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ABSTRACT: The mass measurement of single molecules, in real time, is
performed routinely using resonant nanomechanical devices. This approach
models the molecules as point particles. A recent development now allows the
spatial extent (and, indeed, image) of the adsorbate to be characterized using
multimode measurements (Hanay, M. S., et al. Nature Nanotechnol., 10, 2015,
pp 339−344). This “inertial imaging” capability is achieved through virtual re-
engineering of the resonator’s vibrating modes, by linear superposition of their
measured frequency shifts. Here, we present a complementary and simplified
methodology for the analysis of these inertial imaging measurements that
exhibits similar performance while streamlining implementation. This develop-
ment, together with the software that we provide, enables the broad
implementation of inertial imaging that opens the door to a range of novel
characterization studies of nanoscale adsorbates.
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Nanomechanical resonators can be used as fast and
sensitive mass balances due to their small mass, high

vibrational frequencies, and low intrinsic energy dissipation.1−10

The strong dependence of mass responsivity on device size has
driven the development of a new type of mass spectrometer
based on inertial mass sensing using nanoelectromechanical
systems (NEMS).8,9 This technology enables very precise
measurements particularly for high molecular weight bio-
materials. Measurements to date include the weighing of
individual proteins, metal nanoparticles, and large biomolecules
and the demonstration of mass sensing with near atomic scale
mass resolution.11−14

The above-mentioned measurements use the property that
the resonant frequency of a nanomechanical device is directly
related to its inertial mass. Increasing the device’s inertial mass,
via mass adsorption on its surface, reduces the resonant
frequencies of its vibrating modes in a deterministic fashion.
Central to all such measurements of adsorbed mass is a
theoretical model enabling conversion of the observed
frequency shifts to an added (adsorbed) mass. The most
common approach is to approximate the adsorbate by a point
mass. This leads to the well-known result for a one-dimensional
elastic beam:
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where δf n is the change in resonant frequency of the device
upon mass adsorption, f n is the resonant frequency of the
device without the adsorbate, madded is the adsorbed mass at
position x, Mdevice is the device mass, and ϕn(x) is the scaled
displacement mode shape of mode n; this formula is valid for
madded ≪ Mdevice. Eq 1 shows that the frequency shift depends
not only on the adsorbed mass but also on its position because
ϕn(x) varies spatially in general; without knowledge of this
position, the adsorbed mass cannot be determined. However,
use of two (or more) modes can disentangle this ambiguity,
leading to simultaneous determination of the adsorbate’s
position and mass;9,10 at least three modes are required for a
cantilever beam. Despite the demonstrated success of this so-
called “two-mode theory”, data pertaining to the adsorbate’s
shape is absent in all such point particle analyses.
Recently, a methodology was proposed that discards the

point particle approximation and allows the spatial distribution
of the adsorbate’s mass density to be measured, i.e., an “inertial
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image” of the adsorbate is obtained.15 This inertial imaging
methodology uses the property that within all the measured
fractional frequency shifts, δf n/f n, lie untapped information on
the adsorbate’s shape. By linearly superposing the measured
frequency shifts, the square of the device’s vibrating modes are
virtually re-engineered to yield flat (constant), linear, parabolic,
cubic, etc. spatial dependencies. This virtual re-engineering
enables all moments of the analyte’s mass distribution to be
measured simply by adding constant multiples of the observed
fractional frequency shifts of several device modes. That is, the
mass, position, variance, skewness, etc. of the adsorbate’s mass
density distribution are determined simultaneously. This “linear
superposition” approach was proposed and demonstrated in ref
15 using both synthetic numerical data and experimental
measurements of liquid droplets deposited on a microcantilever
in air (Figure 1).

