
Nanopore sequencing technology and tools for genome

assembly: computational analysis of the current state,

bottlenecks and future directions
Damla Senol Cali, Jeremie S. Kim, Saugata Ghose, Can Alkan and Onur Mutlu
Corresponding author: Can Alkan, Department of Computer Engineering, Bilkent University, Engineering Building, EA-509, Bilkent, 06800 Ankara, Turkey.
Email: calkan@cs.bilkent.edu.tr; Onur Mutlu, Systems Group, Department of Computer Science (D-INFK), ETH Zürich, CAB F 74.2, Universitätstrasse 6, 8092
Zürich, Switzerland. Email: onur.mutlu@inf.ethz.ch

Abstract

Nanopore sequencing technology has the potential to render other sequencing technologies obsolete with its ability to
generate long reads and provide portability. However, high error rates of the technology pose a challenge while generating ac-
curate genome assemblies. The tools used for nanopore sequence analysis are of critical importance, as they should overcome
the high error rates of the technology. Our goal in this work is to comprehensively analyze current publicly available tools for
nanopore sequence analysis to understand their advantages, disadvantages and performance bottlenecks. It is important to
understand where the current tools do not perform well to develop better tools. To this end, we (1) analyze the multiple steps
and the associated tools in the genome assembly pipeline using nanopore sequence data, and (2) provide guidelines for deter-
mining the appropriate tools for each step. Based on our analyses, we make four key observations: (1) the choice of the tool for
basecalling plays a critical role in overcoming the high error rates of nanopore sequencing technology. (2) Read-to-read overlap
finding tools, GraphMap and Minimap, perform similarly in terms of accuracy. However, Minimap has a lower memory usage,
and it is faster than GraphMap. (3) There is a trade-off between accuracy and performance when deciding on the appropriate
tool for the assembly step. The fast but less accurate assembler Miniasm can be used for quick initial assembly, and further
polishing can be applied on top of it to increase the accuracy, which leads to faster overall assembly. (4) The state-of-the-art
polishing tool, Racon, generates high-quality consensus sequences while providing a significant speedup over another polish-
ing tool, Nanopolish. We analyze various combinations of different tools and expose the trade-offs between accuracy, perform-
ance, memory usage and scalability. We conclude that our observations can guide researchers and practitioners in making
conscious and effective choices for each step of the genome assembly pipeline using nanopore sequence data. Also, with the
help of bottlenecks we have found, developers can improve the current tools or build new ones that are both accurate and fast,
to overcome the high error rates of the nanopore sequencing technology.

Key words: nanopore sequencing; genome sequencing; genome analysis; assembly; mapping

Damla Senol Cali is a PhD student in the Department of Electrical and Computer Engineering at Carnegie Mellon University. Her research interests are in
computational methods for the analysis of NGS and nanopore sequencing data, and computer architecture.
Jeremie S. Kim is a PhD student in the Department of Electrical and Computer Engineering at Carnegie Mellon University and in the Department of
Computer Science at ETH Zürich. His research interests are in computer architecture and hardware accelerators for bioinformatics applications.
Saugata Ghose is a Systems Scientist in the Department of Electrical and Computer Engineering at Carnegie Mellon University. His research interests are
in several aspects of computer architecture, with a significant focus on designing architecture-aware and systems-aware memory and storage.
Can Alkan is an Assistant Professor in the Department of Computer Engineering at Bilkent University. His research interests are in combinatorial algo-
rithms for bioinformatics and computational biology.
Onur Mutlu is a Professor in the Department of Computer Science at ETH Zürich. He is also an Adjunct Professor in the Department of Electrical and
Computer Engineering at Carnegie Mellon University. His research interests are in computer architecture, systems, security and bioinformatics.
Submitted: 20 November 2017; Received (in revised form): 6 February 2018

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

1

Briefings in Bioinformatics, 2018, 1–18

doi: 10.1093/bib/bby017
Review Article

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bby017/4958758
by ETH Zürich user
on 06 April 2018

https://academic.oup.com/

Introduction

Next-generation sequencing (NGS) technologies have revolu-
tionized and dominated the genome sequencing market since
2005, because of their ability to generate massive amounts of
data at a faster speed and lower cost [1–3]. The existence of suc-
cessful computational tools that can process and analyze such
large amounts of data quickly and accurately is critically im-
portant to take advantage of NGS technologies in science, medi-
cine and technology.

As the whole genome of most organisms cannot be
sequenced all at once, the genome is broken into smaller frag-
ments. After each fragment is sequenced, small pieces of DNA
sequences (i.e. reads) are generated. These reads can then be
analyzed following two different approaches: read mapping and
de novo assembly. Read mapping is the process of aligning the
reads against the reference genome to detect variations in the
sequenced genome. De novo assembly is the method of combin-
ing the reads to construct the original sequence when a refer-
ence genome does not exist [4]. Owing to the repetitive regions
in the genome, the short-read length of the most dominant NGS
technologies (e.g. 100–150 bp reads) causes errors and ambigu-
ities for read mapping [5, 6], and poses computational chal-
lenges and accuracy problems to de novo assembly [7].
Repetitive sequences are usually longer than the length of a
short read, and an entire repetitive sequence cannot be spanned
by a single short read. Thus, short reads lead to highly frag-
mented, incomplete assemblies [7–9]. However, a long read can
span an entire repetitive sequence and enable continuous and
complete assemblies. The demand for sequencing technologies
that can produce longer reads has resulted in the emergence of
even newer alternative sequencing technologies.

Nanopore sequencing technology [10] is one example of
such technologies that can produce long read lengths.
Nanopore sequencing is an emerging and a promising single-
molecule DNA sequencing technology, which exhibits many at-
tractive qualities, and in time, it could potentially surpass cur-
rent sequencing technologies. Nanopore sequencing promises
high sequencing throughput, low cost and longer read length,
and it does not require an amplification step before the
sequencing process [11–14].

Using biological nanopores for DNA sequencing was first
proposed in the 1990s [15], but the first nanopore sequencing
device, MinION [16], was only recently (in May 2014) made com-
mercially available by Oxford Nanopore Technologies (ONT).
MinION is an inexpensive, pocket-sized, portable, high-
throughput sequencing apparatus that produces data in real
time. These properties enable new potential applications of
genome sequencing, such as rapid surveillance of Ebola, Zika or
other epidemics [17], near-patient testing [18] and other applica-
tions that require real-time data analysis. In addition, the
MinION technology has two major advantages. First, it is cap-
able of generating ultra-long reads (e.g. 882 kilobase pairs or
longer [19, 20]). MinION’s long reads greatly simplify the genome
assembly process by decreasing the computational require-
ments [8, 21]. Second, it is small and portable. MinION is named
as the first DNA sequencing device used in outer space to help
the detection of life elsewhere in the universe with the help of
its size and portability [22]. With the help of continuous updates
to the MinION device and the nanopore chemistry, the first
nanopore human reference genome was generated by using
only MinION devices [19].

Nanopores are suitable for sequencing because they:

• do not require any labeling of the DNA or nucleotide for detec-

tion during sequencing,
• rely on the electronic or chemical structure of the different nu-

cleotides for identification,
• allow sequencing long reads and
• provide portability, low cost and high throughput.

Despite all these advantageous characteristics, nanopore
sequencing has one major drawback: high error rates. In May
2016, ONT released a new version of MinION with a new nano-
pore chemistry called R9 [23], to provide higher accuracy and
higher speed, which replaced the previous version R7. Although
the R9 chemistry improves the data accuracy, the improve-
ments are not enough for cutting-edge applications. Thus,
nanopore sequence analysis tools have a critical role to over-
come high error rates and to take better advantage of the tech-
nology. Also, faster tools are critically needed to (1) take better
advantage of the real-time data production capability of MinION
and (2) enable real-time data analysis.

Our goal in this work is to comprehensively analyze current
publicly available tools for nanopore sequence analysis to
understand their advantages, disadvantages and bottlenecks. It
is important to understand where the current tools do not per-
form well, to develop better tools. To this end, we analyze the
tools associated with the multiple steps in the genome assem-
bly pipeline using nanopore sequence data in terms of accuracy,
speed, memory efficiency and scalability.

We note that our manuscript presents a checkpoint of the
state-of-the-art tools at the time the manuscript was submitted.
This is a fast moving field, but we hope that our analysis is use-
ful, and we expect that the fundamental conclusions and rec-
ommendations we make are independent of the exact versions
of the tools.

Genome assembly pipeline using nanopore
sequence data

We evaluate the genome assembly pipeline using nanopore se-
quence data. Figure 1 shows each step of the pipeline and lists
the associated existing tools for each step that we analyze.

The output of MinION is raw signal data that represents
changes in electric current when a DNA strand passes through
nanopore. Thus, the pipeline starts with the raw signal data. The
first step, basecalling, translates this raw signal output of MinION

Figure 1. The analyzed genome assembly pipeline using nanopore sequence

data, with its five steps and the associated tools for each step.

2 | Senol Cali et al.

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bby017/4958758
by ETH Zürich user
on 06 April 2018

into bases (A, C, G, T) to generate DNA reads. The second step
computes all pairwise read alignments or suffix–prefix matches
between each pair of reads, called read-to-read overlaps.
Overlap-layout-consensus (OLC) algorithms are used for the as-
sembly of nanopore sequencing reads, as OLC-algorithms per-
form better with longer error-prone reads [24]. OLC-based
assembly algorithms generate an overlap graph, where each
node denotes a read, and each edge represents the suffix–prefix
match between the corresponding two nodes. The third pipeline
step, genome assembly, traverses this overlap graph, producing
the layout of the reads and then constructing a draft assembly.
To increase the accuracy of the assembly, further polishing, i.e.
postassembly error correction, may be required. The fourth step
of the pipeline is mapping the original basecalled reads to the
generated draft assembly from the previous step (i.e. read map-
ping). The fifth and final step of the pipeline is polishing the as-
sembly with the help of mappings from the previous step.

We next introduce the state-of-the-art tools used for each
step.

