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Polymer translocation experiments typically involve anionic polyelectrolytes such as DNA molecules
driven through negatively charged nanopores. Quantitative modeling of polymer capture to the
nanopore followed by translocation therefore necessitates the consideration of the electrostatic barrier
resulting from like-charge polymer-pore interactions. To this end, in this work we couple mean-field
level electrohydrodynamic equations with the Smoluchowski formalism to characterize the interplay
between the electrostatic barrier, the electrophoretic drift, and the electro-osmotic liquid flow. In
particular, we find that due to distinct ion density regimes where the salt screening of the drift and
barrier effects occurs, there exists a characteristic salt concentration maximizing the probability of
barrier-limited polymer capture into the pore. We also show that in the barrier-dominated regime, the
polymer translocation time τ increases exponentially with the membrane charge and decays expo-
nentially fast with the pore radius and the salt concentration. These results suggest that the alteration
of these parameters in the barrier-driven regime can be an efficient way to control the duration of
the translocation process and facilitate more accurate measurements of the ionic current signal in the
pore. Published by AIP Publishing. https://doi.org/10.1063/1.5004182

I. INTRODUCTION

Biopolymer sequencing is of major relevance to vari-
ous fields ranging from forensic sciences to biotechnology
and gene therapy. In this context, nanopore-based sequenc-
ing approaches have been a central focus over the past two
decades. Polymer translocation was initially conceptualised
by using biological nanopores such as α-Hemolysin chan-
nels of limited characteristics and undesirable fragility.1–9

Recent advancements in nanotechnology have significantly
improved the reliability of the sequencing techniques. More
precisely, the use of solid-state nanopores of various sizes
and charge compositions now offers a wide range of func-
tionalities that can allow us to improve the resolution of
the method.10–23 The technological progress requires devel-
opment of theoretical models that can relate the tunable
system parameters to experimentally observable quantities
such as polymer capture rates, translocation times, and the
ionic current blockade. Due to the high complexity of the
polymer translocation process, this constitutes a challenging
task.

There are various factors that contribute to the com-
plexity of the polymer translocation problem. The first dif-
ficulty stems from the non-equilibrium nature of polymer
capture and transport processes. Further, the entangled effect
of different mechanisms on translocation such as electrostatic
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polymer-pore and polymer-ion interactions, hydrodynamic
polymer-solvent interactions, and conformational polymer
fluctuations necessitates the consideration of these features on
an equal footing. Thus, polymer translocation should be for-
mulated within the framework of a beyond-equilibrium elec-
trohydrodynamic theory which has not been accomplished to
date.

Most models of polymer translocation dynamics to date
are based on either coarse-grained computer simulations and
theories that do not explicitly take into account electro-
static effects or short time scale Molecular Dynamics (MD)
simulations of atomistic polymer-pore models.21 However,
there are also theoretical attempts to consider some spe-
cific aspects of electrostatics to translocation dynamics at the
continuum level. By coupling the mean-field (MF) Poisson-
Boltzmann (PB) equation with the Stokes equation, Ghosal
investigated the effect of salt on the DNA translocation veloc-
ity.24,25 The influence of the polymer’s self-energy on the
unzipping of a DNA hairpin during translocation was stud-
ied by Zhang and Shklovskii in Ref. 26. Solving the lin-
ear PB equation together with the Smoluchowski equation,
Wong and Muthukumar focused on the effect of the electro-
osmotic flow on DNA capture outside the nanopore.27 A
non-equilibrium theory of polymer transport through neutral
pores was later developed by Muthukumar.28,29 The polymer
capture process with a detailed consideration of the poly-
mer hydrodynamics was also modeled in Refs. 30–33. Hatlo
et al. investigated the effect of salt gradient on polymer cap-
ture.34 One of the central issues here is the reduction of
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the polymer’s velocity upon its penetration into the pore in
order to control the translocation process and readout of the
ionic blockade current.8 MD simulations35 and correlation-
corrected theories36 have shown that this goal can be achieved
by the addition of polyvalent cations to the electrolyte
solution.

Polymer translocation experiments are usually con-
ducted with negatively charged polyelectrolytes such as
DNA molecules translocating through silicon-based mem-
brane nanopores carrying fixed negative charges on their
wall.19,21 The interaction between the pore and polymer
charges is expected to result in an electrostatic barrier that
opposes the polymer capture by the pore. To our knowledge,
the effect of this barrier has not been taken into account by
previous theories. Motivated by these points, in this work
we develop a non-equilibrium polymer transport theory that
treats on the same footing the electrostatic barrier, the elec-
trophoretic drift, and the electroosmotic flow. In our model,
we neglect conformational polymer fluctuations and treat the
polyelectrolyte as a rigid charged cylinder. Furthermore, we
focus on the case of symmetric monovalent electrolytes and
large pores where the PB formalism is known to be accu-
rate.36 Therefore, we restrict ourselves to the MF formulation
of electrostatic interactions. However, we note that our for-
malism is general enough for further extensions, including
electrostatic correlation effects that will be considered in future
work.

Our polymer translocation model is developed in Sec. II.
The formalism is based on the coupling of the Smoluchowski
equation with the PB and Stokes equations, and the force-
balance relation for the polymer. In the inclusion of the elec-
trostatic barrier, which is the main novelty of our work, we
make use of a test-charge approach recently developed by one
of us in Ref. 37. By considering the steady-state regime of this
electrohydrodynamically enhanced Smoluchowski formalism,
we calculate the polymer translocation rate. The competition
between the electrophoretic drift, the electroosmotic flow, and
the electrostatic barrier is fully scrutinized in Sec. III. In the
same section, we also investigate the effect of tunable sys-
tem parameters on the polymer translocation time. Finally, we
summarize our main results and discuss the approximations
and potential extensions of our modeling.

II. POLYMER TRANSLOCATION MODEL

In this section, we derive the polymer translocation rates
characterizing the barrier-limited capture of a polyelectrolyte
and its transport through a charged pore confining an elec-
trolyte solution. The computation of the polymer translocation
rate necessitates the steady-state solution of the Smoluchowski
equation for the probability density of the polymer. To this
end, in Sec. II A, we derive a hydrodynamically enhanced
Smoluchowski equation including the electrohydrodynamic
properties of the translocating polymer and the surrounding
charged liquid. The solution of this equation requires in turn
the knowledge of the electrostatic potential in the pore as well
as the electrostatic interaction energy of the polymer with the
membrane. Based on MF level PB electrostatics, these features
are derived in Sec. II B.

A. Electrohydrodynamically augmented
Smoluchowski equation

The model of the charged polymer-pore system is depicted
in Fig. 1. The cylindrical nanopore has radius d and length Lm.
The membrane is considered to be infinitely thick in the x-y
plane. The pore wall carries negative fixed charges of den-
sity �σm with σm > 0. The negatively charged polymer is a
rigid cylinder of radius a, total length Lp, and uniform sur-
face charge density �σp with magnitudeσp > 0. The reservoir
and the pore also contain a symmetric electrolyte composed
of monovalent positive and negative charges with bulk con-
centration ρb. We assume that the translocation takes place
along the z axis whose origin is located at the pore entrance.
That is, we neglect off-axis polymer fluctuations. The reac-
tion coordinate of the translocation is zp, the position of the
right end of the polymer. The length of the polymer portion
located inside the pore will be denoted by lp. In addition to
the hydrodynamic drag force and the externally applied field
E = −Eûz of magnitude E along the negative z axis, upon its
penetration to the pore the polymer experiences an electrostatic
barrier Vp(zp) resulting from its direct electrostatic interaction
with the membrane. This electrostatic barrier will be derived in
Sec. II B 2.

