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Abstract In this paper we discuss some enlargements of the category of sets with semi-
group actions and equivariant functions. We show that these enlarged categories possess
two idempotent endofunctors. In the case of groups these enlarged categories are equiva-
lent to the usual category of group actions and equivariant functions, and these idempotent
endofunctors reverse a given action. For a general semigroup we show that these enlarged
categories admit homotopical category structures defined by using these endofunctors and
show that up to homotopy these categories are equivalent to the usual category of sets with
semigroup actions. We finally construct the Burnside ring of a monoid by using homotopi-
cal structure of these categories, so that when the monoid is a group this definition agrees
with the usual definition, and we show that when the monoid is commutative, its Burnside
ring is equivalent to the Burnside ring of its Gröthendieck group.

Keywords Semigroup actions · Monoid actions · Reverse actions · Homotopical
category · Burnside ring
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1 Introduction

In the classical terminology, the category of sets with (left) actions of a monoid corresponds
to the category of functors from a monoid to the category of sets, by considering monoid as
a small category with a single object. If we ignore the identity morphism on the monoid, it
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corresponds the category of sets with actions of a semigroup, which is conventionally used
in applied areas of mathematics such as computer science or physics. For this reason we try
to investigate our notions for semigroups, unless we need to use the identity element. In this
note we only consider the actions on sets so that we often just write “actions of semigroups”
or “actions of monoid” without mentioning “sets”.

Actions of semigroups appear quite often as mathematical models of progressive pro-
cesses. In computer science, for example automata, or so called state machines, can be
defined using semigroup actions. In physics a dynamical system can be seen as a semi-
group action. An important problem in the theory of semigroup actions is reversibility of
the actions. Reversible actions are particularly important when one considers applications.
For example, in [11] Landauer establishes the relation of reversibility of computation with
energy consumption. Reversibility is also a fundamental issue in the theory of quantum
state machines, since a quantum automaton has to be reversible. In dynamical systems the
periodic attractors can be considered as reversible parts of the dynamical system.

In the theory of group actions, when a group G is given, one often considers either left
actions of G, or right actions of G, or if another group H is given, one considers (G,H)-
bisets, i.e. biactions of G and H so that G acts from the left and H acts from the right. The
categories of these actions are also well studied in the literature, see e.g. [3]. The same dis-
tinction is also present in semigroup actions. For a given semigroup I , we define actions by
fusing previous ideas and use some exotic notion of equivariance for biactions of a semi-
group on a set, in a way that the biaction behaves like a single action, which generalizes the
actions from one side, so that we no longer need to call them left, right or biactions, and we
call them just “actions”.

We construct the category of actions in Section 3, see Lemma 1, and we denote the
category of all actions by ACT(I ). For groups this category will be equivalent to the one
defined in the usual way, so that when I is a group the category of left I -sets (which is
equivalent to right I -sets) is equivalent to ACT(I ). In the theory of group actions when a
left group action on a set is given, one can define a right action on the same set given by
acting with the inverses of elements in the group; which is often called reverse action of
the given left action. A similar construction exits for right actions as well. Due to lack of
inverses these “reverse action” constructions are not possible for actions of semigroups. On
the other hand, generalizations are still possible for semigroup actions on sets by considering
our definition of actions. One of the objects of this paper is to define reverse actions so that
they generalize the ones for groups. For a semigroup action on a set, these constructions
are called “reversing from left to right” and “reversing from right to left”, see Section 4.1.
Although the reverse actions have to be defined on different sets, it agrees with the above
construction up to isomorphism when we consider group actions on sets, see Theorem 3.
These constructions define two endofunctors on ACT(I ), which will be called the reversing
functors, Invr

l and Invl
r, which are idempotent, see Theorem 1. Composition of these functors

will not be idempotent in general, but when we restrict our attention to finite I -sets it will
be idempotent.

There are several other major advantages of these definitions of actions. For a semigroup
I , the category ACT(I ) has a subcategory denoted by ACT(I ), whose objects are actions
which are “reversible on one side” with equivariant maps between them, see Section 3. We
show that this subcategory ACT(I ) possesses a homotopical category structure in the sense
of [9], see Section 6. In some respect, we can say this paper is initiative for the usage of
notion homotopy for semigroup actions in this setting. We show that in the case when I is
a monoid the homotopical category actl (I ), the full-subcategory of ACT(I ) of finite left I -
sets, will admit 3-arrow calculus, so that from 27.5 of [9] it will be saturated. As a result
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we are able to define Burnside ring of a monoid I , which is another main objective of this
note. We denote the Burnside ring of a monoid I by Br(I ). This construction generalizes
the Burnside ring of N given in [14] to any monoid, so that we can propose our construction
for a generalization of “the theory of non-invertible finite dynamical systems” (which is a
proposed problem in [14], page 130) to “theory of finite state automata”. We also define ana-
logues notion to the Burnside’s mark homomorphism so that we get the theory of Burnside
rings, see Theorem 5. When I is a group, our construction of Burnside ring agrees with the
usual one existing in the literature, see [5], which is a very important construction in group
theory and homotopy theory. If I is a commutative monoid and K(I) is its Gröthendieck
group, then we have proved Br(I ) is equal to Br(K(I)), see Theorem 4. In particular we
show Br(N) = Br(Z), so that we can add one more arrow which would be an isomorphism
in the main diagram in [7] page 3.

We also recover the idea of the attractors for a finite state automaton (or attractors for
non-linear finite dynamical systems in a generalized way) in analogy with the attractors
in the field of dynamical systems, as the orbits of the reverse actions of a given monoid
action. When the monoid is taken as N, this will correspond to the standard definitions. The
periodic attractors will be the generators of the Burnside ring. The Burnside ring of a free
monoid on an alphabet is an invariant of the types of machines can be build, so that it would
be very useful in Automata theory.

2 Actions of Semigroups on Sets

Given sets A and B, we denote the set of functions from A to B by [A, B] and we denote
the set of endofunctions on A by End(A). One can define two distinct monoid structures on
the set End(A) = [A, A], where the identity on A is the identity of the monoid. In the first
one we choose the monoid operation on End(A) as the composition of endofunctions when
endofunctions are applied on A from the right. Then we denote this monoid by Endr (A)

and we write fg for the composition of f and g in Endr (A), which we mean f is applied
first then g. In other words if f and g are in Endr (A) and a is in A then

(a)(fg) = ((a)f )g.

