−lpτ
4π`Bσm

κD

[
2
κDd

−
I0(κDrp)

I1(κDd)

]
. (27)

In Ref. 24, the MF grand potential in Eq. (27) was com-
puted within the same approach for symmetric monovalent
electrolytes, and the accuracy of the improved Donnan approx-
imation was shown by comparison with the exact solution of
the PB equation (15). At this point, we note that due to the
negative sign of the membrane charges, the pore potential of
Eq. (24) is negative. Thus, the MF grand potential is positive,
and its magnitude rises steadily with the polymer length lp

in the pore. This behaviour accounts for the MF level electro-
static barrier experienced by the polymer during its penetration
into the pore. We calculate next the self-energy component in
Eq. (14) that brings charge correlations into the MF interaction
picture.

C. Computing the polymer self-energy
∆Ωs(rp, lp) within WKB approximation

Here, we compute the self-energy component of Eq. (14)
of the polymer grand potential in Eq. (1). This requires the
solution of the kernel equation (16). The homogeneous solu-
tions to this equation can be in principle computed numerically.
However, due to high memory requirements, the numerical
scheme explained in the Appendix cannot be used for the
calculation of the polymer grand potential at finite polymer
length lp. Thus, in Sec. II C 1, the homogeneous solutions to
Eq. (16) are derived within the WKB approach. In Sec. II C 2,
in terms of these homogeneous solutions, we calculate the

particular solution to Eq. (16) that satisfies the boundary
conditions of Eqs. (19)–(22). Finally in Sec. III, this par-
ticular solution is used for the computation of the polymer
self-energy in Eq. (14). We emphasize that the calculation
presented in this section is the first analytical solution of
the non-uniformly screened 1l-level kernel equation (16) in
cylindrical coordinates. Due to the complexity of this coor-
dinate system, the analytical solution scheme presented here
is technical and involved. We however note that the physical
results on polymer-pore attraction presented in Sec. III can be
read independently. Therefore, the reader interested mainly in
the physical conclusions of our theory can skip the present
section.

1. Homogeneous solution of the kernel equation (16)

In order to solve the radial kernel equation (16), we have
to find first the homogeneous solutions to the equation{

1
r
∂rr∂r −

[
n2

r2
+ k2 + κ2(r)

]}
ṽn(r, r ′; k) = 0. (28)

We note that the local screening function κ(r) appearing in
Eq. (28) will be calculated with the potential in Eq. (24) of
the improved Donnan approximation. In the ion-free mem-
brane region located at r > d, one has κ(r) = 0. Therefore,
inside the membrane, the solution to Eq. (28) that remains
finite for r→∞ reads ṽn(r, r ′; k) ∝ Kn (|k |r), where Kn(x)
is the modified Bessel function of the second kind.48 Inside
the nanopore r < d where κ(r) is non-uniform, Eq. (28) will
be solved within the WKB approximation. First, we note
that in the weak-coupling Debye-Hückel (DH) approximation
where the pore screening parameter equals the bulk value, κ(r)
= κb, the homogeneous solutions are known to be the modi-
fied Bessel functions. Inspired by this point, we will look for
solutions of Eq. (28) in the form

ṽn(r, r ′; k) = C1An(r)In [Bn(r)] + C2An(r)Kn [Bn(r)] , (29)

where C1,2 are integration constants. Due to the linear inde-
pendence of the Bessel functions In(x) and Kn(x), the first and
second terms of Eq. (29) should satisfy Eq. (28) independently.
Thus, in order to determine the functions An(r) and Bn(r), we
inject into Eq. (28) only the first term of ansatz (29). This
yields

An(r)B′2n (r)I′′n [B(r)]

+

{
2A′n(r)B′n(r) + An(r)B′′n (r) +

An(r)B′n(r)
r

}
I′n [Bn(r)]

+

{
A′′n (r) +

A′n(r)
r
− An(r)

[
n2

r2
+ p2(r)

]}
In [Bn(r)] = 0,

(30)

where we defined the local screening parameter

p(r) =
√
κ2(r) + k2. (31)

Now, in Eq. (30), we make use of the following equality
satisfied by Bessel functions:



144901-5 S. Buyukdagli and T. Ala-Nissila J. Chem. Phys. 147, 144901 (2017)

I′′n (x) = −
1
x

In(x) +

(
n2

x2
+ 1

)
In(x), (32)

which finally yields{
A′′n (r) +

A′n(r)
r

+ An(r)B′2n (r)

[
n2

B2
n(r)

+ 1

]

−An(r)

[
n2

r2
+ p2(r)

]}
In [Bn(r)]

+

{
An(r)B′′n (r) + 2A′n(r)B′n(r) +

An(r)B′n(r)
r

−
An(r)B′2n (r)

Bn(r)

}
I′n [Bn(r)] = 0. (33)

At this stage, we note that the ansatz of Eq. (29) con-
tains two functions that cannot be determined uniquely by
the single equation (28) or (33). Thus, we have to impose
an additional relation between the functions An(r) and Bn(r).
Inspired by a strategy previously used in the WKB solution
of the Schrödinger equation in cylindrical coordinates,49 we
set the bracket term of Eq. (33) proportional to I′n [Bn(r)] to
zero,

B′′n (r)
B′n(r)

−
B′n(r)
Bn(r)

+
2A′n(r)
An(r)

+
1
r
= 0. (34)

The integration of Eq. (34) yields the amplitude of Green’s
function Eq. (29) in the form

An(r) =

√
Bn(r)
rB′n(r)

. (35)

The second bracket term of Eq. (33) being zero, we are left
with the equality

A′′n (r) +
A′n(r)

r

+

{
B′2n (r)

[
n2

B2
n(r)

+ 1

]
−

[
n2

r2
+ p2(r)

]}
An(r) = 0.

