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Abstract 

In this study, we present an investigation of the optical 
properties and band structures for the conventional and 
Fibonacci photonic crystals (PCs) based on some A5B6C7 
ferroelectrics (SbSBr and BiTeCl). Here, we use one 
dimensional SbSBr and BiTeCl based layers in air 
background. We have theoretically calculated the photonic 
band structure and transmission spectra of SbSBr and 
BiTeCl based PC superlattices. The position of minima in 
the transmission spectrum correlates with the gaps obtained 
in the calculation. The intensity of the transmission depths 
is more intense in the case of higher refractive index 
contrast between the layers. In our simulation, we employed 
the finite-difference time domain  technique and the plane 
wave expansion method, which implies the solution of 
Maxwell equations with centered finite-difference 
expressions for the space and time derivatives. 

1. Introduction 

Photonic crystals (PhCs) are structured dielectric 
composites that are designed and fabricated to have periodic 
optical properties that strongly alter the properties and 
propagation of light. One of the defining properties of PhCs 
is photonic band gaps – frequency ranges where light 
cannot propagate because of the destructive interference 
between coherent scattering paths. We can observe the same 
situation in the PhCs based superlattices [1,2]. The 
structures intermediate between the periodic and disordered 
structures (quasiperiodic structure) - the Fibonacci and 
Thue-Morse superlattices, occupy a special place among the 
superlattices. The strong resonances in spectral dependences 
of fractal multilayers can localize light very effectively. In 
addition, long-range ordered aperiodic photonic structures 
offer extensive flexibility for the design of optimized light 
emitting devices, the theoretical understanding of the 
complex mechanisms governing optical gaps, and mode 
formation in aperiodic structures becomes increasingly 
more important. The formation of photonic band gaps and 
the existence of quasi-localized light states have already 
been demonstrated for one (1D) and two-dimensional (2D) 
aperiodic structures based on Fibonacci and the Thue-Morse 
sequences [2]. The unusual electron properties of 
quasiperiodic potentials have also stimulated extensive  

 
research of the optical counterparts. However, to the best of 
our knowledge, a rigorous investigation of the band gaps 
and optical properties in the more complex types of 
aperiodic structures has not been reported so far.  
In this paper, we investigated the energy spectrum and 
optical properties in the Fibonacci-type photonic band gap 
(PBG) structures consisting of ferroelectric material (SbSBr 
and BiTeCl) [3] in detail by using the finite-difference time-
domain (FDTD) method and the plane wave expansion 
method (PWE). The choice of the SbSBr and BiTeCl 
crystals as the active media for our investigation were 
associated with their unusual optical and electronic 
properties. It is well known that SbSBr and BiTeCl are the 
ferroelectric material and their properties are very sensitive 
to external influences (temperature, electric field, stress, and 
light) [3]. 
 

2. Computational Details 

2.1. Fibonacci Sequences and Model 

Quasiperiodic structures are nonperiodic structures that are 
constructed by a simple deterministic generation rule. In a 
quasiperiodic system, two or more incommensurate periods 
are superimposed so that it is neither aperiodic nor a 
random system and, therefore, can be considered as 
intermediate the two [1]. In other words, due to a long-
range order, a quasiperiodic system can form forbidden 
frequency regions called pseudo band gaps similar to the 
band gaps of a PC and simultaneously possess localized 
states as in disordered media [2]. The Fibonacci multilayer 
structure (well-known quasiperiodic structure) has been 
studied in the past decade, and recently the resonant states 
at the band edge of the photonic structure in the Fibonacci 
sequence are studied experimentally, too [4]. A 1D quasi-
periodic Fibonacci sequence is based on a recursive 
relation, which has the form, Sj+1={Sj-1, Sj} for j≫1, with 
S0={A}, S1={B}, S2={AB}, S3={BAB}, S4={ABBAB} and 
soon, where Sj is a structure obtained after j iterations of the 
generation rule [1]. Here, A and B are defined as being two 
dielectric materials, with different refractive indices (nA, nB) 
and have geometrical layer thickness (dA, dB). In place of 
materials A and B, we used air for A for material and 
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BiTeCl [5] and SbSBr [6] for B material. In Fig. 1 (a) and 
(b), we schematically show the geometry of Conventional 
Photonic Crystal (CPCs) and Fibonacci Photonic Crystal 
(FPCs). The typical 1D CPCs and FPCs are shown in Fig.1. 
The thickness of the considered layers of A and B are 
dA = 0.5a and dB = 0.5a, respectively. The lattice constant 
is a = (dA + dB) = 1 μm. The filling fraction f is the ratio 
between the thickness of the lower refractive index layer 
(air) and the period of the PC, i.e. f = dA (dA + dB)⁄ . The 
filling fraction is set to 0.5. The refractive index contrasts of 
BiTeCl and SbSBr are taken as shown in Ref [5] and [6]. 
The refractive index of the background dielectric medium is 
assumed as air (nair=1.0). 
 