Similarly, for the second one we write Endl (A) for the monoid obtained by taking the
monoid operation on End(A) as the composition of endofunctions when endofunctions are
applied on A from the left. In this case we write f ◦ g for the composition of f and g in
Endl (A). In other words if f and g are in Endl (A) and a is in A then

(f ◦ g)(a) = f (g(a)).

We can also consider the endofunction sets Endr (A) and Endl (A) with the underlying
semigroup structure.

2.1 Actions on Sets and Function Sets

Let I be a semigroup (resp. a monoid). All through this section we denote the operation in
I by ⊗. Normally one defines an action of I on a set A as a function A × I → A which is
compatible with the semigroup operation; or alternatively, it can be defined as a semigroup
(resp. a monoid) homomorphism from I to Endr (A) and call it a right action of I on A.
One can also define an action of a semigroup I on a set A as a semigroup (resp. a monoid)
homomorphism from I to Endl (A) and call it a left action of I on A. However, in this paper
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we consider an action of a semigroup (resp. a monoid) on a set as a biaction. More precisely
we have the following definition:

Definition 1 Suppose that I is a semigroup (resp. monoid) and A is a set. An action α of I

on A is a pair (αl, αr ) such that αl : I → Endl (A) and αr : I → Endr (A) are semigroup
homomorphisms (resp. monoid homomorphism) and αl commutes with αr so that for all
i, j in I and a in A we have

(αl(i)(a))αr(j) = αl(i)((a)αr(j)).

Instead of saying α is an action of I on A, we could also say α is a I -action on A or say
(A, α) is a I -set or just say A is a I -set.

Suppose that we have I -actions α = (αl, αr ) on A and β = (βl, βr ) on B. There is an
induced I -action

[α, β] = ([α, β]l , [α, β]r )
on [A, B] such that for f in [A, B] and i in I the function [α, β]l (i)(f ) is the composition

A
αr(i)−−−−−−→ A

f−−−−−→ B
βl(i)−−−−−−→ B

and (f )[α, β]r (i) is the composition

A
αl(i)−−−−−→ A

f−−−−−→ B
βr(i)−−−−−−→ B

2.2 Equivariant Functions and Fixed Point Sets

We first are going to define centralizers of semigroup and monoid actions. Let (A, α) be a
I -set where α = (αl, αr ). Then CA(I) the centralizer of I in A with the action α is defined
as

CA(I) = {a ∈ A : ∀i ∈ I, αl(i)(a) = (a)αr(i)}.
Suppose that we have I -actions α = (αl, αr ) on A and β = (βl, βr ) on B. Consider-

ing the I -action [α, β] on [A,B] we define MapI (A,B) namely the set of I -equivariant
functions from A to B as of I in [A, B] with the induced action [α, β], i.e.

MapI (A,B) = C[A,B](I ).

Hence a function is called a I -equivariant function from A to B if it is in MapI (A,B), so
that a function f : A → B is a I -equivariant function if and only if we have the identity

(f (αl(i)(a)))βr(i) = βl(i)(f ((a)αr(i)))

for all i in I and a in A.
Here we list some of the properties of equivariant functions similar to the classical case.

Let (A, α), (B, β), (C, γ ), and (D, δ) be four I -sets. Assume f : A → B and h : C → D

be two functions. The functions f and h induces a function [B, C] → [A, D] which sends
g : B → C to h ◦ g ◦ f . The following result shows that compositions by equivariant
functions induces an equivariant function between function sets.

Proposition 1 If f : A → B and h : C → D are two I -equivariant functions then the
induced function [B, C] → [A, D] by f and h is I -equivariant.
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Proof Since f and h are I -equivariant, we have

(h(γl(i)(g((f (αl(i)(a)))βr(i)))))δr (i) = δl(i)(h((g(βl(i)(f ((a)αr(i)))))γr (i)))

for all a in A, i in I and g in [B, C]. Hence we have

(h ◦ (([β, γ ]l (i)(g)) ◦ f ))[α, δ]r (i) = [α, δ]l (i)(h ◦ (((g)[β, γ ]r (i)) ◦ f ))

for all i in I and g in [B, C]. This means the induced function from [B,C] to [A,D] is
I -equivariant.

Let A be a I -set. Then we define FixI (A) namely the set of fix points of I on A as

FixI (A) = MapI (∗, A)

where ∗ denotes a set with one element and the trivial I -action on it.

Proposition 2 Let I be a semigroup or a monoid, and A, B be two I -sets. Then we have a
bijection

MapI (A,B) ∼= FixI ([A, B]).

Proof More generally for an I -set A we have a bijection from CI (A) to CI ([∗, A]) sending
z in CI (A) to the function from ∗ to A which sends the unique point in ∗ to z.

Given a function f : A → [B, C] we define f̄ : A × B → C by f̄ (a, b) = f (a)(b) for
all a in A and b in B.

Proposition 3 Let A, B and C be three I -sets with I -actions α, β and γ respectively. Then
the function

MapI (A, [B, C]) → MapI (A × B,C)

defined by f 	→ f̄ is a bijection.

Proof We only need to show that f : A → [B, C] is a I -equivariant function if and only if
f̄ : A × B → C is a I -equivariant function. We know that the statement f : A → [B,C]
is a I -equivariant function means

(f )[α, [β, γ ]]r (i) = [α, [β, γ ]]l (i)(f )

for all i in I . In other words it means

(f (αl(i)(a))(βl(i)(b)))γr (i) = γl(i)(f ((a)αr(i))((b)βr(i)))

for all a in A, b in B and i in I . Hence it is equivalent to

(f̄ (αl(i)(a), βl(i)(b)))γr (i) = γl(i)(f̄ ((a)αr(i), (b)βr(i)))

for all a in A, b in B and i in I . Therefore the statement f : A → [B, C] is a I -equivariant
function is equivalent to

(f̄ )[α × β, γ ]r (i) = [α × β, γ ]l (i)(f̄ )

which means f̄ : A × B → C is a I -equivariant function.