(36)

At this point, we introduce the WKB approximation. It consists
of assuming that the amplitude An(r) of the solution in Eq. (29)
varies slowly. Thus, we neglect the derivative terms in Eq. (36).
This yields

dBn(r)
dr

√
m2

B2
n(r)

+ 1 =

√
n2

r2
+ p2(r). (37)

A direct integration of Eq. (37) gives∫ Bn(r)

0
dBn

√
n2

B2
n

+ 1 =
∫ r

0
dr ′

√
n2

r ′2
+ p2(r ′). (38)

For n = 0, Eq. (38) has the trivial solution

B0(r) =
∫ r

0
dr ′p(r ′). (39)

In the present model where we will restrict the polymer posi-
tion to the pore axis (rp = 0), the component with the ground
state mode n = 0 solely contributes to the self-energy in
Eq. (14). Thus, Eq. (29) together with Eqs. (35) and (39) com-
pletes the calculation of the homogeneous solutions to Eq. (16).
However, in order to show that the modes n , 0 vanish in

the mid-pore limit rp → 0, we need to complete the present
calculation for finite n.

For n , 0, the integrals on both sides of Eq. (38) diverge
at their lower bound. By regularizing Eq. (38), this ultraviolet
(UV) divergence can be avoided. To this end, we first integrate
Eq. (37) between ri and r to get

∫ Bn(r)

Bn(ri)
dBn

√
n2

B2
n

+ 1 =
∫ r

ri

dr ′

√
n2

r ′2
+ p2(r ′). (40)

Next, based on Eq. (40), we note that

Bn(r) ≈ p(r)r, for r → 0. (41)

Evaluating the integral on the l.h.s. of Eq. (40), taking the limit
ri → 0, and using Eq. (41), one finally gets

f [Bn(r)/n] = lim
ri→0




1
n

∫ r

ri

dr ′

√
n2

r ′2
+ p2(r ′)

+ f
[
p(ri)ri/n

] }
, (42)

where we defined the auxiliary function

f (x) =
√

1 + x2 − ln
(
x−1 +

√
1 + x−2

)
. (43)

Equation (42) is identical to Eq. (38); we simply subtracted
the same ultraviolet divergent quantity from both sides of
the equality. In the limit n→ 0, Eq. (42) naturally yields
Eq. (39). For Fourier components with finite n, the calculation
of the function Bn(r) from Eq. (42) necessitates the numerical
inversion of the function f (x).

2. Particular solution of the kernel equation (16)

Based on the previously derived homogeneous solutions
to Eq. (16), we calculate here the particular solution of this
equation for ions located in the pore, i.e., r ′ < d. To this end,
we impose first the finiteness of Green’s function (29) at
r = 0 and r → ∞. Then, we take into account the absence
of ions in the membrane, i.e., κ(r > d)= 0. Consequently, the
general solution to Eq. (16) can be expressed as

ṽn(r, r ′; k) = c1An(r)In [Bn(r)] θ(r ′ − r)

+ An(r) {c2In [Bn(r)] + c3Kn [Bn(r)]}

× θ(r − r ′)θ(d − r)

+ c4Kn (|k |r) θ(r − d). (44)

In order to determine the integration constants ci, we impose
now the boundary conditions of Eqs. (19)–(22) to Eq. (44).
After long but straightforward algebra, Green’s function finally
takes the form

ṽn(r, r ′; k) = 4π`BAn(r<)An(r>)In [Bn(r<)]

×

{
Kn [Bn(r>)] +

Gn(k)
Tn(k)

In [Bn(r>)]

}
. (45)

In Eq. (45), we used the radial variables

r< = min(r, r ′) , r> = max(r, r ′) (46)
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and introduced the auxiliary functions taking into account the
nanopore geometry,

Gn(k) = A′n(d)Kn (|k |d) Kn [Bn(d)]

+ An(d)Kn (|k |d) B′n(d)K′n [Bn(d)]

− γ |k |An(d)K′n (|k |d) Kn [Bn(d)] , (47)

Tn(k) = −A′n(d)Kn (|k |d) In [Bn(d)]

−An(d)Kn (|k |d) B′n(d)I′n [Bn(d)]

+ γ |k |An(d)K′n (|k |d) In [Bn(d)] , (48)

with the dielectric contrast parameter γ = εm/εw.

