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Phase diagram and dynamics of Rydberg-dressed fermions in two dimensions
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We investigate the ground-state properties and the collective modes of a two-dimensional two-component
Rydberg-dressed Fermi liquid in the dipole-blockade regime. We find instability of the homogeneous system
toward phase-separated and density ordered phases, using the Hartree-Fock and random-phase approximations,
respectively. The spectral weight of collective density oscillations in the homogenous phase also signals the
emergence of density-wave instability. We examine the effect of exchange hole on the density-wave instability
and on the collective-mode dispersion using the Hubbard local-field factor.

DOI: 10.1103/PhysRevA.96.053611

I. INTRODUCTION

Studying ultracold Rydberg systems is becoming a fas-
cinating field from both fundamental and practical points
of view. Such artificial systems provide a means to explore
many-body models in a very controllable manner [1–7]. On
the applied side, these systems are promising for the quantum
manipulations and computations [8]. Different experimental
methods, such as laser cooling and magnetic trapping [9,10] of
neutral atoms, have recently been employed. In order to reach
nano-kelvin temperature regime, the magneto-optical trapping
is an appropriate technique [11]. The traditional example
of Rydberg atoms is hydrogen. However, any alkali-metal
element can be excited to a higher-energy level, with a very
high principal quantum number n, in which the valence
electron obeys well-known Rydberg energy spectrum [12].
The effective size of these atoms can be very large, up to the
micrometers [13].

Although the total charge of Rydberg atoms is zero, they
can have very strong dipole moments. In this regard, there
is a strong dipole-dipole interaction among Rydberg atoms.
One can take advantage of this long-range interaction in
order to construct strongly correlated systems. Exploring these
systems seems to be very appealing and one may expect
to observe some new and exotic quantum phenomena and
behavior. Notice that the interaction between Rydberg atoms
is very similar to the van der Waals interaction ∝1/r6, at large
enough interparticle distances [14–17]. However, for short
inter-particle distances, called the Rydberg-blockade radius,
the strong dipole-dipole interaction makes atoms off-resonant
with respect to the laser frequency. As a result, the 1/r6

van der Waals interaction of dressed atoms evolves into a
soft-core interaction with finite interaction range at short
distances. The typical values for this soft-core radius could
reach few micrometers [18–21]. In order to construct a gas of
Rydberg atoms with long lifetimes, they should be dressed,
e.g., employing two laser beams where only the sum of their
frequencies is on resonance with the Rydberg levels. In this
way, a Rydberg atom through a two-photon absorption process
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will be produced [22–24]. Exotic topological density waves in
Rydberg-dressed systems in three-dimensional optical lattices
has been predicted too [25].

The effect of dipole-dipole interaction results in some
interesting physics. For example, density-wave instability in
a three-dimensional (3D) system of Rydberg-dressed Fermi
atoms, interacting through the van der Waals force, is predicted
to lead to a body-centered-cubic (bcc) crystalline ordering
with gapless fermionic excitations, named metallic quantum
solid phase [24]. The emergence of superfluid vortices in
a rotating two-dimensional (2D) Bose-Einstein condensate
(BEC) of Rydberg-dressed atoms has been studied in Ref. [26].
A transition to a Bardeen-Cooper-Schrieffer (BCS) state has
been also predicted in a system of Rydberg-dressed atoms
under repulsive van der Waals interaction, assisted by BEC of
diatomic molecules which play the analogous role of phonons
in the BCS superconductivity [27].

