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Abstract

Motivation: Segmental duplications (SDs) or low-copy repeats, are segments of DNA> 1 Kbp with

high sequence identity that are copied to other regions of the genome. SDs are among the most

important sources of evolution, a common cause of genomic structural variation and several are

associated with diseases of genomic origin including schizophrenia and autism. Despite their func-

tional importance, SDs present one of the major hurdles for de novo genome assembly due to the

ambiguity they cause in building and traversing both state-of-the-art overlap-layout-consensus and

de Bruijn graphs. This causes SD regions to be misassembled, collapsed into a unique representa-

tion, or completely missing from assembled reference genomes for various organisms. In turn, this

missing or incorrect information limits our ability to fully understand the evolution and the archi-

tecture of the genomes. Despite the essential need to accurately characterize SDs in assemblies,

there has been only one tool that was developed for this purpose, called Whole-Genome Assembly

Comparison (WGAC); its primary goal is SD detection. WGAC is comprised of several steps that

employ different tools and custom scripts, which makes this strategy difficult and time consuming

to use. Thus there is still a need for algorithms to characterize within-assembly SDs quickly, accur-

ately, and in a user friendly manner.

Results: Here we introduce SEgmental Duplication Evaluation Framework (SEDEF) to rapidly detect

SDs through sophisticated filtering strategies based on Jaccard similarity and local chaining. We

show that SEDEF accurately detects SDs while maintaining substantial speed up over WGAC that

translates into practical run times of minutes instead of weeks. Notably, our algorithm captures up

to 25% ‘pairwise error’ between segments, whereas previous studies focused on only 10%, allow-

ing us to more deeply track the evolutionary history of the genome.

Availability and implementation: SEDEF is available at https://github.com/vpc-ccg/sedef.

Contact: calkan@cs.bilkent.edu.tr or faraz.hach@ubc.ca

1 Introduction

Segmental duplications (SDs) are defined as genomic segments

of size >1 Kbp that are repeated within the genome with

at least 90% sequence identity (Bailey et al., 2001) in either tandem

or interspersed organization. Almost all genomes harbor large SDs;

e.g. the build 37 release of the human reference genome (GRCh37)

contains a total of 159 Mbp gene-rich duplicated sequence, which

corresponds to �5.5% of its entire length (http://humanparalogy.gs.

washington.edu/build37/build37.htm). It is known that SDs

played a major role in evolution (Marques-Bonet et al., 2009;

Prado-Martinez et al., 2013; Sudmant et al., 2013), and are one of

the most important factors that contribute to human disease either

directly (Gonzalez et al., 2005; Hollox et al., 2008; Yang et al.,

2007), or through leading to other forms of structural variation (SV)

(Alkan et al., 2011a; Mills et al., 2011). Furthermore, human popu-

lations show SD diversity that may be used as markers for popula-

tion genetics studies (Alkan et al., 2009; Sudmant et al., 2010).

Despite their functional importance, SDs are poorly character-

ized due to the difficulties they impose on constructing accurate gen-

ome assemblies (Alkan et al., 2011b; Chaisson et al., 2015;
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Steinberg et al., 2017), as well as the ambiguities in read mapping

(Treangen and Salzberg, 2011; Firtina and Alkan, 2016). Building

inaccurate assemblies due to SDs is an important problem, since it

may lead to potentially incorrect conclusions about the evolution of

the species of interest as in the case of the giant panda assembly (Li

et al., 2010). In the giant panda genome analysis, the authors con-

cluded that the panda genome included substantially less repeats

and duplications compared with other mammalian genomes; how-

ever, it is shown that this result is likely incorrect due to mis-

assembly of these regions. Additionally, duplications give rise to

gaps in the assembly, which likely contain genes and other function-

ally active regions (Alkan et al., 2011b; Bailey et al., 2001, 2002).

Accurate assembly of duplicated regions remains a difficult and

unsolved problem, which may be ameliorated through the use of

ultra-long reads generated by the Oxford Nanopore platform (Jain

et al., 2018) or Linked-Read sequencing (e.g. 10x Genomics;

Mostovoy et al., 2016; Yeo et al., 2018) if the duplicated segment is

shorter than the read or linked-read length, respectively. However,

characterization of the SD content in existing assemblies is still im-

portant for two reasons: (i) to evaluate the ‘completeness’ of these

genome assemblies and (ii) understand genome evolution for com-

parative genomics studies.