3. Computing the polymer self-energy ∆Ωs(rp = 0; lp)

Using the Fourier-transformed Green’s function of Eq.
(45), we evaluate now the mid-pore value of the self-energy
in Eq. (14), i.e,. ∆Ωs(rp → 0, lp). According to Eq. (14), this
requires the evaluation of the following limit:

lim
rp→0

[
ṽn(rp, rp; k) − ṽb,n(rp, rp; k)

]

= 4π`B lim
rp→0

{
A2

n(rp)In

[
Bn(rp)

]
Kn

[
Bn(rp)

]

− In(pbrp)Kn(pbrp)
}

+ 4π`B
Gn(k)
Tn(k)

lim
rp→0

A2
n(rp)I2

n

[
Bn(rp)

]
, (49)

where we used the bulk limit of Green’s function of Eq. (45),

ṽb,n(r, r ′; k) = 4π`BKn(pbr>)In(pbr<), (50)

with pb =

√
κ2

b + k2. We now note that according to Eqs. (35)

and (41), one has An(rp→ 0)= 1 and In

[
Bn(rp → 0)

]
= δn0,

where δn0 stands for the Kronecker delta function. Using these
equalities, the first limit on the r.h.s. of Eq. (49) becomes
−4π`B ln

[
p(0)/pb )

]
δn0. This shows that in the mid-pore limit,

the ground state mode n = 0 solely brings a finite contribution

to the polymer self-energy. Finally, using Eqs. (35) and (39)
in order to simplify Eqs. (47) and (48), the mid-pore value of
the self-energy (14) takes the form

β∆Ωs(0, lp) = lp`Bτ
2
∫ ∞
−∞

dk
2 sin2(klp/2)

πlpk2

×

{
− ln

[
p(0)
pb

]
+

Q(k)
P(k)

}
, (51)

where we introduced the auxiliary functions

Q(k) = 2p3(d)dB0(d)K0 (|k |d) K1 [B0(d)]

− 2γ |k |dp2(d)B0(d)K1 (|k |d) K0 [B0(d)]

−
[
p3(d)d − p2(d)B0(d) − κ(d)κ′(d)dB0(d)

]

×K0 (|k |d) K0 [B0(d)] , (52)

P(k) = 2p3(d)dB0(d)K0 (|k |d) I1 [B0(d)]

+ 2γ |k |dp2(d)B0(d)K1 (|k |d) I0 [B0(d)]

+
[
p3(d)d − p2(d)B0(d) − κ(d)κ′(d)dB0(d)

]

×K0 (|k |d) I0 [B0(d)] . (53)

The MF component of Eq. (27) and the self-energy in Eq. (51)
complete the calculation of the polymer grand potential of
Eq. (1). The beyond-MF polymer-pore interactions embodied
in these equations are thoroughly investigated in Sec. III.

III. RESULTS

Here, we investigate charge correlation effects on the
polymer-pore interactions. In the following, we will first focus
on the thermodynamic limit lp→∞ corresponding to the case
where the polymer portion in the pore is long enough, i.e.,
κblp� 1. In this limit, the sinusoidal function in Eq. (51)
becomes a Dirac delta function, and the polymer self-energy
simplifies to

β∆Ωs(0; lp) = −lp`Bτ
2 ln

[
κ(0)
κb

]
+ lp`Bτ

2
2κ2(d)dB(d)K1 [B(d)] −

{
κ2(d)d − [κ(d) + κ′(d)d] B(d)

}
K0 [B(d)]

2κ2(d)dB(d)I1 [B(d)] +
{
κ2(d)d − [κ(d) + κ′(d)d] B(d)

}
I0 [B(d)]

, (54)

where we introduced the infrared (IR) limit of Eq. (39),

B(r) = lim
k→0

B0(r) =
∫ r

0
dr ′κ(r ′). (55)

In Eq. (54), the negative term is logarithmically proportional
to the ratio of the salt densities in the pore and the reser-
voir. This component accounts for the ionic excess induced
by the cation attraction into the negatively charged pore. The
resulting salt screening excess lowers the polymer free energy
with respect to the bulk reservoir and favours the polymer
capture by the pore. The second positive term arising from
polymer-image charge interactions prevents the polymer from
penetrating the pore. The competition between these two com-
ponents and the repulsive MF potential of Eq. (27) will be
thoroughly scrutinized for monovalent and multivalent solu-
tions in Secs. III A and III B, respectively. In Sec. IV, we

will also compute the polymer self-energy of Eq. (51) at finite
polymer penetration length lp in order to evaluate the grand
potential landscape of the polymer during its capture by the
nanopore.

A. Symmetric monovalent electrolytes

We consider here a symmetric monovalent electrolyte of
type NaCl with the ions of valency q+ = �q

�

= 1 and bulk den-
sities ρb+ = ρb� = ρb. In Fig. 2, the curves illustrate the effect of
the membrane charge on the polymer self-energy of Eq. (54)
(inset) and the total grand potential of Eq. (1) obtained with
the inclusion of the MF component of Eq. (27) (main plot).
The dots display the exact result obtained from Eqs. (13) and
(14) with the numerical solution of Eqs. (15) and (16) (see the
Appendix). One notes the reasonably good agreement between
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FIG. 2. Thermodynamic limit lp → ∞ of the total grand potential ∆Ωp (main
plot) and the polymer self-energy ∆Ωs (inset) versus membrane charge σm
in a monovalent solution of bulk density ρb = 0.01 M. The nanopore radius is
d = 3 nm. Solid curves are obtained from Eqs. (27) and (54) and the dots are
obtained from the numerical solution of Eqs. (13)–(16).

the numerical solution and the WKB approach. The WKB
result overestimates the total grand potential by ∼0.5 kBT/nm,
but it can accurately capture the effect of the membrane
charge.