Critically, the spatial resolution of this inertial imaging
technique is limited by uncertainty (noise) in the measured
frequency shifts, not the spatial wavelength of the vibrating
modes, i.e., diffraction-like phenomena play no role. Theoretical
projections show that with frequency noise levels in current
NEMS devices, simultaneous mass measurement and imaging
with molecular-scale resolution is possible. The methodology
presented in ref 15 involves a numerical algorithm to perform
the required virtual mode re-engineering and iteratively
determine the measurement zone (i.e., the spatial region of
the device) over which the moments are to be determined.
Because this approach requires some computational analysis, it
is desirable to simplify its underlying theoretical framework to
enable its general use.
Here, we develop such a complementary theoretical

framework for measuring the mass distribution of an analyte
adsorbed to a resonating nanomechanical device. Rather than
relying on linear mode superposition to virtually re-engineer
the mode shapes and, thus, determine the required moments of
the mass distribution,15 we directly determine the moments of
the mass distribution using a nonlinear analytical formula; the
requirement to determine a measurement zone is also
eliminated. Formulas for both one- and two-dimensional
devices are presented. These formulas are simple and can be
employed using standard packages such as Mathematica and
Matlab; Wolfram CDF Player apps are available from the
authors, screen shots of which are provided in the Supporting
Information for cantilever and doubly clamped beams. The

formulas are derived using a local (asymptotic) expansion of
the mass distribution, whereas the linear superposition
approach of ref 15 uses a global approach of linearly
superposing the mode shapes over a finite region; these
frameworks present complementary approaches for interpreting
multimode NEMS mass adsorption data.
We examine the performance of the new nonlinear formulas

using both numerical (synthetic) data and the above-mentioned
published experimental measurements15 and contrast them
with the properties of the linear superposition theory.
Strikingly, both theories exhibit similar properties and depend-
encies on frequency noise, i.e., their spatial resolutions are
identical. In fact, these complementary theories present an
inverse set of relations in the limit of small particle size, as we
shall discuss. We show that the two-mode theory outlined
above, which implements a point-mass approximation, is simply
a subset of this general nonlinear theoretical formula. The one-
and two-dimensional formulas are applicable to beam and plate
resonators, respectively, under arbitrary boundary conditions;
they can therefore be used to analyze a multitude of
measurement configurations. The number of modes required
to determine the moments is also explored.

Theory. We first consider a one-dimensional elastic beam
resonator. The leading-order expression for the fractional
frequency shift of this resonator with an adsorbate mass, madded,
that is far smaller than that of the resonator, Mdevice, is:
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where μ1D(x) is the linear mass density of the adsorbate, L is
the device length and the scaled displacement mode shapes, ϕn,

form an orthonormal basis set, i.e., ∫ ϕ ϕ δ=x Ld
L

m n mn0
, where

δmn is the Kronecker δ function.
We expand ϕn

2(x) in its Taylor series about the center-of-
mass (position) of the adsorbate, x,̅ and substitute the result
into eq 2, giving:
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Knowledge of the position, x,̅ is not required yet; it is
determined from measurements of the fractional frequency
shifts of multiple modes using the resulting formula (see
below). Importantly, the second integral in eq 3 vanishes
because it is the difference of the first moment with itself. This
gives the required result:
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where madded is the adsorbate’s mass and the central moments
are defined as thus:

Figure 1. Optical image for droplets deposited on a microcantilever
using AFM dip-pen lithography to generate samples with known mass,
mean position, extent, and skewness. After each droplet deposition, the
frequency shifts in the cantilever modes were measured. The analysis
of mechanical frequency shifts yielded the spatial properties of
deposited droplets in ref 15. A simplified theoretical approach is
presented here to obtain the spatial properties of the same analytes.
Cantilever dimensions are 397 μm long, 29 μm wide, and 2 μm thick.
Figure is taken from ref 15 and replicated here.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.7b04301
Nano Lett. 2018, 18, 1608−1614

1609

http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.7b04301/suppl_file/nl7b04301_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.7b04301/suppl_file/nl7b04301_si_001.pdf
http://dx.doi.org/10.1021/acs.nanolett.7b04301


∫ μ⟨ ⟩ ≡ − ̅x
m

x x x x
1

( )( ) dp
L

p

added 0 1D
(5)