SD content in assemblies can be assessed using two strategies,

and the overlap between the results of the two methods determines

the completeness of the assembly in terms of duplications. The first

method, called Whole-Genome Assembly Comparison (WGAC),

relies on the alignment of the entire genome to itself to identify

repeating segments (Bailey et al., 2001) within the assembly, except

for common repeats which are filtered out. The second strategy is

called Whole-genome Shotgun Sequence Detection (WSSD) which

relies on the read depth sequence signature (Bailey et al., 2002).

Briefly, the WSSD method aligns the original reads back to the

assembled genome, and looks for regions of read depth significantly

higher than the average, which signals a putative duplication (Bailey

et al., 2002). Regions that are marked as SDs by WSSD, but not by

WGAC, are then classified as likely collapsed duplications (Alkan

et al., 2011b).

Although the ‘optimal’ alignment of the entire genome to itself

can be theoretically computed via standard dynamic programing

(e.g. Smith-Waterman algorithm), such an approach remains im-

practical due to quadratic time and memory complexity, and is like-

ly to remain so (Backurs and Indyk, 2015). Furthermore, high edit

distance between the SD paralogs disqualifies the use of most of the

available edit distance approximations with theoretical guarantees

(Andoni et al., 2010; Hanada et al., 2017), as well as the majority of

the sequence search tools that operate under the assumption that the

similarity between regions is high. Standard whole-genome or long-

read aligners [e.g. MUMmer (Marçais et al., 2018) or Minimap2

(Li, 2018)] are not able to efficiently capture SDs with low similarity

rates (i.e. <80%), and also confuse SDs with other repeated ele-

ments in the genome (e.g. stretches of short tandem repeats). For

these reasons, the WGAC method is composed of a number of heu-

ristics that include several tools and scripts (Bailey et al., 2001).

First, the common repeats are removed from the assembly in a step

called fuguization. Remaining regions are partitioned into 400 Kb

chunks (due to memory limitations when WGAC was developed),

all pairwise alignments are computed using BLAST (Altschul et al.,

1990), and significant alignments are kept as putative duplications.

A modified version of BLASTZ (Schwartz et al., 2003) is also

used to find within-chunk (i.e. 400 Kb segments) duplications. Next,

common repeats are inserted back, spurious alignments at the end

of the sequences are trimmed, and final global alignments are

calculated. Note that another method, SDquest (Pu et al., 2018),

was published while this article was under review.

The original WGAC implementation as outlined above is diffi-

cult to run, and it is time consuming as it relies on several general

purpose tools (such as BLAST) and custom Perl scripts. In its current

form, the only way to accelerate the WGAC analysis is using a com-

pute cluster to parallelize BLAST alignments. Interestingly, another

problem is the modified version of BLASTZ for self alignments: the

source code is not available, and only a binary compiled for the Sun

Solaris operating system has been released (http://humanparalogy.

gs.washington.edu/code/WGAC_HOWTO.pdf), rendering the tool

unusable for most other researchers. We note that this self-

alignment step might be replaced with another tool such as LASTZ

(Harris, 2007); however, the parameter settings for the current re-

lease is not yet optimized for alternative aligners.

Here we introduce a new algorithm to characterize SDs in gen-

ome assemblies. Although we follow a strategy akin to WGAC in

aligning a whole genome to itself; we do so in a more efficient way

by introducing sophisticated optimizations to both the putative SD

detection and global alignment steps. We leverage our knowledge

from the biology of human and other genomes that different muta-

tion events contribute unequally to the total value of the error rate

(quantification of differences) between segments, in order to better

optimize our SD detection algorithms. A key conceptual advance of

our work that helps model such events in the genome is to separately

consider germline mutation rates (denoted as small mutations), and

larger-scale de novo SV rates. This formulation enables us to speed

up SD detection and better capture evolutionary events. We imple-

ment our algorithms in Cþþ and provide a single package called

SEDEF (SEgmental Duplication Evaluation Framework). In contrast

to WGAC, which requires several weeks to complete even on a com-

pute cluster, SEDEF can characterize SDs in the human genome in

10 CPU h. We believe SEDEF will be a powerful tool to characterize

SDs for both genome assembly evaluation and comparative genom-

ics studies.

2 Preliminaries

SDs are generated by large-scale copy events that have occurred

during the evolution of the genome. After such a copy event,

both sites involved in SD may have undergone a number of changes

during the evolutionary history of the genome. Formally, consider

a genomic sequence G ¼ g1g2g3 . . . gjGj of length jGj, where

gi 2 fA;C;G;Tg for any i. Let Gi:iþn ¼ gi; . . . ; giþn�1 be a substring

in G of length n that starts at position i. Furthermore, let Xi be the

set of all k-mers in the substring Gi:iþn. We assume that k is prede-

fined and fixed.