To gain an analytical insight into the behaviour of the
curves in Fig. 2, we switch to the pure Donnan approxima-
tion and set φm(r) = φD and κ(r) = κD. The grand potential
components Eqs. (27) and (54) become

βΩMF ≈ −lpτφD, (56)

β∆Ωs ≈ lp`Bτ
2
[
− ln

(
κD

κb

)
+

K1(κDd)
I1(κDd)

]
. (57)

For symmetric electrolytes, the Donnan potential follows from
the solution of Eq. (23) as φD = − ln

(
t +
√

t2 + 1
)
, with the

auxiliary parameter t = 4/(κ2
bµd), where µ = 1/(2π`Bσm) is

the Gouy-Chapman (GC) length. From Eq. (25), the screen-
ing parameter follows as κD = (1 + t2)1/4κb. We first focus
on the DH regime of weakly charged membranes, i.e., κbµ
� 1. Using the equations above, we Taylor expand the
grand potential components of Eqs. (56) and (57) in terms
of the membrane charge σm. To the leading order in σm, this
yields

βΩMF ≈
lpτσm

dρb
, (58)

β∆Ωs ≈ lp`Bτ
2


K1(κbd)
I1(κbd)

−
1 + I2

1(κbd)

I2
1(κbd)

σ2
m

4d2ρ2
b


. (59)

In agreement with the inset of Fig. 2, in neutral membranes
with σm = 0, where only the image charge barrier in Eq. (59)
survives, the self-energy is positive. With the rise of the mem-
brane charge, the negative term resulting from the cation excess
takes over the image-charge component and the self-energy
becomes attractive.

We focus now on the total grand potential corresponding
to the sum of Eqs. (58) and (59). As the repulsive MF compo-
nent scales linearly with σm, the grand potential initially rises
with the membrane charge (σm ↑ ∆Ωp ↑). Beyond a character-

istic charge σ∗m, the attractive part of the self-energy quadratic
in σm dominates the MF component and lowers the total
grand potential (σm ↑ ∆Ωp ↓). This non-monotonic behaviour
is illustrated in the main plot of Fig. 2. The location of the
peak follows from the equality ∂ (βΩMF + β∆Ωs) /∂σm = 0
as

σ∗m =
2dρb

`Bτ

I2
1(κbd)

1 + I2
1(κbd)

≈
2dρb

`Bτ
, for κbd � 1. (60)

This threshold charge diminishes with the polymer charge den-
sity τ ↑ σ∗m ↓ and rises with the salt concentration ρb ↑ σ

∗
m ↑

and the nanopore radius d ↑ σ∗m ↑.
Figure 2 shows that in the high membrane charge regime

σm & 0.1 e/nm2, the total polymer grand potential is weakly
affected by the membrane charge. In order to understand this
point, we consider the GC regime of strong charges κbµ � 1
and expand Eqs. (56) and (57) in terms of the inverse membrane
charge. This reveals the logarithmic behaviour of the grand
potential components,

βΩMF ≈ lpτ ln

(
2σm

dρb

)
, (61)

β∆Ωs ≈ −
lp`Bτ

2

2
ln

(
σm

dρb

)
. (62)

In the case of ds-DNA with charge density τ ≈ 1.75/`B, the
slope of the grand potential components in Eqs. (61) and (62)
practically cancels each other out. This explains the saturation
of the grand potential in Fig. 2.

For the parameters of Fig. 2, we found that the grand
potential is positive, and the nanopore repels the ds-DNA at any
membrane charge. At this point, the question arises whether the
like-charge DNA-pore attraction can ever occur in monovalent
solutions. This requires the self-energy of Eq. (62) to dominate
the MF component of Eq. (61). Thus, the membrane charge
should satisfy the inequality

σm > 22/(`Bτ−2)ρbd. (63)

Deriving the condition above, we assumed that the self-energy
of Eq. (62) is negative, i.e., σm/(dρb)> 1. Thus, the valid-
ity of Eq. (63) requires the polymer charge density to satisfy
τ > τc = 2/`B. Since the ds-DNA charge density τ ' 1.75/`B

is below τc, like-charge DNA-pore attraction cannot occur
in monovalent electrolytes. Next, we consider the case of
solutions including polyvalent cations.

B. Electrolyte mixtures with polyvalent cations
1. Polyvalent cation-induced DNA-pore attraction

We investigate now polymer-pore interactions in mixed
solutions NaCl + XClm including the polyvalent cation species
Xm+. First, we consider the electrolyte mixture NaCl + SpdCl3.
Figure 3 displays the total polymer grand potential (main plot)
and the self-energy (inset) against the bulk spermidine (Spd3+)
concentration at various membrane charges. The comparison
of the curves and dots shows that the WKB approach can
reproduce the polymer grand potential with reasonably good
accuracy.
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FIG. 3. Thermodynamic limit lp → ∞ of the total grand potential ∆Ωp (main
plot) and the polymer self-energy ∆Ωs (inset) versus trivalent cation density
ρb3+ in the electrolyte mixture NaCl+SpdCl3 with monovalent cation density
ρ b+ = 0.01 M. The membrane charge is σm = 0.01 e/nm2 (black), σm = 0.03
e/nm2 (blue), and σm = 0.1 e/nm2 (red). The remaining parameters are the
same as in Fig. 2.