 

 
Figure 1: 1-Dimensional Conventional Photonic Crystal 
Structure (a) and Fibonacci Photonic Crystal Structure 
(b). 

 

2.2. Finite Difference Time Domain (FDTD) 

Method and Plane Wave Expansion Method (PWE) 

In our calculations, we used the OptiFDTD software 
package [7]. The OptiFDTD software package is based on 
the finite-difference time-domain (FDTD) method for 
transmission spectra and the plane wave expansion method 
(PWE) for the photonic band structure. 
The photonic band structures of the proposed PCs were 
calculated by solving the Maxwell equations. The Maxwell 
equation in a transparent, time-invariant, source free, and 
non-magnetic medium can be written in the following form: 

∇ ×
1

ε(𝐫)
∇ × 𝐇(𝐫) =

ω2

c2
𝐇(𝐫)                                              (1) 

Where, 
ε(𝐫) is the space dependent dielectric function 
c is the speed of light in vacuum. 
𝐇(𝐫) is the magnetic field vector of frequency ω and time 
dependence ejωt. 
This equation is sometimes called the Master Equation, and 
represents a Hermitian eigen-problem, which would not be 
applicable if the wave equation were derived in terms of the 

electric field. The Bloch theorem states that, due to infinite 
periodicity, the magnetic field will take the form: 

𝐇(𝐫) = ej𝐤𝐫𝐡𝐤(𝐫)                                                                    (2) 

Where 

𝐡𝐤(𝐫) = 𝐡𝐤(𝐫 + 𝐑)                                                                 (3) 

for all combinations of lattice vectors 𝐑 . Thus, Maxwell 
equation is given in operator form: 

(∇ × j𝐤) × [
1

ε(𝐫)
(∇ × j𝐤)] × 𝐡𝐤 =

ω2

c2
𝐡𝐤                         (4) 

By solving these equations for the irreducible Brillouin 
zone, we can obtain the photonic band structure.  
FDTD algorithm is one of the most appropriate calculation 
tools [8]. For solving Maxwell's equations, depending on 
the time, the FDTD algorithm divides the space and time in 
a regular grid. Perfect matched layers (PMLs) can be used 
in the determination of the boundary conditions [9]. In 
general, the thickness of the PML layer in the overall 
simulation area is equal to a lattice constant. FDTD solves 
the electric and magnetic fields by rating depending on 
space and time, and deploys that rating in different spatial 
regions by sliding each field component half a pixel. This 
procedure is known as Yee grid discretization. Fields in 
these grids can be classified as Transverse Magnetic (TM) 
and Transverse Electric (TE) polarization. In our 
calculations, we have used Perfect Magnetic Conductor 
(PMC) and Anisotropic Perfectly Matched Layer (APMLs) 
boundary conditions at the x- and z-directions, respectively. 
 

3. Results and Discussion 

3.1. Photonic Band Structure and Transmittance 

We calculate the spectral properties  up to nth 
generations (n=10) Fibonacci-type quasi-periodic layered 
structures consisting of BiTeCl and SbSBr compounds. 
Band structure of 1D of BiTeCl and SbSBr based CPCs 
have been calculated in high symmetry directions in the first 
Brillouin zone (BZ) and shown in Fig. 2(a,b). As seen in 
Fig 2(a), there are three photonic band gaps (PBGs) for 
BiTeCl compound. The width of the PBGs are (51-85) THz 
for first, (118-166) THz for the second, (198-236) THz for 
the third, respectively. On the other hand, for SbSBr 
compound, the first TE band gaps appeared to be between 
the first and second bands in the frequency ranges (52-87) 
THz, the second band gaps (122-170) THz, and the third 
band gaps (205-241) THz. When the frequency of the 
incident electromagnetic wave drops in these PBGs, the 
electromagnetic wave will be reflected completely by the 
photonic crystal. It can be seen in Fig. 2, transmittance is 
zero in these range of frequencies where the refractive index 
of the structure is positive and the spectral width of the gaps 
are invariant with the change in the transmittance (Tables 1 
and 2). 
The numerical results of variation of full band gap with 
changing filling factor from 0.1 up to  0.9 is given in Tables 
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1 and 2. Variation of band gap sizes (%) as a function of 
filling factor changes between 4 and 35 for TE1 band of 
both types of crystals. The largest gap sizes are approx. 
35% for BiTeCl when filling factor is as high as 0.2. On the 
other hand, the largest gap sizes are approx. 34% for SbSBr 
when the filling factor is as high as 0.7. Then, it decreases 
when the filling factor continues to increase for both 
crystals. On the other hand, the second and third band gap 
sizes do not change too much according to the filling factor.  
 

 

 
Figure 2: TE Band structure and transmittance spectra 
of BiTeCl (a) and SbSBr (b) in 1D. 

