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Abstract. Given a probability measure µ with non-polar compact supportK, we define the n-th
Widom factor W 2

n(µ) as the ratio of the Hilbert norm of the monic n-th orthogonal polynomial
and the n-th power of the logarithmic capacity of K. If µ is regular in the Stahl–Totik sense
then the sequence (W 2

n(µ))∞
n=0 has subexponential growth. For measures from the Szegő class on

[−1, 1] this sequence converges to some proper value. We calculate the corresponding limit for
the measure that generates the Jacobi polynomials, analyze the behavior of the corresponding
limit as a function of the parameters and review some other examples of measures when Widom
factors can be evaluated.

1. Introduction. Let µ be a positive Borel measure on C with compact support K
containing infinitely many points. The Gram–Schmidt process in the space L2(µ) defines
the unique sequence of orthonormal polynomials pn(z) = κnz

n + . . . provided κn > 0.
By qn with n ∈ Z+ we denote the monic orthogonal polynomials, that is qn = κ−1

n pn. It
is known (see e.g. [15], p. 78) that ‖qn‖2 = κ−1

n realizes infQ∈Mn
‖Q‖2 whereMn stands

for the class of all monic polynomials of degree at most n. If K ⊂ R then (see e.g. [15],
p. 79) a three-term recurrence relation

xqn(x) = qn+1(x) + bnqn(x) + a2
n−1qn−1(x)

is valid with the Jacobi parameters an = κn/κn+1 and bn =
∫
xp2

n(x) dµ(x). If, in addi-
tion, µ(R) = 1 then p0 = q0 ≡ 1, so κ0 = 1 and a0a1 . . . an−1 = κ−1

n .
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Suppose µ is a probability Borel measure on C and the logarithmic capacity Cap(K)
is positive. Let us define n-th Widom–Hilbert factor as

W 2
n(µ) := ‖qn‖2

Capn(K) .

Thus, for K ⊂ R we have W 2
n(µ) = (κn ·Capn(K))−1 and, in particular, for K = [−1, 1],

W 2
n(µ) = κ−1

n · 2n. (1)

Example 1.1. The equilibrium measure dµe = dx
π
√

1−x2 generates the Chebyshev poly-
nomials of the first kind p0 ≡ 1, pn =

√
2Tn for n ∈ N, where Tn(x) = cos(n arccosx) =

2n−1xn + . . . for |x| ≤ 1. Here, κn = 2n−1/2 and W 2
0 (µe) = 1, W 2

n(µe) =
√

2 for n ∈ N.
For the Chebyshev polynomials of the second kind (see e.g. [14], p. 3) we have to take
dν = 2

π

√
1− x2 dx. Then pn(x) = Un(x) = 2nxn + . . ., so κn = 2n and W 2

n(ν) = 1 for
n ∈ Z+.

In general, for 1 ≤ p ≤ ∞, we can define W p
n(µ) as infMn ‖Q‖p

Capn(K) where ‖ · ‖p is the norm
in the space Lp(µ). In the case p =∞ we get the Widom–Chebyshev factors considered
in [7]. Since µ(C) = 1, by Hölder’s inequality, W p

n(µ) ≤W r
n(µ) for 1 ≤ p ≤ r ≤ ∞.

As in the case p =∞, the valueW p
n is invariant under dilation and translation. Indeed,

the map ϕ(z) = w = az + b with a 6= 0 transforms µ0 into µ with dµ(w) = dµ0(w−ba ). If
qn(µ0, z) = zn+. . . realizes the infimum of norm in Lp(µ0) then qn(µ,w) = anqn(µ0,

w−b
a )

does so in the space Lp(µ). Therefore, ‖qn(µ, ·)‖p = |a|n · ‖qn(µ0, ·)‖p. On the other hand,
Cap(aK + b) = |a|Cap(K). From here, W p

n(µ) = W p
n(µ0).