In order to interpret the grand potential curves, we switch
to the Donnan approximation and focus on the DH regime
κbµ� 1 of weak membrane charges. On the linear order
in the membrane charge density σm, the Donnan potential
and screening parameter follow from Eqs. (23) and (25) as
φD ≈ −4/(κ2

bµd) and κ2
D ≈ κ2

b − 4π`B(m3 − m)ρbm+φD. By
substituting these expressions into the grand potential compo-
nents of Eqs. (56) and (57) and Taylor expanding them to the
leading order, one finds

βΩMF ≈
2lpτσm

d
[
2ρb+ + (m2 + m)ρbm+

] , (64)

β∆Ωs ≈ lp`Bτ
2
{

K1(κbd)
I1(κbd)

−
1 + I2

1(κbd)

I2
1(κbd)

(m3 − m)ρbm+σm

d
[
2ρb+ + (m2 + m)ρbm+

]2




. (65)

The negative term of Eq. (65) indicates that the addition of mul-
tivalent cations to the monovalent solution lowers the polymer
self-energy. This feature is displayed in the inset of Fig. 3.
In particular, at the membrane charge σm = 0.03 e/nm2 (blue
curve), multivalent cations solely remove the image-charge
barrier and switch the self-energy from repulsive to attractive.
The main plot shows that as a result of this effect, beyond
a characteristic membrane charge, the addition of polyvalent
cations turns the grand potential from positive to negative and
triggers the attraction of the DNA molecule by the like-charged
nanopore. This is the key prediction of our theory. Then, due
to the denominator of the second term in Eq. (65), the same
multivalent cations screen the self-energy. Figure 3 shows that
beyond a characteristic Spd3+ concentration, this attenuates
the magnitude of the polymer self-energy and the attractive
grand potential.

2. Effect of membrane charge, monovalent salt
concentration, and cation valency

According to Eq. (65), the magnitude of the attractive
self-energy component is lowered by the reduction of the mem-

FIG. 4. Phase diagram: Critical multivalent cation concentration ρ∗bm+ versus
membrane charge density curves splitting the parameter regimes with attrac-
tive and repulsive polymer-pore interactions in the electrolyte mixtures (a)
NaCl + MgCl2 (m = 2) and (b) NaCl + SpdCl3 (m = 3). The monovalent cation
concentration ρb+ is indicated above each curve. The other parameters are
the same as in Fig. 2. The square symbols correspond to the scaling law of
Eq. (69) with the fitting parameter cm = 4.0 in (a) and cm = 5.2 in (b).

brane charge σm or the cation valency m and the rise of the
monovalent salt density ρb+. Thus, in order for the net inter-
action to remain attractive, this has to be compensated by a
larger multivalent cation concentration ρbm+. This effect is
illustrated in Figs. 4(a) and 4(b), respectively, for Mg2+ and
Spd3+ cations. The diagrams display the critical multivalent
cation concentration ρ∗bm+ where polymer-pore interactions
become attractive versus the membrane charge σm at vari-
ous monovalent salt concentration values ρb+. One notes that
the critical multivalent cation density increases with decreas-
ing membrane charge (σm ↓ ρ

∗
bm+ ↑) or increasing monovalent

salt density (ρb+ ↑ ρ
∗
bm+ ↑). Moreover, the comparison of Figs.

4(a) and 4(b) shows that the critical Mg2+ density for the
occurrence of DNA-pore attraction is more than an order of
magnitude higher than the critical Spd3+ density. One also
notes that in the NaCl + MgCl2 liquid, the critical curves end
at a critical point (dots) where the like-charge attraction phase
disappears.

We now derive a scaling law that can explain the trend
of the critical lines in Fig. 4. In the GC regime κbµ � 1,
the Donnan potential and screening parameter follow from
Eqs. (23) and (25) as φD ≈ m−1 ln

[
mρbm+d/(2σm)

]
and κ2

D
≈ 8π`Bmσm/d. Injecting these equalities into Eqs. (56) and
(57) and expanding the result, one finds

βΩMF ≈
lpτ

m
ln

[
2σm

mdρbm+

]
, (66)

β∆Ωs ≈ −
`Blpτ2

2
ln

[
2md−1σm

2ρb+ + (m2 + m)ρbm+

]
. (67)

According to Eqs. (66) and (67), the total grand potential
becomes attractive in the membrane charge regime corre-
sponding to
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σm >
d
2




[
2ρb+ + (m2 + m)ρbm+

]m`Bτ

mm`Bτ+2ρ2
bm+




1/(m`Bτ−2)

. (68)

For dilute polyvalent cations, Eq. (68) indicates that polymer-
pore attraction occurs in the regime ρbm+ > ρ

∗
bm+ with the

critical concentration

ρ∗bm+ ≈ cm dm`Bτ/2−1ρm`Bτ/2
b+ σ−(m`Bτ/2−1)

m (69)

and the adimensional coefficient cm = 2m−m`Bτ/2−1. We found
that Eq. (69) derived within the Donnan approximation under-
estimates the critical concentration. However, by fitting the
parameter cm once for each of the graphs in Fig. 4, in the
corresponding GC regime, Eq. (69) can correctly reproduce
the alteration of the critical concentration by the membrane
charge and monovalent salt density (square symbols). Again,
we emphasize that Eq. (69) is proposed here as a scal-
ing ansatz that can be useful for translocation experiments
rather than an accurate asymptotic law. Interestingly, Eq.
(69) predicts the decrease of the critical multivalent cation
density with the pore size, i.e., d ↓ ρ∗bm+ ↓. The correspond-
ing pore confinement effects will be investigated in the next
part.

