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Abstract. We consider positive semidefinite kernels valued in the ∗-
algebra of continuous and continuously adjointable operators on a VH-
space (Vector Hilbert space in the sense of Loynes) and that are invariant
under actions of ∗-semigroups. For such a kernel we obtain two neces-
sary and sufficient boundedness conditions in order for there to exist
∗-representations of the underlying ∗-semigroup on a VH-space lineari-
sation, equivalently, on a reproducing kernel VH-space. We exhibit sev-
eral situations when the latter boundedness condition is automatically
fulfilled. For example, when specialising to the case of Hilbert modules
over locally C∗-algebras, we show that both boundedness conditions
are automatically fulfilled and, consequently, this general approach pro-
vides a rather direct proof of the general Stinespring–Kasparov type
dilation theorem for completely positive maps on locally C∗-algebras
and with values adjointable operators on Hilbert modules over locally
C∗-algebras.
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Introduction

In 1965, Loynes published two articles [27] and [28] where he considered gen-
eralisations of the notions of inner product space and of Hilbert space, that he
called VE-space (Vector Euclidean space) and, respectively, VH-space (Vector
Hilbert space). These are vector spaces on which there are “inner products”
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with values in certain ordered ∗-spaces, hence “vector valued inner product-
s”, see Sects. 1.1–1.3 for precise definitions. His motivation was coming from
stochastic processes [29] and the main results refer to a generalisation of
B. Sz.-Nagy’ Dilation Theorem [47] for operator valued positive semidefinite
maps on ∗-semigroups [27], and to some other results on spectral theory of
linear bounded operators on VH-spaces [28]. These ideas have been followed
in prediction theory [7,50,51], in dilation theory [14–16], and a few others.

On the other hand, special cases of VH-spaces have been later con-
sidered independently of the Loynes’ articles. Thus, the concept of Hilbert
module over a C∗-algebra was introduced in 1973 by Paschke [36], following
Kaplansky [22], and independently by Rieffel 1 year later in [41], and these
two articles triggered a whole domain of research, see e.g. [26] and [31] and
the rich bibliography cited there. Hilbert modules over C∗-algebras are spe-
cial cases of VH-spaces. Dilation theory plays a very important role in this
theory and there are many dilation results of an impressive diversity, but the
domain of Hilbert modules over C∗-algebras remained unrelated to that of
VH-spaces. Another special case of a VH-space is that of Hilbert modules
over H∗-algebras of Saworotnow [42]. Also, in 1985 Mallios [30] and later in
1988 Phillips [39] introduced and studied the concept of Hilbert module over
locally C∗-algebra, which is yet another particular case of VH-space over an
admissible space. The theory of Hilbert spaces over locally C∗-algebras is an
active domain of research as well, e.g. see [21] and the rich bibliography cited
there.

Taking into account the importance and the diversity of dilation theory,
e.g. see [4], it is natural to ask for its unification under a general framework.
Historically, the theory of positive semidefinite kernels, having values in op-
erator spaces or ordered ∗-spaces, e.g. see [12,18,32,35], and [46], to cite just
a few, turned out to provide, to a certain extent, such a unification frame-
work, that can be made much more efficient when a certain “symmetry” is
added, more precisely, the invariance under the action of a ∗-semigroup, e.g.
see [9]. Following [17], in this article we show that this unifying framework
becomes significantly more successful when kernels with values linear oper-
ators on VH-spaces are employed. In [17] there is one extra assumption on
the range of the kernels, namely that of boundedness in the sense of Loynes,
which restricts the area of applicability to C∗-algebras and, in order to unify
other dilation results, e.g. the dilation of completely positive maps on Hilbert
modules over locally C∗-algebras, see [20], the boundedness condition should
be relaxed.

This article is one step further in the programme, initiated in [17], of uni-
fying dilation results under a setting comprising positive semidefinite kernels
that are invariant under actions of ∗-semigroups and with values continuous
and continuously adjointable operators on VH-spaces, and a continuation of
the work [5] in which we obtained a nontopological version of this kind of
dilation theorem. From this point of view, the main result of this article is
Theorem 2.10 that provides two necessary and sufficient conditions for the
existence of ∗-representions of the given ∗-semigroup by continuous and con-
tinuously adjointable operators on VH-spaces. The boundedness condition
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(b1) in Theorem 2.10 is the analog of the celebrated Sz.-Nagy’s boundedness
condition [47] (see [46] for a historical perspective of this issue) and is relat-
ed to the continuity of linear operators in the range of the ∗-representation,
an obstruction caused by the gap between ∗-semigroups and groups. The
boundedness condition (b2) from Theorem 2.10 is new and refers to an ob-
struction related to the continuity of the adjoint operators which, in the case
of VH-spaces, is not automatic.

Theorem 2.10 unifies most of the known dilation theorems for operator
valued maps, in the chain of the two classical Naimark’s theorems for oper-
ator valued positive semidefinite functions on commutative groups [34] and,
respectively, for semispectral measures [33], that is, the Stinespring’s Theo-
rem [45] for operator valued completely positive maps on C∗-algebras, the
Sz.-Nagy’s Theorem [47] for operator valued positive semidefinite functions
on ∗-semigroups and its VH-space generalization of Loynes [27], as well as the
dilation theorems for completely positive maps on C∗-algebras with values
adjointable operators on Hilbert modules over C∗-algebras of Kasparov [23]
and that for completely positive maps on locally C∗-algebras with values ad-
jointable operators on Hilbert modules over locally C∗-algebras of Joiţa [20].
In this article, we explicitly show how the latter is obtained as a consequence
of Theorem 3.2.

In the following we briefly describe the contents of this article. The
first section is dedicated to notation and preliminary results on VH-spaces
and their linear operators. Since we built on the fabric of dilation theory on
VE-spaces over ordered ∗-spaces, we first briefly review necessary concepts,
results, and constructions from [5]. One of the main mathematical objects
used in this research is that of Loynes’ admissible space, that is, a com-
plete topologically ordered ∗-space. A list of nine examples, that we carefully
present, indicates the unifying potential of this concept. VH-spaces and their
linear operators are discussed in Sect. 1.3. Here, we draw attention to Lem-
ma 1.3 that clarifies the locally convex topology on VH-spaces and to the
six generic examples that illustrate the unifying potential of the concept of
VH-space. Three of the main technical obstructions in this theory are re-
lated to the lack of a general Schwarz type inequality, to the existence of
non-orthocomplemented VH-subspaces, and to the lack of a reliable substi-
tute for the Riesz’s Representation Theorem for continuous linear functionals.
Consequently, many technical ingredients that are used in this article grav-
itates around finding sufficiently powerful surrogates of these missing tools.
In this respect, in Lemma 1.6 we obtain a first surrogate of the Schwarz in-
equality related to positive operators and then refinements of this inequality
are performed in Sect. 2.5.

The main section of this article refers to positive semidefinite kernels
with values continuous and continuously adjointable linear operators on VH-
spaces. Again, since we built on dilation results on VE-spaces over ∗-ordered
spaces investigated in [5], we first review the necessary terminology, results,
and constructions corresponding to positive semidefinite kernels in the non-
topological case. When working with kernels, there is a paradigmatic idea that
the natural approach is through reproducing kernel spaces, e.g. see [3,46] and
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the rich bibliography cited there. For this reason, we first investigate basic
properties of VH-space linearisations (Kolmogorov decompositions) and their
interplay with reproducing kernel VH-spaces which, at this level of generality,
require a careful treatment: most of the properties that we expect are true,
but some of the proofs are rather different. We stress that our approach of the
dilation constructions is through reproducing kernel spaces that has substan-
tial advantages: the objects that are built preserve their concrete character to
the largest possible extent, for example we always obtain (operator valued)
function spaces and not abstract quotient spaces, in contrast to the GNS
construction which is traditionally extensively used in dilation theory.

Theorem 2.10, the main result of this article, emphasises the bounded-
ness condition (b1), the analog of the Sz.-Nagy’s boundedness condition, and
the boundedness condition (b2) that shows up due to topological obstructions
of dealing with linear operators on locally convex spaces, especially in con-
nection with the topological pathologies related to multiplication. Recently,
a related phenomenon has been discussed by Żelazko [52] who introduced a
class of continuous linear operators on locally convex spaces E for which there
is a certain control of the growth of their powers uniformly on E , that he called
m-topologisable (multiplicatively topologisable), see also [6]. In Sect. 2.5 we
show that, when a positive semidefinite kernel has m-topologisable operators
on its whole diagonal, a stronger condition than the boundedness condition
(b2) is obtained by an iteration method, previously employed in spectral
theory [11,24,25,40], in particular, m-topologisability propagates through-
out the kernel. However, the question whether condition (b2) holds at the
level of generality of positive semidefinite kernels with values continuous and
continuously adjointable operators on VH-spaces remains open.

The last section is dedicated to show the unifying coverage of our The-
orem 2.10, by providing a direct proof of the dilation theorem from [20].
Theorem 3.2 is a remarkable consequence of Theorem 2.10 and of the previ-
ously obtained results for m-topologisable operators, which turns out to be
the case in this context. This theorem shows that, for invariant positive semi-
definite kernels with values adjointable operators on a Hilbert module over a
locally C∗-algebra, the boundedness condition (b2) is automatic, hence the
existence of ∗-representations on a Hilbert locally C∗-module linearisation of
the kernel, equivalently, on the reproducing kernel Hilbert locally C∗-module
of the kernel, depends only on the boundedness condition (b1). Finally, we
point out why the boundedness conditions (b1) discussed above is automatic
as well in the special case of completely positive maps on locally C∗-algebras
and with values adjointable operators on Hilbert modules over locally C∗-
algebras, by an adaptation of the technique of Murphy [32] that solves the
nonunital case by approximate identities in locally C∗-algebras.

1. Preliminaries

In this section we briefly review most of the definitions and some basic facts on
ordered ∗-spaces, VE-spaces over ordered ∗-spaces, and their linear operators,
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then review and get some facts on VH-spaces over admissible spaces and their
linear operators.

1.1. VE-Spaces and Their Linear Operators

A complex vector space Z is called ordered ∗-space, see [38], if:
(a1) Z has an involution ∗, that is, a map Z ∋ z #→ z∗ ∈ Z that is conjugate

linear ((sx + ty)∗ = sx∗ + ty∗ for all s, t ∈ C and all x, y ∈ Z) and
involutive ((z∗)∗ = z for all z ∈ Z).

(a2) In Z there is a cone Z+ (sx + ty ∈ Z+ for all numbers s, t ≥ 0 and
all x, y ∈ Z+), that is strict (Z+ ∩ −Z+ = {0}), and consisting of
selfadjoint elements only (z∗ = z for all z ∈ Z+). This cone is used to
define a partial order on the real vector space of all selfadjoint elements
in Z: z1 ≥ z2 if z1 − z2 ∈ Z+.
Recall that a ∗-algebra A is a complex algebra onto which there is

defined an involution A ∋ a #→ a∗ ∈ A, that is, (λa + µb)∗ = λa∗ + µb∗,
(ab)∗ = b∗a∗, and (a∗)∗ = a, for all a, b ∈ A and all λ, µ ∈ C.

An ordered ∗-algebra A is a ∗-algebra such that it is an ordered ∗-space,
more precisely, it has the following property.
(osa1) There exists a strict cone A+ in A such that for any a ∈ A+ we have

a = a∗.
Clearly, any ordered ∗-algebra is an ordered ∗-space. In particular, given
a ∈ A, we denote a ≥ 0 if a ∈ A+ and, for a = a∗ ∈ A and b = b∗ ∈ A, we
denote a ≥ b if a − b ≥ 0.

Given a complex linear space E and an ordered ∗-space space Z, a Z-
gramian, also called a Z-valued inner product, is, by definition, a mapping
E × E ∋ (x, y) #→ [x, y] ∈ Z subject to the following properties:
(ve1) [x, x] ≥ 0 for all x ∈ E , and [x, x] = 0 if and only if x = 0.
(ve2) [x, y] = [y, x]∗ for all x, y ∈ E .
(ve3) [x,αy1 + βy2] = α[x, y1] + β[x, y2] for all α,β ∈ C and all x1, x2 ∈ E .

A complex linear space E onto which a Z-gramian [·, ·] is specified, for
a certain ordered ∗-space Z, is called a VE-space (Vector Euclidean space)
over Z, cf. [27].

Given a pairing [·, ·] : E × E → Z, where E is some vector space and Z
is an ordered ∗-space, and assuming that [·, ·] satisfies only the axioms (ve2)
and (ve3), then a polarisation formula holds

4[x, y] =
3∑

k=0

ik[x+ iky, x+ iky], x, y ∈ E . (1.1)

In particular, this formula holds on a VE-space and it shows that the Z-
gramian is perfectly defined by the Z-valued quadratic map E ∋ x #→ [x, x]
∈ Z.

A VE-spaces isomorphism is, by definition, a linear bijection U : E → F ,
for two VE-spaces over the same ordered ∗-space Z, which is isometric, that
is, [Ux,Uy]F = [x, y]E for all x, y ∈ E .

In general VE-spaces, an analog of the Schwarz Inequality may not hold
but some of its consequences can be proven using slightly different techniques,
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cf. [27,28]. Given two VE-spaces E and F , over the same ordered ∗-space Z,
one can consider the vector space L(E ,F) of all linear operators T : E → F . A
linear operator T ∈ L(E ,F) is called adjointable if there exists T ∗ ∈ L(F , E)
such that

[Te, f ]F = [e, T ∗f ]E , e ∈ E , f ∈ F . (1.2)

The operator T ∗, if it exists, is uniquely determined by T and called its
adjoint. Since an analog of the Riesz Representation Theorem for VE-spaces
may not exist, in general, there may be not so many adjointable operators.
Denote by L∗(E ,F) the vector space of all adjointable operators from L(E ,F).
Note that L∗(E) = L∗(E , E) is a ∗-algebra with respect to the involution ∗
determined by the operation of taking the adjoint.

An operator A ∈ L(E) is called selfadjoint if [Ae, f ] = [e,Af ], for all
e, f ∈ E . Any selfadjoint operator A is adjointable and A = A∗. By the
polarisation formula (1.1), A is selfadjoint if and only if [Ae, e] = [e,Ae], for
all e ∈ E . An operator A ∈ L(E) is positive if [Ae, e] ≥ 0, for all e ∈ E . Since
the cone Z+ consists of selfadjoint elements only, any positive operator is
selfadjoint and hence adjointable. Note that any VE-space isomorphism U
is adjointable, invertible, and U∗ = U−1, hence, equivalently, we can call it
unitary.

A VE-module E over an ordered ∗-algebra A is a right A-module on
which there exists an A-gramian [·, ·]E : E × E → A with respect to which it
is a VE-space, that is, (ve1)-(ve3) hold, and, in addition,
(vem) [e, fa+ gb]E = [e, f ]Ea+ [e, g]Eb for all e, f, g ∈ E and all a, b ∈ A.

Given an ordered ∗-algebra A and two VE-modules E and F over A, an
operator T ∈ L(E ,F) is called a module map if

T (ea) = T (e)a, e ∈ E , a ∈ A.

It is easy to see that any operator T ∈ L∗(E ,F) is a module map, e.g. see [5].