Example 1.2. The monic Chebyshev polynomials (21−nTn)∞n=1 have a remarkable prop-
erty: They realize infMn ‖ · ‖p in the space Lp(µe) for each 1 ≤ p ≤ ∞ (see e.g. [11],
p. 96). For proper p, it is easy to check that

∫ π
0 | cosnt|p dt =

∫ π
0 sinp t dt which does not

depend on n ∈ N. Hence, for all n ∈ N we have

W p
n(µe) = 2 ·

( 1
π

∫ π

0
sinp t dt

)1/p
,

which increases to W∞n (µe) = 2 as p→∞.

The Hilbert case p = 2 is of interest since some important classes of measures in the
theory of general orthogonal polynomials can be described in terms of behavior of Widom
factors. For example, a measure µ is regular in the Stahl–Totik sense (µ ∈ Reg) if and
only if the sequence of Widom factors has subexponential growth.

Recall that µ ∈ Reg ([12], Def. 3.1.2) if κ−1/n
n → Cap(K) as n → ∞ and a sequence

(an)∞n=1 with an > 0 has subexponential growth if an = exp(n · εn) with εn → 0 as
n → ∞. In the case of Chebyshev norm (p = ∞), by G. Szegő, the sequence of Widom
factors has subexponential growth for each non-polar compact set K.

By the celebrated Szegő’s result ([14], p. 297), for a wide class of measures on [−1, 1]
the sequence (W 2

n(µ))∞n=0 converges. In Section 2 we calculate the corresponding limit for
the measure that generates the Jacobi polynomials. In Section 3 we discuss the Widom
characterization of Szegő’s class. In Section 4 we consider the behavior of the Widom
factors for the Pollaczek polynomials—a typical example of polynomials that are gen-
erated by a regular measure beyond the Szegő class. Also, following methods from [12],
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we consider Widom factors for some irregular measures. Section 5 is devoted to the review
of related results for orthogonal polynomials on Julia sets.

The motivation of our research is the problem to define the Szegő class for the general
case, particularly for strictly singular measures. The Szegő type condition for the finite
gap case is given in terms of the Radon–Nikodym derivative of the spectral measure with
respect to the Lebesgue measure. Therefore it cannot be directly applied for the strictly
singular case. But the Widom condition (Section 3), which characterizes the Szegő class
in known cases, is given only in terms of properties of (W 2

n(µ))∞n=0.
We suggest the name Widom factor forW 2

n(µ) because of the fundamental paper [17],
where H. Widom considered the corresponding values for K ⊂ C which is a finite union
of smooth Jordan curves.

For basic notions of logarithmic potential theory we refer the reader to [10], log denotes
natural logarithm. The symbol ∼ denotes the strong equivalence: an ∼ bn means that
an = bn(1 + o(1)) for n→∞.

2. Jacobi weight. Let us find the limit of the sequence (W 2
n(µ))∞n=0 where dµ/dx is

the density of a beta-distribution on [−1, 1]. Here, µ generates the classical (Jacobi)
orthogonal polynomials on [−1, 1]. The Jacobi polynomials are orthogonal with respect
to the weight hα,β(x) = (1−x)α(1+x)β with −1 < α, β <∞. Let Cα,β =

∫ 1
−1 hα,β(x) dx.

Then the measure dµα,β = C−1
α,βhα,β(x) dx has unit mass and we will consider Wn,α,β :=

W 2
n(µα,β).

Lemma 2.1. We have
∫ π/2

0 (2 sin t)α(2 cos t)β dt ≥ π/2 for each −1 < α, β < ∞. If
α2 + β2 > 0 then the inequality is strict.
Proof. For each x ∈ R we have the inequality ex ≥ 1 + x+ x2/2 · χ(0,∞), which is strict
if x 6= 0. Let us take x = log[(2 sin t)α(2 cos t)β ]. Then

(2 sin t)α(2 cos t)β ≥ 1 + α log(2 sin t) + β log(2 cos t) + x2/2 · χ(0,∞).