Eq 4 enables the central moments, ⟨xp⟩, of the adsorbate’s
mass distribution to be determined from the measured

fractional frequency shifts, δf n/f n, of multiple modes. The

corresponding result for a two-dimensional structure, e.g., an

elastic membrane, is obtained in an analogous fashion, yielding

the required formula:
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where (x,y) is the Cartesian coordinate system in the plane of
the structure, (x,̅y)̅ is the adsorbate’s center of mass, and the
two-dimensional moments are
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whereas μ2D (x,y) is the areal mass density distribution of the
adsorbate and the region of integration is the structure’s surface
area, S. The scaled displacement mode shapes Φn(x, y) in eq 6
form the orthonormal basis set, ∫ SΦmΦndS= S δmn. Eq 6 allows
the determination of the central moments, ⟨xpyq⟩, of a two-
dimensional adsorbed mass distribution from the measured
fractional frequency shifts of multiple modes of a two-
dimensional mechanical resonator.
As mentioned previously, eqs 4 and 6 apply to all one-

dimensional and two-dimensional resonators, regardless of their
boundary conditions, such as cantilevered and simply
supported beams, square plates, etc. The mode shapes
intrinsically embody the structure’s boundary conditions. We
now discuss some features and practicalities of the above
nonlinear formulas, eqs 4 and 6, for inertial imaging using
nanomechanical devices.
Number of Modes. Eqs 4 and 6 can be implemented in

practice by truncating their infinite series and solving for the
unknown moments using a numerical root finding procedure.
Numerical solutions of eqs 4 and 6 are easily found using built-
in functions of standard packages such as Mathematica and
Matlab, e.g., using Newton’s method. Importantly, the number
of required moments of the mass distribution specifies the
number modes that need to be measured. For example, to
measure the variance of a (1D) mass attached to a beam
resonator requires at least three modes because its specification
involves the three lowest moments of the distribution. We
discuss the convergence of the moments with increasing mode
number below. We focus on the one-dimensional resonator
formula, eq 4, because (i) these structures are widely used1−8

and (ii) the properties of this formula are identical to eq 6 for
two-dimensional structures.
Two-Mode (Point-Mass) Theory. The two-mode theory, eq

1 for a one-dimensional elastic beam, is clearly a subset of the
general formula, eq 4; the latter includes all moments of the
adsorbate’s mass distribution. The two-mode theory is obtained
by truncating this general formula to include only the zeroth
and first-order moments of the mass distribution, in line with
the methodology described above. The use of eq 4, rather than
eq 1, enables higher-order moments to be evaluated using the
same methodology as the two-mode theory through the
systematic inclusion of higher-order terms in the expansion.
Central Moments. Another feature of the nonlinear formulas

for one-dimensional and two-dimensional structures is that the
moments are specified about the mean position of the

adsorbate’s mass distribution. This contrasts to the linear
superposition theory reported in ref 15 that evaluates the
moments about a (user-specified and fixed) reference point on
the device, e.g., the clamped position of a cantilever beam. The
required central moments, about the center of mass of the
adsorbate, are subsequently determined by combining these
fixed-reference-point moments. The present formulation
eliminates this requirement because the central moments are
evaluated directly; see eqs 4 and 6. As we shall see, this does
not affect the final result (and its uncertainty), but direct
determination of the central moments does simplify analysis.

Convergence. While eqs 4 and 6 use an (asymptotic) Taylor
expansion of the mode shape squared, they are expected to
converge with increasing mode number, regardless of the
spatial extent of the mass distribution. This is because the mode
shapes can be expressed in terms of elementary functions such
as trigonometric and hyperbolic functions. That is, exponential
functions whose Taylor expansions are themselves uniformly
convergent for all values of their arguments, i.e., they are entire
functions. This convergence can be proved for one-dimensional
devices by performing a ratio test for the series in eq 4 (see the
Supporting Information).
Eqs 4 and 6 and linear superposition theory are both derived

from eq 2, albeit using different assumptions. The linear
superposition theory takes a global approach of virtually re-
engineering the modes over a finite spatial domain of the device
to obtain the required weights for each moment. In contrast,
eqs 4 and 6 locally expand the device modes about the
adsorbate’s center-of-mass using Taylor expansions. In the limit
of small adsorbate size, both formulations are expected to yield
identical results; this is observed in the numerical results
reported later.
Moreover, eqs 4 and 6 express the fractional frequency shifts

in terms of the adsorbate’s moments, whereas linear super-
position theory presents the inverse relation: moments as a
function of the fractional frequency shifts. These comple-
mentary theories therefore present a set of inverse functions.
Indeed, a Taylor expansion can be used to formulate linear
superposition theory in the limit of small adsorbate size; see the
Supplementary Section 5 of ref 15.