1.2. Admissible Spaces

The complex vector space Z is called topologically ordered ∗-space if it is an
ordered ∗-space, that is, axioms (a1) and (a2) hold and, in addition,
(a3) Z is a Hausdorff locally convex space.
(a4) The topology of Z is compatible with the partial ordering in the sense

that there exists a base of the topology, linearly generated by a family
of neighbourhoods {C}C∈C0 of the origin that are absolutely convex
and solid, in the sense that, if x ∈ C and y ∈ Z are such that 0 ≤ y ≤ x,
then y ∈ C.

Remark 1.1. Axiom (a4) is equivalent with the following one:
(a4′) There exists a collection of seminorms {pj}j∈J defining the topology

of Z that, for any j ∈ J , pj is increasing, in the sense that, 0 ≤ x ≤ y
implies pj(x) ≤ pj(y).

To see this, e.g. see Lemma 1.1.1 and Remark 1.1.2 of [8], letting C0 be
a family of open, absolutely convex and solid neighbourhoods of the origin
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defining the topology of Z, for each C ∈ C0, consider the Minkowski seminorm
pC associated to C,

pC(x) = inf{λ | λ > 0, x ∈ λC}, x ∈ Z. (1.3)

Clearly, {pC | C ∈ C0} define the topology of Z. Moreover, pC is increasing.
To see this, for any ϵ > 0, there exists pC(x) ≤ λϵ ≤ pC(x) + ϵ such that
x ∈ λϵC. Since C is balanced, λϵC ⊂ (pC(x) + ϵ)C, so x ∈ (pC(x) + ϵ)C.
As C is also solid, if 0 ≤ y ≤ x, then we have y ∈ (pC(x) + ϵ)C, from
which we obtain pC(y) ≤ pC(x) + ϵ. Since ϵ > 0 was arbitrary, we have that
pC(y) ≤ pC(x).

Conversely, given any increasing continuous seminorm p on Z, the set

Cp := {x ∈ Z | p(x) < 1}

is absolutely convex. Moreover, it is solid since, if x ∈ Cp with 0 ≤ y ≤ x,
then p(y) ≤ p(x) < 1, so y ∈ Cp.

Given a family C0 of absolutely convex and solid neighbourhoods of the
origin that generates the topology of Z, we denote by SC0(Z) = {pC | C ∈
C0}, where pC is the Minkowski seminorm associated to C as in (1.3). The
collection of all continuous increasing seminorms on Z is denoted by S(Z).
As a consequence of Remark 1.1, S(Z) is in bijective correspondence with
the family C of all open, absolutely convex and solid neighbourhoods of the
origin. Note that S(Z) is a directed set: given p, q ∈ S(Z), consider r := p+q.
In fact, S(Z) is a cone, i.e. it is closed under all finite linear combinations
with positive coefficients.

Z is called an admissible space, cf. [27], if, in addition to the axioms
(a1)–(a4),
(a5) The cone Z+ is closed, with respect to the specified topology of Z.
(a6) The topology on Z is complete.

Finally, if, in addition to the axioms (a1)–(a6), the space Z satisfies also
the following axiom:
(a7) With respect to the specified partial ordering, any bounded monotone

sequence is convergent.
then Z is called a strongly admissible space [27].

Examples 1.2. (1) Any C∗-algebra A is an admissible space, as well as any
closed ∗-subspace S of a C∗-algebra A, with the positive cone S+ = A+ ∩ S
and all other operations (addition, multiplication with scalars, and involu-
tion) inherited from A.

(2) Any pre-C∗-algebra is a topologically ordered ∗-space. Any
∗-subspace S of a pre-C∗-algebra A is a topologically ordered ∗-space, with
the positive cone S+ = A+ ∩ S and all other operations inherited from A.

(3) Any locally C∗-algebra, cf. [19,39], (definition is recalled in Sect.
3.1) is an admissible space. In particular, any closed ∗-subspace S of a locally
C∗-algebra A, with the cone S+ = A+ ∩S and all other operations inherited
from A, is an admissible space.
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(4) Any locally pre-C∗-algebra is a topologically ordered ∗-space. Any
∗-subspace S of a locally pre-C∗-algebra is a topologically ordered ∗-space,
with S+ = A+ ∩ S and all other operations inherited from A.

(5) Let H be an infinite dimensional separable Hilbert space and let C1
be the trace-class ideal, that is, the collection of all linear bounded operators
A on H such that tr(|A|) < ∞. C1 is a ∗-ideal of B(H) and complete under
the norm ∥A∥1 = tr(|A|). Positive elements in C1 are defined in the sense of
positivity in B(H). In addition, the norm ∥ ·∥1 is increasing, since 0 ≤ A ≤ B
implies tr(A) ≤ tr(B), hence C1 is a normed admissible space.

(6) Let V be a complex Banach space and let V ′ be its conjugate dual
space. On the vector space B(V, V ′) of all bounded linear operators T : V →
V ′, a natural notion of positive operator can be defined: T is positive if
(Tv)(v) ≥ 0 for all v ∈ V . Let B(V, V ′)+ be the collection of all positive
operators and note that it is a strict cone that is closed with respect to
the weak operator topology. The involution ∗ in B(V, V ′) is defined in the
following way: for any T ∈ B(V, V ′), T ∗ = T ′|V , that is, the restriction to
V of the dual operator T ′ : V ′′ → V ′. With respect to the weak operator
topology, the cone B(V, V ′)+, and the involution ∗ just defined, B(V, V ′)
becomes an admissible space. See Weron [50], as well as Gaşpar and Gaşpar
[14].

(7) Let X be a nonempty set and denote by K(X) the collection of
all complex valued kernels on X, that is, K(X) = {k | k : X × X → C},
considered as a complex vector space with the operations of addition and
multiplication of scalars defined elementwise. An involution ∗ can be defined
on K(X) as follows: k∗(x, y) = k(y, x), for all x, y ∈ X and all k ∈ K(X). The
cone K(X)+ consists of all positive semidefinite kernels, that is, those kernels
k ∈ K(X) with the property that, for any n ∈ N and any x1, . . . , xn ∈ X,
the complex matrix [k(xi, xj)]ni,j=1 is positive semidefinite. Then K(X) is an
ordered ∗-space.

Further, consider the set P0(X) of all finite subsets of X. For each A ∈
P0(X), let A = {x1, . . . , xn} and define the seminorm pA : K(X)
→ R by

pA(k) = ∥[k(xi, xj)]ni,j=1∥, k ∈ K(X),

the norm being the operator norm of the n × n matrix [k(xi, xj)]ni,j=1. Since
a reordering of the elements x1, . . . , xn produces a unitary equivalent matrix,
the definition of pA does not depend on which order of the elements of the
set A is considered. It is easy to see that each seminorm pA is increasing and
that, with the locally convex topology defined by {pA}A∈P0(X), K(X) is an
admissible space.

(8) Let A and B be two C∗-algebras. Recall that, in this case, the
specified strict cone A+ linearly generates A. On L(A,B), the vector space
of all linear maps ϕ : A → B, we define an involution: ϕ∗(a) = ϕ(a∗)∗, for all
a ∈ A. A linear map ϕ ∈ L(A,B) is called positive if ϕ(A+) ⊆ B+. It is easy
to see that L(A,B)+, the collection of all positive maps from L(A,B), is a
cone, and that it is strict because A+ linearly generates A. In addition, any
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ϕ ∈ L(A,B)+ is selfadjoint, again due to the fact that A+ linearly generates
A. Consequently, L(A,B) has a natural structure of ordered ∗-space.

On L(A,B) we consider the collection of seminorms {pa}a∈A+ defined
by pa(ϕ) = ∥ϕ(a)∥, for all ϕ ∈ L(A,B). All these seminorms are increasing
and the topology generated by {pa}a∈A+ is Hausdorff and complete. Conse-
quently, L(A,B) is an admissible space.

With a slightly more involved topology, it can be shown that the same
conclusion holds for the case when A and B are locally C∗-algebras.

(9) Let {Zα}α∈A be a family of admissible spaces such that, for each
α ∈ A, Z+

α is the specified strict cone of positive elements in Zα, and the
topology of Zα is generated by the family of increasing seminorms {pα,j}j∈Jα .
On the product space Z =

∏
α∈A Zα let Z+ =

∏
α∈A Z+

α and observe that
Z+ is a strict cone. Letting the involution ∗ on Z be defined elementwise,
it follows that Z+ consists on selfadjoint elements only. In this way, Z is an
ordered ∗-space.

For each β ∈ A and each j ∈ Jβ , let

q(β)j ((zα)α∈A) = p(β)j (zβ), (zα)α∈A ∈ Z. (1.4)

It is easy to show that q(β)j is an increasing seminorm on Z and that, with
the topology generated by the family of increasing seminorms {q(β)j } β∈A

j∈Jβ

, Z

becomes an admissible space.

1.3. Vector Hilbert Spaces and Their Linear Operators

If Z is a topologically ordered ∗-space, any VE-space E over Z can be made
in a natural way into a Hausdorff locally convex space by considering the
topology τE , the weakest topology on E that makes the quadratic map Q :
E ∋ h #→ [h, h] ∈ Z continuous. More precisely, letting C0 be a collection of
open, absolutely convex and solid neighbourhoods of the origin in Z, that
generates the topology of Z as in axiom (a5), the collection of sets

DC = {x ∈ E | [x, x] ∈ C}, C ∈ C0, (1.5)

is a topological base of open and absolutely convex neighbourhoods of the
origin of E that linearly generates τE , cf. [27]. We are interested in explicitly
defining the topology τE in terms of seminorms.

Lemma 1.3. Let Z be a topologically ordered ∗-space and E a VE-space over
Z.

(1) (E ; τE) is a Hausdorf locally convex space.
(2) For every continuous increasing seminorm p on Z

p̃(h) = p([h, h])1/2, h ∈ E , (1.6)

is a continuous seminorm on (E ; τE).
(3) Let {pj}j∈J be a family of increasing seminorms defining the topology

of Z as in axiom (a4′). Then, with the definition (1.6), the family of
seminorms {p̃j}j∈J generates τE .

(4) The gramian [·, ·] : E × E → Z is jointly continuous.
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Statements (1) and (4) are proven in Theorem 1 in [27]. Statement (2)
is claimed in Proposition 1.1.1 in [8] but, unfortunately, the proof provided
there is irremediably flawed, so we provide full details.

Proof of Lemma 1.3. We first prove that, if p is a continuous and increasing
seminorm on Z, p̃ is a quasi seminorm on E . Indeed, for any λ ∈ C and any
h ∈ E

p̃(λh) = p([λh,λh])1/2 = |λ|p([h, h])1/2 = |λ|p̃(h),
hence p̃ is positively homogeneous.

For arbitrary h, k ∈ E we have

[h± k, h± k] = [h, h] + [k, k]± [h, k]± [k, h] ≥ 0,

in particular,
[h, k] + [k, h] ≤ [h, h] + [k, k]. (1.7)

and

0 ≤ [h± k, h± k] ≤ [h − k, h − k] + [h+ k, h+ k] = 2([h, h] + [k, k]). (1.8)

Since p is increasing, it follows that

p̃(h+ k) =
(
p([h+ k, h+ k])

)1/2 ≤
√
2(p([h, h]) + p([k, k])1/2

≤
√
2
(
p([h, h])1/2 + p([k, k])1/2

)
=

√
2
(
p̃(h) + p̃(k)

)
.

This concludes the proof that p̃ is a quasi seminorm.
Also, since p̃ is the composition of the square root function

√
, a homeo-

morphism of R+ onto itself, with p and the quadratic map E ∋ x #→ [x, x] ∈ Z,
clearly p̃ is continuous with respect to the topology τE . This observation shows
that, if {pj}j∈J is a family of increasing seminorms generating the topology
of Z, then {p̃j}j∈J is a family of quasi seminorms generating τE . In particular,
(E ; τE) is a topological vector space.

We prove now that p̃ satisfies the triangle inequality, hence it is a semi-
norm. To see this, consider the unit quasi ball

Up̃ = {h ∈ E | p̃(h) < 1}.

Since p̃ is continuous, Up̃ is open, hence absorbing for each of its points. Since
p̃ is positively homogeneous, Up̃ is balanced. We prove that Up̃ is convex as
well. Let h, k ∈ Up̃ and 0 ≤ t ≤ 1 arbitrary. Then,

0 ≤ [th+ (1 − t)k, th+ (1 − t)k]

= t2[h, h] + (1 − t)2[k, k] + t(1 − t)
(
[h, k] + [k, h]

)

and then using (1.7),

≤ t2[h, h] + (1 − t)2[k, k] + t(1 − t)
(
[h, h] + [k, k]

)

= t[h, h] + (1 − t)[k, k],
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hence, since p is increasing, it follows

p̃(th+ (1 − t)k) = p
(
[th+ (1 − t)k, th+ (1 − t)k]

)1/2

≤
(
tp([h, h]) + (1 − t)p([k, k])

)1/2
< 1,

hence th+ (1 − t)k ∈ Up̃.
It is a routine exercise to show that p̃ is the gauge of Up̃

p̃(h) = inf{t > 0 | h ∈ tUp̃},

hence, by Proposition IV.1.14 in [10], it follows that p̃ is a seminorm.
Statement (4) is a consequence of the polarisation formula (1.1). !

From now on, any time we have a VE-space E over a topologically
ordered ∗-space Z, we consider on E the topology τE defined as in Lemma 1.3.
With respect to this topology, we call E a topological VE-space over Z. Denote

S(E) := SC(E) = {p̃C | C ∈ C}, (1.9)

where C is the collection of all open, absolutely convex and solid neigh-
bourhoods of the origin of Z as in (1.5). Note that S(E) is directed, more
precisely, given p̃C , p̃D ∈ S(E) consider S(Z) ∋ q := pC + pD and define
q̃(h) := q([h, h]E)1/2. Also note that S(E) is closed under positive scalar mul-
tiplication.

If Z is an admissible space and E is a topological VE-space whose local-
ly convex topology is complete, then E is called a VH-space (Vector Hilbert
space). Any topological VE-space E on an admissible space Z can be embed-
ded as a dense subspace of a VH-space H over Z, uniquely determined up to
an isomorphism, cf. Theorem 2 in [27].

Examples 1.4. (1) Any Hilbert moduleH over a C∗-algebraA, e.g. see [26,31],
can be viewed as a VH-space H over the admissible space A, see Exam-
ple 1.2.(1). In particular, any closed subspace S of H is a VH-space over the
admissible space A.

(2) Any Hilbert module H over a locally C∗-algebra A, e.g. see [19,39],
can be viewed as a VH-space H over the admissible space A, see Exam-
ple 1.2.(2). In particular, any closed subspace S of H is a VH-space over the
admissible space A.

(3) With notation as in Example 1.2.(5), consider C2 the ideal of Hilbert-
Schmidt operators on H. Then [A,B] = A∗B, for all A,B ∈ C2, is a gramian
with values in the admissible space C1 with respect to which C2 becomes a
VH-space. Observe that, since C1 is a normed admissible space, by Lemma 1.3
it follows that C2 is a normed VH-space, with norm ∥A∥2 = tr(|A|2)1/2, for
all A ∈ C2. More abstract versions of this example have been considered by
Saworotnow in [42].