Since ∫ π/2

0
log(2 sin t) dt =

∫ π/2

0
log(2 cos t) dt = 0,

(see e.g. [18], p. 402, form. 688), we get the desired inequality. Let us check its strict-
ness if at least one of the parameters is not zero. It is enough to find t ∈ (0, π/2)
such that x(t) > 0. Then, by continuity, x is positive in some neighborhood of t and∫ π/2

0 x2(t) · χE dt > 0. Here, E = {t ∈ (0, π/2) : x(t) > 0}.
Suppose α+ β > 0. Then x(π/4) = (α+ β)/2 · log 2 > 0.
If α+ β < 0 and β < 0 with α ≥ β, then for t = π/2− ε with small enough ε we get

x(t) = log[(2 sin 2ε)β(2 cos ε)α−β ] > (α− β) log(2 cos ε) ≥ 0.
Similarly, if α+ β < 0 and α < 0 with α < β, then one can take t = ε.
Finally, let α + β = 0 and, without loss of generality, α > 0. Then, for t > π/4,

x(t) = log(tan t)α > 0.
Lemma 2.2. For −1 < α, β < ∞, let Cα,β be defined as above. Then 2α+βCα,β ≥ π/2.
The inequality is strict if (α, β) 6= (−1/2,−1/2). If (α, β) approaches the boundary of the
domain (−1,∞)2 then 2α+βCα,β →∞.
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Proof. By substitution x = cos 2t, we have

Cα,β =
∫ 1

−1
(1− x)α+1/2(1 + x)β+1/2 dx√

1− x2
=
∫ π/2

0
(2 sin2 t)α+1/2(2 cos2 t)β+1/2 2 dt.

From here, 2α+βCα,β =
∫ π/2

0 (2 sin t)A(2 cos t)Bdt with A = 2α + 1, B = 2β + 1. Since
−1 < A,B < ∞, Lemma 2.1 can be applied. The equality 2α+βCα,β = π/2 occurs only
if A = B = 0, that is α = β = −1/2.

Let us analyze the boundary behavior of the function f(α, β) := 2α+βCα,β . First we
consider the symmetric case. For large m ∈ N we have

f(m,m) = 4m
∫ 1

−1
(1− x2)m dx = 4m

∫ π

0
sin2m+1 t dt = 4m 2m

2m+ 1 ·
2m− 2
2m− 1 · · ·

2
3 · 2

and f(m,m) ∼ 4m
√
π/m.

For the opposite case, let ε be small and positive. Then

f(−1 + ε,−1 + ε) = 4−1+ε · 2
∫ 1

0
(1− x2)−1+ε dx >

1
4

∫ 1

0
(1− x)−1+ε dx = 1

4ε .

In general, let us estimate from below f(α,m) = 2α+m ∫ 1
−1(1 − x)α(1 + x)m dx for

large m. If α < 0 then f(α,m) > 2m−1 ∫ 1
0 (1 + x)m dx ∼ 4m/m.

If α ≥ 0 then f(α,m) > 2m+α ∫ 1/2
0 (1−x)α(1+x)m dx > 2m

∫ 1/2
0 (1+x)m dx ∼ 3m/m.

Similarly, f(−1 + ε, β) > 2−1+β ∫ 1
0

(1+x)β
(1−x)1−ε dx. If β < 0 then (1 + x)β > 2−β and

f(−1 + ε, β) > 1
2ε . If β ≥ 0 then 2β(1 + x)β ≥ 1, which gives the same lower bound

f(−1 + ε, β) as above. Clearly, f(α,−1 + ε) and f(m,β) can be estimated in the same
way.

The leading coefficient for Jacobi polynomials is given in terms of the gamma function
Γ(p) =

∫∞
0 xp−1e−x dx with p > 0. It is known (see e.g. [13], Lemma 4.3) that
Γ(n+ 1) = n · Γ(n) = n!, Γ(n+ p) ∼ np Γ(n) for n ∈ N, p > 0. (2)

From here and by Stirling’s formula,
Γ(2n)
Γ2(n) ∼

1
2

√
n

π
4n. (3)

Let
Wα,β :=

√
π

2α+βCα,β
.

Theorem 2.3. We have
(i) for each −1 < α, β <∞, Wn,α,β →Wα,β as n→∞,
(ii) sup−1<α,β<∞Wα,β = W−1/2,−1/2 =

√
2, which is the only maximum.