Basecalling

When a strand of DNA passes through the nanopore (which is
called the translocation of the strand through the nanopore), it
causes drops in the electric current passing between the walls of
the pore. The amount of change in the current depends on the
type of base passing through the pore. Basecalling, the initial step
of the entire pipeline, translates the raw signal output of the
nanopore sequencer into bases (A, C, G, T) to generate DNA reads.
Most of the current basecallers divide the raw current signal into
discrete blocks, which are called events. After event-detection,
each event is decoded into a most-likely set of bases. In the ideal
case, each consecutive event should differ by one base. However,
in practice, this is not the case because of the non-stable speed of
the translocation. Also, determining the correct length of the
homopolymers (i.e. repeating stretches of one kind of base, e.g.
AAAAAAA) is challenging. Both of these problems make dele-
tions the dominant error of nanopore sequencing [25, 26]. Thus,
basecalling is the most important step of the pipeline that plays a
critical role in decreasing the error rate.

We analyze five state-of-the-art basecalling tools in this art-
icle (Table 1). For a detailed comparison of these and other base-
callers (including Albacore [32], which is not freely available,
and Chiron [33]), we refer the reader to an ongoing basecaller
comparison study [34]. Note that this ongoing study does not
capture the accuracy and performance of the entire genome as-
sembly pipeline using nanopore sequence data.

Metrichor
Metrichor [27] is ONT’s cloud-based basecaller, and its source
code is not publicly available. Before the R9 update, Metrichor
was using hidden Markov models (HMMs) [35] for basecalling
[23]. After the R9 update, it started using recurrent neural net-
works (RNN) [36, 37] for basecalling [23].

Nanonet
Nanonet [28] has also been developed by ONT, and it is available
on Github [38]. As Metrichor requires an Internet connection
and its source code is not available, Nanonet is an offline and
open-source alternative for Metrichor. Nanonet is implemented
in Python. It also uses RNN for basecalling [28]. The tool sup-
ports multithreading by sharing the computation needed to call
each single read between concurrent threads. In other words,
only one read is called at a time.

Scrappie
Scrappie [29] is the newest proprietary basecaller developed by
ONT. It is named as the first basecaller that explicitly addresses
basecalling errors in homopolymer regions. To determine the
correct length of homopolymers, Scrappie performs transducer-
based basecalling [25]. For versions R9.4 and R9.5, Scrappie can
perform basecalling with the raw current signal, without requir-
ing event detection. It is a C-based local basecaller and is still
under development [25].

Nanocall
Nanocall [30] uses HMMs for basecalling, and it is independently
developed by a research group. It was released before the R9 up-
date when Metrichor was also using an HMM-based approach
for basecalling, to provide the first offline and open-source al-
ternative for Metrichor. However, after the R9 update, when
Metrichor started to perform basecalling with a more powerful
RNN-based approach, Nanocall’s accuracy fell short of
Metrichor’s accuracy [39]. Thus, although Nanocall supports R9
and upper versions of nanopore data, its usefulness is limited
[39]. Nanocall is a Cþþ-based command-line tool. It supports
multithreading where each thread performs basecalling for dif-
ferent groups of raw reads.

DeepNano
DeepNano [31] is also independently developed by a research
group before the R9 update. It uses an RNN-based approach to
perform basecalling. Thus, it is considered to be the first RNN-
based basecaller. DeepNano is implemented in Python. It does
not have multithreading support.

Read-to-read overlap finding

Previous genome assembly methods designed for accurate and
short reads (i.e. de Bruijn graph approach [40, 41]) are not suit-
able for nanopore reads because of the high error rates of the
current nanopore sequencing devices [9, 26, 42, 43]. Instead,
OLC algorithms [44] are used for nanopore sequencing reads, as
they perform better with longer, error-prone reads. OLC-based
assembly algorithms start with finding the read-to-read over-
laps, which is the second step of the pipeline. Read-to-read
overlap is defined to be a common sequence between two reads
[43]. GraphMap [45] and Minimap [46] are the commonly used
state-of-the-art tools for this step (Table 2).

Table 1. State-of-the-art nanopore basecalling tools

Tool Strategy Multithreading support Source Reference

Metrichor RNN (Cloud-based) https://metrichor.com/ [27]
Nanonet RNN With -jobs parameter https://github.com/nanoporetech/nanonet [28]
Scrappie RNN With export OMP_NUM_THREADS command https://github.com/nanoporetech/scrappie [29]
Nanocall HMM With –threads parameter https://github.com/mateidavid/nanocall [30]
DeepNano RNN No support; split data set and run it in parallel https://bitbucket.org/vboza/deepnano [31]

Computational analysis of nanopore sequencing tools | 3

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bby017/4958758
by ETH Zürich user
on 06 April 2018

https://metrichor.com/
https://github.com/nanoporetech/nanonet
https://github.com/nanoporetech/scrappie
https://github.com/mateidavid/nanocall
https://bitbucket.org/vboza/deepnano

GraphMap
GraphMap first partitions the entire read data set into k-length
substrings (i.e. k-mers), and then creates a hash table.
GraphMap uses gapped k-mers, i.e. k-mers that can contain in-
sertions or deletions (indels) [45, 47]. In the hash table, for each
k-mer entry, three pieces of information are stored: (1) k-mer
string, (2) the index of the read and (3) the position in the read
where the corresponding k-mer comes from. GraphMap detects
the overlaps by finding the k-mer similarity between any two
given reads. Owing to this design, GraphMap is a highly sensi-
tive and accurate tool for error-prone long reads. It is a
command-line tool written in Cþþ. GraphMap is used for both
(1) read-to-read overlap finding with the graphmap owler com-
mand and (2) read mapping with the graphmap align
command.

Minimap
Minimap also partitions the entire read data set into k-mers, but
instead of creating a hash table for the full set of k-mers, it finds
the minimum representative set of k-mers, called minimizers,
and creates a hash table with only these minimizers. Minimap
finds the overlaps between two reads by finding minimizer
similarity. The goals of using minimizers are to (1) reduce the
storage requirement of the tool by storing fewer k-mers and (2)
accelerate the overlap finding process by reducing the search
span. Minimap also sorts k-mers for cache efficiency. Minimap
is fast and cache-efficient, and it does not lose any sensitivity
by storing minimizers, as the chosen minimizers can represent
the whole set of k-mers. Minimap is a command-line tool writ-
ten in C. Like GraphMap, it can both (1) find overlaps between
two read sets and (2) map a set of reads to a full genome.

Genome assembly

After finding the read-to-read overlaps, OLC-based assembly al-
gorithms generate an overlap graph. Genome assembly is per-
formed by traversing this graph, producing the layout of the
reads and then constructing a draft assembly. Canu [48] and
Miniasm [46] are the commonly used error-prone long-read as-
semblers (Table 3).

Canu
Canu performs error-correction as the initial step of its own
pipeline. It finds the overlaps of the raw uncorrected reads and
uses them for the error-correction. The purpose of error-
correction is to improve the accuracy of the bases in the reads
[48, 49]. After the error-correction step, Canu finds overlaps be-
tween corrected reads and constructs a draft assembly after an

additional trimming step. However, error-correction is a compu-
tationally expensive step. In its own pipeline, Canu implements
its own read-to-read overlap finding tool such that the users do
not need to perform that step explicitly before running Canu.
Most of the steps in the Canu pipeline are multi-threaded. Canu
detects the resources that are available in the computer before
starting its pipeline and automatically assigns number of
threads, number of processes and amount of memory based on
the available resources and the assembled genome’s estimated
size.

Miniasm
Miniasm skips the error-correction step, as it is computationally
expensive. It constructs a draft assembly from the uncorrected
read overlaps computed in the previous step. Although
Miniasm lowers computational cost and thus accelerates and
simplifies assembly by doing so, the accuracy of the draft as-
sembly depends directly on the accuracy of the uncorrected
basecalled reads. Thus, further polishing may be necessary
for these draft assemblies. Miniasm does not support
multithreading.

Read mapping and polishing

To increase the accuracy of the assembly, especially for the
rapid assembly methods like Miniasm, which do not have the
error-correction step, further polishing may be required.
Polishing, i.e. postassembly error-correction, improves the ac-
curacy of the draft assembly by mapping the reads to the as-
sembly and changing the assembly to increase local similarity
with the reads [26, 50, 51]. The first step of polishing is mapping
the basecalled reads to the generated draft assembly from the
previous step. One of the most commonly used long-read map-
pers for nanopore data is BWA-MEM [52]. Read-to-read overlap
finding tools, GraphMap and Minimap (‘Read-to-read overlap
finding’ section), can also be used for this step, as they also
have a read mapping mode (Table 4).

After aligning the basecalled reads to the draft assembly, the
final polishing of the assembly can be performed with
Nanopolish [50] or Racon [51] (Table 5).

Nanopolish
Nanopolish uses the raw signal data of reads along with the
mappings from the previous step to improve the assembly base
quality by evaluating and maximizing the probabilities for each
base with a HMM-based approach [50]. It can increase the accur-
acy of the draft assembly by correcting the homopolymer-rich
parts of the genome. Although this approach can increase the

Table 2. State-of-the-art read-to-read overlap finding tools

Tool Strategy Multithreading support Source Reference

GraphMap k-mer similarity With –threads parameter https://github.com/isovic/graphmap [45]
Minimap Minimizer similarity With -t parameter https://github.com/lh3/minimap [46]

Note: Both GraphMap and Minimap also have read mapping functionality.

Table 3. State-of-the-art assembly tools

Tool Strategy Multithreading support Source Reference

Canu OLC with error correction Auto-configuration https://github.com/marbl/canu [48]
Miniasm OLC without error correction No support https://github.com/lh3/miniasm [46]

4 | Senol Cali et al.

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bby017/4958758
by ETH Zürich user
on 06 April 2018

https://github.com/isovic/graphmap
https://github.com/lh3/minimap
https://github.com/marbl/canu
https://github.com/lh3/miniasm

accuracy significantly, it is computationally expensive, and
thus time-consuming. Nanopolish developers recommend
BWA-MEM as the read mapper before running Nanopolish [53].

Racon
Racon constructs partial order alignment graphs [51, 54] to find
a consensus sequence between the reads and the draft assem-
bly. After dividing the sequence into segments, Racon tries to
find the best alignment to increase the accuracy of the draft as-
sembly. Racon is a fast polishing tool, but it does not promise a
high increase in accuracy as Nanopolish promises. However,
multiple iterations of Racon runs or a combination of Racon and
Nanopolish runs can improve accuracy significantly. Racon de-
velopers recommend Minimap as the read mapper to use before
running Racon, as Minimap is both fast and sensitive [51].

