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Abstract Accurately forecasting electricity demand is a key business competency for firms
in deregulated electricity markets. Market participants can reap significant financial benefits
by improving their electricity load forecasts. Electricity load exhibits a complex time-series
structure with nonlinear relationships among the variables. Hence, models with higher capa-
bilities to capture such nonlinear relationships need to be developed and tested. In this paper,
we present a parametric and a nonparametric method for short-term load forecasting, and
compare the performances of these models for lead times ranging from 1 h to 1 week. In
particular, we consider a modified version of the Holt-Winters double seasonal exponential
smoothing (m-HWT) model and a nonlinear autoregressive with exogenous inputs (NARX)
neural network model. Using hourly load data from the Dutch electricity grid, we carry out
an extensive empirical study for five Dutch provinces. Our results indicate that NARX clearly
outperforms m-HWT in 1-h-ahead forecasting. Additionally, our modification to HWT leads
to a significant improvement in model accuracy especially for special days. Despite its sim-
plicity, m-HWT outperforms NARX for 6- and 12-h-ahead forecasts in general; however,
NARX performs better in 24-h-, 48-h- and 1-week-ahead forecasting. In addition, NARX
provides drastically lower maximum errors compared to m-HWT, and also clearly outper-
forms m-HWT in forecasting for short holidays.
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1 Introduction

Generating accurate long- and short-term consumption forecasts is essential to managing
power systems efficiently (Taylor 2003, 2012). Short-term forecasts refer to forecasts from
one minute ahead up to several weeks ahead and are generally used for planning daily opera-
tions such as clearing electricity transactions, scheduling generation capacity and managing
load flows (Kyriakides and Polycarpou 2007). Long-term forecasts usually refer to forecasts
longer than one year ahead, which are typically used for capital budgeting decisions such as
investing in new generation and transmission capacity (Tanrisever et al. 2013).

Since the deregulation of European electricity markets in the 1990s, the number of market
participants has drastically increased, introducing competition to the market. Consequently,
short-term electricity load forecasting has become a major issue for planning electricity
transactions in real time (Taylor 2010a). Efficiently scheduling electricity transactions is
crucial to providing an economical and reliable supply of energy, and is a key business
competency of firms in electricity markets (Bianco et al. 2010).

Short-term electricity demand includes daily and weekly cycles. Multiple factors, such as
the season and the time of the day, have complex and nonlinear effects on electricity load
(Chen et al. 2001). These multiple seasonality and complex nonlinear relationships make it
difficult to model electricity load with traditional regression models. In addition, consumer
behavior significantly diverges from the regular pattern on certain days such as holidays,
national days, and the days close to these special days. Therefore, we consider neural network
modeling as a strong candidate for capturing the complex relationships between the input and
output variables. However, because of the complexity of neural network modeling (Lee and
Tong 2012) we question whether it is appropriate to use it for short-term load forecasting. As
noted by Hippert et al. (2001), more research on the effectiveness of artificial neural networks
(ANNs) for short-term load forecasting is needed.

In this paper, we develop and compare a neural-network-based method and a relatively
simple time-series-based method for short-term electricity load forecasting. Regarding the
former approach, we present a nonlinear autoregressive with exogenous inputs (NARX)
neural network. To the best of our knowledge, this is one of the first papers providing a
comprehensive analysis of NARX for short-term load forecasting with special days. As a
computational-intelligence-based method, we expect NARX to be able to capture complex
relationships between the input and output information through its network structure. The lat-
ter, relatively simpler, approach is based on the Holt-Winters exponential smoothing method
(HWT), which incorporates an autoregressive error component and enables accommodation
of both intraweek and intraday cycles as a parametric model. In this model, we propose a
modified version of HWT method considering the special days by including a correction
factor for calendar days to improve its performance for special days. We expect this modi-
fication (m-HWT) to enable the model to learn from its errors to increase its capability of
estimating demand on special days.

We carry out an empirical analysis by using load data from five Dutch provinces from 1
January 2008 to 30 November 2012. The results indicate that the modification significantly
improves the performance of theHWTmethod on special days, althoughNARXstill performs
better on these days, outperforming m-HWT in 1-h-, 1-day-, 2-day-, and 1-week-ahead
forecasts. Despite its simple structure, m-HWT is superior for forecasting lead times that
are not multiples of 24 h (e.g. 6 and 12 h). In terms of maximum error, however, NARX
outperforms m-HWT predominantly.
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The rest of the paper organized as follows: Sect. 2 presents a brief review of the literature
on short-term electricity load forecasting and clarifies the contribution of the study. Sections 3
and 4 detail our modification of the Holt-Winters method (m-HWT) and explain our NARX
model, respectively. Section 5 presents our empirical results and compares the performance
of the two forecasting methods. In Sect. 6, we summarize our results.

2 Literature review and contribution

Themethods used for electricity load forecasting vary from the simplest conventional models
to complex neural network and fuzzy logic models. Hahn et al. (2009) classified forecasting
methods into two main categories: (1) classical time-series- and regression-based methods
and (2) artificial- and computational-intelligence-based methods. Hybrids of these two cat-
egories constitute a third class of methods.

Regression models are commonly used in electricity demand forecasting because of their
ability to relate external variables to electricity load (Hahn et al. 2009). In addition to calendar
variables, there are numerous other external factors, such as meteorological, social, and
economic variables that affect electricity load. Relating these variables to electricity demand
is extremely important for generating mid- and long-term load forecasts (Bianco et al. 2009);
however, their effects are usually negligible in the short-term (Taylor et al. 2008).