The probability density of the polymer c(zp,t) solves the
Smoluchowski equation that can be expressed as a continuity
equation,

FIG. 1. Schematic representation of the model of a translocating rigid poly-
mer through the nanopore: side view (top panel) and top view (bottom panel).
The cylindrical polymer has radius a, length Lp, and negative surface charge
density �σp with σp > 0. The cylindrical nanopore has length Lm (which
may be either longer or shorter than Lp), radius d, and surface charge density
�σm with σm > 0. The polymer portion in the pore has length lp with the
right end located at z = zp. The translocation takes place along the z axis, with
the external electric field E = −Eûz .
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∂c(zp, t)

∂t
= −

∂J(zp, t)

∂zp
, (1)

with the density current

J(zp, t) = −D
∂c(zp, t)

∂zp
+ c(zp, t)vp(zp). (2)

The first term on the r.h.s. of Eq. (2) is the diffusive flux of
entropic origin corresponding to Fick’s law. The quantity D
stands for the translational diffusion coefficient of a cylindrical
rigid polymer38,39 given by

D =
kBT ln(Lp/2a)

3πηLp
, (3)

with the viscosity coefficient of water η = 8.91×10−4 Pa s. We
note that Eq. (3) is valid for Lp� a. The second term in the
polymer current Eq. (2) is the convective contribution from
the polymer motion associated with external effects such as
the applied field E, the hydrodynamic drag force on the poly-
mer, and electrostatic polymer-pore interactions. By coupling
the Stokes equation with the Poisson equation and the force
balance relation, we derive next the corresponding polymer
velocity vp(zp).

1. Computing the polymer velocity

We assume that the convective liquid velocity is purely
longitudinal and depends exclusively on the radial coordi-
nate r. Therefore, the liquid velocity uc(r) solves the Stokes
equation in the radial direction,

η∇2
r uc(r) − eEρc(r) = 0, (4)

where e stands for the electron charge and ρc(r) stands for the
ionic charge density. Here we combine the Stokes equation
with the Poisson equation∇2

rφ(r)+4π`Bρc(r)= 0 for the aver-
age electrostatic potential φ(r) in the pore, where `B ≈ 7 Å is
the Bjerrum length. This yields

∂rr∂ruc(r) = −µeE∂rr∂rφ(r), (5)

where we have defined the electrophoretic mobility

µe =
εwkBT

eη
, (6)

where εw = 80 is the relative dielectric permittivity of water,
kB is the Boltzmann constant, and T = 300 K is the ambient
temperature. Integrating Eq. (5) twice we find

uc(r) = −µeEφ(r) + c1 ln(r) + c2. (7)

In order to determine the integration constants c1 and c2, we
impose a no-slip condition at the pore wall, i.e., uc(d) = 0.
Next we account for the fact that at the polymer surface, the
polymer, and the liquid have the same velocity, uc(a) = vp(zp),
where zp should be considered as an adiabatic variable. This
yields the convective liquid velocity in the form

uc(r) = −µeE
[
φ(r) − ξw

]
+

ln(d/r)
ln(d/a)

[
vp(zp) + µeE(ξp − ξw)

]
, (8)

where we introduced the polymer and pore surface poten-
tials ξp = φ(a) and ξw = φ(d). These surface potentials will
be explicitly calculated in Sec. II B 1.

At this point, we account for the force balance relation.
This follows from the steady state regime of Newton’s second
law for the polymer, Fe + Fd + Fb = 0, with the electrostatic
force on the DNA molecule Fe = 2πaLpσpeE, the hydrody-
namic drag force Fd = 2πaLpηu′c(a), and the barrier-induced
force Fb = −V ′p(zp). This yields

2πaLp

[
σpeE + ηu′c(a)

]
−
∂Vp(zp)

∂zp
= 0. (9)

Next, by using Eq. (8) we eliminate the term u′c(a) in Eq. (9).
Accounting also for Gauss’ law φ′(a)= 4π`Bσp, after some
algebra the polymer velocity follows as

vp(zp) = vdr − βD∗
∂Vp(zp)

∂zp
, (10)

where β = 1/(kBT ). In Eq. (10), the first term is the drift velocity
induced by the externally applied electric field E,

vdr = −µe(ξp − ξw)E. (11)

Since both the polymer and pore charges contribute to the
surface potentials ξp and ξw , Eq. (11) includes both the elec-
trophoresis and the effect of the electroosmotic liquid flow.
Moreover, the second term in Eq. (10) corresponds to the
effect of the barrier on the polymer velocity, with the effective
diffusion coefficient in the pore,

D∗ =
kBT ln(d/a)

2πηLp
. (12)

We note that the effective diffusion coefficient D∗ is similar
to the bulk value in Eq. (3), with the polymer length Lp in the
logarithm replaced by the pore radius d.

2. Steady-state solution of the Smoluchowski equation

In the steady-state regime of Eq. (1) where ∂tc(zp, t) = 0,
the probability current is constant in time and uniform in the
pore, i.e., J(zp,t) = J0. In this regime, plugging the velocity
Eq. (10) into Eq. (2), the current becomes

J0 = −D
∂c(zp)

∂zp
+ c(zp)

[
vdr − βD∗

∂Vp(zp)

∂zp

]
. (13)

Introducing the effective potential

Up(zp) =
D∗
D

Vp(zp) −
vdr

βD
zp, (14)

Equation (13) can be expressed in the form

e−βUp(zp) d
dzp

[
c(zp)eβUp(zp)

]
= −

J0

D
. (15)

Finally, integrating Eq. (15) the probability density of the
polymer follows as

c(zp) =

[
C −

J0

D

∫ zp

0
dz eβUp(z)

]
e−βUp(zp). (16)

The integration constants C and J0 in Eq. (16) will be fixed
by the boundary conditions. First, we assume that the polymer
that leaves the pore is rapidly removed from the system. Thus,
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we impose an absorbing boundary condition at the point zp

= Lm + Lp, where the whole DNA molecule is located on the
trans side, i.e., c(Lm + Lp) = 0. The second condition follows
from the polymer density at the pore entrance, c(zp = 0) = cout.
Imposing these conditions to Eq. (16) and considering that
Up(0) = 0, the steady-state probability density becomes

c(zp) = cout
∫

Lm+Lp
zp

dz eβ[Up(z)−Up(zp)]

∫
Lm+Lp

0 dz eβUp(z)
, (17)

and the probability current reads J0 = coutD/∫
Lm+Lp

0 dz eβUp(z).
The polymer translocation rate is given by the ratio of the
polymer current and the density at the pore entrance, i.e., Rc

= J0/cout or

Rc =
D

∫
Lm+Lp

0 dz eβUp(z)
. (18)

Equation (18) corresponds to the average speed at which the
capture and transport of the polymer subject to the effective
potential Up(zp) is accomplished. It should be noted that the
rate Rc characterizes the barrier-limited capture of a poly-
mer whose edge has already reached the vicinity of the pore.
In other words, Eq. (18) does not include the contribution
from the diffusion-driven capture regime characterized by
the approach of the polymer from the reservoir to the pore
entrance.

B. Electrostatic formalism

In this section, we derive the electrostatic potential φ(r)
and the barrier Vp(zp) required for the computation of the drift
and barrier-induced velocity components in Eq. (10). In the
present work, we will consider exclusively the case of mono-
valent electrolytes confined to large pores with radius d > 1 nm
where charge correlations are known to be negligible.36 There-
fore, we will limit ourselves to the electrostatic MF formulation
of the problem. However, it should be noted that the polymer
transport formalism developed in Sec. II A is not restricted to
MF electrostatics and can be readily coupled with beyond-MF
electrostatic equations. We will treat the corresponding charge
correlation effects in a separate article.

1. Computing the surface potentials and drift velocity

Here, we compute the drift velocity component vdr of the
polymer velocity Eq. (10). According to Eq. (11), this requires
the derivation of the surface potentials ξp = φ(a) and ξw = φ(d).
In the following calculation, we will neglect the longitudinal
boundaries of the nanopore and the polymer. In order to com-
pute the surface potentials, one has to solve the non-linear PB
(NLPB) equation,

1
r
∂r

[
r∂rφ(r)

]
+ 4π`Bρc(r) = −4π`B

[
σm(r) + σp(r)

]
, (19)

with the ion charge density function,

ρc(r) =
p∑

i=1

qi ρbie
−qiφ(r), (20)

and the charge density of the polymer and the pore,

σp(r) = −σpδ(r − a), (21)

σm(r) = −σmδ(r − d). (22)

The exponential term in Eq. (20) corresponds to the Boltzmann
distribution of a charge with valency qi and bulk density ρbi

coupled to the background pore potential φ(r). For a symmetric
monovalent electrolyte with q± = ± 1 and ρb± = ρb, Eq. (20)
becomes

ρc(r) = −2ρb sinh
[
φ(r)

]
θ(r − a)θ(d − r). (23)

The boundary conditions associated with Eq. (19) are derived
by integrating this equation separately around the polymer and
membrane surfaces, i.e., on the intervals a − ε < r < a + ε and
d − ε < r < d + ε . Taking the limit ε → 0 and accounting for the
vanishing electric field inside the polymer and the membrane
medium, the boundary conditions follow as

φ′(d−) = −4π`Bσm φ′(a+) = 4π`Bσp. (24)

Again, we note that the derivation of Eq. (24) from Eq. (19)
assumes an infinitely long pore along the z axis and the infinite
membrane thickness in the x-y plane.