Experimental methodology
Data set

In this work, we use Escherichia coli genome data as the test case,
sequenced using the MinION with an R9 flowcell [55].

MinION sequencing has two types of workflows. In the 1D
workflow, only the template strand of the double-stranded DNA
is sequenced. In contrast, in the 2D workflow, with the help of a
hairpin ligation, both the template and complement strands

pass through the pore and are sequenced. After the release of
R9 chemistry, 1D data became usable in contrast to previous
chemistries. Thus, we perform the analysis of the tools on 1D
data.

MinION outputs one file in the fast5 format for each read.
The fast5 file format is a hierarchical data format, capable of
storing both raw signal data and basecalled data returned by
Metrichor. This data set includes 164 472 reads, i.e. fast5 files.
As all these files include both raw signal data and basecalled
reads, we can use this data set for both (1) using the local base-
callers to convert raw signal data into the basecalled reads and
(2) using the already basecalled reads by Metrichor.

Evaluation systems

In this work, for accuracy and performance evaluations of dif-
ferent tools, we use three separate systems with different speci-
fications. We use the first computer in the first part of the
analysis, accuracy analysis. We use the second and third com-
puters in the second part of the analysis, performance analysis,
to compare the scalability of the analyzed tools in the two ma-
chines with different specifications (Table 6).

We choose the first system for evaluation, as it has a larger
memory capacity than a usual server, and with the help of a
large number of cores, the tasks can be parallelized easily to get
the output data quickly. We choose the second system, called

Table 4. State-of-the-art read mapping tools

Tool Strategy Multithreading support Source Reference

BWA-MEM Burrows–Wheeler Transform With -t parameter http://bio-bwa.sourceforge.net [52]
GraphMap k-mer similarity With –threads parameter https://github.com/isovic/graphmap [45]
Minimap Minimizer similarity With -t parameter https://github.com/lh3/minimap [46]

Table 5. State-of-the-art polishing tools

Tool Strategy Multithreading support Source Reference

Nanopolish HMM With –threads and -P parameters https://github.com/jts/nanopolish [50]
Racon Partial order alignment graph With –threads parameter https://github.com/isovic/racon [51]

Table 6. Specifications of evaluation systems

Name Model CPU specifications Main memory
specifications

NUMA* specifications

System 1 40-core IntelVR

XeonVR E5-2630
v4 CPU @
2.20GHz

20 physical cores 2
threads per core 40 lo-
gical cores with
hyper-threading**

128GB DDR4 2 channels,
2 ranks/channel
Speed: 2400MHz

2 NUMA nodes, each with 10 physical
cores, 64 GB of memory and an 25
MB of LLC

System 2
(desktop)

8-core IntelVR

Core i7-2600
CPU @ 3.40GHz

4 physical cores 2
threads per core 8 lo-
gical cores with
hyper-threading**

16GB DDR3 2 channels, 2
ranks/channel Speed:
1333MHz

1 NUMA node, with 4 physical cores,
16 GB of memory and an 8 MB of
LLC

System 3
(big-mem)

80-core IntelVR

XeonVR E7-4850
CPU @ 2.00GHz

40 physical cores 2
threads per core 80 lo-
gical cores with
hyper-threading**

1TB DDR3 8 channels, 4
ranks/channel Speed:
1066MHz

4 NUMA nodes, each with 10 physical
cores, 256 GB of memory and an 24
MB of LLC

*NUMA (Non-Uniform Memory Access) is a computer memory design, where a processor accesses its local memory faster (i.e. with lower latency) than a nonlocal

memory (i.e. memory local to another processor in another NUMA node). A NUMA node is composed of the local memory and the CPU cores (see Observation 6 in

Section 4.1 for detail).

**Hyper-threading is Intel’s SMT implementation (See Observation 5 in Section 4.1 for detail).

Computational analysis of nanopore sequencing tools | 5

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bby017/4958758
by ETH Zürich user
on 06 April 2018

http://bio-bwa.sourceforge.net
https://github.com/isovic/graphmap
https://github.com/lh3/minimap
https://github.com/jts/nanopolish
https://github.com/isovic/racon

desktop, as it represents a commonly used desktop server. We
choose the third system, called big-mem, because of its large
memory capacity. This big-mem system can be useful for those
who would like to get results more quickly.

Accuracy metrics

We compare each draft assembly generated after the assembly
step and each improved assembly generated after the polishing
step with the reference genome, by using the dnadiff command
under the MUMmer package [56]. We use six metrics to measure
accuracy, as defined in Table 7: (1) number of bases in the as-
sembly, (2) number of contigs, (3) average identity, (4) coverage,
(5) number of mismatches and (6) number of indels.

Performance metrics

We analyze the performance of each tool by running the associ-
ated command-line of each tool with the/usr/bin/time -v com-
mand. We use four metrics to quantify performance as defined
in Table 8: (1) wall clock time, (2) CPU time, (3) peak memory
usage and (4) parallel speedup.

Results and analysis

In this section, we present our results obtained by analyzing the
performance of different tools for each step in the genome as-
sembly pipeline using nanopore sequence data in terms of ac-
curacy and performance, using all the metrics we provide in
Tables 7 and 8. Additionally, Table 9 shows the tool version, the
executed command and the output of each analyzed tool. We
divide our analysis into three main parts.

In the first part of our analysis, we examine the first three
steps of the pipeline (cf. Figure 1). To this end, we first execute
each basecalling tool (i.e. one of Nanonet, Scrappie, Nanocall or
DeepNano). As Metrichor is a cloud-based tool and its source
code is not available, we cannot execute Metrichor and get the
performance metrics for it. After recording the performance
metrics for each basecaller run, we execute either GraphMap or

Minimap followed by Miniasm, or Canu itself, and record the
performance metrics for each run. We obtain a draft assembly
for each combination of these basecalling, read-to-read overlap
finding and assembly tools. For each draft assembly, we assess
its accuracy by comparing the resulting draft assembly with the
existing reference genome. We show the accuracy results in
Table 10. We show the performance results in Table 11. We will
refer to these tables in sections ‘Basecalling tools’, ‘Read-to-read
overlap finding tools’ and ‘Assembly tools’.

In the second part of our analysis, we examine the last two
steps of the pipeline (cf. Figure 1). To this end, for each obtained
draft assembly, we execute each possible combination of differ-
ent read mappers (i.e. BWA-MEM or Minimap) and different pol-
ishers (i.e. Nanopolish or Racon), and record the performance
metrics for each step (i.e. read mapping and polishing). We ob-
tain a polished assembly after each run, and assess its accuracy
by comparing it with the existing reference genome. For these
two analyses, we use the first system, which has 40 logical
cores, and execute each tool using 40 threads, which is the pos-
sible maximum number of threads for that particular machine.
We show the accuracy results in Table 12. We show the per-
formance results in Table 13. We will refer to these tables in sec-
tion ‘Read mapping and polishing tools’.

In the third part of our analysis, we assess the scalability of
all of the tools that have multithreading support. For this pur-
pose, we use the second and third systems to compare the scal-
ability of these tools on two different system configurations. For
each tool, we change the number of threads and observe the
corresponding change in speed, memory usage and parallel
speedup. These results are depicted in Figures 2–6, and we will
refer to them throughout ‘Basecalling tools’, ‘Read-to-read over-
lap finding tools’, ‘Assembly tools’ and ‘Read mapping and pol-
ishing tools’ sections.

‘Basecalling tools’, ‘Read-to-read overlap finding tools’,
‘Assembly tools’ and ‘Read mapping and polishing tools’ sec-
tions describe the major observations we make for each of the
five steps of the pipeline (cf. Figure 1) based on our extensive
evaluation results.

Table 7. Accuracy metrics

Metric name Definition Preferred values

Number of bases Total number of bases in the assembly ’ Length of reference genome
Number of contigs Total number of segments in the assembly Lower (’1)
Average identity Percentage similarity between the assembly and the reference genome Higher (’100%)
Coverage Ratio of the number of aligned bases in the reference genome to the

length of reference genome
Higher (’100%)

Number of mismatches Total number of single-base differences between the assembly and
the reference genome

Lower (’0)

Number of indels Total number of insertions and deletions between the assembly and
the reference genome

Lower (’0)

Table 8. Performance metrics

Metric name Definition Preferred values

Wall clock time Elapsed time from the start of a program to the end Lower
CPU time Total amount of time the CPU spends in user mode (i.e. to run the program’s code)

and kernel mode (i.e. to execute system calls made by the program)*
Lower

Peak memory usage Maximum amount of memory used by a program during its whole lifetime Lower
Parallel speedup Ratio of the time to run a program with one thread to the time to run it with N threads Higher

*If wall clock time < CPU time for a specific program, it means that the program runs in parallel.

6 | Senol Cali et al.

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bby017/4958758
by ETH Zürich user
on 06 April 2018

Basecalling tools

As we discuss in section ‘Basecalling’, ONT’s basecallers
Metrichor, Nanonet and Scrappie, and another basecaller de-
veloped by Boza et al. (2017), DeepNano, use RNNs for basecall-
ing, whereas Nanocall developed by David et al. (2016) uses
HMMs for basecalling.

Accuracy
Using RNNs is a more powerful basecalling approach than using

HMMs, as an RNN 1) does not make any assumptions about se-

quence length [57] and (2) is not affected by the repeats in the se-

quence [30, 31, 57]. However, it is still challenging to determine

the correct length of the homopolymers even with an RNN.
To compare the accuracy of the analyzed basecallers, we

group the accuracy results by each basecalling tool and compare
them according to the defined accuracy metrics.

According to this analysis and the accuracy results shown in
Table 10, we make the following key observation.

Observation 1: The pipelines that start with Metrichor,
Nanonet or Scrappie as the basecaller have similar identity and
coverage trends among all of the evaluated scenarios (i.e. tool
combinations for the first three steps), but Scrappie has a lower
number of mismatches and indels. However, Nanocall and
DeepNano cannot reach these three basecallers’ accuracies:
they have lower identity and lower coverage.