(iii) Wα,β → 0 as (α, β) approaches the boundary of the domain (−1,∞)2.
Proof. The leading coefficient of the Jacobi polynomial P (α,β) for the measure dµ =
hα,β(x) dx is given by the formula (25) in [13], 7.1. Therefore, for the normalized case,
we have

κn(α, β) =
√
Cα,β

2n

√
α+ β + 2n+ 1
n! 2α+β+1

Γ(α+ β + 2n+ 1)√
Γ(α+ n+ 1)Γ(β + n+ 1)Γ(α+ β + n+ 1)

.
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By (2), the last fraction is equivalent to Γ(2n)
Γ3/2(n)

2α+β+1
√
n

. Therefore,

κn(α, β) · 2n ∼
√

2α+β+1Cα,β

√
α+ β + 2n+ 1

n

Γ(2n)√
n! Γ3/2(n)

.

By (2) and (3), the last fraction here is equivalent to 1
2

1√
π

4n. Thus, κn(α, β) · 2−n ∼√
2α+βCα,β/π, which is, by (1), the desired result.
The statements (ii) and (iii) follow from Lemma 2.2.

For example, for the Legendre polynomials we have C0,0 = 2 and W0,0 =
√
π/2.

3. The Szegő class. The measures µα,β from the previous section satisfy the Szegő con-
dition. Recall that a probability measure dµ(x) = ω(x) dx with support [−1, 1] belongs
to the Szegő class (µ ∈ (S)) if I(ω) :=

∫ 1
−1

logω(x)
π
√

1−x2 dx > −∞, which means that this inte-
gral converges for it cannot be +∞. Orthogonal polynomials generated by µ ∈ (S) enjoy
several nice asymptotics. The basic of them is the asymptotics of pn(z)(z +

√
z2 − 1)−n

outside [−1, 1] as n→∞ (see [14], p. 297, or e.g. Theorem 1.7 in [16]). Here, we take the
branch of

√
z2 − 1 that behaves like z near infinity, so the modulus of the second term

above is exp(−n · g(z)), where g is the Green function of C \ [−1, 1] with pole at infinity.
By setting z =∞, we get (see (12.7.2) in [14] or [16], p. 26)

lim
n
W 2
n(µ) =

√
π exp(I(ω)/2), (4)

which gives another way to calculate Wα,β .
Thus, for any measure from the Szegő class, the sequence of Widom factors converges

to some positive value. The inverse implication is also valid: if limnW
2
n(µ) exists in (0,∞)

then µ ∈ (S) (see e.g. Theorem 2.4 in [6]).
We see that I(ω) =

∫
logω dµe. Let us calculate this value for the equilibrium density

ωe = dµe/dx = 1
π
√

1−x2 . Here, I(ωe) = − log π −
∫ π

0 log sin t dt/π = log(2/π). As a
generalization of Theorem 2.3, let us show that I(ωe) realizes maximum of I(ω) among
all densities from the Szegő class (compare with (4.7) in [6]).

Proposition 3.1. Suppose ω
a.e.
> 0 with

∫ 1
−1 ω(x) dx = 1 and I(ω) > −∞. Then I(ω) ≤

log(2/π) with equality if and only if ω a.e.= ωe.

Proof. We have I(ω) =
∫

logωe dµe +
∫

log(ω/ωe) dµe. The first term here is log(2/π),
for the latter we use Jensen’s inequality (see e.g. [5], p. 141):∫

log(ω/ωe) dµe ≤ log
∫
ω/ωe dµe = log

∫ 1

−1
ω(x) dx = 0.

Since log(·) is strictly concave, the equality above is possible if and only if ω/ωe
µ-a.e.= 1,

that is ω a.e.= ωe.

Corollary 3.2. Let µ ∈ (S) and W (µ) := limnW
2
n(µ). Then W (µ) ≤ W (µe) with

equality if and only if µ = µe.

During the last two decades significant progress was achieved in the generalization of
Szegő’s theory to the case of finite gap Jacobi matrices J (see e.g. the review [6]). For
such matrices, the essential spectrum K = σess(J) is a finite union of closed intervals. If
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the spectral measure µ is absolutely continuous, that is dµ(x) = ω(x) dx, then the Szegő
class can be defined as (4.6) in [6]: µ ∈ (S) if∫

K

logω(x)√
dist(x,R \K)

dx > −∞.