The Levenshtein (Levenshtein, 1966) edit distance is defined as:

edðGi:iþn; Gj:jþmÞ of two substrings Gi:iþn and Gj:jþm (further simpli-

fied as Gi and Gj) to be a minimal number of edit operations (i.e.

single nucleotide substitutions, insertions and deletions) that are

needed to convert the string Gi into Gj. The length of the alignment

between Gi and Gj is denoted as l, and clearly l�max ðm; nÞ. Let us

define the notion of edit error (further referred to as just error) be-

tween two strings Gi and Gj as errðGi;GjÞ ¼ edðGi;GjÞ=l—the edit

distance normalized over alignment length. Intuitively, this is the

average number of the edits needed to turn Gi into Gj. Clearly, two

strings are identical if errðGi;GjÞ ¼ 0. We consider Gi and Gj as a

SD of length l with error d if the following SD conditions are met:

• l�1000 where l is the length of alignment between Gi and Gj,
• errðGi;GjÞ� d.
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We also assume that the overlap between the Gi and Gj in the

genome is at most d � n.

2.1 Edit distance model
Each SD is generated by a past SV event that copied a substring of

length n in G from locus i to locus j. This copy was initially perfect,

meaning that corresponding strings Gi and Gj (initially both of

length n) were identical. However, various changes during the evolu-

tionary history of the genome—such as point mutations, small

indels, and other structural variants—have altered both the original

and duplicate strings independently. Thus it is necessary to take

such changes into consideration when identifying the potential SDs.

Although previous SD studies focused only on SDs with pairwise

error at most 10%, here we aim to focus on SDs whose error rate

can go up to 25% (in another words, d�1=4). Higher d allows us to

track the evolutionary history of the human genome to earlier peri-

ods. However, it also significantly renders the SD detection problem

more difficult since the majority of the known filtering techniques

that operate on the edit distance metric space assume much lower

values of d (Andoni et al., 2010). We address this challenge by lever-

aging our knowledge from the biology of human and other genomes

that different mutation events contribute unequally to the total value

of d in order to better optimize our SD detection algorithms.

A key conceptual advance of our work that helps model such

events in the human genome is to separately consider germline muta-

tion rates (denoted as small mutations), and de novo SV rates. It is

estimated that the substitution rate in the human genome is roughly

0.5�10–9 per basepair per year (Scally, 2016), and we may assume

a similar rate for other mammalian genomes. The evolutionary split

of the human and chimpanzee species is estimated to have occurred

�7 million years ago (Hedges and Kumar, 2009). Thus, we expect

that the probability of a basepair being mutated since the split is

roughly 3.5�10–3. If we also account for small indels [with an even

smaller mutation rate than those of substitutions (Montgomery

et al., 2013)], the edit error between any two paralogs of an SD that

have occurred after the evolutionary split is not >0.1%. Even if we

consider SDs that occurred much earlier in history (e.g. after the

lowest common ancestor of human and mouse roughly 90 million

years ago), the total edit error will not be >10%. However, the edit

error between two paralogs of an SD can be much larger due to large

SVs. One such example is insertion of transposons within an SD.

These events can be visualized as large gaps within an edit distance

string of two SDs which contribute a large share towards the total

edit error (Fig. 1) (We note that inversion and translocation events

contribute more to sequence divergence due to incorrect alignments,

but such events are rare). Thus we assume that small mutations con-

tribute at most dM�0:15 towards the total edit error d (both paral-

ogs can be mutated up to 7.5%); this default setting is higher than

the estimated rates (above) for human and mouse genomes in order

to be able to handle older species as well. Analogously, large-scale

events (subsequently referred to as gaps) contribute the remaining

dG ¼ d� dM of the edit error. We assume that the probability of a

large gap occurring at any basepair in the genome is not >0.005 (as

estimated by analysis of existing human SDs; similar value can be

derived for other species). Note that the gap penalty is typically calcu-

lated via affine gap model, where gap openings are heavily penalized

while the gap extensions are either ignored or assigned a very low

penalty. Many human SDs have dG � 0:15 if calculated by standard

Levenshtein distance metric. SEDEF uses standard (Levenshtein) gap

distance metric while locating seed SDs (meaning all seed SDs have

dG�0:15); however, this restriction is lifted in a later step where we

switch to the affine gap penalty.