As Nanonet is the local version of Metrichor, Nanonet and
Metrichor’s similar accuracy trends are expected. In addition to

the power of the RNN-based approach, Scrappie tries to solve
the homopolymer basecalling problem. Although Scrappie is in
an early stage of development, it leads to a smaller number of
indels than Metrichor or Nanonet. Nanocall’s poor accuracy re-
sults are because of the simple HMM-based approach it uses.
Although DeepNano performs better than Nanocall with the
help of its RNN-based approach, it results in a higher number of
indels and a lower coverage of the reference genome.

Performance
RNN and HMM are computationally intensive algorithms. In

HMM-based basecalling, the Viterbi algorithm [58] is used for
decoding. The Viterbi algorithm is a sequential technique, and
its computation cannot currently be parallelized with multi-
threading. However, in RNN-based basecalling, multiple threads
can work on different sections of the neural network, and thus,
RNN computation can be parallelized with multithreading.

To measure and compare the performance of the selected
basecallers, we first compare the recorded wall clock time, CPU
time and memory usage metrics of each scenario for the first
step of the pipeline. Based on the results provided in Table 11,
we make the following key observation.

Observation 2: RNN-based Nanonet and DeepNano are 2.6x
and 2.3x faster than HMM-based Nanocall, respectively.
Although Scrappie is also an RNN-based tool, it is 5.7x faster
than Nanonet because of its C implementation as opposed to
Nanonet’s Python implementation.

Table 9. Versions, commands to execute and outputs for each analyzed tool

Command* Output

Basecalling tools

Nanonet–v2.0 nanonetcall fast5_dir/–jobs N –chemistry r9 reads.fasta

Scrappie–v1.0.1 (1)export OMP_NUM_THREADS¼N
(2)scrappie events –segmentation Segment_Linear: split_hairpin

(2)fast5_dir/. . .

reads.fasta

Nanocall–v0.7.4 nanocall -t N fast5_dir/ reads.fasta

DeepNano-e8a621e python basecall.py –directory fast5_dir/–chemistry r9 reads.fasta

Read-to-read overlap finding tools

GraphMap–v0.5.2 graphmap owler -L paf -t N -r reads.fasta -d reads.fasta overlaps.paf

Minimap–v0.2 minimap -Sw5 -L100 -m0 -tN reads.fasta reads.fasta overlaps.paf

Assembly finding tools

Canu–v1.6 canu -p ecoli -d canu-ecoli genomeSize¼4.6m -nanopore-raw reads.fasta draftAssembly.fasta

Miniasm–v0.2 miniasm -f reads.fasta overlaps.paf draftAssembly.gfa –>

draftAssembly.fasta

Read mapping tools

BWA-MEM–0.7.15 (1)bwa index draftAssembly.fasta (2)bwa mem -x ont2d -t

N draftAssembly.fasta reads.fasta

mappings.sam –> mappings.bam

Minimap–v0.2 minimap -tN draftAssembly.fasta reads.fasta mappings.paf

Polishing tools

Nanopolish–v0.7.1 (1)python nanopolish_makerange.py draftAssembly.fasta—parallel -P M

(2)nanopolish variants –consensus polished.1.fa -w 1 (2)-r reads.fasta -b

mappings.bam -g draftAssembly.fasta -t N

(3)python nanopolish_merge.py polished.*.fa polished.fasta

Racon–v0.5.0 racon (–sam) –bq -1 -t N reads.fastq mappings.paf/(mappings.sam)

draftAssembly.fasta

polished.fasta

*N corresponds to the number of threads and M corresponds to the number of parallel jobs.

Computational analysis of nanopore sequencing tools | 7

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bby017/4958758
by ETH Zürich user
on 06 April 2018

For a deeper understanding of these tools’ advantages, dis-
advantages and bottlenecks, we also perform a scalability ana-
lysis for each basecaller by running it on the desktop server and
the big-mem server separately, with 1, 2, 4, 8 (maximum for the
desktop server), 16, 32, 40, 64 and 80 (maximum for the big-
mem server) threads, and measuring the performance metrics
for each configuration. Metrichor and DeepNano are not
included in this analysis because Metrichor is a cloud-based
tool and its source code is not available for us to change its
number of threads, and DeepNano does not support multi-
threading. Figure 2 shows the speed, memory usage and parallel
speedup results of our evaluations. We make four observations.

Observation 3: When we compare desktop’s and big-mem’s
single-thread performance, we observe that desktop is approxi-
mately 2x faster than big-mem (cf. Figure 2A and B).

This is mainly because of desktop’s higher CPU frequency
(see Table 6). It is an indication that all of these three tools
are computationally expensive. Larger memory capacity or
larger Last-Level Cache (LLC) capacity of big-mem cannot make
up for the higher CPU speed in desktop when there is only one
thread.

Observation 4: Scrappie and Nanocall have a linear increase
in memory usage when number of threads increases. In con-
trast, Nanonet has a constant memory usage for all evaluated
thread units (cf. Figure 2C and D).

In Scrappie and Nanocall, each thread performs the basecall-
ing for different groups of raw reads. Thus, each thread allo-
cates its own memory space for the corresponding data. This
causes the linear increase in memory usage when the level of
parallelism increases. In Nanonet, all of the threads share the

Table 11. Performance analysis results for the first three steps of the pipeline

*We cannot get the performance metrics for Metrichor, as its source code is not available for us to run the tool by ourselves.

Table 10. Accuracy analysis results using different tools for the first three steps of the pipeline

8 | Senol Cali et al.

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bby017/4958758
by ETH Zürich user
on 06 April 2018

computation of each read, and thus, memory usage is not af-
fected by the amount of thread parallelism.

Observation 5: When the number of threads exceeds the
number of physical cores, the simultaneous multithreading
(SMT) overhead prevents continued linear speedup of Nanonet,
Scrappie and Nanocall (cf. Figure 2E and F).

SMT (i.e. running more than one thread per physical core
[59–66]), or more specifically Intel’s hyper-threading (i.e. as we
use Intel’s hyper-threading enabled machines (see Table 6))
helps to decrease the total runtime, but it does not provide a lin-
ear speedup with the number of threads because of the CPU-
intensive workload of Scrappie, Nanocall and Nanonet. If the
threads executed are CPU-bound and do not wait for the mem-
ory or I/O requests, hyper-threading does not provide linear
speedup because of the contention it causes in the shared re-
sources for the computation. This phenomenon has been ana-
lyzed extensively in other application domains [59–61].

Observation 6: Data sharing between threads degrades the
parallel speedup of Nanonet when cores from multiple NUMA
nodes take role in the computation (cf. Figure 2F).

In Nanonet, data are shared between threads, and each
thread performs different computations on the same data.
There are four NUMA nodes in big-mem (cf. Table 6), and when
data are shared between multiple NUMA nodes, this negatively
affects the speedup of Nanonet because accessing the data
located in another node (i.e. non-local memory) require longer
latency than accessing the data located in local memory. When
multiple NUMA nodes start taking role in the computation,

Nanocall performs better in terms of scalability, as it does not
require data sharing between different threads.

Summary. Based on the observations we make about the
analyzed basecalling tools, we conclude that the choice of the
tool for this step plays an important role to overcome the high
error rates of nanopore sequencing technology. Basecalling
with RNNs (e.g. Metrichor, Nanonet, Scrappie) provides higher
accuracy and higher speed than basecalling with HMMs, and
the newest basecaller of ONT, Scrappie, also has the potential to
overcome the homopolymer basecalling problem.

Read-to-read overlap finding tools

As we discuss in ‘Read-to-read overlap finding’ section,
GraphMap and Minimap are the commonly used tools for this
step. GraphMap finds the overlaps using k-mer similarity,
whereas Minimap finds them by using minimizers instead of
the full set of k-mers.

Accuracy
As done in GraphMap, finding the overlaps with the help of full
set of k-mers is a highly sensitive and accurate approach.
However, it is also resource-intensive. For this reason, instead
of the full set of k-mers, Minimap uses a minimum representa-
tive set of k-mers, which are called minimizers, as an alterna-
tive approach for finding the overlaps.

To compare the accuracy of these two approaches, we cat-
egorize the results in Table 10 based on read-to-read overlap

A B

C D

E F

Figure 2. Scalability results of Nanocall, Nanonet and Scrappie. Wall clock time (A, B), peak memory usage (C, D) and parallel speedup (E, F) results obtained on the

desktop and big-mem systems. The left column (A, C, E) shows the results from the desktop system, and the right column (B, D, F) shows the results from the big-mem

system.

Computational analysis of nanopore sequencing tools | 9

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bby017/4958758
by ETH Zürich user
on 06 April 2018

finding tools. In other words, we look at the rows with the same
basecaller (i.e. red-labeled tools) and same assembler (i.e. green-
labeled tools) but different read-to-read overlap finder (i.e. blue-
labeled tools). After that, we compare them according to the
defined accuracy metrics. We make the following major
observation.

Observation 7: Pipelines with GraphMap or Minimap end up
with similar values for identity, coverage, number of indels and
mismatches. Thus, either of these read-to-read overlap finding
tools can be used in the second step of the nanopore sequencing
assembly pipeline to achieve similar accuracy.

Minimap and GraphMap do not have a significantly different
effect on the accuracy of the generated draft assemblies. This is
because Minimap does not lose any sensitivity by storing min-
imizers instead of the full set of k-mers.

Performance
To compare the performance of GraphMap and Minimap, we cat-
egorize the results in Table 11 based on read-to-read overlap find-
ing tools, in a similar way we describe the results in Table 10 for
the accuracy analysis. We also perform a scalability analysis for
each of these tools by running them on the big-mem server with
1, 2, 4, 8, 16, 32, 40, 64 and 80 threads, and measuring the per-
formance metrics. Because of the high memory usage of
GraphMap, data necessary for the tool do not fit in the memory
of the desktop server, and the GraphMap job exits because of a
bad memory allocation exception. Thus, we could not perform
the scalability analysis of GraphMap in the desktop server.

Figure 3 depicts the speed, memory usage and parallel
speedup results of the scalability analysis for GraphMap and
Minimap. We make the following three observations according
to the results from Table 11 and Figure 3.

Observation 8: The memory usage of both GraphMap and
Minimap is dependent on the hash table size but independent
of number of threads. Minimap requires 4.6x less memory than
GraphMap, on average.