Naturally, it is expected that the effects of many-body
correlations would be enhanced at lower dimensions. Fur-
thermore, reduced dimensionality is expected to suppress
collisions and chemical reactions [28]. Motivated by these,
in this paper we investigate the ground-state phases of a
two-component 2D system of Rydberg-dressed atoms. Using
the Hartree-Fock (HF) mean-field approach, we show that
a quantum phase transition equivalent to the ferromagnetic-
paramagnetic phase transition of an electron liquid is possible
in two-component Rydberg-dressed fermionic liquid (RDL),
by tuning the average density and the soft-core radius of the
interaction. The term “two-component” here refers to two
different fermionic isotopes of the same atom or identical
atoms in two different internal states. Therefore, the above-
mentioned phase transition corresponds to the phase separation
in the first case and to the polarization of internal degree in
the later one. For brevity, in the following, we will simply
refer to this phase transition as phase separation, regardless of
its microscopic interpretation. Notice that the phase separation
has been also predicted for fermionic systems with short-range
s-wave scattering [29]. Moreover, we investigate the density-
wave instability (DWI) of a homogenous phase-separated (i.e.,
single-component) RDL from the singularities of its static
density-density response function within the random-phase
approximation (RPA). Furthermore, we find analytical results
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for the dispersion of collective density (i.e., zero-sound) modes
and the sound velocity in the phase-separated state, using the
RPA. We also improve upon the RPA, including the effects
of exchange-hole through the so-called Hubbard local-field
factor (LFF) [30], and investigate its effects on the DWI and
on the dispersion of collective mode.

The rest of this paper is organized as follows. In Sec. II we
describe our model Hamiltonian and the effective interaction
between Rydberg-dressed particles. In Sec. III we employ
the Hartree-Fock mean-field approximation to calculate the
ground-state energy of a two-component Rydberg-dressed
system and investigate the possible phase transition between
homogenous mixed and phase-separated states. In Sec. IV,
we calculate the static dielectric function of RDL within
the RPA and study the instability of the system towards the
formation of density waves. We study the zero-sound mode
of a homogeneous RDL using RPA in Sec. V. Finally, we
summarize our main results and conclude in Sec. VI.

II. MODEL AND HAMILTONIAN

We consider a 2D system of two-component Rydberg-
dressed fermionic particles, where each particle is weakly
coupled to its Rydberg state by an off-resonant two-photon
transition. The Hamiltonian of this system reads

H =
∑
k,σ

εk,σ ĉ
†
k,σ ĉk,σ

+ 1

2S

∑
q

vR(q)
∑
k,σ

∑
k′,σ ′

ĉ
†
k−q,σ ĉ

†
k′+q,σ ′ ĉk′,σ ′ ĉk,σ , (1)

where εk,σ = h̄2k2/(2mσ ) is the noninteracting energy disper-
sion of particles of mass mσ , σ = A,B refers to two different
flavors of the Rydberg particles, ĉk,σ (ĉ†k,σ ) destroys (creates)
one Rydberg-dressed atom of type σ with wave vector k,
S is the sample area, and vR(q) is the Fourier transform of
the interaction between two Rydberg dressed atoms, which
for simplicity we assume not to depend on the types of
two atoms σ and σ ′. Moreover, we will assume that the
mass difference between two components is negligible and
we set mA = mB = m in all our subsequent analysis. Both
of these simplifications we would expect to have only minor
quantitative effects on our main findings.

In this work, we are interested in the repulsive van der
Waals interaction in the far-detuning regime, i.e., |δ| � �,
where δ < 0 and � are single atom red detuning and Rabi
frequency, respectively. The interaction between two Rydberg-
dressed atoms is then dominated by the van der Waals
form when the interparticle distance is large enough, i.e.,
r � rc = (C6/2h̄δ)1/6, where C6 < 0 is the bare van der Waals
coefficient [31] and rc is the soft-core radius of the interparticle
interaction. In general, the form of this interaction can be found
from the perturbative expansion up to fourth order in the small
parameter �/|δ|, which yields [32–35]

vR(r) = D

r6 + r6
c

. (2)

Here, r is the 2D distance between two atoms; D =
|C6|(�/2δ)4 is the effective van der Waals coefficient which is
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FIG. 1. Effective Rydberg-dressed potential in momentum space
vR(q) (in units of 2πD/r4

c ) vs q rc. The inset shows the real-space
potential vR(r) (in units of D/r6

c ) vs r/rc.