Time-series models provide another common stream of approach for electricity load fore-
casting. Cancelo et al. (2008) used autoregressive moving average (ARMA)models, a simple
form of the time-series approach, by dividing electricity data into its components for generat-
ing daily and hourly forecasts for multiple days ahead. Soares and Medeiros (2005) included
seasonality of electricity load series in their model through a two-level seasonal autoregres-
sive (AR) model for short-term load forecasting. Hagan and Behr (1987) argued that a simple
polynomial regression analysis combined with a Box and Jenkins transfer function model
can result in more accurate forecasts. Taylor (2003) modified the Holt-Winters exponential
smoothing model to accommodate for the seasonality of electricity loads and generated 1-
day-ahead forecasts with half-hour forecasting intervals. He found that themodified approach
outperforms both the traditional Holt-Winters method and the multiplicative double seasonal
autoregressive integrated moving average (ARIMA) model. Taylor also favored time-series
methods in Taylor (2012) where different alterations of exponential smoothing methods are
compared to generate short-term electricity load forecasts.

Recently, computational-intelligence-based models have received significant attention in
the literature for electricity load forecasting. Al-Saba and El-Amin (1999) developed anANN
model for peak-load forecasting and compared the results to AR models using data from a
Saudi Arabian utility company. They showed that ANNs provide accurate results for long-
term electricity load forecasting. Connor et al. (1994) was one of the first studies to consider
Nonlinear Autoregressive (NAR) neural network models for electricity load forecasting.
They compared a NAR model to a recurrent NAR moving average and to a feed-forward
NAR model utilizing synthetic data on the Puget Power Electric Demand time series. They
emphasized the importance of input configuration while presenting the superior performance
of the recurrent networks. Others followed by investigating NARX andNARmoving average
with exogenous variables (NARMAX) methods in short-term load forecasting (Czernichow
et al. 1995). That paper was mostly concerned with constructing a scheme for the moving
average (MA) part of the method. Espinoza et al. (2007) carried out a Kernel-based NARX
model identification study for lead times of 1 and 24 h.Using electricity load data from student
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apartments, Varghese and Ashok (2012) compared the performances of a feed-forward back-
propagation neural network, a NARX network and a radial basis function model.

Several papers have compared various computational-intelligence models to more con-
ventional methods (Taylor et al. 2006; Varghese and Ashok 2012); however, the only study
that has compared NARX to a simpler method is Elias et al. (2011) which set a linear
regression model as a benchmark for evaluating NARX’s performance in generating daily
forecasts. In their NARXmodel, the authors includedweather variables, holidays, andweekly
and monthly seasonalities as exogenous variables. However, unlike our work, they did not
distinguish between different special days, nor did they model the days close to special
days.

Neural networks can approximate a large class of functions with a high degree of accuracy
but they are often criticized due to their complex black box structure. However smoothing
models are easier to implement and understand. In this paper, we compare a NARX network
model with a modified HWT model to investigate whether NARX will improve forecasting
accuracies and whether the improvement is worth the complexity. Our contribution to the
literature with this study can be summarized as:

• Modifying HWT for special days for short-term load forecasting We develop a
modified version of Taylor’s Holt-Winters exponential smoothing method (m-HWT) to
consider the impact of special days in electricity load forecasting. The proposed model
results in a dramatic improvement in forecasting accuracy on special days. In particular,
for special days, our m-HWT improves the forecasting performance of the traditional
HWTmodels Taylor’s original model on special days by between 16 and 30%.We tested
the performance of m-HWT over five datasets for six forecasting lead times.

• Propositioning NARX for short-term load forecasting with the inclusion of special
days In the literature, computational-intelligence-based methods are usually used for
long-term forecasting. Only a few papers have examined the effectiveness of NARX
models for short-term load forecasting, and none of them applied NARX to more than
a few datasets or a few different lead times. In that respect, the current study provides a
comprehensive analysis of the NARX method for short-term electricity load forecasting
by applying it to five datasets and generating forecasts for six lead times. In addition,
unlike the existing literature, we explicitly include special days into the NARX model,
which leads to a significant improvement.

• Comparing conventional and artificial intelligence methods The literature’s view on
complexmethods for short-term load forecasting is mixed.While Taylor (2003) finds that
simple time-series-based methods are usually sufficient for short-term load forecasting,
Kim (2013) argues that more advanced methods are needed to capture the complex
nature of demand dynamics. In this paper, through a comprehensive empirical study, we
observe that complex neural network models can significantly outperform time-series-
based simple methods for certain forecasting lead times. In particular, we observe that
neural network models provide much better performance in terms of maximum error.
This result may have significant managerial implications when making financial hedging
decisions in the short term.

3 Modified Holt-Winters exponential smoothing

Exponential smoothing is a fairly simple forecasting method suitable for univariate time-
series data.Despite its simplicity, it is one of themost effective automatic forecastingmethods.
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It applies recursive updating schemes while smoothing and forecasting data. The formulation
of the exponential smoothing method for k-step-ahead forecasting can be stated as:

ŷt (k) = αyt + (1 − α) ŷt−k (k) (3.1)

or equivalently in error correction form:

ŷt (k) = ŷt−k (k) + αet , (3.2)

et = yt − ŷt−k (k) , (3.3)

where yt is the observed time series, ŷt (k) is the k-step-ahead forecast made at time t , α is
the smoothing factor and et is the k -step-ahead forecast error.