Remark 1 If A, B and C be three I -sets, then there is an obvious bijection

MapI (A, B × C]) → MapI (A,B) × MapI (A,C).
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3 Categories of I-sets

Observe that when I is a monoid, the usual categories of left (resp. right) actions of I are just
functor categories from I to Sets, the category of sets. In this section, for a semigroup or a
monoid I , we will define several categories whose class of objects are a subclass of the “sets
with an action of I” defined as in the sense of the previous section, so that they contains the
usual category of left and right actions of I as a full-subcategory. In each case the morphisms
will be I -equivariant functions defined according to the case being considered. In order to
define objects of these categories we will first discuss semi-reversible actions and actions
which are reversible on one side. Secondly, we will show that the composition of two I -
equivariant functions is an I -equivariant function under certain conditions. Finally we will
give the definitions of categories of certain I -sets.

3.1 Semi-reversible Actions and Actions Reversible on One Side

Let (A, α) be an I -set. First note that if αl(i) is an automorphism of A then for all a in A

then we have the equality

αl(i)
−1((a)αr(j)) = (αl(i)

−1(a))αr(j).

and similarly in the case when αr(i) is an automorphism of A then we have

αl(i)((a)αr(j)−1) = (αl(i)(a))αr(j)−1.

We say (A, α) is “semi-reversible” if either αl(i) or αr(i) is an automorphism of A for
all i in I . We say αl (resp. αr ) is reversible if αl(i) (resp. αr(i) ) is an automorphism of A

for all i. A set (A, α) is called “reversible on one side” if either αl or αr is reversible. Note
that if an action is reversible on one side then it is semi-reversible. Hence the results about
semi-reversible actions in this section are also true for actions that are reversible on one side.

3.2 Compositions of Equivariant Functions

Compositions of equivariant functions may not be equivariant unless we have a semi-
reversibility assumption in the following sense. Let S be a set and (Bs, β(s)) be a
semi-reversible I -set for s in S. Define B as the product �s∈SBs with the I -action given
by β(s) on the sth component. Assume (A, α) and (C, γ ) are I -sets and f : A → B,
g : B → C are I -equivariant functions. Then we have the following result

Lemma 1 g ◦ f is I -equivariant.

Proof We want to show

γl(i)((g ◦ f )((a)αr(i))) = ((g ◦ f )(αl(i)(a)))γr (i)

for any a in A and i in I . Let us denote the left-hand side of above equality by LHS and the
right-hand side by RHS. Let fs denote the sth component of f . Given any s in S and i in I ,
since (Bs, β(s)) is semi-reversible, there exists x(s, i) in {l, r} such that β(s)x(s,i)(i) is an
automorphism of Bs . Since β(s)x(s,i)(i)

−1 ◦ β(s)x(s,i)(i) is identity, we have

LHS = γl(i)(g(f ((a)αr(i)))

= γl(i)(g((fs((a)αr(i)))s∈S))

= γl(i)(g((E(a, i)s)s∈S))
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where

E(a, i)s =
{

(β(s)l(i)
−1 ◦ β(s)l(i))(fs((a)αr(i))) if x(s, i) = l

(fs((a)αr(i)))(β(s)r (i)
−1β(s)r (i)) if x(s, i) = r

We have
LHS = γl(i)(g((F (a, i)s)s∈S))

if F(a, i)s is defined as follows:

F(a, i)s =
{

β(s)l(i)
−1(β(s)l(i)(fs((a)αr(i)))) if x(s, i) = l

((fs((a)αr(i)))β(s)r (i)
−1)β(s)r (i) if x(s, i) = r

Since f is I -equivariant means fs is I -equivariant for all s in S, we have

LHS = γl(i)(g((G(a, i)s)s∈S))

where

G(a, i)s =
{

β(s)l(i)
−1((fs(αl(i)(a)))β(s)r (i)) if x(s, i) = l

((fs((a)αr(i)))β(s)r (i)
−1)β(s)r (i) if x(s, i) = r

By the above equality

LHS = (g(β(s)l(i)((H(a, i)s))s∈S))γr (i)

with

H(a, i)s =
{

β(s)l(i)
−1(fs(αl(i)(a))) if x(s, i) = r

(f ((a)αr(i)))β(s)r (i)
−1 if x(s, i) = r

Since g is I -equivariant

LHS = (g((J (a, i)s)s∈S))γr (i)

= (g((K(a, i)s)s∈S))γr (i)

where

J (a, i)s =
{

β(s)l(i)(β(s)l(i)
−1(fs(αl(i)(a)))) if x(s, i) = l

β(s)l(i)((fs((a)αr(i)))β(s)r (i)
−1) if x(s, i) = r

and

K(a, i)s =
{

fs(αl(i)(a)) if x(s, i) = l

(β(s)l(i)(fs((a)αr(i))))β(s)r (i)
−1 if x(s, i) = r

Since fs is I -equivariant for all s ∈ S, we have

LHS = (g((L(a, i)s)s∈S))γr (i)

= (g((fs(αl(i)(a)))s∈S)γr (i)

= (g(f (αl(i)(a)))γr (i)

= RHS

where

L(a, i)s =
{

fs(αl(i)(a)) if x(s, i) = l

((fs(αl(i)(a)))β(s)r (i))β(s)r (i)
−1 if x(s, i) = r

This completes the proof.

Proposition 4 Let f : A → B be a bijective equivariant function where (A, α) and (B, β)

are semi-reversible finite I -sets. Then the inverse f −1 is equivariant.

Proof Assume f is equivariant. We want to show

αl(i)(f
−1((b)βr(i))) = (f −1(βl(i)(b)))αr(i).
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Assume first both αl(i) and βl(i) is isomorphism. First since both f and αl(i) are bijective,
we can write

βl(i)((b)βr(i)) = (f (αl(i)αl(i)
−1(f −1(βl(i)(b))))βr(i).

Since f is equivariant,

βl(i)((b)βr(i)) = βl(i)(f (αl(i)
−1((f −1(βl(i)(b)))αr(i)))).

and since βl(i) is bijective, we get

(b)βr(i) = f (αl(i)
−1((f −1(βl(i)(b)))αr(i)))

which implies

αl(i)(f
−1((b)βr(i))) = (f −1(βl(i)(b)))αr(i).

The case when both αr(i) and βr(i) is isomorphism is similar. Assume now αr(i) and βl(i)

are isomorphisms. Since f is an isomorphism, the composition of f −1, αr(i) and βl(i) is
an isomorphism. Since A and B are finite sets, from the equality

(f (αl(i)(a)))βr(i) = βl(i)(f ((a)αr(i)))

we get αl(i) and βr(i) are isomorphisms as well. Hence, f −1 is equivariant. The case αr(i)

and βl(i) are isomorphism is the same. Hence this proves the statement.