positive in our case, corresponding to a repulsive interparticle
interaction. The Fourier transform of vR(r) is obtained as

vR(q) = πD

3r4
c

G
4,0
0,6

(
r6
c q6

66

∣∣∣∣
0, 1

3 , 2
3 , 2

3 ,0, 1
3

)
, (3)

in terms of the Meijer-G function [36,37] G
ij
mn(. . . ). In Fig. 1

the behavior of interparticle interaction potential is illustrated
in both position and momentum spaces. As can be seen in this
figure the interaction potential in the position space is almost
flat for r < rc and has a van der Waals tail at r � rc. Although
this interaction is purely repulsive in the position space, its
Fourier transform vR(q) has a negative minimum at q ≈ 5/rc.
This peculiar behavior arises from the dipole-blockade effect
and is not observed in other kinds of long-range inter-
actions [24].

Before turning to report our results, we should note that
the zero-temperature properties of a 2D single-component
fermionic RDL is characterized by two parameters, the dimen-
sionless density parameter λ = kFr0 and the dimensionless
soft-core radius r̃ = rc/r0, where kF = √

4πn is the Fermi
wave vector of a single-component system, n being its particle
density, and r0 = (mD/h̄2)

1/4
is the effective range of the

van der Waals interaction. A two-component system requires
one extra parameter specifying the density imbalance p =
(nA − nB)/(nA + nB), where nσ is the particle density of σ

component. The density imbalance varies between p = 0 for
a two-component system with the equal population of both
ingredients to p = 1 for a single-component or fully polarized
system (note that we name the higher density component
as nA).

III. GROUND-STATE ENERGY AND PHASE SEPARATION

In this section, we first calculate the ground-state energy
of a homogeneous RDL as a function of λ, r̃ , and p, using
the HF approximation. Then, we investigate the possibility of
transition from a homogeneous and mixed phase to a separated
one. The mean-field energy of a two-component system can

053611-2



PHASE DIAGRAM AND DYNAMICS OF RYDBERG-DRESSED . . . PHYSICAL REVIEW A 96, 053611 (2017)

be evaluated from

〈H〉HF =
∑
k,σ

εknk,σ + 1

2A
vR(q = 0)

∑
k,σ

nk,σ

∑
k′,σ ′

nk′,σ ′

− 1

2A

∑
q

vR(q)
∑
k,σ

nk−q,σ nk,σ . (4)

Here, nk,σ is the Fermi occupation function which reduces
to a Heaviside step function nk,σ = �(kF,σ − k) at zero
temperature, where kF,σ = √

4πnσ is the Fermi wave vector
of component σ . Note that in the following all the energies will
be reported in the units of E0 = h̄2/(mr2

0 ). The dimensionless
HF energy per particle reads

εHF(p,λ,r̃) = λ2

8
(1 + p2) + π

12
√

3

λ2

r̃4
− 1

2r̃6

[
1 − 1

6
√

3π

×
∑
ξ=±1

(1 + ξp)g(
√

1 + ξpλr̃)

]
, (5)

where the terms on the right-hand side are the noninteracting
kinetic, Hartree, and exchange energies, respectively, and

g(x) = G
4,3
3,9

[(
x

3
√

2

)6∣∣∣∣
1
6 , 1

2 , 5
6

0, 1
3 , 2

3 ,1,− 1
3 ,0, 1

3 , 1
3 , 2

3

]
. (6)

Interestingly, both the kinetic and Hartree terms have quadratic
dependence on the coupling constant λ. In Fig. 2 (a) the λ

dependence of the HF energy of a single-component (i.e.,
p = 1) 2D RDL has been illustrated. As expected, the
effects of direct and exchange interactions are substantially
suppressed at large soft-core radii and the system essentially
becomes noninteracting. At low densities (i.e., λ → 0), using
the fact that

g(x → 0) ≈ 3
√

3π −
√

π3

4
x2 + O(x4), (7)

we can obtain the following analytic expression for the HF
ground-state energy:

εHF(p,λ,r̃) ≈ λ2

8
(1 + p2) + π

24
√

3

λ2

r̃4
(1 − p2) + O(λ4),

(8)

where the second term corresponds to the sum of Hartree
and the leading-order contribution from exchange energy
to the ground state. According to the above expression, in
a single-component system (i.e., p = 1), the Hartree term
is exactly canceled by the leading-order contribution from
exchange energy, while in an unpolarized system (i.e., p = 0),
only half of the Hartree energy would be canceled by exchange.
Further inspection of Eq. (5) for p = 0 and p = 1 reveals
a quantum phase transition between unpolarized and fully
polarized phases as functions of particle density and soft-core
radius parameter rc [see Fig. 2(b)]. This is totally equivalent
to the paramagnetic-ferromagnetic phase transition in the
electron liquid [30]. We have also verified that the energy
of a partially polarized state is always higher than either the
mixed (i.e., unpolarized) or fully separated state. Therefore, it
never becomes the ground state of a two-component system.
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FIG. 2. (a) Ground-state energy of a single-component 2D
Rydberg-dressed liquid within the HF approximation (in units of
the noninteracting ground-state energy ε0 = E0λ

2/4 of a single-
component system) vs the coupling strength λ for several values
of rc/r0. (b) Comparison of the HF energies of mixed and phase-
separated states (in units of E0λ

2/4) vs λ for rs = 0.7r0. The
phase-separated state becomes lower in energy for λ � 2.5.

The phase diagram of mixed and phase-separated states is
shown in Fig. 3 in the λ-r̃ parameter space. As it is seen in the
figure, for low-density and small soft-core radius the system
is in the phase-separated state.

In the remaining parts of this work, we will discuss the den-
sity stability and collective excitations of the phase-separated
ground state, which can be regarded as a single-component
RDL.

IV. DENSITY-WAVE INSTABILITY
OF THE GROUND STATE

In this section, employing the random-phase approxima-
tion, we investigate the DWI of a single-component RDL from
the poles of its static density-density response function, or
equivalently from the zeros of its static dielectric function

εRPA(q) = 1 − vR(q)χ0(q) = 0, (9)

where vR(q) is given in Eq. (3) and χ0(q) stands for the
noninteracting static density-density response function of
a single-component 2D Fermi gas with parabolic energy
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FIG. 3. Competition between mixed and phase-separated states
of a two-dimensional two-component Rydberg-dressed system
in the λ-r̃ parameter space, obtained within the Hartree-Fock
approximation.

dispersion [30]

χ0(q) = −ν0

⎡
⎣1 − �(q − 2kF)

√
q2 − 4k2

F

q

⎤
⎦, (10)

where ν0 = m/(2πh̄2) is the density of states of a single-
component 2D liquid. For a given set of system parameters,
i.e., λ and rc/r0, if the static dielectric function becomes zero
at a specific wave vector qI , the homogenous system becomes
unstable towards a density ordered phase with wavelength
λI = 2π/qI . However, it should be noted that as this instability
criterion corresponds to a second-order phase transition from
a homogeneous into an inhomogeneous state, a first-order
phase transition of the homogenous state might precede this
instability, in which case no instability would emerge [38–40].
Note that as the static response function (10) itself is negative,
the density-wave instability would be feasible only in the
negative regions of the interparticle interaction i.e., qI ≈ 5/rc

within the RPA. In other words, the magnitude of the instability
wave vector is determined by the soft-core radius of the
interaction. If this wave vector becomes larger than ∼2kF,
the wavelength of the expected density ordered phase will be
smaller than the average interparticle separation. Therefore, in
order to determine DWI, we should search for the solutions
of Eq. (9) with q � 2kF. The phase boundary between stable
homogeneous and the density-wave phases obtained within the
RPA, and with the condition qI � 2kF, is illustrated in Fig. 4.