The Holt-Winters method is an extension of exponential smoothing designed for series
with trend and seasonality; therefore, it is also referred to as double exponential smooth-
ing. The method is a robust and easy way of forecasting that works especially well with
short-term sales and demand time-series data (Gelper et al. 2010). It models the data
through a local mean, a local trend, and a local seasonal factor. There are two differ-
ent formulations for multiplicative and additive seasonality. In this paper, we consider the
HWT method with additive seasonality and without a trend term. As also noted in Taylor
(2010b), including a trend term brings no improvements to forecast accuracy, as changes
in demand level are not significant for short-term load forecasting. Taylor (2003) develops
an extension of the regular HWT method to accommodate for the presence of two seasonal
cycles, which is typical in electricity load data. That extension is presented in Eqs. (3.4)–
(3.8).

ŷTt (k) = lt + dt−m1+k1 + wt−m2+k2 + φkeTt , (3.4)

eTt = yt − ŷTt−k (k) , (3.5)

lt = lt−1 + αeTt , (3.6)

dt = dt−m1 + δeTt , (3.7)

wt = wt−m2 + ωeTt , (3.8)

where yTt (k) is Taylor’s k-step-ahead forecast derived at time t and eTt stands for the error
when demand in time t is forecasted with Taylor’s adaption of HWT (Taylor 2010b). m1 and
m2 are the number of periods in the first and second seasonal cycles, which correspond to
daily and weekly cycles in our case. lt is the smoothed level and dt and wt stand for seasonal
indices for daily and weekly cycles, respectively. The smoothing parameters are denoted by
α, δ, and ω; and k1 = [(k − 1)modm1] + 1 and k2 = [(k − 1)modm2] + 1. Including the
autoregressive component φ corrects for the first order residual autocorrelation and improves
the forecast accuracies.

As presented above, Taylor’s models do not consider special days. In practice, electricity
load data consists of many special days, such as celebrations and national and religious
holidays, which create a challenge for generating accurate forecasts. In this study, we modify
Taylor’s HWT to allow the model to learn from its previous errors on special days, which
brings significant improvement to the model’s performance. The updated model formulation
is provided in (3.9)–(3.14):
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ŷt (k) = lt + dt−m1+k1 + wt−m2+k2 + φket

+

⎛
⎜⎜⎜⎜⎜⎜⎝

∑
i∈S

si,t+k

L∑
j=t+k−(365+h)∗24
h∈{−L ,−L+1,...,L−1,L}

si, j
eTj
y j

L∑
j=t+k−(365+h)∗24
h∈{−L ,−L+1,...,L−1,L}

si, j

⎞
⎟⎟⎟⎟⎟⎟⎠

ŷTt (k) (3.9)

where

et = yt − ŷt−k (k) , (3.10)

eTt = yt − ŷTt−k (k) , (3.11)

lt = lt−1 + αet , (3.12)

dt = dt−m1 + δet , (3.13)

wt = wt−m2 + ωet , (3.14)

where si,t is a binary variable that is equal to 1 if t is a forecasting time interval on a special
day of type i where i refers to type of the special day that time t + k belongs to. Here S refers
to the set of special day types and eTj stands for the error when demand in time j is forecasted
with Taylor’s adaptation of HWT. In our modification, the model checks whether time t + k
is a special day, and if it is, the model goes to previous year’s data, checks a range of days
(±L). around that time t + k. to find a similar type of special day and updates the forecast
by multiplying its forecast ŷTt (k) by the percentage error of previous year’s forecasting error
on tt special day, eTj /y j .

For one-step-ahead forecasting, i.e., for k + 1, the formulations in (3.9)–(3.14) are used,
but for multi-step-ahead forecasts, (3.9) differs slightly. Taylor (2010b) formulized multi-
step-ahead forecasts for 1 < k ≤ m1 as follows:

ŷt (k) = lt + αφ
(
1 − φk−1

)

(1 − φ)
et + dt−m1+k1 + wt−m2+k2 + φket , (3.15)

where the first two terms sum up to the expected value of the lagged smoothed level, lt . For
our case, we derived the formula for k > m1 as presented in (3.16):

ŷt (k) = lt + α

(1 − φ)
et + dt−m1+k1 + wt−m2+k2 + φket . (3.16)

4 Nonlinear autoregressive with exogenous input neural networks

Artificial neural networks are highly interconnected simple processing units inspired by
biological neural nets, which transmit snals via neurons and synapses. The method aims
to capture complex relationships between input and output information with the network
structure. The biggest advantage of ANNs compared to other computational methods is their
capability of providing information about nonlinear and hidden patterns in the data. The
advantage of ANNs lies in their execution; they implement linear discriminants in a space
where inputs have been mapped nonlinearly. They also implement fairly simple algorithms
where nonlinearity can be learned from training data (Duda et al. 1997).

Figure 1 illustrates the processing of a simple single-node (a.k.a. neuron) ANN struc-
ture. A node receives inputs x , multiplies each input by a weight w, adds a bias b0, and
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Fig. 1 Structure of a single-node ANN

applies a transformation function f to generate an output y. Some of the commonly used
transformations include log-sigmoid, hyperbolic tangent sigmoid, tansig transfer, and linear
functions.