This is mainly because Minimap stores only minimizers in-
stead of all k-mers. Storing the full set of k-mers in GraphMap
requires a larger hash table, and thus higher memory usage
than Minimap. The high amount of memory requirement
causes GraphMap to not run on our desktop system for none of
the selected number of thread units.

Observation 9: Minimap is 2.5x faster than GraphMap, on
average, across different scenarios in Table 11.

As GraphMap stores all k-mers, GraphMap needs to scan its
large data set while finding the overlaps between two reads.
However, in Minimap, the size of data set that needs to be scanned
is greatly shrunk by storing minimizers, as we describe in
Observation 8. Thus, Minimap performs much less computation,
leading to its 2.5x speedup. Another indication of the different
memory usage and its effect on the speed of computation is the
LLC miss rates of these two tools. The LLC miss rate of Minimap is
36%, whereas the LLC miss rate of GraphMap is 55%. As the size of
data needed by GraphMap is much larger than the LLC size,
GraphMap experiences LLC misses more frequently. As a result,
GraphMap stalls for longer, waiting for data accesses from main
memory, which negatively affects the speed of the tool.

Observation 10: Minimap is more scalable than GraphMap.
However, after 32 threads, there is a decrease in the parallel
speedup of Minimap (cf. Figure 3C).

Because of its lower computational workload and lower mem-
ory usage, we find that Minimap is more scalable than
GraphMap. However, in Minimap, threads that finish their work
wait for the other active threads to finish their workloads, before

starting new work, to prevent higher memory usage. Because of
this, when the number of threads reaches a high number (i.e. 32
in Figure 3C), synchronization overhead greatly increases, caus-
ing the parallel speedup to reduce. GraphMap does not suffer
from such a synchronization bottleneck and hence does not ex-
perience a decrease in speedup. However, GraphMap’s speedup
saturates when the number of threads reaches a high number be-
cause of data sharing between threads.

Summary. According to the observations we make about
GraphMap and Minimap, we conclude that storing minimizers
instead of all k-mers, as done by Minimap, does not affect the
overall accuracy of the first three steps of the pipeline.
Moreover, by storing minimizers, Minimap has a much lower
memory usage and thus much higher performance than
GraphMap.

Assembly tools

As we discuss in section ‘Genome assembly’, Canu and
Miniasm are the commonly used tools for this step (In addition,
we attempted to evaluate MECAT [67], another assembler. We
were unable to draw any meaningful conclusions from MECAT,

A

B

C

Figure 3. Scalability results of Minimap and GraphMap. Wall clock time (A), peak

memory usage (B) and parallel speedup (C) results obtained on the big-mem

system.

10 | Senol Cali et al.

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bby017/4958758
by ETH Zürich user
on 06 April 2018

as its memory usage exceeds the 1 TB available in our big-mem
system.).

Accuracy
To compare the accuracy of these two tools, we categorize the
results in Table 10 based on assembly tools. We make the fol-
lowing observation.

Observation 11: Canu provides higher accuracy than
Miniasm, with the help of the error-correction step that is pre-
sent in its own pipeline.

Performance
To compare the performance of Canu and Miniasm, we categor-
ize the results in Table 11 based on assembly tools, in a way
similar to what we did in Table 10 for the accuracy analysis. We
could not perform a scalability analysis for these tools, as Canu
has an auto-configuration mechanism for each sub-step of its
own pipeline, which does not allow us to change the number of
threads, and Miniasm does not support multithreading. We
make the following observation according to the results in
Table 11.

Observation 12: Canu is much more computationally inten-

sive and greatly (i.e. by 1096.3x) slower than Miniasm because of
its expensive error-correction step.

Summary. According to the observations we make about
Canu and Miniasm, there is a trade-off between accuracy and
performance when deciding on the appropriate tool for this
step. Canu produces highly accurate assemblies, but it is re-
source intensive and slow. In contrast, Miniasm is a fast assem-
bler, but it cannot produce as accurate draft assemblies as
Canu. We suggest that Miniasm can potentially be used for fast
initial analysis and then further polishing can be applied in the
next step to produce higher-quality assemblies.

Read mapping and polishing tools

As we discuss in section ‘Read mapping and polishing’, further
polishing may be required for improving the accuracy of the
low-quality draft assemblies. For this purpose, after aligning the
reads to the generated draft assembly with BWA-MEM or
Minimap (We do not discuss these tools in great detail here, as
they perform read mapping, which is commonly analyzed and
relatively well understood [68–86]), one can use Nanopolish or
Racon to perform polishing and obtain improved assemblies
(i.e. consensus sequences).

Nanopolish accepts mappings only in sequence alignment/
map (SAM) format [88], and it works only with draft assemblies
generated with the Metrichor-basecalled reads. On the other
hand, Racon accepts both pairwise mapping format (PAF) map-
pings [46] and SAM-format mappings, but it requires the input
reads and draft assembly files to be in fastq format [89], which
includes quality scores. However, by using the -bq -1 parameter,
it is possible to disable the filtering used in Racon, which re-
quires quality scores. As our basecalled reads are in fasta format
[90], in our experiments, we convert these fasta files into fastq
files and disable the filtering with the corresponding parameter.

BWA-MEM generates mappings in SAM format, whereas
Minimap generates mappings in PAF format. As Nanopolish re-
quires SAM format input, we generate the mappings only with
BWA-MEM and use them for Nanopolish polishing, in our ana-
lysis. On the other hand, as Racon accepts both formats, we
generate the mappings and the overlaps with both BWA-MEM
and Minimap, respectively, and use them for Racon polishing,
in our analysis.

Accuracy
Table 12 presents the accuracy metrics results for Nanopolish
(i.e. Rows 1–3) and Racon (i.e. Rows 4–23) pipelines. Based on
these results, we make two observations.

Table 12. Accuracy analysis results for the full pipeline with a focus on the last two steps

Computational analysis of nanopore sequencing tools | 11

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bby017/4958758
by ETH Zürich user
on 06 April 2018

Observation 13: Both Nanopolish and Racon significantly in-
crease the accuracy of the draft assemblies.

For example, Nanopolish increases the identity and coverage
of the draft assembly generated with the MetrichorþMinimapþ
Miniasm pipeline from 87.71 and 94.85% (Row 2 of Table 10), re-
spectively, to 92.33 and 96.31% (Row 2 of Table 12). Similarly,
Racon increases them to 97.70 and 99.91% (Rows 6–7 of Table 12),
respectively.

Observation 14: For Racon, the choice of read mapper does
not affect the accuracy of the polishing step.

We observe that using BWA-MEM or Minimap to generate
the mappings for Racon results in almost identical accuracy
metric results. For example, when we use BWA-MEM before
Racon for the draft assembly generated with the
MetrichorþCanu pipeline (Row 4 of Table 12), Racon results
with 98.46% identity, 100.00% coverage, 18 036 mismatches
and 51 482 indels. When we use Minimap, instead (Row 5 of
Table 12), Racon results with 98.45% identity, 100.00% cover-
age, 17 096 mismatches and 52 168 indels, which is almost
identical to the BWA-MEM results.

Performance
In the first part of the performance analysis for Nanopolish, we
divide the draft assemblies into 50 kb segments and polish 4 of
these segments in parallel with 10 threads for each segment.
For Racon, each draft assembly is polished using 40 threads, but
the tool, by default, divides the input sequence into windows of
20 kb length. Table 13 presents the performance results for
Nanopolish (i.e. Rows 1–3) and Racon (i.e. Rows 4–23) pipelines.
Based on these results, we make the following two
observations.

Observation 15: Nanopolish is computationally much more
intensive and thus greatly slower than Racon.

Nanopolish runs take days to complete, whereas Racon runs
take minutes. This is mainly because Nanopolish works on each
base individually, whereas Racon works on the windows. As
each window is much longer (i.e. 20 kb) than a single base, the
computational workload is greatly smaller in Racon. Also,
Racon only uses the mappings/overlaps for polishing, whereas
Nanopolish uses raw signal data and an HMM-based approach
to generate the consensus sequence, which is computationally
more expensive.

Observation 16: BWA-MEM is computationally more expen-
sive than Minimap.

Although the choice of BWA-MEM and Minimap for the read
mapping step does not affect the accuracy of the polishing step,
these two tools have a significant difference in performance
(Minimap2 [87] is a recently released successor to Minimap. We
compare Minimap2 to BWAMEM and to Minimap, and make
two observations. First, Minimap2 significantly outperforms
BWA-MEM. As Minimap2 can produce SAM alignments (which
BWA-MEM produces), we can replace BWA-MEM with
Minimap2 in future genome assembly pipelines. Second,
Minimap2 has similar accuracy and performance compared
with Minimap. This is because Minimap2 and Minimap use sim-
ilar indexing and seeding algorithms [87], and the new features
of Minimap2 (more accurate chaining, base-level alignment,
support for spliced alignment) are not used in the pipeline we
analyze. As a result, our findings for Minimap generally remain
the same for Minimap2.).

For a deeper performance analysis of these read mapping
and polishing tools, we perform a scalability analysis for each

Table 13. Performance analysis results for the full pipeline with a focus on the last two steps

12 | Senol Cali et al.

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bby017/4958758
by ETH Zürich user
on 06 April 2018

read mapper and each polisher by running them on the desktop
system and the big-mem system separately, with 1, 2, 4, 8 (max-
imum for desktop server), 16, 32, 40, 64 and 80 (maximum for
big-mem server) threads, and measuring the performance met-
rics. Figure 4 shows the the speed, memory usage and parallel
speedup of BWA-MEM and Minimap. We make two
observations.

Observation 17: On both systems, Minimap is greatly faster
than BWA-MEM (cf. Figure 4A and B). However, when the num-
ber of threads reaches high value, Minimap’s performance de-
grades because of the synchronization overhead between its
threads (cf. Figure 4F).

On the desktop system, Minimap is 332.0x faster than BWA-
MEM, on average (see Figure 4A). On the big-mem system,
Minimap is 294.6x and 179.6x faster than BWA-MEM, on aver-
age, when the number of threads is <32 and >32, respectively.
This is because of the synchronization overhead that increases
with the number of threads used in Minimap (see Observation
10). As we also show in Figure 4F, Minimap’s speedup reduces
when the number of threads exceeds 32, which is another indi-
cation of the synchronization overhead that causes Minimap to
slow down.