Equation (19) cannot be solved analytically. Thus, we will
solve it around the constant Donnan potential φd approximat-
ing the actual potential φ(r) in the pore. In order to determine
the Donnan potential in Eq. (19), we first neglect the varia-
tions of the average potential and set φ(r) = φd . Integrating
the resulting equation over the cross section of the pore, one
gets

−2ρb sinh(φd) =
2(σmd + σpa)

d2 − a2
, (25)

whose inversion yields the Donnan potential

φd = − ln
(
t +

√
t2 + 1

)
, (26)

where we introduced the auxiliary parameter

t =
4

d̃2 − ã2

(
d̃
sm

+
ã
sp

)
. (27)

In Eq. (27), we defined the adimensional radii d̃ = κbd and ã
= κba, where the bulk Debye-Hückel (DH) parameter is given
by κb =

√
8π`Bρb. Furthermore, we introduced the parameters

sm = κbµm and sp = κbµp, where µm = 1/(2π`Bσm) and µp

= 1/(2π`Bσp) stand for the Gouy-Chapman lengths associated
with the membrane and polymer charges, respectively.

We can improve the Donnan approximation by accounting
for the spatial variations of the potential in the pore. We express
the average potential in the form

φ(r) = φd + δφ(r). (28)

Next, we insert Eq. (28) into Eq. (19) and Taylor expand the
latter in terms of the correction term δφ(r). Using Eq. (25) and
defining the Donnan screening parameter

κd =
√

8π`Bρb cosh(φd) = κb

(
1 + t2

)1/4
, (29)

one gets the differential equation
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(
r−1∂rr∂r − κ

2
d

)
δφ(r) = −

8π`B

d2 − a2
(σmd + σpa). (30)

The solution to this linear differential equation satisfying the
boundary conditions (24) reads

δφ(r) =
8π`B

κ2
d

σmd + σpa

d2 − a2

+
4π`B

κd

T1I0(κdr) + T2K0(κdr)
I1(κda)K1(κdd) − K1(κda)I1(κdd)

, (31)

where we introduced the auxiliary parameters

T1 = σmK1(κda) + σpK1(κdd), (32)

T2 = σmI1(κda) + σpI1(κdd). (33)

In Eq. (31), we used the modified Bessel functions Im(x)
and Km(x).42 Using Eq. (28), the drift velocity (11) can be
expressed in terms of Eq. (31) as

vdr = −µe
[
δφ(a) − δφ(d)

]
E. (34)

In Sec. III A, the accuracy of the improved Donnan approxima-
tion will be tested by comparing the drift velocity of Eq. (34)
with the result obtained from the numerical solution of the
NLPB in Eq. (19) (see Fig. 2).

2. Computing the electrostatic barrier

In this subsection, we calculate the electrostatic barrier
experienced by the DNA inside the pore. In our model, the
barrier Vp(zp) is induced by the electrostatic coupling between
the DNA charges and the fixed charges on the nanopore wall.
Thus, in the calculation of this barrier, we will neglect the
electrostatic potential outside the pore and take into account
only the polymer portion of length lp located in the pore. As
translocation experiments cover a wide range of polymer and
pore sizes, the total polymer length Lp can be shorter or longer
than the pore length Lm. In order to generalize the formulation
of the problem to both situations, we introduce the auxiliary
lengths

FIG. 2. Main plot: Drift velocity component vdr = −µe
[
φ(a) − φ(d)

]
E ver-

sus the membrane charge σm obtained from the numerical solution of the
non-linear PB (NLPB) Eq. (19) (red), the Donnan approximation of Eq. (34)
(black), and the solution of the linearized PB Eq. (52) (blue). The bulk salt
concentration is ρb = 0.01M. The polymer charge isσp = 0.4 e/nm2 and radius
a = 1 nm. The pore has radius d = 3 nm and length Lm = 34 nm. The electric
field is E = ∆V /Lm with the external voltage ∆V = 120 mV. The inset displays
the critical membrane charges of Eqs. (56) (black) and (68) (red) against the
pore size.

L− = min(Lm, Lp) L+ = max(Lm, Lp). (35)

Hence, the barrier Vp(zp) can be expressed in terms of the
electrostatic grand potential Ωmf(lp) of the polymer portion in
the pore as

Vp(zp) = Ωmf (lp = zp)θ(L− − zp)

+Ωmf (lp = L−)θ(zp − L−)θ(L+ − zp)

+Ωmf (lp = Lp + Lm − zp)θ(zp − L+). (36)

The first, second, and third terms of Eq. (36) correspond,
respectively, to the polymer capture regime, the translocation
at constant length lp = L

�

, and the exit regime.
In the MF limit of the test charge approach developed in

Ref. 37, the polymer grand potential reads

βΩmf =

∫
drσp(r)φm(r). (37)

In Eq. (37), φm(r) is the average potential induced exclusively
by the fixed charges on the membrane wall. Thus, this potential
solves the PB equation (19) without the polymer charge den-
sity. Consequently, the potential φm(r) can be obtained from
Eq. (28) by setting σp = 0. This yields

φm(r) = φmd + δφm(r), (38)

with the Donnan potential φmd associated only with the pore
charges

φmd = − ln

(
tm +

√
t2
m + 1

)
, (39)

where

tm =
4d̃s−1

m

d̃2 − ã2
. (40)

In Eq. (38), the potential correction δφm(r) follows from
Eq. (31) in the form

δφm(r) =
8π`B

κ2
m

σmd

d2 − a2

+
4π`Bσm

κm

K1(κma)I0(κmr) + I1(κma)K0(κmr)
I1(κma)K1(κmd) − K1(κma)I1(κmd)

,

(41)

where we introduced the screening parameter associated with
the charged pore only,

κm = κb

(
1 + t2

m

)1/4
. (42)

For the evaluation of the polymer grand potential (37),
we will include into the polymer charge density Eq. (21) the
length of the polymer portion located in the pore,

σp(r) = −σpδ(r − a)θ(zp − z)θ(z − zp + lp). (43)

The MF grand potential (37) then becomes

βΩmf (lp) = −2πalpσpφm(a). (44)

We note that in the bulk reservoir where φm(r) = 0, the MF
grand potential (44) vanishes. Thus, Eq. (44) equally corre-
sponds to the polymer grand potential difference between the
pore and the bulk reservoir, i.e., the electrostatic work to be
done adiabatically in order to bring the polymer from the reser-
voir into the pore. We note in passing that the extension of
the present theory beyond MF-level should bring a polymer
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self-energy component to Eq. (44).40,41 The physical conse-
quences of this self-energy correction will be investigated in
a future article. Finally, substituting Eq. (44) into Eq. (36),
the electrostatic barrier experienced by the polymer takes the
form

βVp(zp) = −2πaσpφm(a)Θ(zp), (45)

where we introduced the piecewise function

Θ(zp) = zpθ(L− − zp) + L−θ(zp − L−)θ(L+ − zp)

+ (Lp + Lm − zp)θ(zp − L+). (46)

III. RESULTS

Based on the drift velocity Eq. (34) and electrostatic bar-
rier Eq. (45), we derive here the polymer velocity, translocation
rates, and translocation time. We note that unless otherwise
stated, all results will be obtained from the improved Donnan
approach of Eqs. (34) and (45).