There are two types of neural networks with respect to the connections between neurons
and the direction of data propagation: feed-forward and recurrent networks (Duda et al. 1997).
Figure 2 presents a three-layered feed-forward neural network, where the data is received
through the input layer, passed to the hidden layer, then transferred to the output layer.
The term feed-forward refers to networks with interconnections that do not form any loops.
There also exist recurrent or non-feed-forward networks, in which there are one or more
loops of interconnections. In such networks, the input state is combined with the previous
state activation through an additional weight layer (Bodén 2002; Catalão et al. 2007). An
instance of recurrent networks is provided in Fig. 3.

ANARXnetwork is a type of recurrent dynamic neural networkwith feedback connections
between the output and input layers. This type of network is specifically used for time-series
forecasting. Another important property of NARX is that it allows exogenous inputs to
become network inputs. It is derived from the autoregressive exogenous (ARX) model and
can be mathematically stated as

ŷt = f
(
ut−Du , ut−1, ut ; yt−Dy ,...,yt−1

)
, (4.1)

where ut and yt are inputs and outputs of the model at time t , and Du and Dy are input
and outputs delays. Delays represent the number of periods the inputs’ and/or outputs’ past
values are fed back to the network. The nonlinear transformation function is denoted by f .

There are two types of NARX networks with respect to the information embedded into the
feedback loop: open-loop and closed-loop networks. In open-loop networks, actual output
values are fed back to the network. These networks are also called series-parallel (SP) mode
networks. In the closed-loop architecture, the network’s outputs (estimated values) are fed
back to the network as inputs. These types of networks are also referred to as parallel (P)
mode networks. The NARX model in (4.1) represents an SP architecture.

In a neural network, the neurons in each layer are interconnected by modifiable weights.
Transformation takes place only in the hidden and output layers; the input layer serves only
for transferring the input. For a network that consists of p inputs, each hidden node j mputes
the weighted sum of its inputs, denoted by net j as:
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Fig. 2 Example of three-layered feed-forward neural network structure

Fig. 3 Example of three-layered recurrent neural network structure

net j =
p∑

t=1

xiw j i + w j0, (4.2)

where i and j . stand for the nodes in the input and output layers, respectively, xi stands for
any type of input (multivariate inputs or input from the feedback loop), w j i represents the
input weights to node j , and w j0 is the bias value at node j .

After computing the net value, a transfer function is used to generate the hidden node’s
output:
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y j = f
(
net j

)
. (4.3)

Similarly, for all hidden layers and output layer units,net values are calculated as theweighted
sum of the values received from the previous layer’s nodes plus the bias value, and then the
transformation function of the node is applied. The general representation of node activation
of a three-layered network with k, j, and m. neurons in the hidden layers is

ŷt = f

⎛
⎝

nH∑
j=1

wk j f

( p∑
i=1

w j i xi + w j0

)
+ wt0

⎞
⎠ , (4.4)

where nH is the number of hidden nodes in the output layer, wk j is the interconnection
weight from the hidden layer to the output layer, p ithe number of nodes in the input layer
and w j0 and wt0 are the bias values. Each node applies a transformation function to the
weighted sum and transfers its product. It should be noted that for single-layer neural network
with linear transfer functions in the output layer, the system could be interpreted as a linear
regressionmodel. Similarly, a networkwith logistic transfer functions is equivalent to logistic
regression.

As a data-driven model, training is fundamental in neural network modeling. During the
training phase, the network adjusts the weight and bias values to produce the best predictive
results. One of the most popular methods for network training is the back-propagation algo-
rithm, which is a natural extension of the least-mean-squares (LMS) method. The learning
process starts with an untrained network, and a training dataset is fed to the input layer which
passes through the network to result in an output value. The obtained value is compared to
the target value, which is the actual output in the dataset. The difference corresponds to the
error. In back propagation, the criterion function is some scalar function of the network’s
weights. With respect to the learning rate, the weights are adjusted to minimize the error
given as

J (w) = 1

2

r∑
t=1

(
yt − ŷt

)2
, (4.5)

where w stands for the vector of weights, r is the length of the network output vector, yt is the
target value, and ŷt is the estimated value. The back-propagation algorithm is based on the
gradient descent algorithm, and the weights are updated in the direction of error reduction,
starting from the initial values (Duda et al. 1997),

w (k + 1) = w (k) − μ (k)∇ J (w (k)) , (4.6)

where μ is the learning rate (taking a value between 0 and 1), w (k) is the weight vector in
iteration k and ∇ J (w (k)) is the gradient vector. Similar to the gradient descent procedure,
the learning rate controls the amount of change in weights and bias values in each iteration k.
Larger values can give a faster convergence to the minimum but may also produce oscillation
(Bodén 2002).

Compared to other networks, NARX neural networks are more powerful, converge faster,
and more easily generalizable. In this paper, we consider NARX networks with zero input
delays and various outputs delays. Output delays are selected with respect to autocorrelation
values and seasonalities present in the data, whereas the input delay is set to zero due to the
structure of special day variables. The details are explained in Sect. 5.3.
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Fig. 4 Hourly electricity load in the Brabant dataset between January 2008 and March 2008

5 Numerical study

For our numerical analysis, we use a dataset of hourly electricity load levels of five Dutch
provinces for a period of 256 weeks between 1 January 2008 and 30 November 2012. The
dataset from each region is named for its region (Brabant, Noord, Friesland, Limburg and
Maastricht). The approach and detailed results are presented through the Brabant and Noord
dataset and all other results are given in the Electronic Companion. The electricity load data
contains daily and weekly cycles, which can be clearly seen in Fig. 4. Load patterns are very
similar on weekdays. On weekends, the load decreases significantly, but the pattern remains
similar from weekend to weekend.