The validity of Eq. (68) requires the GC self-energy (67)
to be negative. Together with Eq. (68), this implies that like-
charge polymer-pore attraction can occur only in the polymer
charge density regime τ > τc = 2/(m`B). In solutions including
polyvalent cations (i.e., m ≥ 2), this condition is indeed satis-
fied by the characteristic charge density of ds-DNA molecules
τ ≈ 1.75/`B.

3. Effect of pore confinement
on polymer-pore interactions

In this section, we consider the effect of the pore con-
finement. Figure 5 displays the critical pore radius where the
polymer grand potential becomes attractive against the Spd3+

density. The location of the attraction phase below the critical

FIG. 5. Main plot: Critical pore radius d∗ where polymer-pore interactions
turn from repulsive to attractive against the Spd3+ concentration. Inset: Total
polymer grand potential versus the pore radius d at the Spd3+ concentration
ρb3+ = 10�4 M. The monovalent cation density isρb+ = 0.01 M. The membrane
charge is σm = 0.05 e/nm2 (black) and σm = 0.2 e/nm2 (red). The remaining
parameters are the same as in Fig. 2. The square symbols are from the scaling
law of Eq. (70) with the fitting parameter c′m = 0.6.

lines indicates that despite the presence of the image-charge
barrier, confinement favours the attraction of the polymer by
the like-charged pore. This point is also illustrated in the inset.
In weakly charged pores (black curve), due to the image-
charge barrier, the grand potential becomes more repulsive
with decreasing pore size (d ↓ ∆Ωp ↑). In strongly charged
pores (red curve), the interaction is repulsive at large pore
radii but becomes attractive below a characteristic pore radius
(d ↓ ∆Ωp ↓).

Comparing Eqs. (65) and (67), one notes that the transition
from the DH to the GC regime through the increase of the
membrane charge removes the image-charge barrier, and the
self-energy becomes purely attractive. In this strong membrane
charge regime, the attractive self-energy of Eq. (67) takes over
the repulsive MF component of Eq. (66) if the pore radius is
lowered below the critical value,

d∗ ≈ c′m (ρbm+)2/(m`Bτ−2) (ρb+)−m`Bτ/(m`Bτ−2) σm. (70)

This explains the enhancement of like-charge attraction by
pore confinement at strong enough membrane charge. Fur-
thermore, Fig. 5 shows that with a single fitting parameter
c′m, the scaling law of Eq. (70) can accurately reproduce the
increase of the critical radius with the polyvalent cation density
ρbm+ ↑ d∗ ↑ and the membrane charge σm ↑ d∗ ↑. In Fig. 5,
the validity of Eq. (70) at low pore radii can be explained by
Eq. (23). This relation shows that the reduction of the pore
size and the increment of the membrane charge are equiva-
lent as both effects enhance the electrostatic potential in the
pore.

4. Polymer grand potential profile
during the capture regime

Finally, we investigate the electrostatic barrier experi-
enced by the polymer during its capture into the pore. This
necessitates the evaluation of the grand potential ∆Ωp at finite
polymer length lp. At this point, the WKB solution of Eq. (51)
becomes crucial; due to the extensive memory requirement,
the exact numerical evaluation of the polymer self-energy
from Eqs. (14) and (A7) is simply intractable. Figure 6(a)
displays the grand potential profile versus the length lp at
various Spd3+ concentration values. In the monovalent NaCl
solution where polymer-pore interactions are driven by the
MF component of Eq. (27) proportional to the length lp,
the repulsive grand potential rises in a quasilinear fashion
(black curve). In the Spd3+ density regime ρb3+ > 10−4 M,
the grand potential increases (lp ↑ ∆Ωp ↑), reaches a peak,
drops beyond this turning point (lp ↑ ∆Ωp ↓), and turns to
attractive.

This non-monotonic behaviour indicates that even at large
Spd3+ densities, the polymer has to overcome an electrostatic
barrier at the pore entrance before penetrating the pore by fol-
lowing the downhill grand potential landscape. The presence
of the barrier can be explained by noting that for κblp . 1, the
self-energy of Eq. (51) scales quadratically with the polymer
length lp. Thus, at the pore entrance, the attractive self-energy
is dominated by the repulsive MF-component of Eq. (27) scal-
ing linearly with the length lp. In Fig. 6(b), we plot the critical
penetration length l∗p where the grand potential switches from
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FIG. 6. (a) The total grand potential ∆Ωp from Eqs. (27) and (51) versus the
length lp of the polymer portion in the pore at various Spd3+ densitiesρb3+. The
membrane charge density is σm = 0.1 e/nm2. (b) Critical penetration length
l∗p where the grand potential becomes attractive against the Spd3+ density at
different membrane charge densities σm. The other parameters are the same
as in Fig. 2.

repulsive to attractive. One notes that the length l∗p drops with

increasing Spd3+ concentration ρb3+ ↑ l∗p ↓ and membrane
charge σm ↑ l∗p ↓. The predictions in this phase diagram call
for verification by translocation experiments. We finally note
that the grand potential landscape obtained from Eqs. (27)
and (51) can be used to account for electrostatic pore-polymer
interactions in the MD simulations.7,10,11

IV. SUMMARY AND CONCLUSIONS

One of the most important issues in translocation exper-
iments for biological polyelectrolytes concerns the issue of
electrostatic barriers stemming from the interplay of electro-
static interactions in the system. In the present work, we have
characterized electrostatic polymer-pore interactions in multi-
valent electrolyte mixtures where MF approaches break down.
We have developed a beyond-MF theory where charge corre-
lations are taken into account by the kernel equation (16) that
cannot however be exactly solved in a closed form. Instead,
we have solved this equation analytically within the WKB
approximation. This is the main technical achievement of
our work. Our main results and conclusions are summarised
below.