A. Polymer potential and velocity profile

In order to derive the potential Up(zp), we introduce the
characteristic inverse lengths λe and λb associated, respec-
tively, with the drift motion and the barrier,

λe =
µe

D
[
δφ(d) − δφ(a)

]
E, (47)

λb = −2πaσpφm(a)
D∗
D

. (48)

Injecting the drift velocity Eq. (34) and the barrier Eq. (45)
into Eq. (14), the effective potential becomes

βUp(zp) = −λezp + λbΘ(zp), (49)

where the piecewise function Θ(zp) is defined in Eq. (46). We
derive next the polymer velocity vp(zp) of Eq. (10). According
to Eqs. (10) and (14), the polymer velocity is related to the
effective potential (49) by vp(zp) = −βDU ′p(zp). This yields
the piecewise velocity profile

vp(zp) = (vdr − vb) θ(L− − zp) + vdrθ(zp − L−)θ(L+ − zp)

+ (vdr + vb) θ(zp − L+), (50)

where the drift and barrier-induced velocity components are,
respectively,

vdr = Dλe vb = Dλb. (51)

1. Drift velocity reversal

The main plot of Fig. 2 displays the drift velocity com-
ponent vdr against the membrane charge σm. The red curve is
the exact MF result obtained from the numerical solution of
the PB equation (19). One notes that the Donnan approxima-
tion Eq. (34) (black curve) is significantly more accurate than
the result obtained from the standard solution of the linear PB
equation (blue curve),

vdr =
4π`BµeE

gκb
(fpσp − fmσm). (52)

In Eq. (52), we introduced the geometric coefficients

fp = K1(d̃)I0(ã) + I1(d̃)K0(ã) − d̃−1, (53)

fm = K1(ã)I0(d̃) + I1(ã)K0(d̃) − ã−1, (54)

g = I1(d̃)K1(ã) − I1(ã)K1(d̃), (55)

with ã= κba and d̃ = κbd. Equation (52) can be derived alter-
natively from the Taylor expansion of Eq. (34) in terms of the
charge densities σm and σp. The main point in Fig. 2 is the
change of the sign of the velocity from positive to negative with
increasing membrane charge. This stems from the counterion
attraction by the charged pore, which results in an electroos-
motic flow moving parallel with the field.25 At large membrane
charges σm & 0.3, the hydrodynamic drag exerted by this flow
on the polymer dominates the electric force induced directly by
the field E on the polymer charges. This reverses the direction
of the drift velocity component vdr which becomes negative.

According to Eq. (52), the reversal of the drift veloc-
ity occurs at membrane charge densities σm ≥ σm,1 with the
threshold charge σm ,1 given by

σm,1

σp
=

fp
fm

. (56)

Equation (56) is plotted versus the pore size in the inset of
Fig. 2. First, one notes thatσm,1 < σp for any pore size. Then, at
large pore radii d̃� 1, the characteristic chargeσm ,1 converges
to the saturation valueσm,1 ≈σpK0(ã)/K1(ã). With decreasing
polymer radius a, this saturation value is lowered according to
the relation σm,1/σp ≈ − ã ln ã for ã� 1.

2. Influence of electrostatic barrier on polymer velocity

We investigate next the influence of the membrane charge
σm on the net polymer velocity vp(zp). To this end, in Figs. 3(a)
and 3(b) we plot the electrostatic barrier Eq. (45), the polymer
potential Eq. (49), and the velocity profile Eq. (50) at two
different membrane charges given in the legend. Figures 3(a)

FIG. 3. (a) Electrostatic barrier Eq. (45) (solid curves) and polymer potential
Eq. (49) (dashed curves) versus the polymer position. (b) Polymer velocity
profile Eq. (50). In (a) and (b), the membrane charge is σm = 0.01 e/nm2

(black curves) and 0.02 e/nm2 (red curves). The polymer and pore lengths are
Lp = L− = 10 nm and Lm = L+ = 34 nm. The remaining parameters are the
same as in Fig. 2. See text for details.



114904-7 S. Buyukdagli and T. Ala-Nissila J. Chem. Phys. 147, 114904 (2017)

and 3(b) should be interpreted together. We focus first on the
membrane charge value σm = 0.01 e/nm2 (black curves). Dur-
ing the polymer capture regime zp ≤ L−, the barrier Vp(zp)
that rises linearly with the position zp lowers the polymer
velocity to vp(zp)= vdr − vb =D(λe − λb). In the transloca-
tion regime L− ≤ zp ≤ L+ where the length of the polymer
portion is constant in the pore, lp =L− = min(Lp, Lm), the bar-
rier Vp(zp) is constant and the polymer velocity is purely drift
imposed, i.e., vp(zp)= vdr =Dλe. As the polymer gets into the
exit regime zp > L+ where the potential Vp(zp) is downhill,
the polymer velocity is enhanced to the value v(zp)= vdr + vb

= D(λb + λe).
Figure 3(a) shows that the external field E drops the

net potential Up(zp) experienced by the polymer below the
barrier Vp(zp). At the membrane charge σm = 0.01 e/nm2

corresponding to the drift-dominated regime with λe > λb

(black curves), the potential Up(zp) is downhill for zp ≤ L−
and the capture velocity in Fig. 3(b) is positive, vp = vdr

− vb =D(λe − λb)> 0. Rising the membrane charge to
σm = 0.02 e/nm2 where one gets into the barrier-dominated
regime with λb > λe (red curves), the barrier Vp(zp) is
enhanced and the potential Up(zp) turns from downhill to
uphill for zp ≤ L−. Consequently, at the pore entrance, the
polymer velocity changes its direction and becomes negative,
vp = vdr − vb < 0. Thus, at this membrane charge value and

beyond, the polymer is likely to be rejected from the pore.
The transition from drift to barrier-dominated regime is inves-
tigated in Sec. III B in terms of the polymer translocation
rate.

B. Polymer capture and translocation rates

Here, we calculate the polymer translocation rate. Evalu-
ating the integral in Eq. (18) with the potential function (49),
the polymer translocation rate follows as

Rc =
R1R2R3

R1R2 + R2R3 + R1R3
, (57)

where the characteristic rates for barrier-limited polymer cap-
ture, translocation at constant length, and exit regimes are,
respectively, given by

R1 =
D(λe − λb)

1 − e−L−(λe−λb)
, (58)

R2 =
Dλee−λbL−

e−λeL− − e−λeL+
, (59)

R3 =
D(λe + λb)e−λb(Lp+Lm)

e−(λe+λb)L+ − e−(λe+λb)(Lp+Lm)
. (60)

Substituting Eqs. (58)–(60) into Eq. (57), we finally get

Rc =
Dλe(λ2

e − λ
2
b)eλe(Lp+Lm)

(λe + λb)eλeL+
[
λeeλeL− − λbeλbL−

]
− (λe − λb)

[
λe + λbe(λe+λb)L−

] . (61)

In the case of a neutral pore and vanishing external field
E = 0 where λe = λb = 0, the translocation rate takes the sim-
ple diffusive form Rc = D/(Lm + Lp). Next, we investigate the
dependence of the translocation rate on the membrane charge
σm and pore radius d.

1. Membrane charge σm and pore radius d

In Fig. 4, we plot the translocation rate (solid curves) and
the capture velocity vdr − vb (dashed lines) rescaled by the
drift velocity vdr against the membrane charge σm at different
polymer lengths Lp. We note that in the limit of a neutral pore
σm = 0, all curves converge to Rc/vdr = 1. In this limit where
the barrier vanishes [Vp(zp) = 0 and λb = 0], the translocation
rate (61) becomes

Rc =
Dλe

1 − e−(Lp+Lm)λe
≈ vdr. (62)

Thus, polymer transport through neutral pores is purely
electrophoretic.

For the case of charged membranes, Fig. 4 shows that
in the drift-driven regime with λb < λe or σm < σm,2 where
the characteristic charge σm ,2 will be calculated below, the
translocation rate drops linearly with increasing membrane
charge. In the subsequent barrier-dominated regime λb > λe

or σm > σm,2, the translocation rate decays exponentially.