(4) Let {Eα}α∈A be a family of VH-spaces such that, for each α ∈ A,
Eα is a VH-space over the admissible space Zα. As in Example 1.2, consider
the admissible space Z =

∏
α∈A Zα and the vector space E =

∏
α∈A Eα on

which we define

[(eα)α∈A, (fα)α∈A] = ([eα, fα])α∈A ∈ Z, (eα)α∈A, (fα)α∈A ∈ E .
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Then E is a VE-space over Z. On Z consider the topology generated by the
family of increasing seminorms {q(β)j } β∈A

j∈Jβ

defined at (1.4), with respect to

which Z becomes an admissible space. For each β ∈ A and each j ∈ Jβ , in
view of Lemma 1.3, consider the seminorm

q̃(β)j ((eα)α∈A) = p(β)j ([eα, eα])1/2, (eα)α∈A ∈ E .

The family of seminorms {q̃(β)j } β∈A
j∈Jβ

generates on E the topology with respect

to which it is a VH-space over Z.
(5) Let Z be an admissible space and E1, . . . , En VH-spaces over Z. On

E =
∏n

j=1 Ej define

[(ej)nj=1, (fj)
n
j=1]E =

n∑

j=1

[ej , fj ]Ej , (ej)nj=1, (fj)
n
j=1 ∈ E , (1.10)

and observe that (E ; [·, ·]E) is a VE-space over Z. In addition, for any p ∈ S(Z)
letting p̃ : E → R+ be defined as in (1.6), p̃(e) = p([e, e]E)1/2, for all e ∈ E , it
is easy to see that E is a VH-space over Z. It is clear that we can denote this
VH-space by

⊕n
j=1 Ej and call it the direct sum VH-space of the VH-spaces

E1, . . . , En.
(6) Let H be a Hilbert space and E a VH-space over the admissible

space Z. On the algebraic tensor product H ⊗ E define a gramian by

[h ⊗ e, l ⊗ f ]H⊗E = ⟨h, l⟩H[e, f ]E ∈ Z, h, l ∈ H, e, f ∈ E ,
and then extend it to H ⊗ E by linearity. It can be proven that, in this way,
H ⊗ E is a VE-space over Z. Since Z is an admissible space, H ⊗ E can
be topologised as in Lemma 1.3 and then completed to a VH-space H⊗̃E
over Z.

If H = Cn for some n ∈ N then, with notation as in item (5), it is clear
that Cn ⊗ E is isomorphic with

⊕n
j=1 Ej , with Ej = E for all j = 1, . . . , n.

Remark 1.5. If E and F are two VH-spaces over the same admissible space
Z, by Lc(E ,F) we denote the space of all continuous operators from E to
F . Let C0 be a system of open and absolutely convex neighbourhoods of the
origin defining the topology of Z. Since S(E) is directed and it is closed under
positive scalar multiplication, the continuity of a linear operator T ∈ L(E ,F)
is equivalent with: for any p ∈ SC0(F), there exists q ∈ S(E) and a constant
c ≥ 0 such that p(Th) ≤ c q(h) for all h ∈ E . We will use this fact frequently
in this article.

For E and F two VH-spaces over the same admissible space Z, we
denote by L∗

c(E ,F) the subspace of L∗(E ,F) consisting of all continuous and
continuously adjointable operators. Note that L∗

c(E) = L∗
c(E , E) is an ordered

∗-subalgebra of L∗(E).
Lemma 1.6. Let H be a topological VE-space over the topologically ordered
∗-space Z. Let T ∈ L∗

c(H) be a positive operator and p ∈ S(Z). Then there
exist q ∈ S(Z) and c(T, p) ≥ 0 such that

p([Th, h]H) ≤ c(T, p) q([h, h]H), h ∈ H.
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Proof. To a certain extent, we use an argument in [27]. From

[Th − h, Th − h]H = [Th, Th]H − 2[Th, h]H + [h, h]H ≥ 0,

and taking into account that T is positive, we obtain

0 ≤ 2[Th, h]H ≤ [Th, Th]H + [h, h]H.

From here, for any seminorm p ∈ S(Z), using that p is increasing, T is
continuous, and Remark 1.5, it follows that there exist q ∈ S(Z) and a
constant c(T, p) ≥ 0 such that, for all h ∈ H we have

p([Th, h]H) ≤ 1
2
(
p([Th, Th]H) + p([h, h]H)

)
≤ c(T, p) q([h, h]H). !

Let H1 and H2 be two VH spaces over the same admissible space Z,
with their family of seminorms S(H1) = {p̃H1 | p ∈ S(Z)} and, respectively,
S(H2) = {p̃H2 | p ∈ S(Z)}. Then the strict topology on L∗(H1,H2) is defined
by the seminorms T #→ p̃H2(T ξ) for p̃H2 ∈ S(H2), ξ ∈ H1 and T #→ p̃H1(T ∗η)
for p̃H1 ∈ S(H1), η ∈ H2, for all p ∈ S(Z) with the seminorms p̃H1 on H1 and
p̃H2 on H2 defined at (1.6). Equivalently, we can use all p ∈ SC0(Z), where
C0 is a collection of open, absolutely convex, and solid neighbourhoods of 0
and that generates the topology of Z, as in Sect. 1.2.

Lemma 1.7. Let H1 and H2 be two VH-spaces over the same admissible space
Z. Then L∗(H1,H2) with the strict topology is complete.

Proof. Let (Ti)i be a Cauchy net in L∗(H1,H2) with respect to the strict
topology. Then, (Tiξ)i is a Cauchy net in H2 for all ξ ∈ H1 and (T ∗

i η)i is a
Cauchy net in H1 for all η ∈ H1, since they are Cauchy with respect to all
seminorms in S(H2) and S(H1), respectively. Since H1 and H2 are complete,
we have that Tiξ −→

i
xξ and T ∗

i η −→
i
yη for some xξ ∈ H2 and yη ∈ H1.

Define the linear operators T : H1 → H2 by T ξ = xξ and R : H2 → H1

by Rη = yη. Then, by the continuity of the gramians, see Lemma 1.3, we
have

[T ξ, η]H2 = lim
i
[Tiξ, η]H2 = lim

i
[ξ, T ∗

i η]H1 = [ξ, Rη]H1 .

Therefore, T is adjointable with T ∗ = R, and Ti −→
i

T in the strict topology
of L∗(H1,H2). !

A subspaceM of a VH-space H is orthocomplemented, or accessible [27],
if every element h ∈ H can be written as h = g + k where g is in M and k
is such that [l, k] = 0 for all l ∈ M, that is, k is in the orthogonal companion
M⊥ of M. Observe that if such a decomposition exists it is unique and
hence the orthogonal projection PM onto M can be defined by PMh = g.
Any orthogonal projection P is selfadjoint and idempotent, in particular we
have [Ph, k] = [Ph, Pk] for all j, k ∈ H, hence P is positive and contractive,
in the sense [Ph, Ph] ≤ [h, h] for all h ∈ H, hence P is continuous. Conversely,
any selfadjoint idempotent operator is an orthogonal projection onto its range
subspace. Any orthocomplemented subspace is closed.
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2. Positive Semidefinite Kernels with Values Adjointable
Operators

Our main result is Theorem 2.10 that provides necessary and sufficient condi-
tions for a positive semidefinite kernel with values adjointable operators and
invariant under an action of a ∗-semigroup to give rise to a ∗-representation
of the given ∗-semigroup on a VH-space. We first provide some preliminary
results on positive semidefinite kernels with values adjointable operators in a
VE-space, cf. [5].

2.1. Kernels with Values Adjointable Operators

LetX be a nonempty set and letH be a VE-space over the ordered ∗-space Z.
A map k : X×X → L(H) is called a kernel on X and valued in L(H). In case
the kernel k has all its values in L∗(H), an adjoint kernel k∗ : X×X → L∗(H)
can be associated by k∗(x, y) = k(y, x)∗ for all x, y ∈ X. The kernel k is called
Hermitian if k∗ = k.

Let F = F(X;H) denote the complex vector space of all functions
f : X → H and let F0 = F0(X;H) be its subspace of those functions having
finite support. A pairing [·, ·]F0 : F0 × F0 → Z can be defined by

[g, h]F0 =
∑

y∈X

[g(y), h(y)]H, g, h ∈ F0. (2.1)

This pairing is clearly a Z-gramian on F0, hence (F0; [·, ·]F0) is a VE-space.
Another pairing [·, ·]k can be defined on F0 by

[g, h]k =
∑

x,y∈X

[k(y, x)g(x), h(y)]H, g, h ∈ F0. (2.2)

In general, the pairing [·, ·]k is linear in the second variable and conjugate
linear in the first variable. If, in addition, k = k∗ then the pairing [·, ·]k is
Hermitian as well, that is,

[g, h]k = [h, g]∗k, g, h ∈ F0.

A convolution operator K : F0 → F can be associated to the kernel
k by

(Kg)(y) =
∑

x∈X

k(y, x)g(x), g ∈ F0, (2.3)

and it is easy to see that K is a linear operator. There is a natural relation
between the pairing [·, ·]k and the convolution operator K given by

[g, h]k = [Kg, h]F0 , g, h ∈ F0.

Given n ∈ N, the kernel k is called n-positive if for any x1, x2, . . . , xn ∈
X and any h1, h2, . . . , hn ∈ H we have

n∑

i,j=1

[k(xi, xj)hj , hi]H ≥ 0. (2.4)

The kernel k is called positive semidefinite (or of positive type) if it is n-
positive for all natural numbers n.
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Lemma 2.1 (Lemma 3.1 from [17]). Assume that the kernel k : X × X →
L∗(H) is 2-positive. Then:

(1) k is Hermitian.
(2) If, for some x ∈ X, we have k(x, x) = 0, then k(x, y) = 0 for all

y ∈ X.
(3) There exists a unique decomposition X = X0 ∪ X1, such that X0 ∩

X1 = ∅, k(x, y) = 0 for all x, y ∈ X0 and k(x, x) ̸= 0 for all x ∈ X1.

Given an L∗(H)-valued kernel k on a nonempty set X, for some VE-
space H on an ordered ∗-space Z, a VE-space linearisation or, equivalently,
a VE-space Kolmogorov decomposition of k is, by definition, a pair (K;V ),
subject to the following conditions:
(vel1) K is a VE-space over the same ordered ∗-space Z.
(vel2) V : X → L∗(H,K) satisfies k(x, y) = V (x)∗V (y) for all x, y ∈ X.
The VE-space linearisation (K;V ) is called minimal if
(vel3) LinV (X)H = K.
Two VE-space linearisations (V ;K) and (V ′;K′) of the same kernel k are
called unitary equivalent if there exists a VE-space isomorphism U : K → K′

such that UV (x) = V ′(x) for all x ∈ X.
The uniqueness of a minimal VE-space linearisation (K;V ) of a positive

semidefinite kernel k, modulo unitary equivalence, follows in the usual way,
see [5].

Let H be a VE-space over the ordered ∗-space Z, and let X be a
nonempty set. A VE-space R, over the same ordered ∗-space Z, is called
an H-reproducing kernel VE-space on X if there exists a Hermitian kernel
k : X × X → L∗(H) such that the following axioms are satisfied:
(rk1) R is a subspace of F(X;H), with all algebraic operations.
(rk2) For all x ∈ X and all h ∈ H, theH-valued function kxh = k(·, x)h ∈ R.
(rk3) For all f ∈ R we have [f(x), h]H = [f, kxh]R, for all x ∈ X and h ∈ H.
As a consequence of (rk2), Lin{kxh | x ∈ X, h ∈ H} ⊆ R. The reproducing
kernel VE-space R is called minimal if the following property holds as well:
(rk4) Lin{kxh | x ∈ X, h ∈ H} = R.

Observe that ifR is anH-reproducing kernel VE-space onX with kernel
k, then k is positive semidefinite and uniquely determined by R hence, we
can talk about the H-reproducing kernel k corresponding to R. On the other
hand, a minimal reproducing kernel VE-space R is uniquely determined by
its reproducing kernel k.

Letting H be a VE-space over an ordered ∗-space Z, for X a nonempty
set, an evaluation operator Ex : F(X;H) → H can be defined for each x ∈ X
by letting Exf = f(x) for all f ∈ F(X;H). Clearly, Ex is linear. If R ⊆
F(X;H), with all algebraic operations, is a VE-space over Z, then R is an
H-reproducing kernel VE-space if and only if, for all x ∈ X, the restriction of
the evaluation operator Ex to R is adjointable as a linear operator R → H,
e.g. see [5].
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Proposition 2.2 (Proposition 2.4 in [5]). Let X be a nonempty set, H a VE-
space over an ordered ∗-space Z, and let k : X ×X → L∗(H) be a Hermitian
kernel.

(1) Any H-reproducing kernel VE-space R with kernel k is a VE-space
linearisation (R;V ) of k, with V (x) = kx for all x ∈ X.

(2) For any minimal VE-space linearisation (K;V ) of k, letting

R = {V (·)∗f | f ∈ K}, (2.5)

we obtain an H-reproducing kernel VE-space with reproducing kernel k.

Let a (multiplicative) semigroup Γ act on X, denoted by ξ · x, for all
ξ ∈ Γ and all x ∈ X. By definition, we have

α · (β · x) = (αβ) · x for all α,β ∈ Γ and all x ∈ X. (2.6)

Equivalently, this means that we have a semigroup morphism Γ ∋ ξ #→ ξ· ∈
G(X), where G(X) denotes the semigroup, with respect to composition, of
all maps X → X. In case the semigroup Γ has a unit ϵ, the action is called
unital if ϵ · x = x for all x ∈ X, equivalently, ϵ· = IdX .

Assume that Γ is a ∗-semigroup, that is, there is an involution ∗ on Γ:
(ξη)∗ = η∗ξ∗ and (ξ∗)∗ = ξ for all ξ, η ∈ Γ. Note that, in case Γ has a unit ϵ
then ϵ∗ = ϵ.

Given a VE-space H we consider those Hermitian kernels k : X × X →
L∗(H) that are invariant under the action of Γ on X, that is,

k(y, ξ · x) = k(ξ∗ · y, x) for all x, y ∈ X and all ξ ∈ Γ. (2.7)

A triple (K;π;V ) is called an invariant VE-space linearisation of the kernel
k and the action of Γ on X, shortly a Γ-invariant VE-space linearisation of
k, if:
(ikd1) (K;V ) is a VE-space linearisation of the kernel k.
(ikd2) π : Γ → L∗(K) is a ∗-representation, that is, a multiplicative

∗-morphism.
(ikd3) V and π are related by the formula: V (ξ ·x) = π(ξ)V (x), for all x ∈ X,

ξ ∈ Γ.
If (K;π;V ) is a Γ-invariant VE-space linearisation of the kernel k then

k is invariant under the action of Γ on X.
If, in addition to the axioms (ikd1)–(ikd3), the triple (K;π;V ) has the

property
(ikd4) LinV (X)H = K,
that is, the VE-space linearisation (K;V ) is minimal, then (K;π;V ) is called
a minimal Γ-invariant VE-space linearisation of k and the action of Γ on X.

Theorem 2.3 (Theorem 2.8 in [5]). Let Γ be a ∗-semigroup that acts on the
nonempty set X and let k : X ×X → L∗(H) be a kernel, for some VE-space
H over an ordered ∗-space Z. The following assertions are equivalent:

(1) k is positive semidefinite, in the sense of (2.4), and invariant under
the action of Γ on X, that is, (2.7) holds.