Here, we have the Widom characterization ((4.11) in [6])

µ ∈ (S) ⇐⇒ lim sup
n→∞

W 2
n(µ) > 0. (5)

As in the case W∞n (see [1], [2] or e.g. [7]), the behavior of (W 2
n(µ)) for such measures

is rather irregular. This sequence may have a finite number of accumulation points or
the set of its accumulation points may fill a whole interval. For asymptotics of W 2

n(µ) we
refer the reader to [15], p. 101.

As an example, let us consider the Jacobi matrix with periodic coefficients (an) and
zero (or slowly oscillating) main diagonal. Recall that periodic coefficients gives a Jacobi
matrix in the Szegő class. We follow [8] here.

Example 3.3. Let a2n−1 = a, a2n = b for n ∈ N with b > 0 and a = b+ 2. These values
with bn = 0 define a Jacobi matrix B0 with spectrum σ(B0) = [−b−a, b−a]∪ [a−b, a+b]
([8], Lemma 2.1). The same values (an)∞n=1 with bn = sinnγ for 0 < γ < 1 give a matrix
B with σ(B) = [−b − a − 1, b − a + 1] ∪ [a − b − 1, a + b + 1] ([8], Theorem 2.6). Let
µ0 and µ be spectral measures for B0 and B correspondingly. We know (see e.g. [10],
Corollary 5.2.6) that the capacity of [−B,−A] ∪ [A,B] for 0 < A < B is 1

2
√
B2 −A2.

Therefore, Cap(σ(B0)) =
√
ab, Cap(σ(B)) =

√
a(b+ 1). From here, W 2

2n(µ0) = 1 and
W 2

2n−1(µ0) =
√
a/b for n ∈ N. The measure µ0 is absolutely continuous with respect to

the Lebesgue measure (see e.g. [16], Lemma 2.15). Here, µ0 ∈ (S), as we expected.
On the other hand, W 2

2n(µ) = ( b
b+1 )n and W 2

2n+1(µ) = ( b
b+1 )n

√
a
b+1 . Thus,

W 2
n(µ)→ 0 as n→∞, µ /∈ (S) and µ /∈ Reg.

4. Outside the Szegő class. The measure µ that generates the Pollaczek polynomials
(see [14], Appendix, [9], p. 80, [16], p. 6) presents a typical example of a regular absolutely
continuous measure beyond the Szegő class.

Example 4.1. For real parameters a and b with a ≥ |b|, in the simplest case (λ = 1/2),
the weight function for the Pollaczek polynomials is ([14], p. 394, [16], p. 6)

ω(x) = 1 + a

2π exp(−2t · arcsin x) · |Γ(1/2 + it)|2

with t = ax+b
2
√

1−x2 for |x| ≤ 1.
By the Erdős–Turán criterion (see e.g [12], p. 101), the measure dµ(x) = ω(x) dx is

regular. On the other hand, ω goes to zero exponentially fast near the endpoints of the
interval [−1, 1], thus the integral I(ω) diverges and µ /∈ (S). Substituting x =∞ in [16],
(1.3.19), we get

lim
n
W 2
n(µ) · na/2 = Γ

(a+ 1
2

)
.

Here, the sequence (W 2
n(µ))∞n=0 converges to zero, but slowly, which corresponds with the

regularity of µ.
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In Example 3.3 the sequence (W 2
n(µ))∞n=0 converges to zero with an exponential rate.

Using techniques from [12], let us show that any rate of decrease, which is faster than
exponential, can be achieved.

Example 4.2. Let Zn be the set of zeros of the Chebyshev polynomial T3n for n ∈ Z+.
Since T3n+1(x) = T3(T3n(x)), we have Zn ⊂ Zn+1. Let µn = 3−n

∑
x∈Zn δx for n ∈ N,

where δx is the Dirac measure at x. Given a sequence (an)∞n=1 with an > 0,
∑∞
n=1 an = 1,

we consider the measures µ =
∑∞
n=1 anµn and νn =

∑∞
j=n ajµj , n ∈ N. Clearly, µ is a

probability measure with support [−1, 1]. Let us take εn ↘ 0 with εn+1 ≤ εn/2 for all n.
Set A := (