We investigate first the drift-dominated regime σm

< σm,2. We note that the total translocation rate Eq. (61) can
be very accurately approximated by the barrier-limited capture
rate of Eq. (58), i.e., Rc ≈R1 (compare the blue curve and dots
in Fig. 4). Thus, for λe > λb, the behaviour of the translocation
rate follows from Eq. (58) as

FIG. 4. Polymer translocation rate Rc (solid curves) and polymer capture
velocity vdr − vb = D(λe − λb) (dashed curves) rescaled by the drift velocity
vdr against the membrane chargeσm. The polymer lengths are Lp = 10 nm (red
curves), Lp = 30 nm (blue curves), and Lp = 50 nm (black curves). The inset
displays the rescaled translocation rate versus the pore radius at the membrane
charge σm = 0.05 e/nm2. The dots in the main plot at Lp = 30 nm correspond
to the barrier-limited polymer capture rate R1. The remaining parameters are
the same as in Fig. 2.
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Rc ≈ D (λe − λb)
[
1 + e−L−(λe−λb)

]
≈ vdr − vb, (63)

which explains the superposition of the velocity and translo-
cation rate curves. We now note that in the linear PB approx-
imation, the barrier-induced velocity component in Eq. (51)
takes the simple form

vb =
4π`B ln(d/a)

gη βLpκ
2
b

σpσm. (64)

Substituting the velocity components (52) and (64) into
Eq. (63), we get a closed-form expression for the translocation
rate in the drift-dominated regime as

Rc ≈
4π`B

gκb

[
µeE(fpσp − fmσm) −

ln(d/a)
η βκbLp

σpσm

]
. (65)

The linear dependence of Eq. (65) on the membrane charge
σm explains the linear decay of the translocation rates in
Fig. 4.

We now focus on the barrier-dominated regime σm

> σm,2. Figure 4 shows that the exponential decay of the
translocation rate at σm ≈σm,2 is accompanied with the rever-
sal of the polymer velocity. Indeed, in this regime with λb

> λe, the capture velocity is negative, vdr − vb < 0, and one
also gets from Eq. (58)

Rc ≈ D (λb − λe) e−L−(λb−λe). (66)

The limiting law Eq. (66) corresponds to the Kramers’ tran-
sition rate formula associated with the electrostatic barrier
∆U ∼ kBTL−(λb− λe) that has to be overcome by the polymer
in order to penetrate the pore. Using Eqs. (51), (52), and (64),
Eq. (66) becomes

Rc ≈
4π`B

gκb

[
ln(d/a)
η βκbLp

σpσm − µeE(fpσp − fmσm)

]

× exp

{
−

12π2`BL−
gκb ln(Lp/2a)

[
ln(d/a)
κb

σpσm

− η βLpµeE(fpσp − fmσm)

]}
. (67)

Equation (67) explains the exponential decay of the translo-
cation rates with σm in the barrier-driven regime of
Fig. 4.

The threshold membrane charge σm ,2 can be obtained
from the equality vb = ve together with Eqs. (52) and (64) as

σm,2

σp
= fp

[
fm +

ln(d/a)σp

η βκbLpµeE

]−1

. (68)

Comparison of Eqs. (56) and (68) shows that the character-
istic charges for drift velocity inversion and transition from
drift to barrier-driven regime satisfy σm,1 > σm,2 (see also the
inset of Fig. 2). Thus, at membrane charges σm ≈σm,1, where
the reversal of the drift velocity should occur, successful DNA
capture events should be rare. This contradicts the suggestion
of earlier works to reduce the polymer translocation veloc-
ity via the drift velocity inversion illustrated in Fig. 2.25 We
finally note that in Fig. 4, the drift-dominated regime of longer
polymers extends over an extended range of the membrane
charge. Indeed, Eq. (68) predicts that the rejection of longer
polymers should occur at higher membrane charges, i.e., Lp ↑

σm,2 ↑. The mechanism behind this effect is investigated in
Sec. III B 2.

Finally, in the inset of Fig. 4, we display the behaviour of
the translocation rate with the pore size. Beyond a character-
istic pore size where one gets into the drift-dominated regime
λe > λb, the translocation rate increases (d ↑ Rc ↑) and con-
verges to the drift velocity vdr. This trend can be explained by
the relation Rc ≈ vdr − vb in Eq. (63). The increase of the pore
size reduces the membrane-induced potential φm(a) and the
barrier Vp(zp). This lowers in turn the barrier-induced veloc-
ity component vb and the translocation becomes essentially
drift-dominated at large pores, i.e., Rc ≈ vdr. Next, we investi-
gate the dependence of the translocation rates on the polymer
length and voltage.

2. Polymer length Lp and voltage ∆V

In Fig. 5, we display the behaviour of the rescaled translo-
cation rate Rc/vdr with the polymer length Lp. In qualitative
agreement with experimental curves,19,23 the translocation rate
increases with the polymer length (Lp ↑ Rc ↑) and saturates at
the drift velocity vdr. This trend can be explained by Eq. (65)
where the barrier-induced term decays as L−1

p while the drift
term does not depend on Lp. The physical mechanism behind
this peculiarity is encoded in the force balance Eq. (9). One sees
that the electric field E acts on the whole polymer with length
Lp whereas the barrier-induced force−V ′p(zp) is induced exclu-
sively by the polymer portion lp located in the pore. Hence, the
longer the polymer, the stronger the drift effect with respect
to the electrostatic barrier. This mechanism also explains the
increase of the critical membrane chargeσm ,2 with the polymer
length in Fig. 4.

Figure 5 shows that due to the same mechanism, the
stronger the membrane charge, the longer the characteristic
polymer length L∗p where the translocation rate becomes van-
ishingly small, i.e., σm ↑ L∗p ↑. The length L∗p corresponding to
the boundary between the barrier and drift dominated regimes
follows from λe = λb as

L∗p = −
ln(d/a)
η βµeE

aσpφm(a)

δφ(d) − δφ(a)
. (69)

Equation (69) is plotted versus the membrane charge in the
inset of Fig. 5. L∗p rises steadily with the membrane charge

FIG. 5. Main plot: Translocation rate Rc rescaled by the drift velocity vdr
versus the polymer length Lp at various membrane charges. Inset: Threshold
polymer length L∗p of Eq. (69) where the translocation rate becomes exponen-
tially small versus the membrane charge σm. The model parameters are the
same as in Fig. 2.
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and its slope is amplified for σm & 0.15 e/nm2. For the sake
of analytical clarity, we pass to the linear PB approximation
and expand Eq. (69) in terms of the charges σm and σp. The
critical polymer length simplifies to

L∗p =
ln(d/a)
η βκbµeE

σmσp

fpσp − fmσm
. (70)

Equation (70) indeed predicts the increase of the critical length
L∗p with the membrane charge forσm < σm,1 and its divergence
at σm → σm,1. This divergence reflects the fact that due to the
reversal of the drift velocity atσm =σm ,1, the drift effect cannot
overcome the electrostatic barrier and drive the polymer into
the pore regardless of how long the polymer is.

In Fig. 6, we display the evolution of the translocation
rate with the voltage ∆V at various polymer lengths and mem-
brane charges. Below a threshold voltage ∆V ∗ in the barrier-
dominated regime of Eq. (67), the translocation rate increases
exponentially with the external voltage. The same trend is
illustrated in the inset at the linear scale. Above the threshold
voltage∆V ∗ where one gets into the drift-dominated regime of
Eq. (65), the capture velocity switches from negative to posi-
tive and the translocation rate increases linearly with voltage.
This turnover is in agreement with experiments19,23 and sim-
ulations.43 The threshold voltage ∆V ∗ follows from Eq. (70)
as

∆V∗ =
ln(d/a)Lm

η βκbLpµe

σmσp

fpσp − fmσm
. (71)

In agreement with Fig. 6, Eq. (71) predicts the rise of the
threshold voltage by the membrane charge σm ↑ ∆V∗ ↑ and its
reduction by the polymer length Lp ↑ ∆V∗ ↓. Next, we char-
acterize the effect of the polymer charge on the competition
between the drift and barrier effects.