(2) k has a Γ-invariant VE-space linearisation (K;π;V ).
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(3) k admits an H-reproducing kernel VE-space R and there exists a ∗-
representation ρ : Γ → L∗(R) such that ρ(ξ)kxh = kξ·xh for all ξ ∈ Γ,
x ∈ X, h ∈ H.

In addition, in case any of the assertions (1), (2), or (3) holds, then a
minimal Γ-invariant VE-space linearisation can be constructed, any minimal
Γ-invariant VE-space linearisation is unique up to unitary equivalence, a pair
(R; ρ) as in assertion (3) with R minimal can be always obtained and, in this
case, it is uniquely determined by k as well.

Because we will use some of the constructions provided by the proof of
Theorem 2.3 we recall those needed. Assuming that k is positive semidefinite,
by Lemma 2.1.(1) it follows that k is Hermitian, that is, k(x, y)∗ = k(y, x)
for all x, y ∈ X. We consider the convolution operator K defined at (2.3) and
let G = G(X;H) be its range, more precisely,

G = {f ∈ F | f = Kg for some g ∈ F0}

=

{
f ∈ F | f(y) =

∑

x∈X

k(y, x)g(x) for some g ∈ F0 and all x ∈ X

}
.

(2.8)

A pairing [·, ·]G : G × G → Z can be defined by

[e, f ]G = [Kg, h]F0 =
∑

y∈X

[e(y), h(y)]H =
∑

x,y∈X

[k(y, x)g(x), h(y)]H, (2.9)

where f = Kh and e = Kg for some g, h ∈ F0. The pairing [·, ·]G is a Z-valued
gramian, that is, it satisfies all the requirements (ve1)–(ve3). (G; [·, ·]G) is a
VE-space that we denote by K. For each x ∈ X define V (x) : H → G by

V (x)h = Khx, h ∈ H, (2.10)

where hx = δxh ∈ F0 is the function that takes the value h at x and is null
elsewhere. Equivalently,

(V (x)h)(y) = (Khx)(y) =
∑

z∈X

k(y, z)(hx)(z) = k(y, x)h, y ∈ X. (2.11)

Note that V (x) is an operator from the VE-space H to the VE-space G = K
and it can be shown that V (x) is adjointable for all x ∈ X.

On the other hand, for any x, y ∈ X, by (2.11), we have

V (y)∗V (x)h = (V (x)h)(y) = k(y, x)h, h ∈ H,

hence (V ;K) is a VE-space linearisation of k and it is minimal as well, more
precisely, G is the range of the convolution operator K defined at (2.3).

For each ξ ∈ Γ let π(ξ) : F → F be defined by

(π(ξ)f)(y) = f(ξ∗ · y), f ∈ F , y ∈ X, ξ ∈ Γ. (2.12)

π(ξ) leaves G invariant. Denote by the same symbol π(ξ) the map π(ξ) : G →
G.
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π is a ∗-representation of the semigroup Γ on the complex vector space
G and, taking into account that k is invariant under the action of Γ on X,
for all ξ ∈ Γ, x, y ∈ X, h ∈ H, we have

(V (ξ ·x)h)(y) = k(y, ξ ·x)h = k(ξ∗ ·y, x)h = (V (x)h)(ξ∗ ·y) = (π(ξ)V (x)h)(y),
(2.13)

which proves (ikd3). Thus, (K;π;V ), here constructed, is a Γ-invariant VE-
space linearisation of the Hermitian kernel k. Note that (K;π;V ) is minimal,
that is, the axiom (ikd4) holds, since the VE-space linearisation (K;V ) is
minimal.

The construction of (K;π;V ) just presented is essentially a minimal
H-reproducing kernel VE-space one. In particular, it proves the statement
(3) as well. On the other hand, Proposition 2.2 provides an explicit connec-
tion between the collection of all minimal Γ-invariant VE-space linearisa-
tions (K;π;V ) of k, identified by unitary equivalence, and the unique min-
imal H-reproducing kernel VE-space R of k. On R a Z-valued gramian is
defined by

[V (·)∗f, V (·)∗g]R = [f, g]K, f, g ∈ K. (2.14)

2.2. VE-Module Linearisations

Given an ordered ∗-algebra A and a VE-module E over A, an E-reproducing
kernel VE-module over A is just an E-reproducing kernel VE-space over A,
with definition as in Sect. 2.1, which is also a VE-module over A.

Proposition 2.4. Let Γ be a ∗-semigroup that acts on the nonempty set X and
let k : X × X → L∗(H) be a kernel, for some VE-module H over an ordered
∗-algebra A. The following assertions are equivalent:

(1) k is positive semidefinite, in the sense of (2.4), and invariant under
the action of Γ on X, that is, (2.7) holds.

(2) k has a Γ-invariant VE-module (over A) linearisation (K;π;V ).
(3) k admits an H-reproducing kernel VE-module R and there exists a ∗-

representation ρ : Γ → L∗(R) such that ρ(ξ)kxh = kξ·xh for all ξ ∈ Γ,
x ∈ X, h ∈ H.

In addition, in case any of the assertions (1), (2), or (3) holds, then a
minimal Γ-invariant VE-module linearisation can be constructed, any mini-
mal Γ-invariant VE-module linearisation is unique up to unitary equivalence,
a pair (R; ρ) as in assertion (3) with R minimal can be always obtained and,
in this case, it is uniquely determined by k as well.

We briefly recall the construction made in the implication (1)⇒(2),
for later use. We first observe that, since H is a module over A, the space
F(X;H) has a natural structure of right module over A, more precisely, for
any f ∈ F(X;H) and a ∈ A

(fa)(x) = f(x)a, x ∈ X.

In particular, the space F0(X;H) is a submodule of F(X;H). On the other
hand, by assumption, for each x, y ∈ X, k(x, y) ∈ L∗(H), hence k(x, y) is
a module map. These imply that the convolution operator K : F0(X;H) →
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F(X;H) defined as in (2.3) is a module map. Indeed, for any f ∈ F0(X;H),
a ∈ A, and y ∈ X,

((Kf)a)(x) =
∑

x∈X

k(y, x)f(x)a = K(fa)(x).

Then, the space G(X;H) which, with the definition as in (2.8), is the range
of the convolution operator K, is a module over A as well.

When endowed with the A valued gramian [·, ·]G defined as in (2.9), we
have

[e, fa]G = [e, f ]G a, e, f ∈ G(X;H), a ∈ A. (2.15)
Indeed, let e = Kg and f = Kh for some g, h ∈ F0(X;H). Then,

[e, fa]G = [Kg, ha]F0 =
∑

y∈X

[e(y), h(y)a]H

=
∑

y∈X

[e(y), h(y)]Ha = [Kg, h]F0a = [e, f ]Ga.

From (2.15) and the proof of the implication (1)⇒(2) in Theorem 2.3, it
follows that K = G(X;H) is a VE-module over the ordered ∗-algebra A and
hence, the triple (K;π;V ) is a minimal Γ-invariant VE-module linearisation
of k.

2.3. VH-Space Linearisations and Reproducing Kernels

Let H be a VH-space over the admissible space Z, and consider a kernel
k : X ×X → L∗

c(H). A VH-space linearisation of k, or VH-space Kolmogorov
decomposition of k, is a pair (K;V ), subject to the following conditions:
(vhl1) K is a VH-space over the same ordered ∗-space Z.
(vhl2) V : X → L∗

c(H,K) satisfies k(x, y) = V (x)∗V (y) for all x, y ∈ X.
The VH-space linearisation (K;V ) is called minimal if
(vhl3) LinV (X)H is dense in K.

It is useful to observe that any VH-space linearisation is a VE-space lineari-
sation with some differences between them: the former requires that both the
kernel k and all the operators V (x), x ∈ X, are all continuous and continu-
ously adjointable operators. As concerning minimality, the two concepts are
significantly different.

Two VH-space linearisations (V ;K) and (V ′;K′) of the same kernel k
are called unitary equivalent if there exists a unitary operator U : K → K′

such that UV (x) = V ′(x) for all x ∈ X.
The uniqueness of a minimal VH-space linearisation (K;V ) of a positive

semidefinite kernel k, modulo unitary equivalence, follows in the usual way,
taking into account that unitary operators are continuous, e.g. see [17].

A VH-space R over the ordered ∗-space Z is called an H-reproducing
kernel VH-space on X if there exists a Hermitian kernel k : X ×X → L∗

c(H)
such that the following axioms are satisfied:
(rk1) R is a subspace of F(X;H), with all algebraic operations.
(rk2) For all x ∈ X and all h ∈ H, theH-valued function kxh = k(·, x)h ∈ R.
(rk3) For all f ∈ R we have [f(x), h]H = [f,kxh]R, for all x ∈ X and h ∈ H.
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(rk4) For all x ∈ X the evaluation operator R ∋ f #→ f(x) ∈ H is continu-
ous.

Note that, when comparing a reproducing kernel VH-space with a reproduc-
ing kernel VE-space, for the same kernel k, there are at least two differences.
First, in the former, we have a VH-space and the values of the kernel are all
continuous and continuously adjointable operators. Second, the axiom (rk4)
is new even when compared to the classical case of reproducing kernel Hilbert
spaces, when this is actually a consequence of the other axioms. As the fol-
lowing result shows, these differences have consequences that differentiate the
reproducing kernel VH-space from the reproducing kernel VE-space and from
the reproducing kernel Hilbert space.

Lemma 2.5. Let R be an H-reproducing kernel VH-space with reproducing
kernel k.

(1) For any x ∈ X, kx ∈ L∗
c(H,R).

(2) For any x, y ∈ X, k(x, y) = k∗
xky.

(3) k is positive semidefinite.
(4) The orthogonal space of Lin{kxh | x ∈ X, h ∈ H} ⊆ R is the null

space.
(5) k is uniquely determined by R.

Proof. Clearly, for arbitrary x ∈ X, the map kx : H → R is a linear operator.
From (rk3) it follows that kx is adjointable and its adjoint k∗

x is Ex : R → H,
the evaluation operator Ex(f) = f(x), for f ∈ R which, by (rk4), is assumed
to be continuous. On the other hand, by (rk3), for arbitrary x, y ∈ X, we
have

[kxh,kyg]R = [(kxh)(y), g]H = [k(y, x)h, g]H, h, g ∈ H,

hence the assertion (2) is proven. In particular, k(x, x) = k∗
xkx is a positive

operator. Since, by assumption, k(x, x) ∈ L∗
c(H), we can apply Lemma 1.6

and obtain that, for every seminorm p ∈ S(Z) there exist a seminorm q ∈
S(Z) and a constant c ≥ 0 such that

p([kxh,kxh]R) = p([k(x, x)h, h]H) ≤ c q([h, h]), h ∈ H,

hence kx is continuous. This concludes the proof of assertion (1).
Let n ∈ N, x1, . . . , xn ∈ X, and h1, . . . , hn ∈ H be arbitrary. Then

n∑

j,k=1

[k(xj , xk)hk, hj ]H =
n∑

j,k=1

[k∗
xj
kxkhk, hj ]H =

[
n∑

k=1

kxkhk,
n∑

j=1

kxjhj

]

R

≥ 0,

hence assertion (3) is proven.
Let f ∈ R be an H-valued function orthogonal to all H-valued functions

kxh, with x ∈ X and h ∈ H. By (rk3), for each x ∈ X,

0 = [f,kxh]R = [f(x), h]H, h ∈ H,

and hence, since the gramian [·, ·]H is nondegenerate it follows that f(x) = 0.
Therefore, f = 0 and assertion (4) is proven as well.

In order to see that assertion (5) is true, observe that once the H-
reproducing kernel VH-space R on the set X is given, all the evaluation
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operators Ex are uniquely determined by R. Since Ex = k∗
x, from (2) it

follows
k(y, x) = k∗

ykx = EyE
∗
x, x, y ∈ X,

hence the kernel k is uniquely determined by R. !

Assertion (4) in the previous lemma says that reproducing kernel VH-
spaces have a built-in minimality property but, due to the fact that not
any closed subspace of a VH-space is orthocomplemented, the following def-
inition makes sense. An H-reproducing kernel VH-space R on X is called
minimal if

(5) Lin{kxh | x ∈ X, h ∈ H} is dense in R.

Proposition 2.6. Let H be a VH-space over some admissible space Z and k
an L∗

c(H)-valued kernel on X and assume that there exists an H-reproducing
kernel VH-space K on X with reproducing kernel k.

(1) The closure of Lin{kxh | x ∈ X, h ∈ H} in K is a minimal H-
reproducing kernel VH-space on X with kernel k.

(2) If R is another minimal H-reproducing kernel VH-space on X with
the same reproducing kernel k, then R ⊆ K. In particular, the minimal H-
reproducing kernel VH-space on X with reproducing kernel k is unique.

Proof. (1) This statement is clear from the axioms (rk1)–(rk4).
(2) Clearly, L = Lin{kxh | x ∈ X, h ∈ H} is contained in both R and

K. In addition,
[f, g]R = [f, g]K, f, g ∈ L,

and, with notation as in Lemma 1.3, we have p̃R|L = p̃K|L and hence τR|L =
τK|L. By the minimality of R, for any f ∈ R there exists a net (fi)i in L
such that fi

τR−−→
i

f and

[f(x), h]H = [f,kxh]R = lim
i
[fi,kxh]R, x ∈ X, h ∈ H.

But, (fi)i is a Cauchy net in (L; τR|L) = (L; τK|L) and hence, there exists
g ∈ K such that fi

τK−−→
i

g, which implies

[g(x), h]H = [g,kxh]K = lim
i
[fi,kxh]K.

Since, for arbitrary fixed x ∈ X and h ∈ H we have

[fi,kxh]K = [fi,kxh]R, for any i,

taking into account that Z is separated, it follows

[f(x), h]H = [g(x), h]H, x ∈ X, h ∈ H,

hence f = g ∈ R. This proves R ⊆ K. !

Observe that, given X a nonempty set and H a VH-space, for any
x ∈ X one can define a general evaluation operator Ex : F(X;H) → H by
Ex(f) = f(x), for all f ∈ F(X;H). In particular, evaluation operators can
be defined if instead of F(X;H) we can consider any vector subspace S of
F(X;H).
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Proposition 2.7. Let X be a nonempty set, H a VH-space over an admissible
space Z, and let R ⊆ F(X;H), with all algebraic operations, be a VH-space
over Z. Then R is an H-reproducing kernel VH-space if and only if, for all
x ∈ X, the evaluation operator Ex ∈ L∗

c(R,H), that is, Ex is continuous and
continuously adjointable.

Proof. Assume first that R is an H-reproducing kernel VH-space on X and
let k be its reproducing kernel. For any h ∈ H and any f ∈ R we have

[Exf, h]H = [f(x), h]H = [f,kxh]R. (2.16)

Since kx ∈ L(H,R), it follows that Ex is adjointable and, in addition, E∗
x =

kx, for all x ∈ X. It was proven in Lemma 2.5 that kx ∈ L∗
c(H,R), hence

Ex ∈ L∗
c(R,H).