The cation attraction into the negatively charged nanopore
enhances the screening ability of the pore with respect to the
reservoir. This translates into an attractive force that opposes
the MF level like-charge repulsion and the repulsive image-
charge barrier acting on the polymer. In the case of polymers

with charge density above the critical value τc = 2/(m`B), upon
addition of multivalent cations into the solution, the attractive
force takes over the repulsive components and triggers the
attraction of the polymer by the like-charged pore. This is the
key finding of our work. The cation-induced like-charge attrac-
tion mechanism presents itself as an efficient way to enhance
the rate of anionic polymer capture by negatively charged
Si-based nanopores.

We found that the minimum multivalent counterion con-
centration ρbm+ for the occurrence of polymer-pore attraction
obeys a non-trivial scaling law given by Eq. (69) which pre-
dicts the reduction of the critical cation concentration with the
enhancement of the membrane charge density σm ↑ ρ∗bm+ ↓

or the reduction of the monovalent salt concentration ρb+ ↓

ρ∗bm+ ↓. These characteristics may provide an accurate control
over polymer-pore interactions through the alteration of the
membrane charge or salt density.

Furthermore, we have also scrutinized the effect of pore
confinement. We found that in strongly charged pores, the
reduction of the radius below the critical value d∗ given by
Eq. (70) turns polymer-pore interactions from repulsive to
attractive. Interestingly, the radius d∗ corresponds to an upper
bound for attractive interactions. This implies that at strong
enough membrane charge, despite the presence of the image-
charge barrier on the polymer, confinement favours the like-
charge polymer-pore attraction. These predictions together
with the scaling laws of Eqs. (69) and (70) can be benefi-
cial to translocation experiments. Moreover, our formalism
presents itself as a consistent tool to incorporate electro-
static polymer-pore interactions into previous MD simulation
algorithms.

Our translocation model and the underlying electrostatic
formalism are based on some approximations. We would like
to discuss first the model approximations. In the formulation of
the electrohydrodynamics, we exploited the cylindrical sym-
metry and neglected edge effects associated with the finite
membrane thickness parallel with the pore extension, i.e.,
along the z-axis (see Fig. 1). We believe that this complication
can be included exclusively by solving the kernel equation (9)
numerically on a discrete lattice. Furthermore, for the sake of
analytical simplicity, we treated the polymer as a line charge.
The standard way to consider the lateral structure of polymers
consists in modeling them as rigid cylinders. This extension
will require (i) the evaluation of the self-energy of Eq. (14)
with the numerical solution of Eqs. (42) and (45) for finite
Fourier modes n and (ii) the inclusion of van der Waals forces
resulting from the dielectric contrast between the polymer, the
membrane, and the solvent.44 Moreover, in Ref. 50, it was
shown that a pore embedded in a membrane of finite thick-
ness does not satisfy the electroneutrality condition. In our
model, the membrane was assumed to be infinitely thick in the
in the x-y plane, and the pore was considered as an infinitely
long cylinder. In this geometry, the integration of the PB equa-
tion (4) on the interval 0 < r <∞ automatically results in the
pore electroneutrality condition. In order to evaluate the effect
of the electroneutrality violation on the like-charge polymer-
pore attraction, future studies can incorporate to the present
model the finite membrane thickness and edge effects asso-
ciated with the finite length of the pore along the z-axis. We
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however emphasize that this complication is beyond the scope
of our model.

We highlight now the approximations related to our
electrostatic formalism. The latter is based on the 1l-level
test-charge theory.44,45 This formalism does not cover the
electrostatic strong-coupling regime and treats the polymer
charges as a perturbation. In addition, although the coupling
between the polymer and its electrostatic image is taken
into account, the underlying 1l theory does not account for
repulsive ion-image charge interactions. First, we note that
image-charge forces are crucial in subnanometer pore con-
finement such as α-hemolysin pores, but their magnitude
is weak in solid-state pores with radius above d & 5 nm.46

Furthermore, image-charge effects are indeed expected to
reduce the number of multivalent cations in the pore and
weaken the like-charge attraction effect. However, one should
note that due to the electroneutrality condition, image charge
interactions cannot result in a total multivalent cation exclu-
sion since some of these counterions should stay in the
pore in order to compensate the polymer and membrane
charges. For example, this mechanism is responsible for the
experimental observation of multivalent cation-induced DNA
mobility inversion under pore confinement conditions where
image charge interactions are also present.18,22 The above-
mentioned limitations can be overcome in a future work by
using the variational approach from Hatlo and Lue that can
cover charge correlations from a weak to strong-coupling
regime.51