3. Polymer charge σp
The translocation rate Eq. (65) indicates that the oppos-

ing drift and barrier effects are both enhanced by the polymer
chargeσp. In order to understand the overall effect of the latter
on the translocation process, in Fig. 7 we plot the transloca-
tion rate Rc versus the polymer chargeσp at various membrane
chargesσm. In the case of a neutral poreσm = 0 where translo-
cation is driven by electrophoresis, due to the enhancement of
the electrophoretic polymer mobility by the polymer charge,
the translocation rate increases monotonically. In charged

FIG. 6. Translocation rate Rc versus voltage ∆V at various polymer lengths
and membrane charges. The model parameters are the same as in Fig. 2. The
inset displays the translocation rate (solid curve) and the polymer capture
velocity vdr − vb (dashed curve) at a linear scale.

FIG. 7. Translocation rate Rc versus polymer charge density σm at vari-
ous membrane charges. The polymer length is Lp = 10 nm. The remaining
model parameters are the same as in Fig. 2. The inset shows the critical poly-
mer charge σ∗p of Eq. (72) where the translocation rate becomes vanishingly
small.

pores where the electrostatic barrier component in Eq. (65)
comes into play and reduces the amplitude of the transloca-
tion rate, the latter initially grows with the polymer charge
(σp ↑ Rc ↑), reaches a peak, and drops beyond this turning
point (σp ↑ Rc ↓) when the enhancement of the electrostatic
barrier by the polymer charge takes over the amplification of
the electrophoretic mobility.

Figure 7 shows that beyond the characteristic membrane
charge σm ≈ 0.015 e/nm2, regardless of the polymer charge
strength, the translocation rate remains vanishingly small. In
order to explain this peculiarity, we calculate the characteristic
polymer charge σ∗p where the transition from the barrier to
the drift-dominated regimes occurs. This follows by setting
Rc = 0 in Eq. (65),

σ∗p =
fmσm

fp
[
1 − σm/σm,3

] , (72)

where we introduced the characteristic membrane charge

σm,3 =
fpη βκbLpµeE

ln(d/a)
. (73)

In the inset of Fig. 7, the critical polymer charge Eq. (72) is
seen to grow with the membrane charge and diverge at the
threshold value σm,3 ≈ 0.016 e/nm2 beyond which translo-
cation events become purely barrier-dominated at any poly-
mer charge strength. The upper membrane charge σm ,3 for
successful translocation events is one of the key findings of
our work. Equation (73) shows that this threshold charge
increases with the polymer length Lp, the electric field E,
and the salt density ρb. The effect of the salt density on the
polymer translocation is thoroughly scrutinized in the next
part.

4. Salt concentration ρb

Salt concentration is a practical control parameter that
has not yet been fully considered in translocation experiments.
This probably stems from our still incomplete understanding
of the salt effects on the polymer capture and transport pro-
cesses. Motivated by this point, in Fig. 8(a), we illustrate the
behaviour of the translocation rates (solid curves) and cap-
ture velocities (dashed curves) with the salt density at various
membrane charges. In order to interpret the curves, we Taylor
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FIG. 8. (a) Translocation rate (solid curves) and capture velocity (dashed
curves) versus bulk salt density at various membrane charges. (b) Character-
istic ion densities ρb ,1 [Eq. (75)] and ρb ,2 [Eq. (76)] against the membrane
charge. The inset displays the main plot in a logarithmic scale. The model
parameters are the same as in Fig. 2.

expand Eq. (65) in terms of the screening parameter κb. This
yields

Rc ≈ 4π`BµeE
[
apσp − amσm − 8π`B(bpσp − bmσm)ρb

]

−
σpσm

η βLp

ln(d/a)da(
d2 − a2) ρb

, (74)

where the auxiliary coefficients ap,m and bp,m that depend only
on the pore and polymer radii are given in the Appendix. In
neutral pores σm = 0 where the second term of Eq. (74) asso-
ciated with the barrier vanishes, the drift component of the
translocation rate decreases linearly with the salt density ρb.
In Fig. 8(a), the corresponding trend is shown by the black
curve. This effect originates from the screening of the poly-
mer charges and the resulting reduction of the electrophoretic
polymer mobility.

In charged membranes, the barrier component of Eq.
(74) comes into play. In this case, Fig. 8(a) shows that
below a characteristic salt density ρb = ρb,1, translocation rates
are vanishingly small. Beyond this salt density, due to the
screening of the barrier component in Eq. (74), the translo-
cation rates increase (ρb ↑ Rc ↑), reach a maximum at ρb

= ρb,2, and decrease in the purely drift-dominated regime
(ρb ↑ Rc ↓) where the charge screening of the polymer
mobility occurs. The decreasing behaviour at strong salt con-
centrations was observed in translocation experiments where
the increment of the salt density from ρb = 1M to 4M
was shown to reduce the translocation rate by an order of
magnitude.23

The non-monotonic behaviour of the translocation rate
with the salt concentration indicates that there exists an

optimal concentration maximizing the probability of DNA
capture into the pore. This result is one of the key predictions
of our model. We first derive a closed form expression for the
characteristic concentration ρb,1. In Eq. (74), neglecting the
first order correction coefficients bp and bm and setting Rc = 0,
one gets

ρb,1 =
σpσm

4π`Bη βµeELp(apσp − amσm)
ln(d/a)da

(d2 − a2)
. (75)

We calculate now the second characteristic salt concentration
ρb,2 corresponding to the maximum of the curves in Fig. 8(a).
From the equation ∂κb Rc = 0, one finds

ρb,2 =



σpσm

32π2`2
Bη βµeELp(bpσp − bmσm)

ln(d/a)da

(d2 − a2)



1/2

.

(76)

Equations (75) and (76) are plotted together in Fig. 8(b).
In agreement with the behaviour of the curves in Fig. 8(a),
the characteristic ion concentrations ρb,1 and ρb,2 increase
monotonically with the membrane charge density, i.e., σm ↑

ρb,{1,2} ↑. Equation (76) also shows that due to the amplifica-
tion of the drift effect with respect to the electrostatic barrier,
the larger the electric field or the longer the polymer, the lower
the optimal salt concentration, i.e., E ↑ ρb,2 ↓ and Lp ↑ ρb,2 ↓.
These predictions call for experimental verifications. We con-
sider next the influence of the tunable experimental parameters
on the polymer translocation time.

C. Polymer translocation time

In order to improve the accuracy of nanopore-based
sequencing methods, one of the main challenges consists of
adjusting the duration of the ionic current blockage induced by
the translocating polymer. This objective clearly necessitates
a high degree of control over the polymer translocation time.
Motivated by this point, we characterize here the alteration
of the polymer translocation time by tunable system param-
eters such as the pore charge and radius, and the bulk salt
concentration.

The translocation time corresponds to the mean first pas-
sage time of the polymer from the pore entrance at zp = 0 to the
final point zp = Lm + Lp where the polymer leaves the pore. Sub-
stituting the current Eq. (2) into the continuity Eq. (1) and using
the definition of the effective potential in Eq. (14), the Smolu-
chowski equation takes the form of an effective Fokker-Planck
equation,

∂tc(zp, t) = D∂2
zp

c(zp, t) + βD∂zp

[
c(zp, t)U ′p(zp)

]
. (77)

In a stochastic process characterized by Eq. (77), the mean
first passage time τ(z2; z1) from the initial point z1 to the final
point z2 in the pore is given by the solution of the Dynkin
equation,44

D∂2
z1
τ(z2; z1) − βDU ′p(z1)∂z1τ(z2; z1) = −1. (78)

Solving Eq. (78) with reflecting and absorbing boundary
conditions, respectively, at z1 and z2, one finds

τ(z2; z1) =
1
D

∫ z2

z1

dz′eβUp(z′)
∫ z′

0
dz′′e−βUp(z′′). (79)
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Finally, we set z1 = 0 and z2 = Lp + Lm and carry out the double
integral in Eq. (79) with the effective potential (49). After some
algebra, one gets the translocation time τ ≡ τ(0, Lp + Lm) in
the form

τ = τ1 + τ2 + τ3, (80)

where the characteristic times for polymer capture, transloca-
tion, and exit are, respectively, given by

τ1 =
1

D(λe − λb)2

[
e−(λe−λb)L− − 1 + (λe − λb)L−

]
, (81)

τ2 =
1

Dλe(λe − λb)

[
1 − e−(λe−λb)L−

] [
1 − e−λe(L+−L−)

]

+
1

Dλ2
e

[
e−λe(L+−L−) − 1 + λe(L+ − L−)

]
, (82)

τ3 =
1

D(λe + λb)2

[
e−(λe+λb)L− − 1 + (λe + λb)L−

]

+
e−λe(L+−L−)

D(λe + λb)

[
1 − e−(λe+λb)L−

]

×

{
1

λe − λb

[
1 − e−(λe−λb)L−

]
+

1
λe

[
eλe(L+−L−) − 1

]}
.