Another important element of the dataset is the calendar variables, which covers the special
days noted above. Similar to Kim (2013) we analyzed the effect of these days with respect
to their effects on different hours of the day and with respect to the variation in their effects
from year to year. Consequently, similar to Tanrisever et al. (2013) we find that the following
variables affect electricity load in the Netherlands:

• School Holidays In the Netherlands, schools are closed during public holidays, Christ-
mas, on the May holiday, and for a spring break, summer break, and autumn break.

• Bouwvak The period during the summer when construction companies do not operate.
• Liberation Day Public holiday celebrated every five years.
• CarnivalThree days of celebrations in the southern part of the Netherlands. This variable

is excluded from the dataset of northern regions.
• Christmas period We observe deviations from the regular demand pattern not only on

25 December but also on Christmas Eve and Boxing Day. Hence we define these 3 days
as the ‘Christmas period.’

• New Year’s Eve New Year’s Eve and New Year’s Day also experience a sharp decrease
in electricity demand.

• Queen’s/King’s Day A public holiday to celebrate the queen or king’s birthday.
• Easter, Ascension Day, Whit Monday Religious holidays in the Netherlands.

It is important to note that different special days have different effects on electricity load
throughout the day, depending on the region and the day of week.

In addition to the exact dates, special days also affect electricity load on days close to
them. Electricity load before and after holidays tends to decrease for most of the special
days. Therefore, similar to Tanrisever et al. (2013) we defined and added variables called
‘Day before holiday’ and ‘Day after holiday’ to the dataset. More importantly, we observe
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Fig. 5 The algorithm for initializing the state variables

that the effect is even more significant when the day before or after a holiday falls on a
Monday or Friday, due to the fact that on such days people are more willing or able to take
1 day off for a longer holiday. Hence, we added another variable called ‘Bridge day’ to the
dataset to denote these special days.

In our study, we only used historic data and calendar variables to forecast short-term elec-
tricity load. As Taylor (2010b) also pointed out, meteorological and economic variables also
have distinct effects on electricity demand in the long term. However, for short-term fore-
casts, these variables can be excluded, as consumer adaptation to changes in these variables
takes time (Taylor et al. 2006).

5.1 Modified Holt-Winters exponential smoothing

Considering themodel specifications presented in (3.9)–(3.14), tomodel time series datawith
the HWT method, initial values need to be estimated for level and seasonal components and
for the smoothing parameters. To initialize the state variables (It , dt , wt ) in (3.9)–(3.14), we
use 2-week intervals that do not include any special days to prevent divergent observations
from causing misleading fluctuations in initialization. The algorithm for initializing state
variables is presented in Fig. 5.

In our model, lag value (±L) is set as equal to 20 days; that is, we search for an interval
of 40 days in the previous year to identify the effects of the respective special days. Last, the
model parameters α, δ, ω, and φ in (3.9)–(3.14) are derived using a similar method to Taylor
(2010b) and Engle and Manganelli (1999). Figure 6 shows the steps of the algorithm.

Different than Taylor (2010b)’s approach, in our models we derive the best parameters
for each forecasting horizon. Table 1 presents the model parameters for the Brabant dataset
(see “Appendix A” for the parameter values of the other regions).

After initializing the state variables and calibrating the models’ parameters, we apply
m-HWT modeling to the datasets of the different regions.
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Iteration:
Step 1 Generate vectors of four parameters that are uniformly 

distributed between 0 and 1.
Step 2 For every vector, compute sum of squared errors (SSE) of the 

training dataset.
Step 3 Define 10 vectors with the lowest SSEs as the set of possible 

model parameters.
Step 4 Generate all possible combinations of the selected 10 vectors.
Step 5 For every combination vector, compute sum of squared 

errors (SSE) of the training dataset.
Step 6 Assign elements of the vector with lowest SSE as model 

parameters.

Fig. 6 The algorithm for deriving the model parameters α, δ, ω, and φ

Table 1 Model parameters for
the Brabant dataset

Lead times (h) αbest δbest ωbest φbest

1 0.5487 0.1832 0.2658 0.3399

6 0.0377 0.2354 0.1590 0.7750

12 0.0145 0.1820 0.1769 0.8330

24 0.0005 0.2649 0.1066 0.9034

48 0.0007 0.0715 0.0768 0.7265

168 0.0001 0.0225 0.1713 0.8379

5.2 Nonlinear autoregressive with exogenous input neural networks

The NARXmodeling consists of two stages: (1) training the model and (2) testing the model
performance. Accordingly, we use 75% of our dataset for training (in-sample data), 15%
for validation, and the remaining 15% for testing (out-of-sample data). In addition to the
historical electricity load data, we define special days as binary variables and add them to
the dataset.

We observe that some special days have similar effects on electricity load, therefore these
days are grouped together to decrease the dimensionality of the problem:

• Easter, Whit Monday, and Liberation Day
• Carnival
• Christmas Eve and New Year’s Eve
• Queen’s/King’s Day
• Boxing Day and Christmas Day
• New Year’s Day
• Ascension Day

In addition to the exact dates of special days, we also define and include 1 day prior to, 1 day
after these days, and bridge days in the model, as noted above. Furthermore, we define day
of the week, hour of the day, and summertime variables as inputs.