In the RPA, the effects of exchange and correlation are
completely absent. Improvements over RPA could be achieved
by replacing the bare interaction vR(q) in Eq. (9) with an
effective one

veff(q) = vR(q)[1 − G(q)], (11)

where G(q) is the local-field factor [30]. Using the Hubbard

approximation for the LFF GH(q) = vR(
√

k2
F + q2)/vR(q), we

have reexamined the DWI, and the corresponding result is
shown by dotted red lines in Fig. 4. Evidently, the homogenous
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FIG. 4. Regions of stable homogeneous liquid (HL) and
the density-wave instability (DWI) of a single-component two-
dimensional Rydberg-dressed liquid in the λ-r̃ plane. Black solid lines
show the phase boundary within the random-phase approximation,
and red dotted lines refer to the phase boundary obtained using the
Hubbard approximation for local-field factor. Within both approxi-
mations, only the unstable regions with qI � 2kF for the instability
wave vector have been retained.

liquid phase becomes more stable when the effects of exchange
hole are included through the Hubbard LFF.

V. ZERO-SOUND MODES

The collective density oscillations of an interacting system
could be obtained from the zeros of its dynamic dielectric
function. In the RPA, one should look for the solutions of

1 − vR(q)Re χ0(q,ω) = 0, (12)

outside the particle-hole continuum (PHC), i.e., in the regions
of frequency-wave vector plane where the imaginary part
of the noninteracting density response function vanishes
Im χ0(q,ω) = 0.

Using the analytic forms of the real and imaginary parts
of the noninteracting density response function of a two-
dimensional Fermi system [30], it turns out that it is possible to
find an analytic solution for Eq. (12) outside the PHC, which
gives the full dispersion of the zero-sound mode as

ωZS(q) = vFq

[
1 + 1

ν0vR(q)

]

×
√(

q

2kF

)2

+ ν2
0v2

R(q)

1 + 2ν0vR(q)
, (13)

with vF = h̄kF/m being the Fermi velocity.
In the long-wavelength limit, we have vR(q → 0) ≈ u0 =

π2D/(3
√

3r4
c ) and, by plugging it in Eq. (13), we find

ωZS(q → 0) ≈ vZS q, where

vZS = 1 + ν0u0√
1 + 2ν0u0

vF (14)

is the sound velocity. Evidently, this velocity is larger than
vF; therefore, the zero-sound wave is undamped at long
wavelengths. Effects of exchange-correlation hole in the
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FIG. 5. (a) Dispersion of the zero-sound mode of a single-
component 2D Rydberg-dressed liquid within the RPA (in units of
h̄k2

F/m) vs q/kF for several values of rc/r0. (b) Effects of the Hubbard
LFF on the dispersion of zero-sound for λ = 2 and rc = 0.5 r0. Filled
areas in gray color indicate the particle-hole continuum.

dispersion of zero sound could be obtained by replacing the
bare interaction vR(q) in Eq. (13) with the effective interaction
of Eq. (11). In Fig. 5(a) the full dispersion of the zero-sound
mode within the RPA is plotted for different values of the
soft-core radius rc. In Fig. 5(b) the effects of Hubbard LFF on
the dispersion of zero sound is depicted. Notice that exchange
hole substantially suppresses the zero-sound velocity.

We also investigate the oscillation strength, or the spectral
weight of the collective mode, from the imaginary part of the
RPA density response function

Im χRPA(q,ω) = Im χ0(q,ω)

|1 − vR(q)χ0(q,ω)|2 . (15)

This spectral weight has a Dirac delta peak over the collective-
mode dispersion outside the PHC and has contributions
from both single particle and collective excitations inside the
continuum. In Fig. 6, the spectral weight has been depicted
versus frequency and wave vector. For the density and soft-core
radius values, where the DWI is expected, mode softening and

FIG. 6. Imaginary part of the density response function within the
RPA vs ω (in units of h̄k2

F/m) and q (in units of kF) at a fixed density
parameter λ = 10, and for r̃ = 0.45 (a) and r̃ = 0.3 (b). These two
parameter values for r̃ respectively correspond to the homogenous
liquid and density-wave unstable regions of the phase diagram (see
Fig. 4). Note that the Dirac delta peak of the spectral weight outside
the PHC has been broadened by ∼0.01 for a better visibility.

a roton-like minimum, which reaches zero at q ∼ qI , is evident
in the spectral weight (see the lower panel of Fig. 6).