Observation 18: Minimap’s memory usage is independent of
the number of threads and stays constant. In contrast, BWA-
MEM’s memory usage increases linearly with the number of
threads (cf. Figure 4C and D).

In Minimap, memory usage is dependent on the hash table
size and is independent of number of threads (see Observation 8).
In contrast, in BWA-MEM, each thread separately performs com-
putation for different groups of reads (as in Scrappie and
Nanocall, see Observation 4). This causes the linear increase in

memory usage of BWA-MEM when the number of threads
increases.

Figure 5 shows the scalability results for Racon on the big-
mem system. We obtain the results on both of the systems.
However, we only show the results for the big-mem system, as
the results for both of the systems are similar. We separately
test the tool by using PAF mappings and SAM mappings. Based
on the results, we make the following observation.

Observation 19: Racon’s memory usage is independent of
the number of threads for both PAF mode and SAM mode.
However, the memory usage of PAF mode is 1.86x higher than
the memory usage of SAM mode, on average (cf. Figure 5B).

The memory usage of Racon depends on the number of
mappings received from the fourth step, as Racon performs pol-
ishing by using these mappings. Racon’s memory usage is
higher for the PAF mode because the number of mappings
stored in the PAF files is greater than the number of mappings
stored in the SAM files (i.e. 1.4x). However, using PAF mappings
or SAM, mappings do not significantly affect the speed (see
Figure 5A) and the parallel speedup (see Figure 5C) of Racon.

Figure 6 shows the scalability results for Nanopolish. We test
the tool by separately using a 25 kb and a 50 kb segment length
to assess the scalability of the tool with respect to the segment
length, in addition to the scalability with respect to the number
of threads. We measure the performance metrics. We only
show the results for the big-mem system, as the results for both
of the systems are similar. Based on the results, we make the
following observation.

Observation 20: Nanopolish’s memory usage is independent
of the number of threads. However, its memory usage in de-
pendent on the segment length (cf. Figure 6B).

A B

C D

E F

Figure 4. Scalability results of BWA-MEM and Minimap. Wall clock time (A, B), peak memory usage (C, D) and parallel speedup (E, F) results obtained on the desktop

and big-mem systems. The left column (A, C, E) shows the results from the desktop system, and the right column (B, D, F) shows the results from the big-mem system.

Computational analysis of nanopore sequencing tools | 13

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bby017/4958758
by ETH Zürich user
on 06 April 2018

The memory usage of Nanopolish is not affected by the
number of threads. However, it is dependent on the segment
length. Nanopolish uses more memory for longer segments.
When the segment length is doubled from 25 to 50 kb, the in-
crease in the memory usage (i.e. 2.7x) is >2.0x. This is because
the memory usage of Nanopolish depends both on the length of
the segment and the number of read mappings that map to this
segment. For both of the segments, the memory usage also af-
fects the speed. The Nanopolish run for the 25 kb segment is
2.7x faster than the run for the 50 kb segment (see Figure 6A).

Observation 21: Nanopolish’s performance greatly degrades
when the number of threads exceeds the number of physical
cores (cf. Figure 6C).

Hyper-threading causes a slowdown for Nanopolish because
of the CPU-intensive workload of Nanopolish and the resulting
high contention in the shared resources between the threads
executing on the same core, as we discuss in Observation 5.

Summary. Based on the observations we make about tools
for the optional last two steps of the pipeline, we conclude that
further polishing can significantly increase the accuracy of the
assemblies. As BWA-MEM and Nanopolish are more resource-
intensive than Minimap and Racon, pipelines with Minimap
and Racon can provide a significant speedup compared with the
pipelines with BWA-MEM and Nanopolish while resulting with
high-quality consensus sequences.

Recommendations
Recommendations for tool users

Based on the results we have collected and observations we have
made for each step of the genome assembly pipeline using nano-
pore sequence data and the associated tools, we make the follow-
ing major recommendations for the current and future tool users.

• ONT’s basecalling tools, Metrichor, Nanonet and Scrappie, are the

best choices for the basecalling step in terms of both accuracy and

performance. Among these tools, Scrappie is the newest, fastest

and most accurate basecaller. Thus, we recommend using Scrappie

for the basecalling step (see analysis in section ‘Basecalling tools’).
• For the read-to-read overlap finding step, Minimap is faster than

GraphMap, and it requires low memory. Also, it has similar ac-

curacy to GraphMap. Thus, we recommend Minimap for the

read-to-read overlap finding step (see analysis in section ‘Read-

to-read overlap finding tools’).
• For the assembly step, if execution time is not an important con-

cern, we recommend using Canu, as it produces much more ac-

curate assemblies. However, for a fast initial analysis, we

recommend using Miniasm, as it is fast and its accuracy can be

increased with an additional polishing step. If Miniasm is used

A

B

C

Figure 5. Scalability results of Racon. Wall clock time (A), peak memory usage (B)

and parallel speedup (C) results obtained on the big-mem system.

A

B

C

Figure 6. Scalability results of Nanopolish. Wall clock time (A), peak memory

usage (B) and parallel speedup (C) results obtained on the big-mem system.

14 | Senol Cali et al.

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bby017/4958758
by ETH Zürich user
on 06 April 2018

for assembly, we definitely recommend further polishing to in-

crease the accuracy of the final assembly (see analysis in section

‘Assembly tools’). Even though polishing takes a similar amount

of time if we use Miniasm or Canu, the accuracy improvements

are much smaller for a genome assembled using Canu. We hope

that future work can improve the performance of polishing

when the assembled genome already has high accuracy, to re-

duce the execution time of the overall assembly pipeline.
• For the polishing step, we recommend using Racon, as it is much

faster than Nanopolish. Racon also produces highly-accurate assem-

blies (see analysis in section ‘Read mapping and polishing tools’).
• In the future, laptops may become a popular platform for running

genome assembly tools, as the portability of a laptop makes it a

good fit for in-field analysis. Compared with the desktop and ser-

ver platforms that we use to test our pipelines, a laptop has even

greater memory constraints and lower computational power, and

we must factor in limited battery life when evaluating the tools.

Based on the scalability studies we perform using our desktop and

server platforms, we would likely recommend using Minimap fol-

lowed by Miniasm for the assembly step, and Minimap followed

by Racon for the polishing step, when performing assembly on a

laptop. These three tools use relatively low amounts of memory,

and execute quickly, which we expect would make the tools a

good fit for the various constraints of a laptop. Despite their low

memory usage and fast execution, our recommended pipeline can

produce high-quality assemblies that are suitable for fast initial

in-field analyses. We leave it to future work to quantitatively study

the genome assembly pipeline using nanopore sequence data on

laptops and other mobile devices.

Recommendations for tool developers

Based on our analyses, we make the following recommenda-
tions for the tool developers.

• The choice of language to implement the tool plays a crucial role

regarding the overall performance of the tool. For example, al-

though the basecallers Scrappie and Nanonet belong to the same

family (i.e. they both use the more accurate RNNs for basecall-

ing), Scrappie is significantly faster than Nanonet, as Scrappie is

implemented in C whereas Nanonet is implemented in Python

(see analysis in section ‘Basecalling tools’).
• Memory usage is an important factor that greatly affects the per-

formance and the usability of the tool. While developing new

tools or improving the current ones, the developers should be

aware of the memory hierarchy. Data structure choices that can

minimize the memory requirements and cache-efficient algo-

rithms have a positive impact on the overall performance of the

tools. Keeping memory usage in check with the number of

threads can enable not only a usable (i.e. runnable on machines

with relatively small memories) tool but also a fast one. For ex-

ample, we find that GraphMap cannot even run with a single-

thread in our desktop machine because of excessively high

memory usage (see analyses in ‘Basecalling tools’, ‘Read-to-read

overlap finding tools’, ‘Assembly tools’ and ‘Read mapping and

polishing tools’ sections).
• Scalability of the tool with the number of cores/threads is an im-

portant requirement. It is important to make the tool efficiently

parallelized to decrease the overall runtime. Design choices should

be made wisely while considering the possible overheads that par-

allelization can add. For example, we find that the parallel

speedup of Minimap reduces when the number of threads reaches

a high number because of a large increase in the overhead of

synchronization between threads (see analyses in ‘Basecalling

tools’, ‘Read-to-read overlap finding tools’, ‘Assembly tools’ and

‘Read mapping and polishing tools’ sections).
• As parallelizing the tool can increase the memory usage, dividing

the input data into batches, or limiting the memory usage of

each thread, or dividing the computation instead of dividing the

data set between simultaneous threads can prevent large in-

creases in memory usage, while providing performance benefits

from parallelization. For example, in Nanonet, all of the threads

share the computation of each read, and thus, memory usage is

not affected by the amount of thread parallelism. As a result,

Nanonet’s usability is not limited to machines with relatively

larger memories (see analyses in ‘Basecalling tools’, ‘Read-to-

read overlap finding tools’, ‘Assembly tools’ and ‘Read mapping

and polishing tools’ sections).

Conclusion

We analyze the multiple steps and the associated state-of-the-
art tools in the genome assembly pipeline using nanopore se-
quence data in terms of accuracy, speed, memory efficiency and
scalability (We leave it to future work to quantitatively study
tools for different applications of nanopore sequencing, such as
variant calling, detection of base modifications (i.e. methylation
studies [91]) and pathogen detection.). We make four major con-
clusions based on our experimental analyses of the whole pipe-
line. First, the basecalling tools with higher accuracy and
performance, like Scrappie, can overcome the major drawback of
nanopore sequencing technology, i.e. high error rates. Second,
the read-to-read overlap finding tools, Minimap and GraphMap,
perform similarly in terms of accuracy. However, Minimap per-
forms better than GraphMap in terms of speed and memory
usage by storing only minimizers instead of all k-mers, and
GraphMap is not scalable when running on machines with rela-
tively small memories. Third, the fast but less accurate assembler
Miniasm can be used for a fast initial assembly, and further pol-
ishing can be applied on top of it to increase the accuracy of the
final assembly. Fourth, a state-of-the-art polishing tool, Racon,
generates high-quality consensus sequences while providing a
significant speedup over another polishing tool, Nanopolish.