Observe that if the semi-reversible actions are isomorphism in the same side, then we
do not need the finiteness assumption. However, in general this proposition is not correct
when we drop the assumption on finiteness. For example if I = N and A = B = N with
the actions α = (αl, 1) on A such that αl(1)(i) = i + 1 and β = (1, βr ) on B such that
βr(1)(i + 1) = i and βr(1)(0) = 0, then the identity function id : A → B is equivariant
but id : B → A is not.

3.3 Definitions of Categories of I -sets

Let I be a semigroup, considering the usual definition one-sided of actions we let ACTl (I ),
ACTr (I ), actl (I ), actr (I ) to denote the category of left I -sets, right I -sets, finite left I -
sets and finite right I -sets respectively, with I -equivariant maps. Now we define four new
categories denoted by ACT(I ), act(I ), ACT(I ) and act(I ). The objects of the categories
ACT(I ) and act(I ) are I -sets which are products of semi-reversible I -sets and finite I -sets
which are products of semi-reversible I -sets respectively, where I -sets are defined as in the
previous section. The objects of ACT(I ) and act(I ) are I -sets which are products of sets
with actions that are reversible on one side and finite I -sets which are products of sets with
actions that are reversible on one side respectively, where again I -sets are defined as in
the previous section. The morphisms of the categories ACT(I ), act(I ), ACT(I ), act(I ) are
I -equivariant functions (defined as in Section 2.2).
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For a semigroup (or monoid) we have the following diagram

so that all of the functors are inclusions, which map an I -set to itself.

4 Action Reversing Functors

For a semigroup I we define four semigroup homomorphisms as follows: The homomorphisms

ιl : I → Endl (I ) and ιr : I → Endr (I )

sends every element to the identity endofunction and the homomorphisms

μl : I → Endl (I ) and μr : I → Endr (I )

are given by multiplication from the left and the right, respectively.

4.1 Reversing Actions from Left to Right

Consider I itself as a I -set with the action (ιl, μr). Let A be a set with a I -action α. To indi-
cate the right action on I is trivial let us denote the set of equivariant functions, MapI (I, A),
by Invr

l(A). Let f : I → A be a I -equivariant map, i.e., for every i, j in I we have

(f (j))αr(i) = αl(i)(f (j ⊗ i))

We define a I -action θ = (θl, θr ) on Invr
l(A) as follows: The left component

θl : I → Endl (Invr
l(A))

sends an element k in I to the function

θl(k) : Invr
l(A) → Invr

l(A)

defined as the identity function. Hence the function θl(k) sends f to f . The right component

θr : I → Endr (Invr
l(A))

sends an element k in I to the function

θr (k) : Invr
l(A) → Invr

l(A)

defined as the function that sends f to the composition

I
μl(k)−−−−−−→ I

f−−−−−−→ A

so that we have (f )θr (k)(j) = f (k ⊗ j), for every j, k ∈ I . Since I is semi-reversible, by
Lemma 1 we can say θ is well defined.



16 M.A. Erdal, Ö. Ünlü

We call this action the reverse (from left to right) action of α. In fact this construction
is functorial on ACT(I ) and we denote the functor sending an I -action on a set A to the
reverse I -action on Invr

l(A) by

Invr
l : ACT(I ) → ACT(I ).

This functor sends a morphism f : A → B to the morphism which sends h : I → A to the
composition f ◦ h from I to B. Given I -set A we can define the evaluation function

E r
l : Invr

l(A) → A

given by E r
l (f ) = f (1) whenever we have 1.

Lemma 2 E r
l defines a natural transformation from Invr

l to id , the identity functor.

Proof Let A be an I -set with action α. From the equality

αl(i)(E r
l ((f )θr (i))) = αl(i)(f (i)) = (f (1))αr(i) = (E r

l (f ))αr(i),

we can say E r
l is equivariant, so that it defines a natural transformation from Invr

l to id .

4.2 Reversing Actions from Right to Left

We can also define reverse actions from right to left. This time we consider I as an I -set
with the action (μl, ιr ), so that an I -equivariant function f : I → A satisfies

(f (i ⊗ j))αr(i) = αl(i)(f (j))

for every i, j in I . In this case we denote the set of equivariant functions from I to A,
MapI (I, A), by Invl

r(A). We define a I -action ϑ = (ϑl, ϑr) on Invl
r(A) as follows: The left

component
ϑl : I → Endl (Invl

r(A))

sends an element k in I to the function

ϑl(k) : Invl
r(A) → Invl

r(A)

defined as the function that sends f to the composition

I
μr (k)−−−→ I

f−→ A

so that we have ϑl(k)(f )(i) = f (i ⊗ k). The right component

ϑr : I → Endr (Invl
r(A))

sends an element k in I to the function

ϑr(k) : Invl
r(A) → Invl

r(A)

defined as the identity function. Hence the function ϑr(k) sends f to f . Again by Lemma
1 this construction is well defined. There is again an equivariant evaluation function

E l
r : Invl

r(A) → A

given by E l
r(f ) = f (1) provided that we have 1, which is equivariant. Similar to the Lemma

2, E l
r defines a natural transformation from Invl

r to id .
The following is an important property of reverse actions when I is a monoid:
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Proposition 5 Let (A, α) be an I -set such that the right action αr is reversible, then there
is a isomorphism Invl

r(A) ∼= A as I -sets. If the left action αl is reversible, then there is a
isomorphism Invr

l(A) ∼= A as I -sets.

Proof Assume αr is reversible . Define a map φ : A → Invl
r such that φ(a) = fa for a ∈ A

where
fa(i) = αl(i)(a)αr(i)

−1.

This map is well defined since

fa(i ⊗ j)αr(i) = αl(i ⊗ j)(a)αr(i ⊗ j)−1αr(i) = αl(i)(fa(j)),

fa is in Invl
r. Since fa(1) = a, φ is the inverse of the E l

r , so that E l
r is a bijection and by

Proposition 4 φ is equivariant, so that we get an isomorphism of I -sets. The proof for the
case αl is reversible is the same.

4.3 As Idempotent Endofunctors on ACT(I )

Let I be a monoid. The following lemma shows that the reversing functors are idempotent.

Theorem 1 The evaluations function E r
l (resp. E l

r ) defines a natural isomorphism from
Invr

l ◦ Invr
l to Invr

l (resp. from Invl
r ◦ Invl

r to Invl
r).