Conversely, assume that, for all x ∈ X, the evaluation operator Ex ∈
L∗
c(R,H). Equation (2.16) suggests to define the kernel k in the following

way:
k(y, x)h = (E∗

xh)(y), x, y ∈ X, h ∈ H. (2.17)
Then k(y, x) : H → H is a linear operator and, letting kx = k(·, x) for all
x ∈ X, we have kxh = E∗

xh for all x ∈ X and all h ∈ H. The reproducing
property (rk3) holds:

[f(x), h]H = [Exf, h]H = [f,E∗
xh]R = [f,kxh]R, f ∈ R, h ∈ H, x ∈ X.

The axioms (rk1), (rk2), and (rk3) are clearly satisfied. We prove that k is a
Hermitian kernel. To see this, fix x, y ∈ X and h, l ∈ H. Then

[k(y, x)h, l]H = [(kxh)(y), l]H = [kxh,kyl]R
= [kyl,kxh]∗R = [k(x, y)l, h]∗R = [h,k(x, y)l]R.

Therefore, k(y, x) is adjointable and k(y, x)∗ = k(x, y), hence k is a Hermit-
ian kernel. We have proven that k is the reproducing kernel of R. !

There is a very close connection between VH-space linearisations and
reproducing kernel VH-spaces, similar, to a certain extent, to the connection
between VE-space linearisations and reproducing kernel VE-spaces, as in
Proposition 2.2.

Proposition 2.8. Let X be a nonempty set, H a VH-space over an admissible
space Z, and let k : X × X → L∗

c(H) be a Hermitian kernel.
(1) For any VH-space linearisation (K;V ) of k, letting K0 denote the

closure of the linear span of V (X)H in K and V0(x)h := V (x)h ∈ K0, for all
x ∈ X and all h ∈ H, we obtain a minimal VH-space linearisation (K0;V0)
of k.

(2) For any minimal VH-space linearisation (K;V ) of k, letting

R = {V (·)∗f | f ∈ K}, (2.18)

we obtain the minimal H-reproducing kernel VH-space with reproducing ker-
nel k.

(3) Any H-reproducing kernel VH-space R with kernel k is a VH-space
linearisation (R;V ) of k, with V (x) = kx for all x ∈ X. In addition, the



Vol. 87 (2017) Representations of ∗-Semigroups Associated to. . . 285

H-reproducing kernel VH-space R is minimal if and only if the VH-space
linearisation (R;V ) is minimal.

Proof. (1) Clearly K0 is a VH-subspace of K. By its very definition, V0(x) ∈
Lc(H,K0), for all x ∈ X. Fixing x ∈ X, we consider the linear operator
W (x) = V (x)∗|K0 : K0 → H and observe that W (x) ∈ Lc(K0,H). Then,

[W (x)k, h]H = [V (x)∗k, h]H = [k, V (x)h]K
= [k, V (x)h]Ko = [k, V0(x)h]K0 , h ∈ H, k ∈ K0,

hence W (x) is the adjoint operator of V0(x), hence V0(x) ∈ L∗
c(H,K0). In

addition,

[V0(x)∗V0(y)h, g]H = [V0(y)h, V0(x)g]K0 = [V (y)h, V (x)g]K
= [V (x)∗V (y)h, g]H = [k(x, y)h, g]H, h, g ∈ H,

hence (K0;V0) is a VH-space linearisation of k. Since, by definition, K0 co-
incides with the closure of the linear span of V0(X)H, it follows that it is
minimal as well.

(2) Let (K;π;V ) be a minimal VH-space linearisation of the kernel k.
DefineR as in (2.18) that is,R consists of all functionsX ∋ x #→ V (x)∗f ∈ H,
in particular R ⊆ F(X;H), and we endow R with the algebraic operations
inherited from the complex vector space F(X;H). We consider the corre-
spondence

K ∋ f #→ Uf = V (·)∗f ∈ R. (2.19)
From Proposition 2.2, we know that (R; [·, ·]R) with the Z-gramian [Uf,Ug]R
= [f, g]K is a VE-space, that U : K → R is a unitary operator of VE-spaces
K and R, and that (R; [·, ·]R) is an H-reproducing kernel VE-space with re-
producing kernel k. In addition, by (2.19) and the definition of the natural
topology of a VH-space, see Lemma 1.3, it follows that U is a homeomorphis-
m, hence R is a VH-space. Therefore, the axioms (rk1)–(rk3) hold and the
minimality of R follows from the minimality of K. It only remains to show
that the axiom (rk4) holds as well.

We show that kx ∈ L∗
c(H,R) for all x ∈ X. First recall that kx ∈

L∗(H,R) for all x ∈ X by the reproducing kernel axiom. We first prove that
kx is continuous. By the continuity of V (x) for arbitrary x ∈ X, for any
p ∈ S(Z) there exist q ∈ S(Z) and cp(x) ≥ 0 such that, for all h ∈ H,

p([kx(h),kx(h)]R) = p([kxh,kxh]R) = p([V (x)h, V (x)h]K)≤cp(x) q([h, h]H),

hence kx is continuous.
Finally we show that k∗

x is continuous. Let p ∈ S(Z). Then, by the
continuity of V (x)∗ for arbitrary x ∈ X, for some q ∈ S(Z) and cp(x) ≥ 0,
we have

p([k∗
xf,k

∗
xf ]H) = p([f(x), f(x)]H) = p([V (x)∗g, V (x)∗g]H)

≤ cp(x) q([g, g]K) = cp(x) q([Ug,Ug]R)
= cp(x) q([f, f ]R), f ∈ R,

where g ∈ K is the unique vector such that Ug = V (·)∗g = f . Hence the
continuity of k∗

x is proven.
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(3) Assume that (R; [·, ·]R) is an H-reproducing kernel VH-space on X,
with reproducing kernel k. We let K = R and define V (x) : H → K by

V (x)h = kxh, x ∈ X, h ∈ H. (2.20)

Then, V (x) ∈ L∗(H,K), with V (x)∗ : f ∋ K = R #→ f(x) ∈ H for all
x ∈ X. From Lemma 2.5, we see that, actually, V (x) ∈ L∗

c(H,K) and that
V (y)∗V (x) = k(y, x) for all x, y ∈ X. Thus, (K;V ) is a VH-space linearisation
of k. !

Let us observe that, until now, we did not say anything about the exis-
tence of reproducing kernel VH-spaces or, equivalently, of VH-space lineari-
sations, associated to a given positive semidefinite H-kernel. This question is
considered in the next subsection and answered in Corollary 2.12, as a con-
sequence of Theorem 2.10, by providing a necessary and sufficient condition
(b2). We present some cases when this boundedness condition is automat-
ically fulfilled, for example, in Sect. 2.5 for a class of positive semidefinite
kernels having a certain property of m-topologisability, or the case when H
is a Hilbert module over a locally C∗-algebra, see in Sect. 3.2.

2.4. Dilation in VH-Spaces

Let H be a VH-space over an admissible space Z, let k : X × X → L∗
c(H)

be a kernel on some nonempty set X, and let Γ be a ∗-semigroup that acts
at left on X. As in the case of VE-space operator valued kernels, we call k
Γ-invariant, if (2.7) holds. A triple (K;π;V ) is called a Γ-invariant VH-space
linearisation for k if
(ihl1) (K;V ) is a VH-space linearisation of k.
(ihl2) π : Γ → L∗

c(K) is a ∗-representation.
(ihl3) V (ξ · x) = π(ξ)V (x) for all ξ ∈ Γ and all x ∈ X.
Also, (K;π;V ) is minimal if the VH-space linearisation (K;V ) is minimal,
that is, K is the closure of the linear span of V (X)H.

Remark 2.9. Let (K;π;V ) be a Γ-invariant VH-space linearisation for the
positive semidefinite kernel k : X × X → L∗

c(H) and consider the minimal
VH-space linearisation (K0;V0) as in Proposition 2.8, that is, K0 is the closure
of the linear span of V (X)H and V0 : X → L∗

c(H,K0) is defined by V0(x)h =
V (x), for all x ∈ X and all h ∈ H. We observe that for every ξ ∈ Γ, the
operator π(ξ) leaves K0 invariant: for any x ∈ X and any h ∈ H, by (ihl3) we
have π(ξ)V (x)h = V (ξ · x)h ∈ K0, and then use linearity and continuity of
π(ξ). Thus, we can define π0 : Γ → L∗

c(K0) by π0(ξ)k = π(ξ)k ∈ K0 for any
ξ ∈ Γ and any k ∈ K0. Then, it is easy to see that (K0;π0;V0) is a minimal
Γ-invariant linearisation of k.

The following is a topological version of Theorem 2.3.

Theorem 2.10. Let Γ be a ∗-semigroup that acts on the nonempty set X and
let k : X ×X → L∗

c(H) be a kernel, for some VH-space H over an admissible
space Z. Then the following assertions are equivalent:
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(1) k is positive semidefinite, in the sense of (2.4), and invariant under the
action of Γ on X, that is, (2.7) holds, and, in addition, the following
conditions hold:
(b1) For any ξ ∈ Γ and any seminorm p ∈ S(Z), there exists a semi-

norm q ∈ S(Z) and a constant cp(ξ) ≥ 0 such that for all n ∈ N,
{hi}ni=1 ∈ H, {xi}ni=1 ∈ X we have

p
( n∑

i,j=1

[k(ξ · xi, ξ · xj)hj , hi]H
)

≤ cp(ξ) q
( n∑

i,j=1

[k(xi, xj)hj , hi]H
)
.

(b2) For any x ∈ X and any seminorm p ∈ S(Z), there exists a
seminorm q ∈ S(Z) and a constant cp(x) ≥ 0 such that for all
n ∈ N, {yi}ni=1 ∈ X, {hi}ni=1 ∈ H we have

p
( n∑

i,j=1

[k(x, yi)hi,k(x, yj)hj ]H
)

≤ cp(x) q
( n∑

i,j=1

[k(yj , yi)hi, hj ]H
)
.

(2) k has a Γ-invariant VH-space linearisation (K;π;V ).
(3) k admits an H-reproducing kernel VH-space R and there exists a ∗-

representation ρ : Γ → L∗
c(R) such that ρ(ξ)kxh = kξ·xh for all ξ ∈ Γ,

x ∈ X, h ∈ H.
In addition, in case any of the assertions (1), (2), or (3) holds, then

a minimal Γ-invariant VH-space linearisation of k can be constructed, any
minimal Γ-invariant VH-space linearisation of k is unique up to unitary e-
quivalence, and the pair (R; ρ) as in assertion (3) is uniquely determined by
k as well.

Proof. (1)⇒(2). We consider the notation and the minimal Γ-invariant VE-
space linearisation (G;V ;π) defined as in (2.8)–(2.12). Consider the VE-space
(G; [·, ·]G) with its natural topology defined as in Sect. 1.3. We show that, for
all ξ ∈ Γ, π(ξ) is continuous as a linear operator on the locally convex space
G. By the boundedness condition (b1), for any p ∈ S(Z) there exists q ∈ S(Z)
and cp(ξ) ≥ 0 such that, for all f ∈ G, with f = Kg for some g ∈ F0, we
have

p ([π(ξ)f,π(ξ)f ]G) = p([π(ξ∗)π(ξ)f, f ]G) = p([π(ξ∗ξ)f, f ]G)

= p
( ∑

x,y∈X

[k(ξ∗ξ · y, x)g(x), g(y)]H
)

= p
( ∑

x,y∈X

[k(ξ · y, ξ · x)g(x), g(y)]H
)

≤ cp(ξ) q
( ∑

x,y∈X

[k(y, x)g(x), g(y)]H
)

= cp(ξ) q([f, f ]G).

Hence the continuity of π(ξ) is proven.
Let K be the VH-space completion of the VE-space G. It follows that

π(ξ) extends uniquely to a continuous operator on K and that π is a ∗-
representation of Γ in L∗

c(K).
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We now show that all the operators V (x) defined as in (2.10) are con-
tinuous as linear operators defined on H and with values in G. Fix x ∈ X and
p ∈ S(Z), but arbitrary. By Lemma 1.6, for some q ∈ S(Z) and cp(x) ≥ 0,
for all h ∈ H we have

p([V (x)h, V (x)h]G) = p([V (x)∗V (x)h, h]H)
= p([k(x, x)h, h]H) ≤ cp(x) q([h, h]H).

This proves the continuity of V (x).
On the other hand, the operators V (x)∗ obtained as in Theorem 2.3 are

continuous on G for all x ∈ X. To see this, using the boundedness condition
(b2), for any p ∈ S(Z) there exist q ∈ S(Z) and cp(x) ≥ 0 such that, for all
f ∈ G we have

p([V (x)∗f, V (x)∗f ]H) = p([f(x), f(x)]H)

= p
( ∑

y,z∈X

[k(x, y)g(y),k(x, z)g(z)]H
)

≤ cp(x)q
( ∑

y,z∈X

[k(z, y)g(y), g(z)]H
)
= cp(x) q([f, f ]G),

where Kg = f for some g ∈ F0. Hence V (x)∗ is continuous and, consequently,
it extends uniquely to a continuous operator V (x)∗ : K → H. A continuity
argument establishes the fact that V (x) : H → K is adjointable with adjoint
V (x)∗ : K → H. Hence V (x) ∈ L∗

c(H,K). By (2.11) we obtain V (y)∗V (x) =
k(y, x) for all x, y ∈ X, and by (2.13) π(ξ)V (x) = V (ξ · x) for all ξ ∈ Γ
and x ∈ X. Therefore (K;π;V ) is a Γ-invariant VH-space linearisation of
k. Clearly, it is minimal. The uniqueness of the minimal invariant VH-space
linearisation follows as usually.

(2)⇒(1). Let (K;π;V ) be a Γ-invariant VH-space linearisation of k. We
already know from Theorem 2.3 that k is positive semidefinite and that k
is invariant under the action of Γ on X. To show that (b1) holds, letting
p ∈ S(Z) be a seminorm and ξ ∈ Γ, since the operator π(ξ) is continuous,
there exist q ∈ S(Z) and cp(ξ) ≥ 0, such that, for all n ∈ N, {hi}ni=1 ∈ H,
{xi}ni=1 ∈ X, we have

p
( n∑

i,j=1

[k(ξ · xi, ξ · xj)hj , hi]H
)
= p

( n∑

i,j=1

[V (ξ · xi)
∗V (ξ · xj)hj , hi]H

)

= p
( n∑

i,j=1

[V (ξ · xj)hj , V (ξ · xi)hi]K
)

= p
([

π(ξ)
( n∑

j=1

V (xj)hj

)
,π(ξ)

( n∑

i=1

V (xi)hi

)]

K

)

≤ cp(ξ) q
([ n∑

j=1

V (xj)hj ,
n∑

i=1

V (xi)hi

]

K

)

= cp(ξ) q
( n∑

i,j=1

[k(xi, xj)hj , hi]H

)
.
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We show that (b2) holds. Let x ∈ X and p ∈ S(Z) be fixed. Since the
operator V (x)∗ ∈ L(K,H) is continuous, for some q ∈ S(Z) and cp(x) ≥ 0,
and arbitrary n ∈ N, {yi}ni=1 ∈ X, {hi}ni=1 ∈ H, we have

p
( n∑

i,j=1

[k(x, yi)hi,k(x, yj)hj ]H

)
=p

([
V (x)∗

( n∑

i=1

V (yi)hi

)
,V (x)∗

( n∑

j=1

V (yj)hj

)]

H

)

≤ cp(x) q
([ n∑

i=1

V (yi)hi,
n∑

j=1

V (yj)hj

]

H

)

= cp(x) q
( n∑

i,j=1

[k(yj , yi)hi, hj ]H
)
.