We hope and believe that our observations and analyses will
guide researchers and practitioners to make conscious and ef-
fective choices while deciding between different tools for each
step of the genome assembly pipeline using nanopore sequence
data. We also hope that the bottlenecks or the effects of design
choices we have found and exposed can help developers in
building new tools or improving the current ones.

Key Points

To our knowledge, this is the first work that analyzes
state-of-the-art tools associated with each step of the
genome assembly pipeline using sequence data generated
with nanopore sequencing, a promising new sequencing
technology.

The key contributions are:

1. We analyze the tools in multiple dimensions that are
important for both developers and users/practitioners:
accuracy, performance, memory usage and scalability.

Computational analysis of nanopore sequencing tools | 15

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bby017/4958758
by ETH Zürich user
on 06 April 2018

2. We reveal new bottlenecks and trade-offs that different
combinations of tools lead to, based on our extensive
experimental analyses.

3. We provide guidelines for both practitioners, such that
they can determine the appropriate tools and tool com-
binations that can satisfy their goals, and tool devel-
opers, such that they can make design choices to
improve current and future tools.

4. We show that tools that are aware of the memory hier-
archy have a better overall performance and scalability,
and they are more usable than the tools that do not
keep memory usage in check with the number of
threads.

5. We show that basecalling is the most important step of
the pipeline to overcome the high error rates of nano-
pore sequencing technology.

6. We show that there is a trade-off between accuracy and
performance when choosing the tool for the assembly
step. Miniasm, coupled with an additional polishing
step, can lead to faster overall assembly than using
Canu itself while producing high-quality assemblies.

Acknowledgments

The authors thank Jared Simpson and David Matei for their
feedback and help with the questions about the tools.
Posters describing earlier stages of the work in this article
were presented at PSB 2017 and ISMB-ECCB 2017. The au-
thors thank the poster session attendees for their feedback
on the works. The authors especially thank Adam M.
Phillippy and Mile �Siki�c for their feedback during the poster
sessions. The authors also thank developers of Nanonet and
Racon for answering our questions on GitHub.

Funding

This work was supported by a grant from the National
Institutes of Health to O.M. and C.A. (grant number
HG006004); an installation grant from the European
Molecular Biology Organization to C.A. (grant number
EMBO-IG 2521); and gifts from Google, Intel, Samsung
and VMware.

References
1. Van Dijk EL, Auger H, Jaszczyszyn Y. Ten years of next-

generation sequencing technology. Trends Genet 2014;30(9):
418–26.

2. Hongyi X, Donghyuk L, Farhad H, et al. Accelerating read map-
ping with FastHASH. BMC Genomics 2013;14(Suppl 1):S13.

3. Shendure J, Balasubramanian S, Church GM, et al. DNA

sequencing at 40: past, present and future. Nature 2017;
550(7676):345–53.

4. Steinberg KM, Schneider VA, Alkan C, et al. Building and im-
proving reference genome assemblies. Proc IEEE 2017;105(3):
422–35.

5. Treangen TJ, Salzberg SL. Repetitive DNA and next-
generation sequencing: computational challenges and solu-
tions. Nat Rev Genet 2011;13(1):36–46.

6. Firtina C, Alkan C. On genomic repeats and reproducibility.
Bioinformatics 2016;32(15):2243–7.

7. Alkan C, Sajjadian S, Eichler EE. Limitations of next-
generation genome sequence assembly. Nat Methods 2011;
8(1):61–5.

8. Lu H, Giordano F, Ning Z. Oxford Nanopore MinION sequenc-
ing and genome assembly. Genomics Proteomics Bioinformatics
2016;14(5):265–79.

9. Magi A, Semeraro R, Mingrino A, et al. Nanopore sequencing
data analysis: state of the art, applications and challenges.
Brief Bioinform 2017, in press.

10.Clarke J, Wu HC, Jayasinghe L, et al. Continuous base identifi-
cation for single-molecule nanopore DNA sequencing. Nat
Nanotechnol 2009;4(4):265–70.

11.Marx V. Nanopores: a sequencer in your backpack. Nat
Methods 2015;12(11):1015–18.

12.Branton D, Deamer DW, Marziali A, et al. The potential and
challenges of nanopore sequencing. Nat Biotechnol 2008;
26(10):1146–53.

13.Laver T, Harrison J, O’neill PA, et al. Assessing the perform-
ance of the Oxford Nanopore Technologies MinION. Biomol
Detect Quantif 2015;3:1–8.

14. Ip CLC, Loose M, Tyson JR, et al. MinION analysis and refer-
ence consortium: phase 1 data release and analysis. F1000Res
2015;4:1075.

15.Kasianowicz JJ, Brandin E, Branton D, et al. Characterization
of individual polynucleotide molecules using a membrane
channel. Proc Natl Acad Sci USA 1996;93(24):13770–3.

16.MinION, Oxford Nanopore Technologies. 2017 https://nano
poretech.com/products/minion.

17.Quick J, Loman NJ, Duraffour S, et al. Real-time, portable gen-
ome sequencing for Ebola surveillance. Nature 2016;
530(7589):228–232.

18.Quick J, Quinlan AR, Loman NJ. A reference bacterial genome
dataset generated on the MinIONTM portable single-molecule
nanopore sequencer. Gigascience 2014;3(1):22.

19. Jain M, Koren S, Miga KH, et al. Nanopore sequencing and as-
sembly of a human genome with ultra-long reads. Nat
Biotechnol 2018, in press.

20.Loman NJ. Thar she blows! Ultra long read method for nano-
pore sequencing. 2017. http://lab.loman.net/2017/03/09/ultra
reads-for-nanopore/.

21.Madoui MA, Engelen S, Cruaud C, et al. Genome assembly
using Nanopore-guided long and error-free DNA reads. BMC
Genomics 2015;16(1):327.

22. First DNA sequencing in space a game changer. 2017. https://
www.nasa.gov/mission_pages/station/research/news/dna_
sequencing.

23.Update: New R9 nanopore for faster, more accurate sequenc-
ing, and new ten minute preparation kit. 2017. https://nano
poretech.com/about-us/news/update-new-r9-nanopore-
faster-more-accurate-sequencing-and-new-ten-minute-
preparation.

24.Pop M. Genome assembly reborn: recent computational chal-
lenges. Brief Bioinform 2009;10(4):354–66.

25.Clive Brown Technical Update: GridION X5—The Sequel.
2017. https://nanoporetech.com/resource-centre/videos/grid
ion-x5-sequel.

26.de Lannoy C, de Ridder D, Risse J. A sequencer coming of age:
de novo genome assembly using MinION reads. F1000Res
2017;6:1283.

27.Metrichor. Oxford Nanopore Technologies. 2017. https://nano
poretech.com/products/metrichor.

28.Nanonet. Oxford Nanopore Technologies. 2017. https://
github.com/nanoporetech/nanonet.

16 | Senol Cali et al.

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bby017/4958758
by ETH Zürich user
on 06 April 2018

https://nanoporetech.com/products/minion
https://nanoporetech.com/products/minion
http://lab.loman.net/2017/03/09/ultrareads-for-nanopore/
http://lab.loman.net/2017/03/09/ultrareads-for-nanopore/
https://www.nasa.gov/mission_pages/station/research/news/dna_sequencing
https://www.nasa.gov/mission_pages/station/research/news/dna_sequencing
https://www.nasa.gov/mission_pages/station/research/news/dna_sequencing
https://nanoporetech.com/about-us/news/update-new-r9-nanopore-faster-more-accurate-sequencing-and-new-ten-minute-preparation
https://nanoporetech.com/about-us/news/update-new-r9-nanopore-faster-more-accurate-sequencing-and-new-ten-minute-preparation
https://nanoporetech.com/about-us/news/update-new-r9-nanopore-faster-more-accurate-sequencing-and-new-ten-minute-preparation
https://nanoporetech.com/about-us/news/update-new-r9-nanopore-faster-more-accurate-sequencing-and-new-ten-minute-preparation
https://nanoporetech.com/resource-centre/videos/gridion-x5-sequel
https://nanoporetech.com/resource-centre/videos/gridion-x5-sequel
https://nanoporetech.com/products/metrichor
https://nanoporetech.com/products/metrichor
https://github.com/nanoporetech/nanonet
https://github.com/nanoporetech/nanonet

29.Scrappie. Oxford Nanopore Technologies. 2017. https://
github.com/nanoporetech/scrappie.

30.David M, Dursi LJ, Yao D, et al. Nanocall: an open source base-
caller for Oxford Nanopore sequencing data. Bioinformatics
2017;33(1):49–55.

31.Bo�za V, Brejová B, Vina�r T. DeepNano: deep recurrent neural
networks for base calling in MinION nanopore reads. PLoS One
2017;12(6):e0178751.

32. New basecaller now performs ’raw basecalling’, for improved
sequencing accuracy. 2017. https://nanoporetech.com/about-
us/news/new-basecaller-now-performs-raw-basecalling-im
proved-sequencing-accuracy.

33.Teng H, Hall MB, Duarte T, et al. Chiron: translating nanopore
raw signal directly into nucleotide sequence using deep
learning. bioRxiv 2017;179531.

34.Wick RR, Judd LM, Holt KE. Comparison of Oxford Nanopore
basecalling tools. 2017. https://github.com/rrwick/
Basecalling-comparison.

35.Eddy SR. Hidden markov models. Curr Opin Struct Biol 1996;
6(3):361–5.

36.Schuster M, Paliwal KK. Bidirectional recurrent neural net-
works. IEEE Trans Signal Process 1997;45(11):2673–81.

37.Pearlmutter BA. Learning state space trajectories in recurrent
neural networks. Neural Computation 1989;1(2):263–69.

38. Nanonet: First Generation RNN Basecaller. https://github.
com/nanoporetech/nanonet.

39. Nanocall: An Oxford Nanopore Basecaller. 2017. https://
github.com/mateidavid/nanocall.

40.Pevzner PA, Tang H, Waterman MS. An Eulerian path ap-
proach to DNA fragment assembly. Proc Natl Acad Sci USA
2001;98(17):9748–53.

41.Compeau PEC, Pevzner PA, Tesler G. How to apply de Bruijn
graphs to genome assembly. Nat Biotechnol 2011;29(11):
987–91.