Proof For any I -set A, consider the function

ΦA : Invr
l(A) → Invr

l ◦ Invr
l(A)

given by
Φ(g)(i)(j) = g(i ⊗ j)

for g ∈ Invr
l(A) and i, j ∈ I . It is straightforward to check the equalities

αl(k)(Φ(g)(i)(j ⊗ k)) = (ΦA(g)(i)(j))αl(k)

and
Φ(g)(i ⊗ k) = (Φ(g)(i))θr (k)

so that Φ is well defined. Since

g(k ⊗ i ⊗ j) = Φ((g)θr (k))(i)(j) = (Φ(g))θr (k)(i)(j) = g(k ⊗ i ⊗ j),

Φ is equivariant. For any g ∈ Invr
l(A) we have

(E r
l ◦Φ)(g)(i) = Φ(g)(i)(1) = g(i)

and for any h ∈ Invr
l ◦ Invr

l(A) we have

(Φ ◦ E r
l )(h)(i)(j) = Φ(h(1))(i)(j) = h(1)(i ⊗ j) = h(i)(j)

so that E r
l and Φ are mutual inverses. This completes the proof. The same proof works for

E l
r as well.

We denote the composition of two reverse endo-functors on ACT(I ) by INV, in other
words we have

INV = Invr
l ◦ Invl

r

considered as an endofunctor on ACT(I ). An equivariant function f in INV(A) satisfies

f (i ⊗ j)(i ⊗ k) = f (j)(k)
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for every i, j and k in I . For any I -set A we have an evaluation function

E : INV(A) → A

defined by E(f ) = f (1)(1). If γ is the inverse of the inverse action on A, i.e. action on
Invl

r(Invr
l(A)), then we have

(E(γl(i)(f )))αr(i) = (f ◦ μr(i)(1)(1))αr(i) = (f (i)(1))αr(i)

by equivariance of f (i) this is equal to

αl(i)(f (i)(i)) = αl(i)(f (1)(1)) = αl(i)(E(f ))

hence, E is equivariant. Then E defines a natural transformation from INV ◦ INV to INV.
When I is a commutative monoid, we have the following proposition:

Proposition 6 If I is a commutative monoid then E defines a natural isomorphism from
INV ◦ INV to INV.

Proof For any I -set A, the function

ΦA : INV(A) → INV ◦ INV(A)

given by

ΦA(g)(i)(j)(k)(l) = g(i ⊗ k)(j ⊗ l)

for g ∈ INV(A) and i, j, k, l ∈ I . It is straightforward to check that this function is
equivariant since on both INV(A) and INV ◦ INV(A), the right actions are trivial. We have

E(ΦA(g))(k)(l) = g(k)(l)

and

ΦA(E(g))(k)(l) = g(k)(l)

so that E and ΦA are mutual inverses. This completes the proof.

4.4 Reverse Actions on Finite Sets

We again use the same notations for the restrictions of Invr
l , Invl

r and their compositions INV
on act(I ). Let (A, α) be an I -set such that the right action αr is trivial. For an element a in
A, let Ia denote the orbit set

Ia = {αl(i)(a) : i ∈ I }
and for a given f : I → A in Invr

l(A) let If (I ) denote the set

If (I ) = {αl(i)(f (j)) : i, j ∈ I }.
We define a set Al as the set

Al = {a ∈ A : for all i ∈ I, αl(i)|Ia is one-to-one}.
Note that

Lemma 3 Let I be a monoid and let A be a finite set. Let (A, α) be an I -set such that the
right action αr is trivial. Then there is a isomorphism Invr

l(A) ∼= Al as I -sets.
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Proof Firstly, for an element a ∈ Al we define fa : I → A with fa(i) = αl(i)
−1(a), then

since a ∈ Al , this is a well-defined map. By definition for every i, j in I we have

αl(i)fa(j ⊗ i) = αl(i)αl(j ⊗ i)−1(a) = αl(j)−1(a) = fa(j).

Hence fa is equivariant and we have an injective function Al → Invr
l(A).

Now suppose that f : I → A be a function in Invr
l(A). We claim that f (1) is an element

of Al . Assume the contrary that there exist i, j, k in I such that

αl(j)(f (1)) 
= αl(k)(f (1)) and αl(i ⊗ j)(f (1)) = αl(i ⊗ k)(f (1)).

Since A is finite then for every i ∈ I there exist positive integers m, m′ with m > m′ such
that for all a in If (I ), we have the identity αl(i

m)(a) = αl(i
m′

)(a). Hence the restriction
of αl(i

m−m′
) to the set

αl(i
m′

)(If (I )) := {αl(i
m′

)(a) : a ∈ If (I )}
is the identity function. Moreover, for any v ∈ I we have

f (v) = αl(i
m′

)f (v ⊗ im
′
)

so that im(f ) is contained in αl(i
m′

)(If (I )).
Let j and k be two elements in I . As above there are integers t, t ′ with t > t ′ and

αl(j
t ′)f (j t ) = αl(j

t ′)f (j t ′)

so that αl(j)(f (1)) = f (j t−t ′−1). Similarly there are integers s, s′ with s > s′ and
αl(k)(f (1)) = f (ks−s′−1). Hence both αl(k)(f (1)) and αl(k)(f (1)) are elements of
im(f ), which means αl(i

m−m′
) is identity on both.

By our initial assumption we have

αl(i
m−m′−1)(αl(i ⊗ j)(f (1))) = αl(i

m−m′−1)(αl(i ⊗ k)(f (1)))

which implies

αl(i
m−m′

)(αl(j)(f (1))) = αl(i
m−m′

)(αl(k)(f (1)))

As a result we get αl(j)(f (1)) = αl(k)(f (1)), i.e. a contradiction, so that f (1) must be an
element of Al . The evaluation function E r

l is injective by definition of Al and E r
l (fa) = a.

By Proposition 4 we get an isomorphism as desired. This completes the proof.

Objects in act(I ) are the actions with either left or right component is reversible. Assume
A is an I -set with right component is reversible. Then we define Al as Invl

r Al . We have the
following lemma:

Lemma 4 There is an isomorphism Invr
l(A) ∼= Al as I -sets.

Proof The proof follows from Lemma 3 and Proposition 5.

For an I -set A we define Ar similarly. We have a similar lemma as follows:

Lemma 5 Let (A, α) be an I -set such that the left action αl is reversible. Then there is an
isomorphism Invl

r(A) ∼= Ar .