(2)⇒(3). Basically, this is a consequence of Proposition 2.2. Here are
the details. Let (K;π;V ) be a minimal Γ-invariant VH-space linearisation of
the kernel k and the action of Γ on X. Defining R as in (2.18), from Propo-
sition 2.2 it follows that R has a natural structure of minimal H-reproducing
kernel VH-space with reproducing kernel k. Letting ρ(ξ) = Uπ(ξ)U−1, where
U : K → R is the unitary operator defined as in (2.19), we obtain a ∗-
representation of Γ on the VH-space R such that kξ·x = ρ(ξ)kx for all ξ ∈ Γ
and x ∈ X. By continuity of π(ξ) for any ξ ∈ Γ, ρ(ξ) is continuous for any
ξ ∈ Γ as well.

(3)⇒(2). Assume that (R; [·, ·]R) is an H-reproducing kernel VH-space
on X, with reproducing kernel k and ρ : Γ → L∗

c(R) is a ∗-representation
such that kξ·x = ρ(ξ)kx for all ξ ∈ Γ and x ∈ X. We let K = R and define
V (x) : H → K by

V (x)h = kxh, x ∈ X, h ∈ H.

By Proposition 2.2, it follows that (K;V ) is a VH-space linearisation of k.
Then, letting π = ρ, (K;π;V ) is a minimal Γ-invariant VH-space linearisation
of k. !

Remarks 2.11. (1) With notation as in Theorem 2.10, let C0 be a family
of open, absolutely convex and solid neighbourhoods of the origin defining
the topology of Z, and let SC0(Z) = {pC | C ∈ C0} be defined as in Sec-
tion 1.2. Then, the boundedness conditions (b1) and (b2) in the assertion (1)
of Theorem 2.10 can, equivalently, be stated only for all p ∈ SC0(Z).

(2) In the particular case when Γ is a group and ξ∗ = ξ−1 for all ξ ∈ Γ,
the boundedness condition (i) in assertion (1) is always fulfilled, due to the
Γ-invariance of the kernel k.

As a consequence of Theorem 2.10, for a given positive semidefinite H-
kernel k, we can show that the boundedness condition (b2) is necessary and
sufficient for the existence of a VH-space linearisation and, equivalently, for
the existence of an H-reproducing kernel VH-space associated to k.

Corollary 2.12. Let k be a positive semidefinite H-kernel on X, for some
VH-space H over an admissible space Z. Then, the following assertions are
equivalent:
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(1) The following condition holds:
(b2) For any x ∈ X and any seminorm p ∈ S(Z), there exists a

seminorm q ∈ S(Z) and a constant cp(x) ≥ 0 such that for all
n ∈ N, {yi}ni=1 ∈ X, {hi}ni=1 ∈ H we have

p
( n∑

i,j=1

[k(x, yi)hi,k(x, yj)hj ]H
)

≤ cp(x) q
( n∑

i,j=1

[k(yj , yi)hi, hj ]H
)
.

(2) k has a VH-space linearisation (K;V ).
(3) k admits an H-reproducing kernel VH-space R.

2.5. Condition (b2) of Theorem 2.10

Condition (b2) of Theorem 2.10 for a positive semidefinite kernel can be
considered as a weaker version of an inequality for positive semidefinite k-
ernels taking values in B∗(H), obtained in Proposition 3.2. of [17], where H
is a VH-space and B∗(H) is the C∗-algebra of all adjointable and bounded,
in Loynes sense, operators on H, cf. [27]. Consequently, it is natural to ask
to which extent of generality condition (b2) is automatically satisfied or not.
Here, we show a rather general class of L∗

c(H) valued kernels, for an arbitrary
topological VE-space H, that guarantees the validity of condition (b2).

We first prove a Schwarz type inequality for positive operators.

Lemma 2.13. Let T ∈ L∗(H) be a positive operator on a topological VE-space
H over the topologically ordered ∗-space Z. Let p ∈ S(Z). Then

p([Th, h]) ≤ p([Th, Th])
1
2 p([h, h])

1
2 , h ∈ H.

Proof. For any h1, h2 ∈ H and any number λ > 0 we have

0 ≤ [h1 − λh2, h1 − λh2]

= [h1, h1] + λ2[h2, h2] − λ[h2, h1] − λ[h1, h2].

By definition of the partial ordering on Z and dividing by λ we obtain

[h2, h1] + [h1, h2] ≤ 1
λ
[h1, h1] + λ[h2, h2]. (2.21)

Letting h1 := h, h2 := Th in (2.21), since T is positive, applying p on both
sides of (2.21), and taking into account that p is increasing, we obtain

2p([Th, h]) ≤ 1
λ
p([h, h]) + λp([Th, Th]), h ∈ H. (2.22)

Since the left-hand side in (2.22) does not depend on λ > 0, it follows that,
for any h ∈ H, we have
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2p([Th, h]) ≤ inf
λ>0

1
λ
p([h, h]) + λp([Th, Th]) = p([Th, Th])

1
2 p([h, h])

1
2 . !

We now reformulate Lemma 2.13 in case of a positive semidefinite kernel.

Lemma 2.14. Let k : X×X → L∗(H) be a positive semidefinite kernel, where
H is a topological VE-space over a topologically ordered ∗-space Z. Then
for every p ∈ S(Z), n ∈ N, x, {yi}ni=1 ∈ X and {hi}ni=1 ∈ H we have the
inequality

p
( n∑

i,j=1

[k(x, yi)hi,k(x, yj)hj ]
)

≤ p
( n∑

i,j=1

[k(x, x)k(x, yi)hi,k(x, yj)hj ]
) 1

2
p
( n∑

i,j=1

[k(yi, yj)hj , hi]
) 1

2
.

Proof. By Theorem 2.3, there is a minimal VE-space linearisation (K;π;V )
of k, where Γ = {ϵ} is the trivial ∗-group and the unital action of Γ on X. For
each fixed x ∈ X, consider the positive operator T := V (x)V (x)∗ : K → K
and for arbitrary {yi}ni=1 ∈ X and all {hi}ni=1 ∈ H the corresponding element
h :=

∑n
i=1 V (yi)hi ∈ K. Given any p ∈ S(Z), by applying Lemma 2.13 for

these T and h, and taking into account that V (z)∗V (t) = k(z, t) for any
z, t ∈ X, we obtain the required inequality. !

For a topological VE-space H over the topologically ordered ∗-space Z,
following [52], an operator T ∈ L(H) is called m-topologisable if for every
p ∈ S(Z), there exists a constant Dp ≥ 0 and a continuous seminorm r on H
such that, for every n ∈ N and every h ∈ H,

p̃(Tnh) = p([Tnh, Tnh])
1
2 ≤ Dn

p r(h). (2.23)

Observe that, m-topologisable operators are those continuous linear operators
T : H → H for which there is a certain control of the growth of their powers
uniformly on H.

The inequality in the following lemma, which can be viewed as a stronger
version of the inequality from Lemma 1.6 for the special case of an m-
topologisable positive operator, is a generalisation of the celebrated Krein-
Reid-Lax-Dieudonné inequality; the iteration method through which we ob-
tain it is following a similar idea as that in [24,25,40], and [11]. This iteration
method is used also in Proposition 2.6 in [36] in order to prove that any ad-
jointable everywhere defined operator on a Hillbert C∗-module is bounded in
the sense of Loynes [28].

Lemma 2.15. Let T ∈ L∗(H) be an m-topologisable positive operator on a
topological VE-space H over the topologically ordered ∗-space Z. Let p ∈ S(Z).
Then there is a constant C, depending only on T and p, such that

p([Th, h]) ≤ C p([h, h]), h ∈ H.
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Proof. Using the fact [T 2nh, T 2nh] = [T 2 2nh, h] for any h ∈ H and any n ∈ N,
as well as successively applying Lemma 2.13, we obtain

p([Th, h]) ≤ p([Th, Th])
1
2 p([h, h])

1
2

≤ p([T 2h, T 2h])
1
4 p([h, h])

1
2+

1
4

...

≤ p([T 2nh, T 2nh])
1

2n+1 p([h, h])
1
2+

1
4+···+ 1

2n+1

≤ D
2n
2n
p r(h)

1
2n p([h, h])

1
2+

1
4+···+ 1

2n+1 ,

where the last inequality follows from the m-topologisability of T , with some
constant Dp. Taking limits as n → ∞, we obtain the required inequality with
C = Dp. !

Remark 2.16. The conclusion of Lemma 2.15 can be obtained for a class
of positive operators T larger than that of m-topologisable ones, namely, in
(2.23) it is sufficient that r : H → [0,+∞) is an arbitrary function.

It now follows that if an m-topologisability condition is imposed on
the kernel k, a stronger inequality than that in condition (b2) of Theorem
2.10 is obtained. In particular, this kind of kernels always have VH-space
linearisation, equivalently, their reproducing kernel VH-spaces always exist.

Proposition 2.17. Let k : X × X → L∗(H) be a positive semidefinite kernel,
where H is a topological VE-space over a topologically ordered ∗-space Z.
Assume that for every x ∈ X, the operator k(x, x) is m-topologisable. Then,
for any x ∈ X and any seminorm p ∈ S(Z), there exists a constant cp(x) ≥ 0
such that for all n ∈ N, {yi}ni=1 ∈ X, {hi}ni=1 ∈ H we have

p
( n∑

i,j=1

[k(x, yi)hi,k(x, yj)hj ]
)

≤ cp(x) p
( n∑

i,j=1

[k(yj , yi)hi, hj ]
)
.

Proof. Since k(x, x) is an m-topologisable positive operator, by taking T :=
k(x, x) and h :=

∑n
i=1 k(x, yi)hi in Lemma 2.15, for some constant cp(x) ≥ 0

we have

p
( n∑

i,j=1

[k(x, x)k(x, yi)hi,k(x, yj)hj ]
)

≤ cp(x) p
( n∑

i,j=1

[k(x, yi)hi,k(x, yj)hj ]
)
.

(2.24)
Then, by Lemma 2.14, we have

p
( n∑

i,j=1

[k(x, yi)hi,k(x, yj)hj ]
)

≤ p
( n∑

i,j=1

[k(x, x)k(x, yi)hi,k(x, yj)hj ]
) 1

2

× p
( n∑

i,j=1

[k(yi, yj)hj , hi]
) 1

2
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whence, by (2.24),

≤ cp(x)1/2 p
( n∑

i,j=1

[k(x, yi)hi,k(x, yj)hj ]
)1/2

× p
( n∑

i,j=1

[k(yi, yj)hj , hi]
) 1

2
. (2.25)

A standard argument implies now the required inequality. !

Remark 2.18. The inequality in Proposition 2.17 is stronger than condition
(b2) in Theorem 2.10 and one can ask whether the inequality obtained in
Lemma 1.6, which does not require any extra condition on the positive oper-
ator T , may be used instead of Lemma 2.15, in order to obtain the validity of
the inequality in the condition (b2), in general. Unfortunately, an inspection
of the proof of Proposition 2.17, more precisely (2.25), shows that this is not
the case and, if condition (b2) has to be proven in general, this way does
not work and probably a completely new idea is needed. On the other hand,
we do not have a counter-example of positive semidefinite kernels for which
condition (b2) does not hold: in view of [6], such a counter-example should
be very pathological, if exists. The question formulated at the beginning of
this subsection remains open.

The next proposition shows that under very general assumptions of pos-
itivity, an m-topologisable diagonal of the kernel propagates an even stronger
continuity property throughout the kernel.

Proposition 2.19. Let k : X × X → L∗
c(H) be a 2-positive kernel, for some

topological VE-space space H over a topologically ordered ∗-space Z. If k(x, x)
is m-topologisable for all x ∈ X then, for any x, y ∈ X and any p ∈ S(Z),
there exists C ≥ 0 such that, for all h ∈ H the following inequality holds

p([k(y, x)h,k(y, x)h]) ≤ C p([h, h]). (2.26)

In particular, the linear operator k(y, x) is m-topologisable for all x, y ∈ X.

Proof. Let us fix x, y ∈ X and p ∈ S(Z), and let h, g ∈ H vary. By the
2-positivity assumption, we have

[k(x, y)g, h] + [k(y, x)h, g] ≤ [k(x, x)h, h] + [k(y, y)g, g],

and take g = C−1
y k[y, x]h, where Cy > 0 is a constant as in Lemma 2.15

when applied to the m-topologisable and positive operator T = k(y, y). Then,
taking into account that, by Lemma 2.1, k(x, y) = k(y, x)∗, it follows

2C−1
y [k(y, x)h,k(y, x)h] ≤ [k(x, x)h, h] + C−2

y [k(y, y)k(y, x)h,k(y, x)h],

and, since the left side is in Z+ and p is increasing, we obtain
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2C−1
y p([k(y, x)h,k(y, x)h])≤p([k(x, x)h,h])+C−2

y p([k(y, y)k(y, x)h,k(y, x)h])

≤ p([k(x, x)h, h]) + C−1
y p([k(y, x)h,k(y, x)h])

≤ Cxp([h, h]) + C−1
y p([k(y, x)h,k(y, x)h]),

which provides the required inequality (2.26), with C = CxCy.
Finally, given arbitrary x, y ∈ X, for any p ∈ S(Z) and any natural

number n ≥ 1, by iterating the inequality (2.26) n times we get

p([k(y, x)nh,k(y, x)nh]) ≤ Cnp([h, h]), h ∈ H,

hence k(y, x) is m-topologisable. !

Remark 2.20. The conclusion of Proposition 2.19 can be obtained as a con-
sequence of Proposition 2.17 if the assumption of 2-positivity of the kernel is
replaced by its positive semidefiniteness.

2.6. Kernels with Values Adjointable Operators on VH-Modules

In the following we point out an application of Theorem 2.10 to linear maps
with values adjointable operators on VH-modules over admissible ∗-algebras.
By definition, an admissible ∗-algebra A is a ∗-algebra that is, in the same
time, an admissible space. A VH-module E over an admissible ∗-algebra A is,
by definition, a VH-space over A, viewed as an admissible space, which is a
VE-module, as well. Given a VH-module E over an admissible ∗-algebra A, an
H-reproducing kernel VH-module over A is just an E-reproducing kernel VH-
space over A, with definition as in Sect. 2.3, which is also a VH-module over
A. We have the following consequence of Theorem 2.10 and Proposition 2.4.

Proposition 2.21. Let Γ be a ∗-semigroup that acts on the nonempty set X
and let k : X × X → L∗

c(H) be a kernel, for some VH-module H over an
admissible ∗-algebra A. Then, assertion (1) in Theorem 2.10 is equivalent
with each of the following assertions:

(2) k has a Γ-invariant VH-module (over A) linearisation (K;π;V ).
(3) k admits an H-reproducing kernel VH-module R and there exists a ∗-

representation ρ : Γ → L∗
c(R) such that ρ(ξ)kxh = kξ·xh for all ξ ∈ Γ,

x ∈ X, h ∈ H.
In addition, in case any of the assertions (1), (2), or (3) holds, then a

minimal Γ-invariant VH-module linearisation can be constructed, any mini-
mal Γ-invariant VH-module linearisation is unique up to unitary equivalence,
a pair (R; ρ) as in assertion (3) with R minimal can be always obtained and,
in this case, it is uniquely determined by k as well.