As described earlier, a neural network model consists of three types of layers: input, hid-
den, and output. The data is received through input layer and passed to hidden layer and
transferred to output layer. Our exogenous input variables define a total of 13 nodes in the
input layer, i.e., 7 variables for special days, 3 variables for the days close to special days
and 3 calendar variables as explained above. The input layer also contains nodes of the
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Table 2 Model architectures of
different forecasting lead times
for the Brabant dataset

Lead times (h) Hidden layer Number of hidden nodes

1 1 30

6 1 35

12 1 75

24 1 35

48 1 30

168 1 35

feedback loop. Feedback delays are determined with respect to the autocorrelation values
between different lags of infeed data. In this study, autocorrelation values above 0.8 are
identified as highly correlated. Hence, among these lag values, considering the seasonali-
ties, the reasonable ones are selected as feedback delays, which in our case are (in hours):
electricity infeed 1, 2, 23, 24 (which is 1 day), 25, 168 (which is 1 week) and 169 h before.
Therefore, together with these feedback delays, the input layer consists of 20 input nodes.
Obviously, the output layer contains only one node, which gives the electricity infeed fore-
cast.

In the literature, it is well established that architectures with a single hidden layer are
sufficient for addressing most forecasting problems, but at the expense of higher training
times. Therefore, to keep the search for amodel architecture to a reasonable limit, we consider
single hidden-layer feed-forward networks as candidate model architectures. Next, we search
for the best performing architectures for each forecasting lead time and region. We keep the
number of hidden nodes between five and 80 (and consider networks with hidden nodes that
are multiples of five). Networks with fewer than five hidden nodes are not usually capable of
modeling and learning the data, and networks with more than 80 hidden nodes face the risk
of overfitting.

Therefore, for all datasets and lead times, 16 different architectures are run with five
different initializations. The best performing architectures for each lead time for the Brabant
dataset are presented in Table 2. Next, for each forecasting lead time and region, we run the
best performing architectures 10 times to find the best weight and bias values, and complete
the network architecture. The NARX neural network architectures for other regions can be
found in “Appendix B”.

The other important components of neural network models that impact the forecasting
performance are the training algorithm and the transfer function. In this study, we use
the Levenberg-Marquardt training method, which is a modification of the popular back-
propagation algorithm. This method includes an approximation of Newton’s method, which
is usually very efficient up to a few hundred nodes (Zhang et al. 1998). We use the tansig
and purelin transfer functions in the hidden and output layers, respectively. We have also
tested for the normality assumption on the residuals of the models. The experimental study
had been conducted with the models that satisfy the normality assumption on the residu-
als.

5.3 Results

We first compare the performances of Taylor’s HWT and our m-HWT methods. Then, we
compare NARX with these two methods. Post-sample accuracies are measured in terms
of mean absolute percentage error (MAPE) and maximum percent error (MaxAPE). Post-
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Fig. 7 Training performances for the Brabant dataset

Fig. 8 Testing performances for the Brabant dataset

sample data accounts for 15% of the total dataset (corresponding to the period between
6 March 2012 and 30 November 2012). In addition, after carefully analysing the demand
pattern on special days, we have grouped these days as: long holidays and short holidays,
and separately reported the results for them. Long holidays last at least 1 week, and include
school holidays and Bouwvak. Since these holidays are relatively long, they have a levelling
effect on the load. On the other hand, short holidays (including Liberalization day, Carnival,
Christmas, New Year’s Eve, New Year Holiday, Queens Day, Easter, Ascension Day, Whit
Sunday and Monday and Good Friday) only take 1 to 3 days, and the demand during these
days abruptly deviates from the usual pattern.

Table 3 presents the results for the Brabant dataset. We run the algorithms for different
forecasting lead times ranging from 1 to 168 h, 1week, (see the first line of Table 3) and report
the methods’ performance. The first column lists three methods HWT, m-HWT and NARX.
“Total” refers to the performance on the whole data, “Special” is for the performance on
special days. Detailed analysis on special days is also given by grouping as “Long Holidays”
and “Short Holidays”. Lastly the performances of the methods are separately reported for
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Fig. 9 Training performances on special days for the Brabant dataset

Fig. 10 Testing performances on special days for the Brabant dataset

normal days titled as “Non-Spec”. We provide training and testing data performances for all
cases.

Table 3 clearly shows that our m-HWT provides a significant improvement in forecasting
performance over Taylor’s HWT. The improvement is around 9% for the Brabant dataset, and
it is 8% on average for the five datasets we studied. As expected, the effect of modification
is drastic on special days. For the Brabant dataset, the improvement for special days over
Taylor’s HWT varies between 16 and 30% for different lead times. For short holidays, the
improvement is even more significant; it reaches 53% in 6-h-ahead forecasting. Since HWT
does not explicitly consider the demand pattern in these special days, it results in large
errors (compared to NARX). m-HWT aims to correct this error by recognizing the sudden
change in the data pattern during these days. In particular, m-HWT tries to identify similar
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Fig. 11 Training performances on long holidays for the Brabant dataset

Fig. 12 Testing performances on long holidays for the Brabant dataset

short holidays in the past data and incorporate a correction factor based on these days. As a
result, compared to HWT, m-HWT gives improved errors on these days. On the other hand,
NARX makes the same correction in a more structured and advanced way by capturing the
complex dynamics in the data during these special days. Hence, NARX provides a much
better forecasting error on short holidays. For illustrative purposes, we plot the performance
of the three methods for the Brabant dataset (both for training and testing data) in Figs. 7, 8,
9, 10, 11, 12, 13, 14, 15 and 16. These figures show the MAPE of the methods for each lead
time.