Results and Discussion.We now assess the utility of eq 4 for
recovering the moments of an adsorbate’s mass distribution.
This is first performed by generating (synthetic) numerical
frequency shift data from eq 2 for a specified mass distribution
and then recovering the moments of this distribution using eq
4. Second, we reanalyze the experimentally measured frequency
shift data reported in ref 15 using eq 4 and compare its results
to those of the linear superposition method.15 The one-
dimensional resonator considered here is a cantilevered elastic
beam and we use its lowest-order flexural modes of vibration in
the analysis.
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Synthetic Data. The adsorbate’s mass distribution chosen
for this analysis is illustrated in Figure 2. It consists of two

individual rectangular distributions of different magnitude,
leading to an overall skewed distribution. The width of each
rectangular distribution is the same, while the overall width, ϵ,
of the adsorbed mass is varied. This enables the assessment of
the robustness of eq 4 in recovering the required central
moments as a function of the width of the adsorbate. The
cantilever length, L, scales all distances.
We first examine the performance of eq 4 using data for the

lowest four flexural modes of the cantilever beam. This
approach is identical to the measurement analysis reported in
ref 15 and allows the robustness of using a fixed number of
modes to be assessed; the exact moments of the adsorbate’s
mass distribution are known in the present case.
Table 1 gives a comparison of (i) the recovered mass (zeroth

moment), center of mass (position), variance, and skewness of
the sample mass distribution using eq 4, and (ii) the exact
moments, as a function of its overall width, ϵ, which is varied
from ϵ = 0.01 to 0.3. The largest value of ϵ is an adsorbate
whose spatial extent covers 30% of the device. The results in
Table 1 show that mass, position, and variance are all recovered
accurately, with the error in eq 4 growing as ϵ increases. This
rise in error is expected because eq 4 is based on a Taylor
expansion about the adsorbate’s center of mass. It is striking
that despite this asymptotic approach, eq 4 is robust in

recovering these low-order moments, even for the largest value
of ϵ = 0.3. Skewness is also captured accurately for the smallest
ϵ but fails for larger spatial extents. This decrease in accuracy
with increasing adsorbate size is enhanced for the higher-order
moments, as expected due to the asymptotic nature of eq 4.
Nonetheless, the reduction in accuracy can be overcome by
using more beam modes, which is now explored.
Results for the moments as a function of the number of

modes are given in Figures 3 and 4. Figure 3 shows the first two
moments of the mass distributions recovered using eq 4 and
those obtained directly from the distribution (the exact values);
Figure 4 gives corresponding results for the variance and
skewness. Critically, determination of the pth moment using eq
4 requires use of at least p mechanical modes. As such, results
for the higher-order moments do not exist when a smaller
number of modes are used; see Figure 4. While a minimum of
three modes are required (in general) to unequivocally
determine the position of an adsorbate using a cantilever,
results for two modes are also shown for completeness; any
ambiguity in the solution is removed here because the exact
solution is known.
Recovered moments for the narrowest mass distribution (ϵ =

0.01) are given in the first row of Figures 3 and 4. Note that as
the number of modes is increased, the moments determined
using eq 4 systematically approach their exact values. Indeed,
accurate results for all the presented moments are found
regardless of the number of modes used. This is because the
spatial extent of the adsorbate is only 1% of the total length of
the device, ensuring that the Taylor expansion in eq 2
converges rapidly. Eq 4 is thus ideally suited to measuring the
moments of adsorbates whose sizes are much smaller than that
of the device; this is particularly advantageous when exploring
the ultimate limits of sensitivity of the technique.15 We remind
the reader that inertial imaging is independent of any
wavelength-dependent phenomena; this feature is illustrated
here with the adsorbate size being one to two orders-of-
magnitude smaller than spatial wavelengths of the beam modes.
The second and third rows of Figures 3 and 4 show that rates

of convergence to the exact solutions decrease with increasing
ϵ, i.e., more modes are required. For the largest spatial extent, ϵ
= 0.3, the moments recovered using eq 4 oscillate about their
exact values and even using 7 modes does not achieve
convergence in highest-order moment, i.e., the skewness. While
increasing the number of modes will in principle lead to
convergence (see above), a large number of modes may be
required and truncation error may provide a limitation in
practice (see discussion above). This limitation is in addition to
obvious practical issues involved in measuring many modes of a
real device. This shows that the number of modes used in
inertial imaging should be systematically increased until
convergence is achieved in the required moments. If