(83)

We consider now the simplest asymptotic limits of
Eq. (80). In the limit of a vanishing electric field and neu-
tral pore where λe = λb = 0, the characteristic times (81)–
(83) are purely diffusive and the capture time becomes
τ1 =L2

−/(2D). Then, the characteristic time associated with
polymer penetration and translocation at constant length
reads τ1 + τ2 =L2

+/(2D). Finally, the total translocation time
becomes

τ =

(
Lm + Lp

)2

2D
. (84)

Thus, in the diffusive limit the translocation time increases
quadratically with the polymer length Lp, which is a well-
known result for rod-like chains.21 In the case of finite
voltage ∆V and neutral pores, where the electrostatic bar-
rier vanishes (λb = 0), the translocation time (80) takes the
form

τ =
(Lm + Lp)λe − 1 + e−(Lm+Lp)λe

Dλ2
e

≈
Lm + Lp

Dλe
, (85)

which yields the relation Lm + Lp ≈ vdrτ characterizing a
purely drift-assisted translocation. Equation (85) shows that
in the pure drift regime, the translocation time grows linearly
with the polymer length Lp and decays linearly with the volt-
age ∆V. In Subsection III C 1, we scrutinize the alteration of
the polymer translocation times by membrane charge strength
and pore confinement.

1. Membrane charge σm and pore radius d

The main plot of Fig. 9 displays the variation of the poly-
mer translocation time (80) with the membrane charge den-
sity (solid black curve). In the region σm < σm,2 ≈ 0.12 e/nm2

corresponding to the drift-dominated regime, where the char-
acteristic charge σm ,2 is given by Eq. (68), increasing the
membrane charge weakly increases the translocation time.
Beyond the membrane charge σm ,2, where one switches to

FIG. 9. Translocation time Eq. (80) versus membrane charge (solid black
curve). The dashed curves are the limiting laws with the corresponding equa-
tion numbers given in the legend. The inset displays the translocation rate
versus pore size from Eq. (80) (solid curve) and its barrier limit of Eq. (88)
(red symbols) at the membrane chargeσm = 0.15 e/nm2. The salt concentration
is ρb = 0.1 M. The other model parameters are the same as in Fig. 2.

the barrier-driven regime, the translocation rate grows expo-
nentially fast. More precisely, the alteration of the membrane
charge by ≈0.1 e/nm2 enhances the translocation rate by four
orders of magnitude. This strong sensitivity in the barrier-
driven regime indicates that the chemical alteration of the
membrane charge density can be an efficient way to tune the
duration of ionic current signals in translocation experiments.
According to the black curves in Fig. 8(b), the lower boundary
σm ,2 of this regime increases with bulk salt concentration, i.e.,
ρb ↑ σm,2 ↑.

In order to understand the trend of the curves in Fig. 9,
one has to simplify Eqs. (81)–(83). Focusing on the exper-
imentally relevant regime of strong electric fields λeL±� 1
and neglecting exponentially small terms, Eq. (80) simplifies
as

τ ≈
1

D(λe − λb)2

[
e−(λe−λb)L− − 1 + (λe − λb)L−

]

+
1

Dλe(λe − λb)

[
1 − e−(λe−λb)L−

]
+

1
Dλe(λe + λb)

+
λe(L+ − L−) − 1

Dλ2
e

+
(λe + λb)L− − 1

D(λe + λb)2
. (86)

In the drift-dominated regime λe > λb, neglecting the expo-
nential terms of Eq. (86), one finds

τ ≈
2λeL−

D(λ2
e − λ

2
b)

+
L+ − L−

Dλe
. (87)

For λe� λb, Eq. (87) tends to the pure drift limit of Eq. (85).
Then, in the barrier-dominated regime λb > λe, by keeping
only the exponential terms in Eq. (86), we get

τ ≈
λb

Dλe(λb − λe)2
e(λb−λe)L− . (88)

Equations (87) and (88) reported in Fig. 9 accurately reproduce
the behaviour of the translocation time in the corresponding
regimes of validity. Taylor expanding the inverse distances in
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Eqs. (47) and (48) in terms of the screening parameter κb, and
the charge densities σm and σp, we get

λe ≈
3π βLpeE

ln(Lp/2a)

[
apσp − amσm − 8π`B(bpσp − bmσm)ρb

]
,

(89)

λb ≈
3π ln(d/a)
ln(Lp/2a)

da

d2 − a2

σmσp

ρb
. (90)

One notes that the inverse lengths λe and λb scale linearly
with the membrane charge σm. Considering this point, the
asymptotic laws (87) and (88) explain the weak and the
exponentially fast growth of the translocation time in the
drift and barrier-dominated regimes of Fig. 9, respectively.
Finally, Eq. (88) indicates that in the barrier-driven regime,
the translocation time decays exponentially with the exter-
nal voltage. This agrees qualitatively with experiments and
simulations.14,43

In the inset of Fig. 9, we display the variation of the
polymer translocation time with the pore size. The expo-
nential decay of the translocation time with the pore radius
is in qualitative agreement with experiments on polymer
transport through negatively charged silicon-based membrane
nanopores (see Fig. 7 of Ref. 14). The extension of the translo-
cation time by a stronger confinement (d ↓ τ ↑) results from
the amplification of the MF-level electrostatic barrier in the
exponential of Eq. (88). Indeed, Eqs. (88) and (90) show that
with increasing pore size d, the translocation rate decays as
ln τ ∼ 1/d. We note in passing that due to the comparable
range of the pore and polymer radii, the image-charge bar-
rier neglected in our MF model is expected to enhance the total
electrostatic barrier and the translocation time. This effect will
be considered in a future work.

2. Salt concentration ρb

In Fig. 10, we display the salt dependence of the poly-
mer translocation rate at various membrane charges (solid
black curves). We also report the limiting laws of Eqs. (87)
and (88) indicating the drift and barrier-driven regimes. In
neutral pores where translocation is purely drift-driven, the
increment of the salt density weakly affects the translocation

FIG. 10. Translocation time Eq. (80) versus bulk salt concentration at various
membrane charge densities (solid black curves). The dashed curves are the
limiting laws with the corresponding equation numbers given in the legend.
The model parameters are the same as in Fig. 2.

time. In charged pores, due to the competition between salt
screening of the electrostatic barrier and the electrophoretic
DNA mobility, with increasing ion density, the transloca-
tion time drops in the barrier-dominated regime (ρb ↑ τ ↓),
reaches a minimum, and weakly increases in the drift regime
(ρb ↑ τ ↑).

According to Eqs. (88) and (90), in dilute salts the poly-
mer translocation time decays with the ion density as ln τ
∼ 1/ρb (see the red curves in Fig. 10). This strong salt depen-
dence of the translocation rate suggests that the alteration
of the salt concentration in the barrier-driven regime can be
an efficient way to tune the DNA velocity in translocation
experiments. We finally note that in Fig. 10, the minimum
of the translocation time is located at the density ρb,2 given
by Eq. (76). In agreement with the red curves in Fig. 8(b),
the increment of the membrane charge shifts the location
of this minimum to larger salt concentration regimes, i.e.,
σm ↑ ρb,2 ↑.