Figures 7 and 8 show that NARX performs better than m-HWT for almost all the forecast-
ing lead times. Especially for 1-h-ahead forecasting, NARX is quite effective and provides
a MAPE of as low as 0.71%. The m-HWT algorithm only slightly outperforms NARX for
the 6-h-ahead forecast. Figures 9–14 present the forecasting performances on special days,
long holidays, and short holidays. These figures reveal that NARX’s superior performance is
mostly driven by its ability to forecast the load on short holidays; it performs drastically better
than m-HWT and HWT on those days, while it is competitive with m-HWT on long holi-
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Fig. 13 Training performances on short holidays for the Brabant dataset

Fig. 14 Testing performances on short holidays for the Brabant dataset

days. For normal days, NARX still outperforms m-HWT except for the 6-h-ahead forecast
(Figs. 15, 16).

Next, in Table 4 we present our results for the Noord dataset. Similar to the Bra-
bant dataset, m-HWT outperforms HWT, and NARX is more effective in forecasting
short holidays and special days in general. As noted earlier, NARX performance deteri-
orates for the 6- and 12-h lead times. In addition, m-HWT improves HWT performance
on average by eight percent, and NARX shows an improvement over HWT by approx-
imately 10%. Regarding short holidays, m-HWT performs 40% better than HWT on
average, whereas for NARX the improvement is 83%. Similar to the Brabant dataset,
Figs. 17–26 illustrate the performance of the three methods for the Noord region. The
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Fig. 15 Training performances on normal days for the Brabant dataset

Fig. 16 Testing performances on normal days for the Brabant dataset

results are materially similar for the other three regions (Limburg, Maastricht and Fries-
land) and are given in “Appendix C”. Counter to the intuition; we observe that NARX
outperforms m-HWT for 1 h ahead forecasts. This is because including special days to
m-HWT introduces sudden shocks to the model whose effect is carried over multiple periods
increasing the forecasting error for very short-term forecasts, such as 1-h ahead forecast-
ing.

In general, for the Noord dataset, we observe that NARX is superior to HWT and m-
HWT for short-term load forecasting, especially during short holidays. However, NARX’s
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Fig. 17 Training performances for the Noord dataset

Fig. 18 Testing performances for the Noord dataset

performance deteriorates for lead times that are not multiples of 24 h (1 day). In addition,
m-HWT significantly improves the performance of HWT, but in general NARX is more
effective in forecasting special days. For forecasting the load on long holidays, however,
m-HWT is competitive with NARX.

We also carried out a stability analysis to evaluate whether NARX’s performance is stable
in the training and testing datasets alike. The stability values for each dataset are presented
in Table 5, where being close to 1 refers to a more stable model.

Another performance measure we consider in this study is MaxAPE. In practice, this
measure is of significantmanagerial importance due to riskmanagement and hedging reasons.
The maximum errors of the models for each region are presented in Table 6.

In terms of MaxAPE, NARX performs better than both HWT methods for all forecasting
lead times and regions. The only exceptions are the 6-h-ahead forecasts for the Limburg and
Noord datasets, due to the aforementioned loss of NARX accuracy for 6- and 12-h-ahead
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Fig. 19 Training performances on special days for the Noord dataset

Fig. 20 Testing performances on special days for the Noord dataset

forecasting. NARX proves to be a good fit for market parties who would like to avoid large
risks. Furthermore, m-HWT also decreases MaxAPE values up to 40% compared to Taylor’s
errors. In addition to the low MAPE values for 1-h-ahead forecasts, NARX also gives very
competitive MaxAPE values (below 17%) for 1-h-ahead forecasts.
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Fig. 21 Training performances on long holidays for the Noord dataset

Fig. 22 Testing performances on long holidays for the Noord dataset
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Fig. 23 Training performances on short holidays for Noord dataset

Fig. 24 Testing performances on short holidays for the Noord dataset
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Fig. 25 Training performances on normal days for the Noord dataset

Fig. 26 Testing performances on normal days for the Noord dataset
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Table 5 Stability analysis of NARX for each region and lead time

Brabant (%) Limburg (%) Maastricht (%) Friesland (%) Noord (%)

Lead times

1 94.67 91.86 93.81 95.20 94.44

6 84.96 91.61 84.75 83.82 91.52

12 94.76 96.15 87.58 88.71 91.69

24 89.32 89.76 91.51 99.30 87.71

48 91.64 88.92 94.35 95.47 92.97

168 98.62 93.14 99.40 87.58 99.33

Table 6 MaxAPE for each region and lead time

Lead times (h) Brabant Noord

NARX (%) HWT (%) m-HWT (%) NARX (%) HWT (%) m-HWT (%)

1 9.04 25.88 15.90 11.22 24.63 19.51

6 24.03 33.93 24.54 34.33 28.64 28.74

12 17.94 56.04 46.78 26.01 53.32 50.58

24 15.26 60.81 48.67 21.05 55.22 52.41

48 33.23 59.68 48.88 41.58 55.69 54.11

168 28.83 59.39 51.19 33.18 53.92 48.30

Lead
times (h)

Limburg Maastricht Friesland

NARX
(%)

HWT
(%)

m-HWT
(%)

NARX
(%)

HWT
(%)

m-HWT
(%)

NARX
(%)

HWT
(%)

m-HWT
(%)

1 9.67 28.42 21.41 11.65 27.18 23.89 16.61 31.56 18.96

6 29.88 32.19 22.78 31.58 35.51 31.78 31.29 41.64 38.88

12 29.22 50.35 36.24 24.57 58.87 47.59 31.72 68.43 57.58

24 35.61 51.31 37.04 15.50 64.05 53.11 22.29 69.55 58.46

48 16.87 50.76 39.51 29.68 62.45 53.88 31.11 68.23 65.40

168 18.80 48.80 37.03 23.49 63.30 44.92 16.80 67.60 64.14

6 Conclusion

In this paper, we compare amodification of the exponential smoothingmethod (m-HWT) and
a nonlinear autoregressive exogenous input neural network model (NARX) for short-term
electricity load forecasting.We also compare our models with Taylor’s HWT adaptation. One
of themainmotivations of this research is to examinewhether complex artificial-intelligence-
based methods such as NARXmay perform better than simple time-series-based approaches
for short-term electricity load forecasting.