Let E denote the restriction of E on finite I -sets. Note that E is bijective by the previous
propositions. We have the following lemma:
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Proposition 7 E defines a natural isomorphism from INV ◦ INV to INV.

Proof This proposition directly follows from Proposition 4, since E from INV ◦ INV to INV
is bijective, by the Lemma 3 and Proposition 5.

5 Equivalence of View Points on Groups

The following theorem shows that Definition 1 is equivalent to the usual one for groups.

Theorem 2 For a group G, the categories act(G), act(G), actl (G) and actr (G) are all
equivalent to each other as categories and ACT(G), ACT(G), ACTl (G), ACTr (G) are all
equivalent to each other as categories.

Proof Here we will only prove the equivalence of ACT(G) and ACTl (G) the rest is either
similar or just obtained by restrictions of the equivalences. First note that the functor

Invl
r : ACT(G) → ACT(G)

factors through the inclusion

inc : ACTl (G) → ACT(G).

We again write

Invl
r : ACT(G) → ACTl (G)

for the functor in the factorization, by an abuse of notation. Then this functor sends an object
(A, α) in ACT(G) to the left action μ : G → Endl (A) given by

μ(g)(a) = αl(g)((a)αr(g
−1))

and sends a morphism f from (A, α) to (B, β) to itself considered as a function from A

to B. Now clearly Invl
r ◦inc is identity on ACTl (G). By Proposition 2 and 5, E l

r defines
a natural isomorphism from inc ◦ Invl

r to the identity on ACT (G). Hence, this gives an
equivalence between ACT(G) and ACTl (G).

We define a functor

invr
l : ACTl (G) → ACTr (G)

which sends a left G action

ν : G × A → A, given by(g, a) 	→ g.a

for g ∈ G and a ∈ A, to a right G-action

ν−1 : A × G → A, given by(a, g) 	→ g−1.a

for g ∈ G and a ∈ A, i.e. the reverse action of ν. The following theorem shows that the two
definitions we gave for reverse actions agree for group actions.
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Theorem 3 The diagram

is commutative up to a natural isomorphism.

Proof This follows from Proposition 5, since group actions are reversible on both sides.

A version of Theorem 3 is also true for the case of reversing actions from right to left,
i.e. the diagram

is commutative up to a natural isomorphism, where invl
r is defined similarly.

6 Homotopy Category of Monoid Actions and the Burnside Ring

In this section we discuss homotopical category structure on ACT(I ) where I is a monoid.
We refer to [9] for general terminology and homotopical notions in this section. Let A,B be
I -sets in ACT(I ) and f : A → B be an I -equivariant map. We say f is a weak equivalence
if the induced function INV(f ) : INV(A) → INV(B) is an isomorphism. We denote the
class of weak equivalences by W . It is straightforward to check that these weak equivalences
satisfy the 2-out-of-6 property, since isomorphisms do. Hence this makes ACT(I ) into a
homotopical category. The homotopical structure on the subcategories of ACT(I ) is defined
accordingly.

In order to define the Burnside ring of a monoid I we concentrate on the actions of I on
finite sets. Note that the functor

INV : act(I ) → act(I )

factors through the inclusion
inc : actl (I ) → act(I ).

We again denote the functor act(I ) → actl (I ) in the factorization by INV, by an abuse of
notation. Note that the functor

INV : act(I ) → actl (I )

preserve weak equivalences so does the inclusion

inc : actl (I ) → act(I ).

The composition INV ◦inc is identity functor on actl (I ) and there is a natural weak equiv-
alence from inc ◦ INV to idact(I ) given by the evaluation map E . Hence actl (I ) is a left
deformation retract of act(I ), so that their homotopy categories are naturally equivalent
(see [9], 26.3, 26.5 and 29.1). We will continue with the category actl (I ) to define the
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Burnside ring. The category actl (I ) has nice properties such as monomorphisms are sta-
ble under pushouts and epimorphisms are stable under pullbacks [10], as it is a topos, so
that isomorphisms are also stable under pullbacks and pushouts. In fact assume we have a
diagram

Pullbacks and pushouts are given in a standard way. If D is the pullback of the maps p and
f where α , β and γ are the actions on A, B and C respectively, then D is given as the set

D = {(a, b) ∈ A × B : f (a) = p(b)}
and the action δ on D is given by pair of actions, i.e. δl = (αl, βl) and trivial right action.
The maps ı and f ′ are induced by projections so that they are equivariant.

If the above square is a pushout then

C = (A � B)/ ∼
where ı(d) ∼ f ′(d) for all d in D. The action γ on C is given by

γl(i)[x] =
{

αl(i)(x) ifx ∈ A

βl(i)(x) ifx ∈ B

for all i ∈ I , with trivial right action. By equivariance of the maps ı and f ′ in diagram,
so that for all d ∈ D and i ∈ I we have αl(i)(ı(d)) = ı(δl(i)(d)) and βl(i)(f

′(d)) =
f ′(δl(i)(d)), so that αl(i)(ı(d)) ∼ βl(i)(f

′(d)), i.e. the action is well defined. The maps p

and f are induced by inclusions so that they are also equivariant.
We will show that the category actl (I ) admits a 3-arrow calculus, for details of 3-arrow

calculus we refer to [9], 27.3.

6.1 Saturation of the Category actl(I )

Let us denote the homotopy category of actl (I ) by Ho(actl (I )) and let L : actl (I ) →
Ho(actl (I )) be the localization with respect to the above weak equivalences (see [9] 26.5).
We will show that actl (I ) admits a 3-arrow calculus. To do this we define two subclasses
U and V of the class weak equivalences W of actl (I ) as follows: U will be the subclass of
W which are also inclusions and V will be the subclass of W which are also surjections.