IV. SUMMARY AND CONCLUSIONS

Biopolymer translocation through nanopores under real-
istic experimental conditions remains a challenging problem
due to the complicated interplay between entropic, electro-
static, and hydrodynamic degrees of freedom. In the present
work, we have focused on the electrostatic interactions and
developed a consistent beyond-equilibrium theory of poly-
mer capture and transport through charged pores in electrolyte
solutions by coupling electrohydrodynamic equations with the
Smoluchowski formalism. The main achievement from our
theory is the incorporation of direct electrostatic polymer-
membrane interactions to the polymer translocation velocity.
In the relevant case of anionic polymers translocating elec-
trophoretically through negatively charged pores, these inter-
actions result in a repulsive electrostatic barrier Vp(zp) that
reduces the polymer velocity from the drift value vdr to vp(zp)
= vdr − βD∗V ′p(zp). The corresponding competition between
the electrostatic barrier and the drift effect gives rise to a critical
membrane chargeσm,3 = fpη βκbLpµeE/ ln(d/a) above which
the polymer is likely to be rejected by the nanopore regard-
less of its charge strength (see Fig. 7). The same competition
results in a non-monotonic behaviour of the polymer translo-
cation rate with the bulk salt concentration [see Fig. 8(a)].
More precisely, due to the distinct ion density regimes where
the salt screening of the electrostatic barrier and the elec-
trophoretic polymer mobility occurs, there exists a charac-
teristic salt concentration ρb,2 given by Eq. (76) that maxi-
mizes the polymer capture probability. This prediction is of
high degree of relevance to translocation assisted biopolymer
sequencing.

In addition, we investigated the influence of the electro-
static barrier on the polymer translocation time τ. We found
that in the barrier-dominated regime, the translocation time
is highly sensitive to tunable system parameters. Namely, the
translocation time rises exponentially fast with the membrane
charge ln τ ∼σm and decays exponentially with the pore size
ln τ ∼ 1/d and salt concentration ln τ ∼ 1/ρb. These features
suggest that the variation of these parameters in the barrier-
driven regime can be an efficient way to regulate the duration
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of the translocation process and the resulting ionic current
blockage.

At this point, we should highlight the approximations
of our model and suggest potential improvements. First, in
the computation of the pore potential and the convective liq-
uid velocity, we have neglected the edge effects associated
with the finite thickness of the membrane. Considering that
the characteristic decay length of electrostatic interactions is
the DH length κ−1

b , the electrostatics of the system should be
affected by the neglected edge effects in the membrane thick-
ness regime Lm . κ

−1
b . At the lowest salt density ρb = 0.01M

considered in our work, this corresponds to the lower bound-
ary value Lm ≈ 3 nm. It should be noted that the majority of
the membrane nanopores are located outside this regime.21

Moreover, the estimation of end effects on the hydrodynam-
ics of the liquid is clearly a formidable task that requires the
direct consideration of the finite pore length. In order to relax
the approximation of an infinitely long pore that allowed us
to keep the translational symmetry along the pore axis, one
should account for the dependence of the electrostatic poten-
tial φ(r) and convective velocity uc(r) on the z coordinate. This
task can be achieved in the linear PB approximation where one
should solve the linear PB and Stokes equations by the method
of separation of variables. It should however be noted that this
improvement will also increase the dimensionality of the prob-
lem and shadow the physical insight provided by our simpler
theory.

Moreover, in our model where the membrane is con-
sidered to be infinitely thick in the x-y plane and the pore
of infinite length along the z axis, the pore electroneutrality
condition is automatically satisfied by Eq. (19). However, in
real membranes with finite lateral thickness and pore exten-
sion, the electroneutrality condition is known to be violated
as the cumulative charge density stays below the membrane
charge.45 In our model, the resulting reduction of charge
screening is expected to enhance the electrostatic barrier
and extend the barrier-driven regime of polymer capture and
transport.

An additional approximation of our model is the restric-
tion of the polymer location to the pore axis. The importance
of off-axis fluctuations can be estimated by approximating the
polymer as a line charge and passing to the DH approximation.
Expanding Eqs. (37)–(42) in terms of the membrane charge
σm, introducing the line charge density τ = 2πaσp of the
polymer located at the radial distance rp from the pore axis,
and taking the limit a → 0, the polymer grand potential (37)
becomes

βΩMF(lp; rp) ≈
2lpτ

κbµm

I0(κbrp)

I1(κbd)
. (91)

We now note that off-axis polymer displacements induced
by thermal fluctuations will be relevant if the energetic cost
of these displacements is below the thermal energy, i.e.,
ΩMF(lp; rp) −ΩMF(lp; 0) . kBT or

κbµm

2lpτ
I1(κbd) + 1 − I0(κbrp) & 0. (92)

One notes that the maximum polymer displacement satisfy-
ing the inequality (92) increases with the salt concentration,

i.e., ρb ↑ r∗p ↑. In order to evaluate the magnitude of the
corresponding off-axis displacements, we consider now the
capture of a DNA sequence composed of 100 base pairs
and set lp = 30 nm. From Eq. (92), one finds that for the
model parameters in Fig. 2, the maximum polymer dis-
placement is r∗p ≈ 5 Å ≈ 0.17 d at the salt concentration ρb

= 0.1M and r∗p ≈ 2 nm ≈ 0.66 d for ρb ≈ 1.0 M. Thus, off-axis
fluctuations become relevant in the characteristic salt density
regime ρb & 0.1 M. It should be however noted that according
to Fig. 8(a), this salt concentration range corresponds to the
drift-driven regime where the electrostatic polymer-pore inter-
actions play a minor role in polymer capture and transport. This
indicates the validity of the mid-pore assumption as a first order
approximation.

Then, we have treated electrostatic interactions at the
MF level. This choice was motivated by the limitation
of our work to monovalent electrolytes where correlations
are known to play a minor role. However, in transloca-
tion experiments conducted with nanopores of size compa-
rable with the polymer radius such as α-Hemolysin pores,
the strong confinement effects neglected by the MF elec-
trostatics are expected to enhance the electrostatic barrier
experienced by the polymer.5 In order to consider this com-
plication as well as the effect of polyvalent salt on DNA
transport where charge correlations are non-negligible, we
plan to investigate electrostatic many-body effects in future
work.

Finally, our polymer transport theory is based on a rigid
polyelectrolyte model that neglects the conformational poly-
mer fluctuations. As a result of this approximation, the theory
does not account for the entropic barrier to be overcome by the
polymer in order to place its end into the pore. At this point,
the natural question arises as to whether this entropic barrier
may dominate the electrostatic one and play the determinant
role in polymer capture. We note that in Refs. 28 and 46, the
entropic barrier was shown to decay with the sequence length
N as F/(kBT ) ∝ N−0.2. Moreover, we showed that the electro-
static barrier in Eq. (44) increases linearly with the polymer
length. This indicates that in the biologically relevant case
of long sequences, the electrostatic barrier will dominate the
entropic one and the latter can be thus neglected as a first
order approximation. The accurate evaluation of the threshold
sequence length where the electrostatic barrier takes over the
entropic effects requires of course the direct inclusion of the
conformational fluctuations into the present transport theory.
This challenging task can be done in the future within the uni-
fied theory of charge and polymer fluctuations developed by
Tsonchev et al.47 Despite these approximations, our various
predictions have been shown to be in good qualitative agree-
ment with translocation experiments and simulations. This
indicates that our model embodies the most relevant features
of these systems. We finally emphasize that our predictions
on the effect of salt and membrane charge strength call for
experimental verifications.

APPENDIX: EXPANSION COEFFICIENTS

Here we list the expansion coefficients used in Eqs. (75)
and (76),
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ap = −
a
2

+
ad2 ln(d/a)

d2 − a2
, (A1)

am =
d
2
−

a2d ln(d/a)

d2 − a2
, (A2)

bp = −
a

32
(
d2 − a2)2

{
−

(
d2 − a2

)2 (
3d2 − a2

)
+ 4d2a2 ln(d/a)

[
4d2 ln(d/a) − d2 + a2

] }
, (A3)

bm = −
d

32
(
d2 − a2)2

{
−

(
d2 − a2

)2 (
d2 − 3a2

)
+ 4d2a2 ln(d/a)

[
−4a2 ln(d/a) + d2 − a2

] }
. (A4)
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