Our findings indicate that NARX is significantly more accurate than time-series-based
methods for 1-h-ahead forecasting. The MAPE values of NARX for 1-h-ahead forecasting
ranges between only 0.75 and 1.25% for all regions we tested. As a computational-
intelligence-based model, we show that NARX is very effective in capturing complex and
nonlinear effects of special days in electricity infeed forecasting. We observe that NARX
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is drastically superior to m-HWT in terms of MaxAPE performance for all forecasting lead
times. We believe that this finding will make NARX very attractive to risk-averse decision
makers in electricity markets.

Finally, our modification to Taylor’s HWT method relaxes Taylor’s no-special-day
assumption and significantly improves forecast accuracy. Despite its simplicity, m-HWT
usually outperforms NARX for 6- and 12-h-ahead forecasts. We believe that our proposed
methods can provide significant financial savings to parties who are in need of accurate
short-term electricity load forecasts.

In this paper, we have implemented our modified HWT and NARX on the electricity load
data from the Dutch market to test the performance of the proposed approaches. Although
electricity demand patterns may differ across countries, they share some fundamental simi-
larities, and hence our results and analysis can be fine-tuned to work with demand data from
other countries as well. For example, most of the special days we consider for the Dutch mar-
ket are not applicable to the Turkish market. Nevertheless, in Turkey there are other special
days including religious and national holidays, which have very similar demand patterns to
the Dutch special days. For example, the drop in demand during the Republic Day in Turkey
is very similar to the one during Independence Day in the Netherlands. Hence, to work with a
different demand dataset one can simply calibrate our models with the new dataset’s special
days. Overall, the algorithms provided in this paper can be easily generalized to electricity
markets in other countries by appropriately replacing the existing special days in the current
models with the ones special to other electricity datasets.

We believe that other more advanced forecasting methods such as multivariate adaptive
regression splines and quantile regression can be explored for electricity load forecasting (Koc
and Iyigun 2014). The former is a non-parametric methodology that includes an extension
of recursive partitioning that uses linear functions for local fit, and it can be successful in
capturing nonlinear relationships in electricity load data.

Appendix A: M-HWT model parameters

See Tables 7, 8, 9, 10.

Table 7 Parameters for m-HWT
models of Maastricht data set

Lead times (h) αbest δbest ωbest φbest

1 0.6099 0.1877 0.2070 0.2839

6 0.0528 0.1888 0.1300 0.7814

12 0.0262 0.1800 0.0894 0.8017

24 0.0043 0.2087 0.0729 0.7990

48 0.0004 0.0905 0.0442 0.9183

168 0.0001 0.0068 0.2103 0.9753
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Table 8 Parameters for m-HWT
models of Limburg data set

Lead times (h) αbest δbest ωbest φbest

1 0.5623 0.1912 0.2168 0.3157

6 0.0433 0.1927 0.1305 0.7990

12 0.0203 0.2036 0.0735 0.8581

24 0.0023 0.2744 0.0943 0.9309

48 0.0035 0.0635 0.0719 0.9214

168 0.0009 0.0499 0.1648 0.8870

Table 9 Parameters for m-HWT
models of Friesland data set

Lead times (h) αbest δbest ωbest φbest

1 0.6107 0.1966 0.2430 0.2738

6 0.0262 0.1614 0.1662 0.8236

12 0.0115 0.2000 0.1213 0.7941

24 0.0006 0.2378 0.1423 0.8906

48 0.0035 0.0635 0.0719 0.9214

168 0.0001 0.0947 0.2340 0.9477

Table 10 Parameters for
m-HWTmodels of Noord data set

Lead times (h) αbest δbest ωbest φbest

1 0.5358 0.2287 0.2070 0.3493

6 0.0357 0.1884 0.1572 0.7887

12 0.0124 0.2078 0.1110 0.8236

24 0.0043 0.2087 0.0729 0.7990

48 0.0001 0.1435 0.0571 0.9396

168 0.0004 0.0068 0.2103 0.9753

Appendix B: NARX architectures

See Tables 11, 12, 13.

Table 11 Maastricht data set
model architectures for different
forecasting horizons

Lead times (h) Hidden layer Number of hidden nodes

1 1 25

6 1 60

12 1 60

24 1 50

48 1 20

168 1 20
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Table 12 Limburg data set
model architectures for different
forecasting horizons

Lead times (h) Hidden layer Number of hidden nodes

1 1 20

6 1 30

12 1 70

24 1 55

48 1 20

168 1 30

Table 13 Friesland data set
model architectures for different
forecasting horizons

Lead times (h) Hidden layer Number of hidden nodes

1 1 5

6 1 30

12 1 20

24 1 30

48 1 30

168 1 25

Appendix C: Model performance for different datasets

See Tables 14, 15, 16.
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