Firstly, suppose that we have a zig-zag A′ u← A
f→ B in actl (I ) where u is in U . Then we

can associate another zig-zag A′ f ′
→ B ′ u′← B from the pushout

so that f ′ ◦ u = u′ ◦ f and the function u′ is an inclusion. Let α, α′, β and β ′ be the actions
on A, A′, B and B ′ respectively. Since right actions are trivial, to be able to see u′ is weak
equivalence, it is enough to show Invr

l(B
′) is contained in the image of Invr

l(u
′). Assume the
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contrary and let σ : I → B ′ be a map in Invr
l(B

′) which is not in the image of Invr
l(u

′). Then
σ(1) is not in the image of u′ because otherwise σ factors through u′ since σ(1) ∈ (B ′)l
(see Lemma 3), so that σ(1) is in the image of f ′. Thus, there is an element a′ in A′ such
that f ′(a′) = σ(1). Assume first a′ /∈ (A′)l i.e. there exist i, i1, i2 in I such that

α′
l (i1)(a

′) 
= α′
l (i2)(a

′) but α′
l (i ⊗ i1)(a

′) = α′
l (i ⊗ i2)(a

′)
then there exist b ∈ B such that u′(b) = f ′(α′

l (i1)(a
′)). But as in the proof of Lemma 3

there exist an integer m such that

f ′(a′) = α′
l (i

m
1 )(f ′(α′

l (i1)(a
′))) = α′

l (i
m
1 )(u′(b)) = u′(β ′

l (i
m
1 )(b)),

but then this leads us a contradiction unless a′ ∈ (A′)l , so that σ must be an element in the
image of Invr

l(f
′). Since u is a weak equivalence, any element in Invr

l(A
′) factors through

u, so that σ is in the image of Invr
l(f

′ ◦ u). But then we get a contradiction again since σ

is not in the image of Invr
l(u

′ ◦ f ). Hence, u′ is a weak equivalence, i.e. u′ is in U . If u is
an isomorphism then u′ is also an isomorphism since both u and u′ fits in above pushout
diagram.

Similarly if we have a zig-zag X
g→ Y

v← Y ′ in actl (I ) where v is in V , then we can

associate another zig-zag X
v′← X′ g′

→ Y from the pullback diagram

so that g ◦ v′ = v ◦ g′, and the function v′ is a surjection. Let σ : I → X′ , σ̄ : I → X′
elements in Invr

l(X
′) with σ(i) = (xi, yi) and σ̄ (i) = (x̄i , yi) for i ∈ I xi, x̄i ∈ X and

y ∈ Y ′, i.e. Invr
l(v

′)(σ ) = Invr
l(v

′)(σ̄ ). Since Invr
l(g

′)(σ )(i) = xi and Invr
l(g

′)(σ̄ )(i) = x̄i ,
we have Invr

l(v)(xi) = Invr
l(v

′)(yi) = Invr
l(v)(x̄i ). We know v is a weak equivalence so that

Invr
l(v) is bijection, thus xi = x̄i , i.e. v′ is a weak equivalence. Hence v′ is in V . Again if v

is an isomorphism then so does v′ since both fits into a pullback diagram.
Assume now w : M → N is a weak equivalence in actl (I ), then consider the pushout

diagram

From the Lemmas 3 and 5 we know E is injective. Since the above square is a pushout, ũ is
injective. Hence, there is a unique function v : M ′ → N which is surjective. As before, the
functions u and v are also equivariant, so that we have a factorization of w as w = v◦u such
that v is in V and u is in U . Hence actl (I ) admits a 3-arrow calculus {U ,V}. Then by 27.5 of
[9] we can conclude that actl (I ) is saturated, i.e. a function in actl (I ) is a weak equivalence
if and only if its image in Ho(actl (I )), under the localization functor, is an isomorphism.

Note that it is possible to define stronger classes of weak equivalences on these cate-
gories which still make them homotopical categories, by using similar ideas above along
with restrictions of actions to submonoids or subsets. However, not all of them admit a
3-arrow calculus. For a given a submonoid J of I let ResI

J : actl (I ) → actl (J ) be the
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restriction functor, which sends a finite I -set (A, α) to the J -set A with the restriction of
the action α on J . Let Z be a collection of submonoids of I which contains I . A func-
tion f : A → B in actl (I ) is called a Z-equivalence if for every J in Z the function
INV(ResI

J (f )) is an I -equivariant isomorphism. Since ResI
J respects compositions, the

class of Z-equivalences satisfies both 2-out-of-3 and 2-out-of-6 properties, and so that again
actl (I ) with Z-equivalences will be a homotopical category admitting a 3-arrow calculus,
when we set U as the subclass of Z-equivalences which are inclusions and V as the sub-
class of Z-equivalences which are surjections. It is now straightforward to check that these
classes satisfied the required axioms. A Z-equivalence is trivially a weak equivalence so that
Z-equivalences are stronger form of weak equivalences. This is a possible direction to look
but it is too complicated. However, in this paper we continue with the weak equivalences
instead of Z-equivalences for convenience.

6.2 Burnside Ring

In the classical theory of group actions, when a group G is given, the Burnside ring of
G, denoted by A(G), is defined as the Gröthendieck ring of the semiring of isomorphism
classes of finite G-sets where the addition is given by disjoint union and the multiplication
is given by cartesian product. The Burnside ring of a group is a very important construc-
tion in group theory, and has several applications, see e.g. [5–8]. We define the Burnside
ring of a monoid by using the homotopical structure on actl (I ). The isomorphism classes
in Ho(actl (I )) forms a semiring under disjoint union as addition and cartesian product as
multiplication. We call the Gröthendieck ring of this semiring as the Burnside ring of I ,
and we denote this ring by Br(I ). Most of the properties of this Burnside ring follows from
Section 4.4.

By definition the Burnside ring of a group given in this way is equal to the standard one.
Hence, it does validate the name “the Burnside ring of a monoid”. Moreover, the following
proposition shows that the definitions of the Burnside ring of a commutative monoid is
same as the Burnside ring of its Gröthendieck construction. Let us denote by K(I) the
Gröthendieck group of a commutative monoid I . Then Br(K(I)) denotes the usual Burnside
ring of the group K(I) (see e.g. [5]).

Theorem 4 If I is commutative monoid then Br(I ) is isomorphic to Br(K(I)).

Proof Define Λ̃ : actl (K(I)) → actl (I ) induced by the natural map from I to K(I) and
let Λ : Br(K(I)) → Br(I ) denote the induced function on Burnside rings. Here we will
define the inverse of Λ. Let A be an I -set with action α and let ϑ be the action on INV(A).
Lemma 3 implies that the action on INV(A) has a group action factorization, i.e. the map
ϑl : I → Endl (INV(A)) factors through the inclusion Autl (INV(A)) ↪→ Endl (INV(A)).
Hence, we can consider INV(A) as a K(I)-set. Define a function � : Br(I ) → Br(K(I))

by sending a class [A] of I -set A in Br(I ) to the class [INV(A)] in Br(K(I)). Notice that
INV(Λ̃(A)) ∼= Λ̃(A) by Proposition 5, so that � ◦ Λ is identity. The composition Λ ◦ � is
also identity since by Proposition 7, the natural transformation E gives a weak equivalence
from INV(A) to A. Hence � is a ring isomorphism with the inverse Λ.