VI. SUMMARY AND CONCLUSIONS

In this paper, we have studied the ground-state phases of a
two-dimensional Rydberg-dressed Fermi liquid. The physics
of this system is governed by the competition between three
natural length scales of the system, namely the soft-core radius
rc, the range of effective van der Waals interaction r0, and the
average distance between atoms 1/

√
n. In fact, the Rydberg-

dressed interaction has its strongest repulsive effects for rc �
r � r0. This well explains our Hartree-Fock prediction for the
phase separation in a two-component system at small soft-core
radius and at low densities, where the repulsive interaction of
each particle with its nearest neighbors is dominant. At larger
soft-core radii or higher densities, the nearest neighbors of
each particle will fall within its soft core and will be affected
only by a very weak repulsive force.

In a single-component system, we have looked for the
signatures of the instability of a homogeneous system towards
density ordered phases from the singularities of its static
dielectric function. The DWI is expected for high densities and
at intermediate rc values. At large soft-core radii, the system
is effectively noninteracting, while at intermediate values of
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rc, particles would energetically prefer to aggregate together
within the soft core of each other and increase the average dis-
tance between clusters of particles. Therefore, inhomogeneous
density phases such as density waves or quantum droplets [41]
would be naturally expected in this regime. Here, we should
mention that the density-wave instability within different
approximations has been also predicted for ultracold dipolar
systems with anisotropic dipole-dipole interaction [42–45], as
well as in layered dipolar structures [46–48]. However, its
emergence in a single-layer system, with a purely isotropic
dipole-dipole interaction, has been the subject of much dispute
[49,50]. Here, we have shown that such an instability could
be anticipated in a single layer of Rydberg-dressed atoms
with isotropic interaction. Also, we have examined that this
instability is not an artifact of the random phase approximation,
and it survives when the effects of exchange hole have been
also taken into account.

We have also obtained the full analytic dispersion of
collective density oscillations in a single-component Rydberg-
dressed Fermi liquid. This dispersion is undamped and
linear at long wavelengths. Similar to the three-dimensional
Rydberg-dressed liquids [24], mode softening in the vicinity
of density instability has been observed in the spectral weight
of collective mode.

Experimentally, one can start from a weakly interacting
gas of Fermi atoms trapped inside a pancakelike quasi-two-

dimensional trap and then excite a small fraction of atoms into
Rydberg states. For example, if we take 40K atoms excited
to the 62S state, the bare van der Waals coefficient would be
C6/h̄ ≈ 2π × 129.8 GHz μm6 [31]. With the laser detuning
of |δ| = 2π × 2 MHz, the soft-core radius becomes rc ≈
5.6 μm. If the Rabi frequency � = 2π × 440 kHz is chosen,
the effective interaction range of r0 ≈ 16.5 μm could be
obtained. The interesting phenomena such as phase separation
and density wave instability predicted in this work require a
relatively low planar density of ∼106–107 cm−2 for Rydberg
atoms. The main challenge though seems to be the finite
lifetime of Rydberg states. However, the effective decay rate of
dressed states γeff = (�/2δ)2γ are substantially reduced with
respect to the natural decay rate of bare states γ , resulting in
typical lifetimes of few hundreds of milliseconds for Rydberg-
dressed atoms [32]. We would expect this effective lifetime
to be long enough to make the experimental observation of
different phases predicted here feasible.
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