 
Table 1: Variation of full band gap size for TE modes with 

filling factor for BiTeCl based layers in air background. 
 TE1 TE2 TE3 

Filling 
Factor 

Band 
Gap 

(THz) 

Gap 
Size 
(%) 

Band 
Gap 

(THz) 

Gap 
Size 
(%) 

Band 
Gap 

(THz) 

Gap 
Size 
(%) 

0.1 (86-
148) 26.49 (205-

287) 16.66 (347-
400) 7.09 

0.2 (68-
139) 34.29 (196-

220) 5.76 (280-
341) 9.82 

0.3 (59-
120) 34.07 (167-

196) 7.98 (246-
292) 8.55 

0.4 (54-
100) 29.87 (136-

186) 15.52 (235-
243) 1.67 

0.5 (51-
85) 25.00 (118-

166) 16.90 (198-
236) 8.75 

0.6 (49-
73) 19.67 (106-

145) 15.53 (173-
215) 10.82 

0.7 (48- 14.28 (99- 12.77 (156- 10.08 

64) 128) 191) 

0.8 (47-
57) 9.61 (95-

114) 9.09 (146-
171) 7.88 

0.9 (47-
51) 4.08 (94-

103) 4.56 (141-
154) 4.40 

 
Table 2: Variation of full band gap size for TE modes with 

filling factor for SbSBr based layers in air background. 
 TE1 TE2 TE3 

Filling 
Factor 

Band 
Gap 

(THz) 

Gap 
Size 
(%) 

Band 
Gap 

(THz) 

Gap 
Size 
(%) 

Band 
Gap 

(THz) 

Gap 
Size 
(%) 

0.1 (48-
53) 4.95 (96-

106) 4.95 (145-
159) 4.60 

0.2 (48-
59) 10.28 (98-

118) 9.25 (150-
176) 7.97 

0.3 (49-
66) 14.78 (102-

132) 12.82 (161-
197) 10.05 

0.4 (50-
75) 20.0 (110-

150) 15.38 (179-
221) 10.50 

0.5 (52-
87) 25.17 (122-

170) 16.43 (205-
241) 8.07 

0.6 (55-
103) 30.37 (141-

190) 14.80 - - 

0.7 (61-
123) 33.69 (174-

198) 6.45 (250-
302) 9.42 

0.8 (70-
141) 33.64 (198-

230) 7.47 (290-
346) 8.80 

0.9 (90-
149) 24.68 (209-

277) 13.99 (349-
415) 8.63 

 
Then, we have calculated the transmission spectra of 
Conventional and Fibonacci types photonic crystals with 
unit cells composed by SbSBr and BiTeCl and the same 
optical thickness for each layer. The spectra are shown in 
Figures 3-8. The position of the minima in the transmission 
spectrum correlates with the gaps obtained in the 
calculation. The intensity of the transmission depths is more 
intense in the case of higher refractive index contrast 
between the layers. This phenomenon is even more clear for 
Fibonacci structures (see, Figs. 3-8). In Figures 4-8, we plot 
the overall transmission as a function of the incidence angle 
(0o-75o). In this case, we observed that, for lower refractive 
index contrast, the overall transmission is higher for 
Fibonacci structures, while for a higher refractive contrast 
the overall transmission is higher for conventional crystals. 
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Figure 3: TE Transmittance spectrum of BiTeCl based 
Conventional and Fibonacci Photonic crystal structures of 
(a) 5th and (b) 10th generations. 

 

 
Figure 4: TE Transmittance spectrum of BiTeCl based 
Conventional Photonic crystal structures of (a) 5th and (b) 
10th generations from 0° to 75°. 

 

 
Figure 5: TE Transmittance spectrum of BiTeCl based 
Fibonacci Photonic crystal structures of (a) 5th and (b) 10th 
generations from 0° to 75°. 

 

 
Figure 6: TE Transmittance spectrum of SbSBr based 
Conventional and Fibonacci Photonic crystal structures of 
(a) 5th and (b) 10th generations. 

(b) 

(a) 

(b) 

(a) 

(b) 

(a) 

(b) 

(a) 
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Figure 7: TE Transmittance spectrum of SbSBr based 
Conventional Photonic crystal structures of (a) 5th and (b) 
10th generations from 0° to 75°. 

 

 
Figure 8: TE Transmittance spectrum of SbSBr based 
Fibonacci Photonic crystal structures of (a) 5th and (b) 10th 
generations from 0° to 75°. 
 

4. Conclusions 

The photonic band structures and transmission properties of 
the 1D BiTeCl and SbSBr based conventional PCs and 
Fibonacci PCs consisting of layers immersed in air were 
studied. We have investigated the band structure and 
transmittance spectra of BiTeCl and SbSBr based CPhc and 
FPhc. Through the theoretical analysis of the transmission 
spectrum, it was found that the number of transmission 
peaks of a Fibonacci structure is in the law of Mn = Mn-1 + 
Mn-2 in accordance with the structure of FPhc where Mn 
represents the number of transmission peaks of an FPhc 
with the n series. The results show that the number of the 
repetition period also has a great influence on the average 
transmittance of the pass band of both conventional and 
Fibonacci PCs. 
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