Remark 2 Note that one can also define Burnside ring with Z-equivalences on actl (I )

defined in the previous section, which again will coincide with the definition of Burnside
ring of a group. However, in this case for an arbitrary monoid the Burnside ring would
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be much bigger and would have a very complicated structure, so that the classification
problems would become very difficult.

6.2.1 Burnside Mark Homomorphism

Assume I is a monoid and A is a finite left I -set. Let J be a submonoid of I . We define
the mark m̂J (A) of J on A as the number of elements in INV(A) that are fixed by every
element in I , i.e. if ϑ is the action on INV(A) (which is the action obtained by reversing α

twice) then

m̂J (A) = | FixJ (INV(A))|.
In other words, m̂J (A) is the number of equivariant functions in INV(A) satisfying f (i ⊗
j)(k) = f (i)(k) for every i, k in I and j in J . This defines a semiring homomorphism

m̂J : Isom(Ho(actl (I ))) → Z

since

INV(A � B) = INV(A) � INV(B),

so that m̂J (A � B) = m̂J (A) + m̂J (B) and

INV(A × B) = INV(A) × INV(B)

and hence m̂J (A × B) = m̂J (A).m̂J (B) same as the usual case. The associated ring
homomorphism

mJ : Br(I ) → Z

is called the mark homomorphism at J . Note that when a finite I -set A is given, the image of
ϑl in Autl (INV(A)) form a subgroup, and let ϑl(I ) denote this subgroup. Let ϑl(J ) denote
the image of the submonoid J under ϑl , which is a subgroup of ϑl(I ). Then mark of A at
J corresponds to the usual mark of ϑl(I ) at the subgroup ϑl(J ). We call an I -set (A, α) in
actl (I ) weakly-transitive, if for every pair of elements f, g ∈ INV(A), there is an elements
i in I such that ϑl(i)(f ) = g. The set INV(A) can be expressed as a disjoint union of orbits
ϑl(I )/ϑl(Jt ) for some family {Jt : t ∈ T } of submonoids. Hence isomorphism classes
weakly transitive I -sets generate the additive group of Burnside ring, same as the classical
case, see [4].

Let J and J ′ be two submonoids of I . We say J and J ′ are weakly conjugate, and we
write J ∼I J ′, if for every I -set A the subgroup ϑl(J ) is conjugate to ϑl(J

′) in ϑl(I ),
where ϑl is the action on INV(A). It is straightforward to check that weak conjugation is
an equivalence relation. Let Y (I) be the set of weak conjugacy classes of I , i.e. the set
of equivalence classes of ‘∼I ’. Observe that weakly conjugate submonoid have the same
mark, i.e. if J ∼I J ′ then for any given I -set A we have mJ (A) = mJ ′(A), which follows
from standard group theory facts. Hence one can see the mark homomorphism as a ring
homomorphism

m : Br(I ) →
⊕

[J ]∈Y (I)

Z

into the direct sum of integers Z, so that m =
⊕

[J ]∈Y (I)

mJ .

Theorem 5 The mark homomorphism m is injective.
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Proof Proof follows from ideas of the proof in the standard case (see [4], Proposition 1.2.2).
Let A be an I -set and x be the corresponding element in the Burnside ring, and let ϑ be the
action on INV(A). Then, since there is an induced action of the group ϑl(I ), we can write

x =
∑

J∈Y (I)

zt [ϑl(I )/ϑl(J )]

with zJ ∈ Z. Let K be a monoid such that ϑl(K) is the maximal conjugacy class in ϑl(I )

with respect to the inclusion, with zK 
= 0. The rest is same as the proof of Proposition
1.2.2 in [4]. Since FixK(ϑl(I )/ϑl(J )) is non-empty if and only if ϑl(K) is sub-conjugate to
ϑl(J ), we have m(x) is non-zero due to maximality of ϑl(K). Hence m is injective.

6.3 Attractors of Finite State Automata

It is well known that the notion of attractors and attracting sets play an important role in
physics, geometry and in particular in the theory of dynamical systems, see for example [1,
2, 12]. We define analogues notion for finite state automata. We will consider an automaton
in the following sense. Let I be a free semigroup on an alphabet and X be an I -set with
action (αl, 1), i.e. the right action is trivial. Assume both I and X has a topology and the
action is continuous.

Definition 2 An attractor A of this action is a subset of X defined by the following proper-
ties: There exists neighborhood of X in X denoted by B(X) called a basin of attraction for
A such that for all submonoid I ′ of I we have

A =
∐
s∈S

As

for some index set S so that the following holds for every s in S:

1. As is forward invariant, i.e. I ′As ⊂ As .
2. For every b in B(A) there is a word w such that αl(w)(b) is in As .
3. As is a minimal set satisfying the above two properties.

This definition can be viewed as a special case of the definition given in [13], when we
consider attractors as global uniform attractors in the basin of attraction. In this paper we
only use discrete topology on sets. We will say that an attractor is periodic if it is invariant up
to isomorphism under the endofunctor INV. Notice that the Burnside ring of I is generated
by periodic attractors for finite I -sets (which are same as the orbits of the I -sets in the image
of INV) with discrete topology. Hence, the Burnside ring can be used to understand types
of periodic attractors which is also important for the usual definition of periodic attractors.

As some simple examples, consider the set with two elements {x0, x1} with the actions
of free monoid with two generators {i0, i1} as follows

In the first case (on the left side) the reverse action will be isomorphic to itself, and the
attractor is the set itself; however, in the second case, on the right, the inverse action is
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empty so that there is no attractor. If we consider the action on {x0, x1} with the action of
free monoid with one generator i, given by

then the reverse action will be singleton with trivial action on it, so the attractor in this case
is {x1}.

As a last remark we should note that Lemma 3 is not valid in the case when A is infinite.
For example let I ∼= N with a single generator i and the set A and the action of I be as in
the figure below

Then the reverse action will be as follows:

where the maps σk and δk in the inverse action are defined by

σk(i
n) =

{
an+k ifn + k > 0
n + k ifn + k ≤ 0

and

δk(i
n) =

{
bn+k ifn + k > 0
n + k ifn + k ≤ 0.
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