If ϕ : B → L∗
c(H) is a linear map, for some ∗-algebra B and some VH-

module H over an admissible ∗-algebra A, one can define a kernel k : B×B →
L∗
c(H) by

k(a, b) = ϕ(a∗b), a, b ∈ B. (2.27)

It is immediate to verify that, letting the ∗-semigroup B act on itself by mul-
tiplication, k is B-invariant, in the sense of (2.7). Consequently, the following
holds.
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Corollary 2.22. Let ϕ : B → L∗
c(H) be a linear map, for some ∗-algebra B and

some VH-module H over an admissible ∗-algebra A. The following assertions
are equivalent:

(1) The map ϕ is positive semidefinite, in the sense that the kernel k
defined at (2.27) is positive semidefinite, and
(b1) For any b ∈ B and any seminorm p ∈ S(A), there exist a semi-

norm q ∈ S(A) and a constant cp(b) ≥ 0 such that, for all n ∈ N,
{hi}ni=1 ∈ H, {ai}ni=1 ∈ B, we have

p
( n∑

i,j=1

[ϕ(a∗
i b

∗baj)hj , hi]H
)

≤ cp(b) q
( n∑

i,j=1

[ϕ(a∗
i aj)hj , hi]H

)
.

(b2) For any b ∈ B and any seminorm p ∈ S(A), there exist a semi-
norm q ∈ S(A) and a constant cp(b) ≥ 0 such that, for all n ∈ N,
{ai}ni=1 ∈ B, {hi}ni=1 ∈ H, we have

p
( n∑

i,j=1

[ϕ(b∗ai)hi,ϕ(b∗aj)hj ]H
)

≤ cp(b) q
( n∑

i,j=1

[ϕ(a∗
jai)hi, hj ]H

)
.

(2) There exist a VH-module K over the admissible ∗-algebra A, a linear
map V : B → L∗

c(H,K), and a ∗-representation π : B → L∗
c(K), such

that:
(i) ϕ(a∗b) = V (a)∗V (b) for all a, b ∈ B.
(ii) V (ab) = π(a)V (b) for all a, b ∈ B.

In addition, if this happens, then the triple (K;π;V ) can always be chosen
minimal, in the sense that K is the closed linear span of the set V (B)H, and
any two minimal triples as before are unique, modulo unitary equivalence.

(3) There exist an H-reproducing kernel VH-module R on A and a ∗-
representation ρ : B → L∗

c(R) such that:
(i) R has the reproducing kernel B × B ∋ (a, b) #→ ϕ(a∗b) ∈ L∗(H).
(ii) ρ(a)ϕ(·b)h = ϕ(·ab)h for all a, b ∈ B and h ∈ H.

In addition, the reproducing kernel VH-module R as in (3) can always be
constructed minimal and in this case it is uniquely determined by ϕ.

In case the ∗-algebra B is unital, Corollary 2.22 takes a form that is closer
to a topological version of Kasparov’s Theorem [23] and its generalisation [20].

Corollary 2.23. Let B be a unital ∗-algebra and ϕ : A → L∗
c(H) a linear map,

for some VH-module H over an ordered ∗-algebra A. Then, assertion (1) in
Corollary 2.22 is equivalent with
(2)′ There exist a VH-module K over A, a ∗-representation π : B → L∗

c(K),
and W ∈ L∗

c(H,K) such that

ϕ(b) = W ∗π(b)W, b ∈ B. (2.28)

In addition, if this happens, then the triple (K;π;W ) can always be chosen
minimal, in the sense that K is the closed linear span of the set π(A)WH, and
any two minimal triples as before are unique, modulo unitary equivalence.
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3. ∗-Representations on Hilbert Modules over Locally
C∗-Algebras

In the following we specialise to the case when H is a Hilbert module over
a locally C∗-algebra. After a review of preliminary material on locally C∗-
algebras and Hilbert modules over locally C∗-algebras, we show, by an ap-
plication of Proposition 2.17, that the boundedness condition (b2) in Theo-
rem 2.10 is automatic in this case. Then, as an application, we show how the
Kasparov type dilation theorem in [20] can be proven from here in a rather
direct way.

3.1. Hilbert Modules Over Locally C∗-Algebras

A ∗-algebra A that has a complete Hausdorff topology induced by a family
of C∗-seminorms, that is, seminorms p on A that satisfy the C∗-condition
p(a∗a) = p(a)2 for all a ∈ A, is called a locally C∗-algebra [19] (equivalent
names are (Locally Multiplicatively Convex) LMC∗-algebras [30,43], or b∗-
algebra [1,2], or pro C∗-algebra [48]), [39]. Note that, any C∗-seminorm is
submultiplicative, p(ab) ≤ p(a)p(b) for all a, b ∈ A, cf. [44], and ∗-invariant,
p(a∗) = p(a) for all a ∈ A. Denote the collection of all continuous C∗-
seminorms by S∗(A). Then S∗(A) is a directed set under pointwise maximum
seminorm, namely, given p, q ∈ S∗(A), letting r(a) := max{p(a), q(a)} for all
a ∈ A, then r is a continuous C∗-seminorm and p, q ≤ r. Locally C∗-algebras
were studied in [1,2,19,39,43], and [53], to cite a few.

It follows from Corollary 2.8 in [19] that any locally C∗-algebra is, in
particular, an admissible space, more precisely, a directed family of increasing
seminorms generating the topology in axiom (a5′) in Sect. 1.2 is S∗(A). Note
that S∗(A) ⊂ S(A) and, although they generate the same topology on A,
these two sets are quite different. For instance, while S(A) is a cone, S∗(A)
is not even stable under positive scalar multiplication.

By b(A) we denote the C∗-algebra of all bounded elements in A, i.e. all
a ∈ A such that ∥a∥∞ := sup{p(a) | p ∈ S∗(A)} < ∞. Then ∥a∥∞ defines a
C∗-norm on b(A). Also, b(A) is dense in A, see [39] or [13].

An approximate unit of A is an increasing net (ej)j∈J of positive el-
ements in A with p(ej) ≤ 1 for any p ∈ S∗(A) and any j ∈ J , satisfying
p(x − xej) −→

j
0 and p(x − ejx) −→

j
0 for all p ∈ S∗(A) and all x ∈ A. For any

locally C∗-algebra, there exists an approximate unit, cf. [19,39].
A pre-Hilbert module over a locally C∗-algebra A, or a pre-Hilbert A-

module is a topological VE-module H over A. Note that the topology on
the pre-Hilbert A-module H is given by the family of seminorms {p̃}p∈S∗(A),
where p̃(h) = p([h, h])1/2 for all p ∈ S∗(A) and all h ∈ H. A pre-Hilbert
A-module H is called a Hilbert A-module if it is complete, e.g. see [39].

Let H be a pre-Hilbert A-module, let p ∈ S∗(A) and let x, y ∈ H. Then
a Schwarz type inequality holds, e.g. see [53], as follows

p([h, k]H) ≤ p([h, h]H)1/2 p([k, k]H)1/2, h, k ∈ H. (3.1)

For a Hilbert A-module H and p ∈ S∗(A), denote IA
p := {a ∈ A |

p(a) = 0}, or simply Ip when there will be no danger of confusion on the
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ambient locally C∗-algebra, and ĨH
p := {x ∈ H | [x, x] ∈ Ip}, or simply Ĩp.

Then Ip is a closed ∗-ideal in A and it is known, cf. [2], that the quotient
Ap := A/Ip is a C∗-algebra with C∗-norm ∥a + Ip∥Ap := p(a) for a ∈ A.
Also, Ĩp is a closed A-submodule in H and the quotient module Hp := H/Ĩp
is a Hilbert module over the C∗-algebra Ap, with module action given by

(h+ Ĩp)(a+ Ip) := ha+ Ĩp, h ∈ H, a ∈ A,

and gramian given by

[h+ Ĩp, k + Ĩp]Hp := [h, k]H + Ip, h, k ∈ H, a ∈ A.

On the other hand, when H and K are Hilbert modules over the same
locally C∗-algebra A, the space of all adjointable linear operators T : H → K,
denoted by L∗(H,K), has some additional properties, when compared to
VH-spaces. Any operator T ∈ L∗(H,K) is automatically a module map and
continuous, cf. [49] or Lemma 3.2 in [53], in particular, T (h · a) = T (h) · a for
all h ∈ H, a ∈ A and L∗(H,K) = L∗

c(H,K), see Sect. 1.3 for notation.
For fixed p ∈ S∗(A), any operator T ∈ L∗(H,K) induces an adjointable,

hence a continuous module map operator Tp from the Hilbert Ap-module Hp

to the Hilbert Ap-module Kp, via

Tp(h+ ĨH
p ) := Th+ ĨK

p , h ∈ H, (3.2)

with adjoint

T ∗
p (k + ĨK

p ) := T ∗k + ĨH
p , k ∈ K. (3.3)

Moreover, there is a constant C ≥ 0 such that

p̃K(Th) ≤ C p̃H(h), h ∈ H, (3.4)

see [39] and [53].
A topology on L∗(H,K) can be defined via the collection of seminorms

{pH,K}p∈S∗(A): for arbitrary p ∈ S∗(A),

pH,K(T ) := ∥Tp∥, T ∈ L∗(H,K), (3.5)

where ∥ · ∥ denotes the operator norm in L∗(Hp,Kp), equivalently, ∥Tp∥ is
the infimum of all C ≥ 0 satisfying inequality (3.4). For the case H = K,
these seminorms become C∗-seminorms and they turn L∗(H) into a locally
C∗-algebra, c.f. [39] and [53].

For a locally C∗-algebra A, let Mn(A) denote the ∗-algebra of all n×n
matrices over A. Mn(A) becomes a locally C∗-algebra considered with the
topology generated by the C∗-seminorms

pn([aij ]ni,j=1) := ∥[aij + Ip]ni,j=1∥Mn(Ap), [aij ]ni,j=1 ∈ Mn(A),

where ∥ · ∥Mn(Ap) is the C∗-norm on the C∗-algebra Mn(Ap).
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3.2. Kernels with Values Adjointable Operators in Hilbert Locally
C∗-Modules

Let H be a Hilbert module over a locally C∗-algebra A and k : X × X →
L∗(H) a positive semidefinite kernel. Then, for each seminorm p ∈ S∗(A), a
kernel

kp : X × X → L∗(Hp), kp(x, y) := k(x, y)p for all x, y ∈ X (3.6)

is defined, where k(x, y)p is defined as in (3.2). It is easy to see that kp is
positive semidefinite.

An H-reproducing kernel Hilbert A-module R is a Hilbert A-module,
which satisfies, along with (vhrk2) and (vhrk3),
(vhrk1)′ R is a submodule of the A-module F(X;H), with all algebraic

operations.
Note that, in this case, the axiom (vhrk4) is automatically satisfied due to
the fact that, in the case of Hilbert modules over locally C∗-algebras, any
adjointable, hence continuous, linear operator has continuous adjoint.

The following lemma shows that, in this special case of kernels with
values adjointable operators on Hilbert modules over locally C∗-algebras, the
boundedness condition (b2) in Theorem 2.10 is automatic, using Proposition
2.17.

Lemma 3.1. Let A be a locally C∗-algebra, let H be a Hilbert A-module, let
X be a nonempty set and let k : X × X → L∗(H) be a positive semidefinite
kernel. Then for any seminorm p ∈ S∗(A) and any x ∈ X there exists a
constant cp(x) ≥ 0 such that for all {yi}ni=1 ∈ X, {hi}ni=1 ∈ H we have

p
( n∑

i,j=1

[k(x, yi)hi,k(x, yj)hj ]H
)

≤ cp(x) p
( n∑

i,j=1

[k(yj , yi)hi, hj ]H
)
.

Proof. By Proposition 2.17, it is enough to show that k(x, x) is an m-topolo-
gisable operator for every x ∈ X. Letting T := k(x, x) in inequality (3.4), we
get a constant cp(x) ≥ 0 such that

p̃(k(x, x)h) ≤ cp(x)p̃(h), h ∈ H.

This gives, for all n ∈ N and h ∈ H,

p̃(k(x, x)nh) ≤ cp(x)p̃(k(x, x)n−1h)

≤ · · · ≤ cp(x)n−1p̃(k(x, x)h) ≤ cp(x)np̃(h),

hence the operator k(x, x) is m-topologisable. !

As a consequence of the previous lemma and Proposition 2.21, we have

Theorem 3.2. Let Γ be a ∗-semigroup that acts on the nonempty set X and
let k : X ×X → L∗(H) be a kernel, for some Hilbert module H over a locally
C∗-algebra A. Then the following assertions are equivalent:

(1) k is positive semidefinite and invariant under the action of Γ on X
and, additionally, the following condition hold:
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(b1) For any ξ ∈ Γ and any seminorm p ∈ S(Z), there exists a semi-
norm q ∈ S∗(A) and a constant cp(ξ) ≥ 0 such that for all n ∈ N,
{hi}ni=1 ∈ H, {xi}ni=1 ∈ X we have

p
( n∑

i,j=1

[k(ξ · xi, ξ · xj)hj , hi]H
)

≤ cp(ξ) q
( n∑

i,j=1

[k(xi, xj)hj , hi]H
)
.

(2) k has a Γ-invariant Hilbert A-module linearisation (K;π;V ), that is,
(ihl1) (K;V ) is a Hilbert A-module linearisation of k.
(ihl2) π : Γ → L∗(H) is a ∗-representation.
(ihl3) V (ξ · x) = π(ξ)V (x) for all ξ ∈ Γ and all x ∈ X.

(3) k admits an H-reproducing kernel Hilbert A-module R and there exists
a ∗-representation ρ : Γ → L∗(R) such that ρ(ξ)kxh = kξ·xh for all
ξ ∈ Γ, x ∈ X, h ∈ H.

As a consequence of the previous theorem, it follows that positive semi-
definite kernels with values adjointable operators on Hilbert modules over
locally C∗-algebras always have Hilbert modules linearisations, equivalently,
they admit reproducing kernel Hilbert modules.

Corollary 3.3. Let k : X × X → L∗(H) be a kernel on a nonempty set X,
for some Hilbert module H over a locally C∗-algebra A. Then the following
assertions are equivalent:

(1) k is positive semidefinite.
(2) k has a Hilbert A-module linearisation (K;V ).
(3) k admits an H-reproducing kernel Hilbert A-module R.

3.3. Completely Positive Maps

LetH be a Hilbert A-module for some locally C∗-algebra A. Let B be another
locally C∗-algebra, let ϕ : B → L∗(H) be a linear map, and consider the kernel
k associated to ϕ as in (2.27), that is, k(a, b) = ϕ(a∗b) for all a, b ∈ B. Then k
is invariant under the (multiplicative) action of B on itself. Keeping in mind
that, any ∗-algebra is, in particular, a (multiplicative) ∗-semigroup, note that
a B-invariant Hilbert module linearisation of k simply is a B-invariant VH-
space linearisation (K;π;V ) of k, such that K is a Hilbert A-module.