Figure 2. 1D mass density distribution of a sample adsorbate on an
elastic beam. The adsorbate’s spatial extent (width) is ϵ, and the
adsorbate is formed from two rectangular density distributions of equal
width that differ in magnitude by a factor of 2. The lower boundary of
the adsorbate is positioned at x = 0.7, and its overall width is ϵ = 0.1.
The spatial coordinate is scaled by the device length, L, whereas the
mass distribution is scaled by its maximum value, μ0.

Table 1. Accuracy of Eq 4 in the Recovery of the Moments of a Specified Mass Distribution (Illustrated in Figure 2)a

width, ϵ mass center of mass variance skewness

0.01 7.50 × 10−3 (0.00%) 0.704 (0.00%) 7.64 × 10−6 (−0.03%) 0.440 (0.41%)
0.03 2.25 × 10−2 (0.00%) 0.712 (0.00%) 6.86 × 10−5 (−0.23%) 0.429 (−2.20%)
0.07 5.25 × 10−2 (0.02%) 0.729 (−0.01%) 3.70 × 10−4 (−1.10%) 0.335 (−24.0%)
0.1 7.51 × 10−2 (0.11%) 0.741 (−0.04%) 7.50 × 10−4 (−1.80%) 0.178 (−59.0%)
0.3 0.217 (−3.60%) 0.837 (1.40%) 5.67 × 10−3 (−18.0%) 0.706 (61.0%)

aRecovered moments are reported; percentage error relative to the exact result is in parentheses. Frequency shift data for the lowest four flexural
modes of a cantilever beam is generated using eq 2. Recovered mass (second column) is scaled by μ0L; see Figure 2.
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convergence does not occur using the available modes, the
recovered moments may not be accurate. This is expected to be
an issue only for adsorbates whose spatial extent is a large
fraction of the device size. In the Supporting Information, we
present an approach to estimate the number of modes needed
as a function of the geometric moment to be calculated and the
spatial extent of the analyte.
Experimental Data. We now reanalyze the experimental

data shown in Figure 1 and reported in ref 15 for liquid droplet
arrays deposited on a microcantilever using dip pen
lithography. Supplementary Tables 1 and 2 of ref 15 report
numerical data for the measured resonant frequencies of the
lowest four flexural modes of the cantilever, and their
uncertainties (based on a 95% confidence interval). A total of
six cantilever and droplet configurations are reported: the
unloaded cantilever and five droplet arrays. In ref 15, linear
superposition theory (discussed above) was used to recover the
mass, position, variance, and skewness of the droplets arrays,
with the measured frequency shift noise used to determine
uncertainties in the measured moments. This published (linear
superposition theory) data set is now compared to the same
moments recovered with the nonlinear formula, eq 4.
Table 2 presents numerical results for the measured variances

of the droplet arrays using eq 4 and those obtained using the

linear superposition theory. We refrain from presenting results
for the mass and position because they exhibit similar
agreement to the data in Table 2. This comparison shows
that numerical values for the recovered variances are nearly
identical using these two complementary approaches. Even
more striking is the uncertainties in the variances due to the
measured frequency noise of each mode: the two theoretical
frameworks give virtually identical results. While there are some
minor differences, especially for the droplet distributions of
greater spatial extent, this comparison shows that eq 4 can be
used with confidence to recover the spatial extent (variance) of
an adsorbate. This finding is also consistent with above
observations regarding the applicability of eq 4 to adsorbates of
finite extent: while eq 4 is derived using an asymptotic Taylor
expansion, it is expected to hold for adsorbates of arbitrary size,
provided that a sufficient number of modes are used to verify
convergence.
The right-most column of Table 2 gives the measured

variance using only the first three modes. Comparing these
results to those obtained using four modes (second right-most
column) shows that convergence is weaker for adsorbates of
larger spatial extent (size increases down the table). Nonethe-
less, it is clear that convergence in the measured variances as a