∑∞
n=1 εn)−1 and an = A · εn for n ∈ N. Then an < ‖νn‖ =

∑∞
j=n aj ≤ 2an. Let

tm for m ∈ N be the monic Chebyshev polynomial, so ‖tm‖∞ = 21−m for m ∈ N. As in
Example 3.5.2 in [12], for 3n−1 ≤ m < 3n, let us take the polynomialQm = tm−3n−1 ·t3n−1 .
We see that

∫
|Qm|2 dµk = 0 for 1 ≤ k ≤ n− 1 and ‖Qm‖∞ ≤ 22−m. By the minimality

property of the monic orthogonal polynomials qn, we get

κ−2
m (µ) = ‖qm‖22 ≤ ‖Qm‖22 =

∫
|Qm|2 dµ =

∫
|Qm|2 dνn ≤ 24−2m · 2an.

Therefore, by (1), W 2
m(µ) ≤ 4

√
2A · √εn for 3n−1 ≤ m < 3n. Here, W 2

m(µ) ↘ 0 as fast
as we wish for a suitable choice of (εn)∞n=1.

5. Julia sets. Let us analyze the behavior of Widom factors for the equilibrium measure
on Julia sets. Suppose a monic polynomial T of degree k ≥ 2 is given. Let T0(z) = z

and Tn(z) = Tn−1(T (z)) be the n-th iteration of T for n ∈ N. The Julia set BT for
the polynomial T can be defined as the boundary of the domain of attraction of infinity
A(∞) = {z ∈ C : Tn(z) → ∞ as n → ∞}. Due to H. Brolin [4], Cap(BT ) = 1 and
supp(µe) = BT for the equilibrium measure µe on BT .

Following [3], we consider the Julia set corresponding to the polynomial T (z) = z3−λz
with λ > 3. Here, deg Tn = 3n. Remark that, in the case λ = 3, we get the Chebyshev
polynomials of degrees 3n for [−2, 2] and BT coincides with this interval. For λ > 3,
by [4], BT is a Cantor type set on the real line. By [3], the Jacobi parameters satisfy the
following conditions: a1 = 1, bn = 0 for all n and

a2
3n+1 = 2λ/3− a2

3n, a2
3n+2 = λ/3, (6)

a3na3n−1a3n−2 = an. (7)
In addition, by Lemma 3 and Theorem 2 in [3], we have lim

n→∞
a3n = 0 and a3n < 1.

Therefore, by (6),
a3n+1, a3n+2 > 1 for n ∈ N. (8)

To shorten notation, we write Wk instead of W 2
k (µe). Since Cap(BT ) = 1, we have

Wk = κ−1
n = a1 a2 · · · ak. Hence, by (7),

W3n = W3n−1 = . . . = a1 a2 a3 = 1 and W3n−1 = W3n/a3n →∞ as n→∞.

Thus, lim supk→∞Wk =∞.
Let us show that Wk ≥ 1 for all k, so lim infk→∞Wk = 1. Clearly we have the

desired inequality for k = 2 and k = 3. Suppose 3n < k < 3n+1 for some n ∈ N. Then
k = kn · 3n + . . . + k1 · 3 + k0 with kn ∈ {0, 1} and kj ∈ {0, 1, 2} for 0 ≤ j ≤ n − 1,



18 G. ALPAN AND A. GONCHAROV

that is, k has the representation (kn kn−1 · · · k1 k0) in base 3. By (8), Wk ≥ Wk′ for
k′ = (kn kn−1 · · · k1 0). By (7), Wk′ = Wm, where m = k′/3 has the representation
(mn−1 · · ·m1m0) with mj = kj+1. Using (8) again, we get Wm ≥ Wm′ with m′ =
(mn−1 · · ·m1 0). Proceeding this way, we deduce that Wk > 1 for such k.

The asymptotic self-reproducing property of the coefficients allow us to calculate
accumulation points of the sequence (Wk)∞k=1. For example, if n → ∞ then W3n+1 =
a3n+1 =

√
2λ/3− a2

3n →
√

2λ/3 ,W3n+2 = a3n+1a3n+2 →
√

2λ/3
√
λ/3 =

√
2λ/3, etc.
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