As discussed in the Introduction, the 1l theory was pre-
viously shown to reproduce accurately various multivalent
ion-induced non-MF behaviour such as like-charge macro-
molecular attraction44–46 and DNA mobility reversal.18 This
indicates that the 1l formalism used in the present work can
capture the essential features of these systems. A quantitative
test of our theory necessitates of course direct comparisons
with MC simulations of polyelectrolytes confined to nanopores
enclosing multivalent electrolyte mixtures. We however note
that at present, numerical simulation results for the free energy
of a polymer located in this charge configuration are not avail-
able in the literature. One should also note that we have consid-
ered here polymer-pore interactions from a purely electrostatic
perspective. It is known that hydrodynamics of the solvent
also plays an important role in polymer capture and transloca-
tion.18 Within the framework of our recently developed non-
equilibrium polymer translocation model,24 we plan to com-
bine the present electrostatic formalism with hydrodynamic
effects in an upcoming work. This more complete theory of
polymer electrohydrodynamics will allow making direct com-
parisons with experimental polymer translocation rates and
times.

APPENDIX: NUMERICAL EVALUATION OF THE
ELECTROSTATIC GREEN’S FUNCTION

In this appendix, we explain the numerical calcula-
tion of the Fourier-transformed Green’s function ṽn(r, r ′; k)
solving Eq. (16). This equation will be solved by iteration
around Donnan-Green’s function solution to the differential
equation

{
1
r
∂rrε(r)∂r − ε(r)

[
n2

r2
+ k2 + κ2

D(r)

]}
ṽD,n(r, r ′; k)

= −
e2

kBT
1
r
δ(r − r ′), (A1)

where we defined the piecewise screening parameter κD(r)
= κDθ(d � r) with κD given by Eq. (25). Now, we use the
definition of Green’s function∫

dr′′v−1
D (r, r′′)vD(r′′, r′) = δ(r − r′). (A2)

Inserting the Fourier expansion of Eq. (12) into Eq. (A2), the
latter takes the form∫ ∞

0
dr ′′r ′′ṽ−1

D,n(r, r ′′; k)ṽD,n(r ′′, r ′; k) =
1
r
δ(r − r ′). (A3)

By using Eq. (A3), one can show that the kernel operator
associated with Eq. (A1) is

ṽ−1
D,n(r, r ′; k) = −

kBT

e2

{
1
r
∂rrε(r)∂r

− ε(r)

[
n2

r2
+ k2 + κ2

D(r)

]}
δ(r − r ′)

r
. (A4)

In terms of the operator of Eq. (A4), one can now express the
kernel equation (16) as∫ ∞

0
dr1r1 ṽ

−1
D,n(r ′′, r1; k)ṽn(r1, r ′; k)

=
1

r ′′
δ(r ′′ − r ′) + δn(r ′′)ṽn(r ′′, r ′; k), (A5)

where we defined the local screening correction

δn(r) =
p∑

i=1

ρbiq
2
i

[
e−qiφD − e−qiφm(r)

]
θ(d − r). (A6)

In Eq. (A6), the pore potential φm(r) corresponds to the exact
numerical solution of the PB equation (15). Multiplying now
Eq. (A5) by r ′′ṽD,n(r, r ′′; k), integrating over the variable r ′′,
and using Eq. (A3), Eq. (16) can be finally converted to the
following integral relation:

ṽn(r, r ′; k) = ṽD,n(r, r ′; k) +
∫ ∞

0
dr ′′r ′′ṽD,n(r, r ′′; k)δn(r ′′)

× ṽn(r ′′, r ′; k). (A7)

The iterative solution of Eq. (A7) requires the knowledge
of Donnan-Green’s function ṽD,n(r, r ′; k). In the present case
where ions are located in the nanopore, i.e., r < d and r ′ < d,
the solution to Eq. (A1) satisfying the boundary conditions
Eqs. (19)–(22) reads46

ṽD,n(r, r ′; k) = 4π`B
[
Kn(pDr>)In(pDr<)

+ Fn(k)In(pDr<)In(pDr>)
]

. (A8)

In Eq. (A8), we used the radial variables of Eq. (46) and intro-

duced the parameter pD =

√
κ2

D + k2 and the auxiliary function
accounting for the dielectric nanopore

Fn(k) =
pDKn (|k |d) K′n(pDd) − γ |k |Kn(pDd)K′n (|k |d)

γ |k |In(pDd)K′n (|k |d) − pDKn (|k |d) I′n(pDd)
(A9)
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with γ = εm/εw. In order to solve Eq. (A7) by iteration, at
the first iterative step, we solve numerically the PB equation
(15) and calculate the radial integral in Eq. (A7) by replac-
ing Green’s function ṽn(r, r ′; k) by the Donnan propagator
of Eq. (A8). The output propagator is injected into the inte-
gral at the next iterative step, and this cycle is continued until
numerical convergence is achieved. We also note that in the
thermodynamic limit lp → ∞ where the infrared limit k → 0
of Green’s function solely contributes to the polymer self-
energy, the auxiliary function of Eq. (A9) takes the simpler
form

Fn(0) =
κDd K |n |−1(κDd) + (1 − γ)|n|Kn(κDd)

κDd I |n |−1(κDd) − (1 − γ)|n|In(κDd)
. (A10)
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