Remark 3.4. Let C and D be locally C∗-algebras. For a linear map ϕ : C → D,
recall that ϕ is completely positive if for every n ∈ N, the map ϕ(n) : Mn(C) →
Mn(D), [aij ]ni,j=1 #→ [ϕ(aij)]ni,j=1 is positive. Let k be the kernel associated
to ϕ as in (2.27). Then k is positive semidefinite if and only if ϕ is completely
positive. This follows from the fact that any positive matrix in Mn(C) can be
written as the sum of positive matrices of form [x∗

i xj ]ni,j=1, e.g. see [37].

Recall the definition of the strict topology on L∗(H,K) for two VH-
spaces H and K over the same admissible space Z in Sect. 1.2. Given a linear
completely positive map ϕ : B → L∗(H) for B a locally C∗-algebra, H a
VH-space over a topologically admissible space Z, we say that ϕ is strict if
(ϕ(ei))i is a Cauchy net in the strict topology for some approximate unit
(ei)i in B.
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Theorem 3.5 (Theorem 4.6 in [20]). Let A and B be locally C∗-algebras and
H be a Hilbert module over A. Let ϕ : B → L∗(H) be a linear map. Then the
following are equivalent:

(1) ϕ is a completely positive, strict, continuous map.
(2) There exists K a Hilbert module over A, a continuous ∗-representation

π : B → L∗(K) and W ∈ L∗(H,K) such that ϕ(a) = W ∗π(a)W for all
a ∈ B.

Moreover, in case any of assertions (1), (2) holds, the space K in (2) can
be constructed minimal, in the sense that K is the closure of Lin{π(b)Wh |
b ∈ B, h ∈ H}, and any such minimal Hilbert module is unique up to unitary
equivalence.

We show that this theorem can be obtained as a consequence of our
Theorem 3.2 which tells us that, basically, we have to take care of two tech-
nical obstructions: the boundedness condition (b1) and the lack of unit of the
algebra B. We first prove two technical results that will be needed for solving
the obstruction with the boundedness condition (b1).

The following lemma uses an idea from the proof of Theorem 2.4 in [32].

Lemma 3.6. Let A be a C∗-algebra and H be a Hilbert C∗-module over A. Let
B be a C∗-algebra and ϕ : B → L∗(H) be a completely positive map. Then,
for any b ∈ B there exists a constant c(b) ≥ 0 such that, for all n ∈ N,
{hi}ni=1 ∈ H, {xi}ni=1 ∈ B we have

∥∥∥
n∑

i,j=1

[ϕ(x∗
i b

∗bxj)hj , hi]H
∥∥∥
A

≤ c(b)
∥∥∥

n∑

i,j=1

[ϕ(x∗
i xj)hj , hi]H

∥∥∥
A
.

Proof. We use Theorem 2.3 with Γ = X = B and H in order to obtain a
B-invariant VE-space linearisation (K;π;V ), where K is a VE-space over A,
π : B → L∗(K) is a ∗-representation and V : B → L∗(H,K). As in Propo-
sition 2.4, K is a VE-module over A and, via (1.6), it is is a pre-Hilbert
A-module.

Consider B̃ = B⊕C, the unitization of the C∗-algebra B. Then π extends
uniquely to a ∗-representation π̃ : B̃ → L∗(K), where π̃((a,λ)) : = π(a)+λIK.
Let u ∈ B̃ be a unitary element. It is straightforward to check that π̃(u) is a
unitary operator, hence continuous.

Now, consider arbitrary b ∈ B and let ui ∈ B̃ be unitary elements and
λi ∈ C be scalars such that b =

∑m
i=1 λiui. Then

π(b) = π̃(b) = π̃

(
m∑

i=1

λiui

)
=

m∑

i=1

λiπ̃(ui),

therefore π(b) : K → K is continuous. Taking into account that K is topol-
ogised by the norm K ∋ k #→ ∥[k, k]K∥A, this means that, there exists a
constant c(b) ≥ 0 such that

∥[π(b)k,π(b)k]K∥ ≤ c(b)∥[k, k]K∥A, k ∈ K,

whence, in view of (2.8)–(2.13), we obtain the required inequality. !



Vol. 87 (2017) Representations of ∗-Semigroups Associated to. . . 301

Lemma 3.7. Let A be a locally C∗-algebra and H be a Hilbert module over
A. Let B be a locally C∗-algebra and let ϕ : B → L∗(H) be a continuous and
completely positive map. Then, for any b ∈ B and any p ∈ S∗(A), there exists
a constant cp(b) ≥ 0 such that, for all n ∈ N, {hi}ni=1 ∈ H, {xi}ni=1 ∈ B, we
have

p
( n∑

i,j=1

[ϕ(x∗
i b

∗bxj)hj , hi]H
)

≤ cp(b) p
( n∑

i,j=1

[ϕ(x∗
i xj)hj , hi]H

)
.

Proof. Throughout the proof, we fix p ∈ S∗(A). Since S∗(B) is directed and
ϕ is continuous, we can find r ∈ S∗(B) and dp ≥ 0 such that

p(ϕ(x)) ≤ dp r(x), for all x ∈ B, (3.7)

where the seminorm p is defined as in (3.5). If r(x) = 0, for some x ∈ B, by
(3.7)

p(ϕ(x)) ≤ dp r(x) = 0,

therefore p(ϕ(x)) = 0, and hence ϕ(x)p = 0 on Hp. It follows that the map
ϕp : Br → L∗(Hp) defined by

ϕp(b+ IB
r ) := ϕ(b)p, b ∈ B, (3.8)

where Br = B/IB
r , is a well defined linear map. Moreover, ϕp is completely

positive: this can be checked directly by considering the associated kernel and
proving that it is positive semidefinite.

Finally, applying Lemma 3.6 for the map ϕp, we get that for any b ∈ B,
considering its coset b+ IB

r ∈ Br, there exists a constant cp(b+ IB
r ) ≥ 0 such

that for all n ∈ N, all h1, . . . , hn ∈ H, and all x1, . . . , xn ∈ B, considering
their cosets {hi + Ĩp}ni=1 ∈ Hp and {xi + IB

r }ni=1 ∈ Br, we have

p

(
n∑

i,j=1

[ϕ(x∗
i b

∗bxj)hj ,hi]H

)
=

∥∥∥
n∑

i,j=1

[ϕp((x
∗
i b

∗bxj)+IB
r )(hj+Ĩp),(hi+Ĩp)]Hp

∥∥∥
Ap

=
∥∥∥

n∑

i,j=1

[ϕp((xi+IB
r )

∗(b+IB
r )

∗(b+IB
r )(xj+IB

r ))(hj+Ĩp),(hi+Ĩp)]Hp

∥∥∥
Ap

≤ cp(b+ IB
r )

∥∥∥
n∑

i,j=1

[ϕp((xi + IB
r )

∗(xj + IB
r ))(hj + Ĩp), (hi + Ĩp)]Hp

∥∥∥
Ap

= cp(b+ IB
r ) p

(
n∑

i,j=1

[ϕ(x∗
i xj)hj , hi]H

)
.

Since once p is fixed r is also fixed, it is clear that we can write cp(b+ IB
r ) =

cp(b), and the lemma is proven. !

Proof of Theorem 3.5. (1)⇒(2). Consider the kernel k(a, b) = ϕ(a∗b), a, b ∈
B. By Theorem 3.2, Lemma 3.7 and Lemma 3.1, we get a minimal B-invariant
Hilbert A-module linearisation (K;π;V ) of k.
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We check that V is linear. For b1, b2, c ∈ B and λ ∈ C we have

V (b1 + λb2)∗V (c) = ϕ((b1 + λb2)∗c) = ϕ(b∗
1c) + λϕ(b∗

2c)

= V (b1)∗V (c) + λV (b2)∗V (c) = (V (b1) + λV (b2))∗V (c)

and, by the minimality of K, it follows that V (b1 + λb2) = V (b1) + λV (b2).
We show that V : B → L∗(H,K) is continuous. By the continuity of ϕ,

for any seminorm p ∈ S∗(A), there exist r ∈ S∗(B) and cp ≥ 0 such that

pH(ϕ(b∗b)) ≤ cp r(b)2, b ∈ B, (3.9)

hence, for all , b ∈ B

pH,K(V (b))2=∥V (b)p∥2L(Hp,Kp)
=∥V (b)∗pV (b)p∥L(Hp)=pH(ϕ(b∗b)) ≤ cp r(b)2.

This shows that V is continuous and hence the mapping B ∋ b #→ V (b)∗ ∈
L∗(K,H) is also continuous, since pH,K(V (b)) = pK,H(V (b)∗) for all p ∈
S∗(A).

Now let (ej)j∈J be an approximate unit of B with respect to which ϕ is
strict. Since V (ej)∗V (b) = ϕ(ejb) and ejb −→

j
b for any b ∈ B, it follows that,

for any p ∈ S∗(A), b ∈ B, h ∈ H, we have

p̃H(V (ej)∗V (b)h − ϕ(b)h) = p̃H(ϕ(ejb − b)h) ≤ pH(ϕ(ejb − b)) p̃H(h) → 0.

It follows that V (ej)∗y converges to
∑n

l=1 ϕ(bl)hl whenever y =
∑n

l=1 V (bl)hl,
i.e. for all y ∈ K0. Let p ∈ S∗(A). Since, B ∋ b #→ V (b)∗ ∈ L∗(K,H) is con-
tinuous, there exists r ∈ S∗(B) such that

pK,H(V (ei − ej)∗) ≤ d r(ei − ej) ≤ c, i, j ∈ J ,

with d ≥ 0 and c > 0 some constant numbers independent of i, j ∈ J . Given
ϵ > 0, choose y0 ∈ K0 such that

p̃K(y − y0) ≤ ϵ

2c
and i, j ∈ J such that

p̃H(V (ei − ej)∗y0) ≤ ϵ

2
.

Using these inequalities we have

p̃H (V (ei)∗y − V (ej)∗y) = p([V (ei)∗y − V (ej)∗y, V (ei)∗y − V (ej)∗y]H)
1
2

=p([V(ei−ej)∗y0+V(ei−ej)∗(y−y0),V(ei−ej)∗y0+V(ei−ej)∗(y−y0)]H)
1
2

= p̃H(V (ei − ej)∗y0 + V (ei − ej)∗(y − y0))
≤ p̃H(V (ei − ej)∗y0) + p̃H(V (ei − ej)∗(y − y0))

≤ ϵ

2
+ pK,H(V (ei − ej)∗) p̃K(y − y0)

≤ ϵ

2
+ c

ϵ

2c
= ϵ.

Hence (V (ej)∗y)j∈J is a Cauchy net in H for all y ∈ K, hence convergent.
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Now let p ∈ S∗(B) and assume that i, j ∈ J are such that j ≤ i, hence
0 ≤ ej ≤ ei. Since ei, ej ∈ b(B), the C∗-algebra of all bounded elements of B,
we have (ei − ej) ≤ (ei − ej)2, hence

p̃K(V (ei)h − V (ej)h)2 = p([h, (V (ei) − V (ej))∗(V (ei − ej))h]H)

= p([h,ϕ((ei − ej)2)h]H)
≤ p([h,ϕ(ei − ej)h]H).

Since (ϕ(ej))j is a Cauchy net for the strict topology of L∗(H), by Lemma
2.13 with T := ϕ(ei − ej) and a standard argument, it follows that the net
(V (ej)h)j is Cauchy in K. Hence we have that (V (ej))j is a Cauchy net
in L∗(H,K). By Lemma 1.7, L∗(H,K) with the strict topology is complete,
hence there is W ∈ L∗(H,K) such that V (ej) converges to W , with respect
to the strict topology.

We prove now that the ∗-representation π : B → L∗(K) is continuous.
Let p ∈ S∗(A) arbitrary. Since ϕ : B → L∗(H) is continuous, there exist r ∈
S∗(B) and a constant cp ≥ 0 such that (3.7) holds. Define πp : Br → L∗(Kp)
by

πp(b+ IB
r ) := π(b)p, b ∈ B. (3.10)

In order for the definition in (3.10) to be correct, we have to show that, if
b ∈ B is such that r(b) = 0 then π(b)p = 0. Indeed, first observe that, since
r is submultiplicative, from (3.9) it follows that, for any x, y ∈ B, we have
pH(ϕ(y∗bx)) = 0, that is, ϕ(y∗bx)h ∈ Ĩp for all h ∈ H. Then, for arbitrary
h, g ∈ H and x, y ∈ B, we have

[π(b)p(V (x)h+ Ĩp), (V (y)g + Ĩp)]Kp = [V (y)∗π(b)V (x)h, g]H + Ip
= [ϕ(y∗bx)h, g]H + Ip = Ip.

Since K0, the span of V (B)H, is dense in K, it follows that πp(b + IB
r ) = 0

hence, πp in (3.10) is correctly defined. It is easy to see that πp is a ∗-
morphism of the C∗-algebra Br with values in the C∗-algebra L∗(Kp), hence
bounded. Letting dp = ∥πp∥ ≥ 0, where ∥πp∥ denotes the operator norm of
this ∗-morphism πp, it follows that

pK(π(b)) ≤ dp r(b), b ∈ B,
which proves the continuity of the ∗-representation π.

For any b ∈ B and h ∈ H, by the continuity of V and of π(b), we have

π(b)Wh = lim
j

π(b)V (ej)h = lim
j

V (bej)h = V (b)h,

hence π(b)W = V (b). Since the span of V (B)H is dense in K, it follows that
the span of π(B)WH is dense in K. Finally, for any h ∈ H and b ∈ B we have

W ∗π(b)Wh = W ∗V (b)h = lim
i

V (ei)∗V (b)h = lim
i

ϕ(eib)h = ϕ(b)h,

hence W ∗π(b)W = ϕ(b). Uniqueness up to unitary equivalence follows as
usually.

(2)⇒(1). It can be shown, as in the proof of (2)⇒(1) of Theorem 2.3,
that the associated kernel k to ϕ is positive semidefinite hence, as in Remark
3.4, we have that ϕ is completely positive.
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Since the span of π(B)WH is dense in K and π is continuous, it follows
that π(ei) −→

i
IK strictly for any approximate unit (ei)i of B, where IK is the

identity operator of K. From this we obtain that ϕ(ei) −→
i
W ∗W strictly.

On the other hand, since ϕ(b) = W ∗π(b)W for all b ∈ B, and the maps
W ∗, W , π(b) and π are continuous, it follows that ϕ is continuous. !

Remark 3.8. During the proof of the implication (1)⇒(2) from Theorem 3.5,
while proving that (V (ei)∗y)i is a Cauchy net for any y ∈ K, one can also use
the Schwarz inequality (3.1) instead of subadditivity of the seminorm p̃H. An
even simpler approach is to use inequality (1.8) in Sect. 1.3 to get

p([h1 + h2, h1 + h2]H) ≤ 2(p([h1, h1]H) + p([h2, h2]H))

for any h1, h2 ∈ H. Using this inequality with h1 = V (ei − ej)∗y0 and
h2 = V (ei − ej)∗(y − y0) provides a valid proof as well.

Similarly, while proving that the net (V (ej)h)j is Cauchy in K, one can
use the Schwarz inequality (3.1) instead of Lemma 2.13. The details are left
to the reader.
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[14] Gaşpar, D., Gaşpar, P.: An operational model for Hilbert B(X)-modules. An.
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