Figure 3. Adsorbed mass and position of sample adsorbate in Figure 2, recovered using eq 4 as a function of number of modes and spatial extent of
adsorbate (ϵ = 0.01, 0.1, 0.3). Exact solutions are shown as red horizontal lines. Mass distribution is given in Figure 2.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.7b04301
Nano Lett. 2018, 18, 1608−1614

1612

http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.7b04301/suppl_file/nl7b04301_si_001.pdf
http://dx.doi.org/10.1021/acs.nanolett.7b04301


function of mode number is indeed achieved. Similar results are
found for the linear superposition approach (data not shown).
Experimental Skewness Data. Because more than four

modes were not measured in ref 15, an assessment of the
convergence of the results for skewness with mode number
cannot be made. However, Figure 4 clearly shows that
increasing the spatial extent of the adsorbate reduces the rate
of convergence with increasing mode number. Thus, results for
the droplet array consisting of two rows are expected to be
more accurate than other arrays; we find nearly identical results

using linear superposition and eq 4, with their results differing
by less than 1% (data not shown). This agreement decreases
with increasing spatial extent of the adsorbate. For the
asymmetric droplet array, linear superposition theory gives a
value of −0.453,15 whereas the optically measured value is
−0.537; eq 4 predicts a value of −0.695, which is consistent
with these results. We refrain from analyzing this data further
because its convergence, as a function of mode number, cannot
be assessed.

Figure 4. As for Figure 3 but for the variance and skewness of the mass distribution.

Table 2. Measured Normalized Variance of the Droplet Arrays of Ref 15a

eq 4

droplet array linear superposition four modes three modes

two rows 5.35 × 10−4 (±38%) 5.32 × 10−4 (±34%) 5.33 × 10−4 (±31%)
three rows 1.60 × 10−3 (±6.9%) 1.56 × 10−3 (±6.5%) 1.48 × 10−3 (±4.8%)
four rows 2.92 × 10−3 (±1.4%) 2.79 × 10−3 (±1.2%) 2.81 × 10−3 (±0.74%)
five rows 4.33 × 10−3 (±0.39%) 3.87 × 10−3 (±0.36%) 4.12 × 10−3 (±0.34%)
asymmetric rows 5.21 × 10−3 (±1.5%) 4.67 × 10−3 (±1.3%) 4.23 × 10−3 (±1.1%)

aDistance is again scaled by the cantilever length, L. Results obtained using linear superposition theory of ref 15 and eq 4. Listed uncertainties in the
parentheses specify a 95% confidence interval and are determined by the uncertainty in the measured resonant frequencies. The first four modes of
the cantilever are used in the linear superposition theory.
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The only inertial imaging measurements to date were
reported in ref 15. Importantly, these were performed passively
by measuring the thermal noise spectra of the cantilevers over a
finite bandwidth (to 1 MHz); hence, only four modes were
collected. As discussed, analysis of these measurements (using
the linear superposition theory of ref 15) required significant
computation because a measurement zone needed to be
computed. The present theory eliminates this requirement,
simplifying analysis and ensuring unequivocal measurement
interpretation; uncertainty due to the measurement zone is
eliminated. Use of this theory in future measurements, e.g.,
using active drive and a larger bandwidth to overcome the
above-stated limitations, will enable the full potential of inertial
imaging to be experimentally realized.
Conclusions. We have presented simple nonlinear formulas

for measuring the spatial distribution of a mass adsorbed to a
nanomechanical resonator. Formulas for both one- and two-
dimensional devices have been reported, which facilitates
inertial imaging measurements using a range of current
NEMS devices. The linear superposition theory of ref 15 and
the nonlinear formulas in eqs 4 and 6 formally represent a set of
inverse relations in the limit of small adsorbate size. They
produce identical numerical results in this limit. The presented
nonlinear formulas can be implemented trivially using standard
packages such as Mathematica and Matlab and simply involve
the use of a root-finding procedure, e.g., Newton’s method.
These formulas are expected to be advantageous in the
application of inertial imaging in practice. Wolfram CDF Player
apps that implement the nonlinear formulas for cantilever and
doubly clamped beams are available from the authors; details
are provided in the Supporting Information.
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■ NOTE ADDED IN PROOF
A paper showing that the original formulation of the inertial
imaging technique15 can be extended beyond mechanical
systems and applied to electromagnetic sensors has appeared
recently.16
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