42.Koren S, Harhay GP, Smith TPL, et al. Reducing assembly com-
plexity of microbial genomes with single-molecule sequenc-
ing. Genome Biol 2013;14(9):R101.

43.Chu J, Mohamadi H, Warren RL, et al. Innovations and chal-
lenges in detecting long read overlaps: an evaluation of the
state-of-the-art. Bioinformatics 2017;33(8):1261–70.

44.Li Z, Chen Y, Mu D, et al. Comparison of the two major classes
of assembly algorithms: overlap–layout–consensus and de-
bruijn-graph. Brief Funct Genomics 2012;11(1):25–37.

45.Sovi�c I, �Siki�c M, Wilm A, et al. Fast and sensitive mapping of
nanopore sequencing reads with GraphMap. Nat Commun
2016;7:11307.

46.Li H. Minimap and Miniasm: fast mapping and de novo as-
sembly for noisy long sequences. Bioinformatics 2016;32(14):
2103–10.

47.Burkhardt S, Kärkkäinen J. Better filtering with gapped
q-grams. Fundam Inform 2003;56(1–2):51–70.

48.Koren S, Walenz BP, Berlin K, et al. Canu: scalable and accur-
ate long-read assembly via adaptive k-mer weighting and re-
peat separation. Genome Res 2017;27(5):722–36.

49. Canu Tutorial. 2017. http://canu.readthedocs.io/en/latest/tu
torial.html.

50.Loman NJ, Quick J, Simpson JT. A complete bacterial genome
assembled de novo using only nanopore sequencing data. Nat
Methods 2015;12(8):733–5.

51.Vaser R, Sovi�c I, Nagarajan N, et al. Fast and accurate de novo
genome assembly from long uncorrected reads. Genome Res
2017;27(5):737–46.

52.Heng L. Aligning sequence reads, clone sequences and assem-
bly contigs with BWA-MEM. arXiv Preprint arXiv 1303.3997, 2013.

53. Nanopolish. https://github.com/jts/nanopolish.
54.Lee C, Grasso C, Sharlow MF. Multiple sequence alignment

using partial order graphs. Bioinformatics 2002;18(3):452–64.
55.Loman NJ. Nanopore R9 rapid run data release. 2017. http://

lab.loman.net/2016/07/30/nanopore-r9-data-release/.
56. MUMmer 3.x. 2017. https://github.com/garviz/MUMmer.
57.Sutskever I, Vinyals O, Le QV. Sequence to sequence learning

with neural networks. In: Proceedings of the Advances in Neural
Information Processing Systems. Neural Information Processing
Systems Foundation, La Jolla, CA, 2014, 3104–12.

58.Forney GD. The Viterbi algorithm. Proc IEEE 1973;61(3):268–78.
59.Marr D, Binns F, Hill D. Hyper-threading technology in the

NetBurstVR microarchitecture. In: Proceedings of the 14th Hot
Chips Symposium, 2002.

60.Magro W, Petersen P, Shah S. Hyper-threading technology:
impact on compute-intensive workloads. Intel Technol J 2002;
6(1):1–9.

61.Tuck N, Tullsen DM. Initial observations of the simultaneous
multithreading Pentium 4 processor. In: Proceedings of the 12th
International Conference on Parallel Architectures and Compilation
Techniques, PACT. IEEE Computer Society, Washington, DC,
2003.

62.Tullsen DM, Eggers SJ, Levy HM. Simultaneous multithread-
ing: Maximizing on-chip parallelism. In: Proceedings of the
22nd Annual International Symposium on Computer Architecture,
ISCA. ACM, New York, NY, 1995.

63.Eggers SJ, Emer JS, Levy HM, et al. Simultaneous multithread-
ing: a platform for next-generation processors. IEEE Micro
1997;17(5):12–19.

64.Tullsen DM, Eggers SJ, Emer JS, et al. Exploiting choice:
Instruction fetch and issue on an implementable simultan-
eous multithreading processor. In: Proceedings of the 23rd
Annual International Symposium on Computer Architecture, ISCA.
ACM, New York, NY, 1996, 191–202.

65.Yamamoto W, Nemirovsky M. Increasing superscalar per-
formance through multistreaming. In: Proceedings of the
Working Conference on Parallel Architectures and Compilation
Techniques, PACT. IFIP Working Group on Algol, Manchester,
UK, 1995, 49–58.

66.Hirata H, Kimura K, Nagamine S. et al. An elementary proces-
sor architecture with simultaneous instruction issuing from
multiple threads. In: Proceedings of the 19th Annual International
Symposium on Computer Architecture, ISCA. ACM, New York,
NY, 1992, 136–45.

67.Xiao CL, Chen Y, Xie SQ, et al. MECAT: fast mapping, error cor-
rection, and de novo assembly for single-molecule sequenc-
ing reads. Nat Methods 2017;14(11):1072–74.

68.Li H, Durbin R. Fast and accurate short read alignment with
Burrows–Wheeler transform. Bioinformatics 2009;25(14):
1754–60.

69.Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-
efficient alignment of short DNA sequences to the human
genome. Genome Biol 2009;10(3):R25.

70.Alkan C, Kidd JM, Marques-Bonet T, et al. Personalized copy
number and segmental duplication maps using next-
generation sequencing. Nat Genet 2009;41(10):1061–7.

71.Hach F, Hormozdiari F, Alkan C, et al. mrsFAST: a cache-
oblivious algorithm for short-read mapping. Nat Methods
2010;7(8):576–7.

72.Schatz MC. CloudBurst: highly sensitive read mapping with
MapReduce. Bioinformatics 2009;25(11):1363–9.

73.Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads
and calling variants using mapping quality scores. Genome
Res 2008;18(11):1851–8.

Computational analysis of nanopore sequencing tools | 17

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bby017/4958758
by ETH Zürich user
on 06 April 2018

https://github.com/nanoporetech/scrappie
https://github.com/nanoporetech/scrappie
https://nanoporetech.com/about-us/news/new-basecaller-now-performs-raw-basecalling-improved-sequencing-accuracy
https://nanoporetech.com/about-us/news/new-basecaller-now-performs-raw-basecalling-improved-sequencing-accuracy
https://nanoporetech.com/about-us/news/new-basecaller-now-performs-raw-basecalling-improved-sequencing-accuracy
https://github.com/rrwick/Basecalling-comparison
https://github.com/rrwick/Basecalling-comparison
https://github.com/nanoporetech/nanonet
https://github.com/nanoporetech/nanonet
https://github.com/mateidavid/nanocall
https://github.com/mateidavid/nanocall
http://canu.readthedocs.io/en/latest/tutorial.html
http://canu.readthedocs.io/en/latest/tutorial.html
https://github.com/jts/nanopolish
http://lab.loman.net/2016/07/30/nanopore-r9-data-release/
http://lab.loman.net/2016/07/30/nanopore-r9-data-release/
https://github.com/garviz/MUMmer

74.Kim JS, Senol Cali D, Xin H, et al. GRIM-Filter: Fast seed loca-
tion filtering in DNA read mapping using Processing-in-
Memory technologies. BMC Genomics 2018, in press.

75.Xin H, Greth J, Emmons J, et al. Shifted Hamming distance: a fast
and accurate SIMD-friendly filter to accelerate alignment verifi-
cation in read mapping. Bioinformatics 2015;31(10):1553–60.

76.Alser M, Hassan H, Xin H, et al. GateKeeper: a new hardware
architecture for accelerating pre-alignment in DNA short
read mapping. Bioinformatics 2017;33(21):3355–63.

77.Alser M, Mutlu O, Alkan C. MAGNET: understanding and im-
proving the accuracy of genome pre-alignment filtering. IPSI
Trans Internet Res 2017;13(2):33–42.

78.Weese D, Emde AK, Rausch T, et al. RazerS-fast read mapping
with sensitivity control. Genome Res 2009;19(9):1646–54.

79.Lee WP, Stromberg MP, Ward A, et al. MOSAIK: a hash-based
algorithm for accurate next-generation sequencing short-
read mapping. PLoS One 2014;9(3):e90581.

80.Rumble SM, Lacroute P, Dalca AV, et al. SHRiMP: accurate
mapping of short color-space reads. PLoS Comput Biol 2009;
5(5):e1000386.

81.David M, Dzamba M, Lister D, et al. SHRiMP2: sensitive yet
practical short read mapping. Bioinformatics 2011;27(7):
1011–12.

82.Hatem A, Bozda�g D, Toland AE, et al. Benchmarking short se-
quence mapping tools. BMC Bioinformatics 2013;14(1):184.

83.Olson CB, Kim M, Clauson C, et al. Hardware acceleration of short
read mapping. In: Proceedings of the 20th Annual International
Symposium on Field-Programmable Custom Computing Machines,
FCCM. IEEE Computer Society, Washington, DC, 2012, 161–8.

84.Fonseca NA, Rung J, Brazma A, et al. Tools for mapping high-
throughput sequencing data. Bioinformatics 2012;28(24):
3169–77.

85.Li H, Durbin R. Fast and accurate long-read alignment with
Burrows–Wheeler transform. Bioinformatics 2010;26(5):589–95.

86.Siragusa E, Weese D, Reinert K. Fast and accurate read map-
ping with approximate seeds and multiple backtracking.
Nucleic Acids Res 2013;41(7):e78.

87.Li H. Minimap2: fast pairwise alignment for long DNA
sequences.arXiv:1708.01492, 2017.

88.Li H, Handsaker B, Wysoker A, et al. The sequence alignment/
map format and SAMtools. Bioinformatics 2009;25(16):2078–9.

89.Cock PJA, Fields CJ, Goto N, et al. The Sanger FASTQ file format
for sequences with quality scores, and the Solexa/Illumina
FASTQ variants. Nucleic Acids Res 2010;38(6):1767–71.

90.Pearson WR, Lipman DJ. Improved tools for biological se-
quence comparison. Proc Natl Acad Sci USA 1988;85(8):
2444–8.

91.Simpson JT, Workman RE, Zuzarte PC, et al. Detecting DNA
cytosine methylation using nanopore sequencing. Nat
Methods 2017;14(4):407–10.

18 | Senol Cali et al.

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bby017/4958758
by ETH Zürich user
on 06 April 2018

	bby017-TF1
	bby017-TF2
	bby017-TF3
	bby017-TF4
	bby017-TF5
	bby017-TF6