Furthermore, we assume that the mutations within SD paralogs

follow a Poisson error model (Jain et al., 2017; Fan et al., 2015),

and that those mutations occur independently of each other. It fol-

lows that any k-mer in Xj (the set of k-mers of Gj) has accumulated

on average k � dM mutations compared with the originating k-mer in

Xi provided that such a k-mer was part of the original copy. By set-

ting a Poisson parameter k ¼ k � dM, we obtain the probability of an

event in which a k-mer is preserved in both paralogs of an SD (i.e.

that it is error-free): Pr ð# mutations ¼ 0jkÞ ¼ e�kdM .

We call this error model SD error model, and assume that any

SD of interest satisfies the error constraints mentioned above.

2.2 Jaccard similarity
Suppose that we ask whether two substrings Gi and Gj are similar

to each other, where the length of both strings is n. One way to

measure the similarity of those substrings is to analyze their respect-

ive k-mer sets Xi and Xj and to count the number of shared k-mers

between them. This metric is known as Jaccard similarity of sets Xi

and Xj, and is formally defined as

JðXi;XjÞ ¼
jXi \Xjj
jXi [Xjj

:

Clearly, higher similarity of strings Gi and Gj implies a larger

value of JðXi;XjÞ.
The calculation of Jaccard similarity between two sets can

be approximated via the MinHash technique developed by

Fig. 1. (Left) Simplified representation of a SD lifetime. Initially, a large-scale duplication forms an SD, at which point both the original region and the copy are

identical. Then, both the original region and copy undergo various independent changes, such as large-scale deletions (in red), insertions (in blue), and small re-

peat insertions (in fuchsia). Finally, various germline mutations (in yellow) affect both regions. The resulting SD as seen today, defined as the pair ðGi :iþn ;Gj:jþmÞ,
is shown in the third row. (Right) Shows the idealized Jaccard similarity between the k-mer sets Xi and Xj corresponding to the Gi and Gj, respectively. Note that

some repeats also increase the proportion of shared k-mers. Colors denote same as on Left
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Broder (1997), who proved that given a universe of all k-mers U and

a random permutation h on U (typically a hash function with no col-

lisions), it follows that JðXi;XjÞ ¼ Pr ½hminðXiÞ ¼ hminðXjÞ	 where

hminðTÞ is the minimal member of T with respect to h. Furthermore,

JðXi;YjÞ can be estimated and efficiently computed by calculating

jSðXi [XjÞ \ SðXiÞ \ SðXjÞj
jSðXi [XjÞj

where SðXiÞ is the sketch of Xi and stands for a subset of s elements

from Xi whose hash values are minimal with respect to the hash

function h (such elements are called minimizers of set Xi). This esti-

mate is unbiased as long as h is random, and its accuracy depends

on the sketch size s. Since in practice s is much smaller than jXij, cal-

culating a MinHash estimate is substantially faster compared with

the calculation of JðXi;XjÞ.
The performance of the MinHash technique can be further

improved in the context of large strings, as shown by Jain et al.

(2018). Instead of computing SðXiÞ, it is possible to compute

SðWðXiÞÞ, where WðXiÞ is a winnowing fingerprint of the corre-

sponding string Gi. WðXiÞ is calculated by sliding a window of size w

through Gi and by taking in each window a k-mer of minimal hash

value (in case of a tie, the rightmost k-mer is selected). The expected

size of W(A) for a random sequence A is 2jAj=ðwþ 1Þ (Schleimer

et al., 2003). The main benefit of winnowing, aside from speeding up

the construction of sketch S(A), is the fact that winnow W(A) can be

computed efficiently in linear time and O(w) space in a streaming

fashion with appropriate data structures (Carruthers-Smith, 2013).

Moreover, it has been empirically shown that JðXi;XjÞ can be ef-

ficiently estimated by calculating a winnowed MinHash score of sets

Xi and Xj (Jain et al., 2017):

jS½WðXiÞ [WðXjÞ	 \ S½WðXiÞ	 \ S½WðXjÞ	j
jS½WðXiÞ [WðXjÞ	j

:

Furthermore, given the minimal desired value s of Jaccard simi-

larity between the two sets, it follows that jWðXiÞ \WðXjÞj � s � s
(Jain et al., 2017). This estimate can be used to efficiently filter out

any sets Xi and Xj whose Jaccard similarity is below a given thresh-

old with high confidence.

3 Materials and methods

The SD detection problem can be formulated as follows: find all

pairs of loci (i, j) inside a genome G with l �1000 such that (i) the

edit error (i.e. divergence) between Gi and Gj is at most d; and (ii)

the corresponding alignment between Gi and Gj is of size at least l

and is not contained within a larger alignment satisfying the SD cri-

teria. In other words, for any pair (i, j) we aim to find a maximal

valid region alignment of size l between Gi and Gj that satisfies the

criteria and error model of SDs.

A naı̈ve method for locating SDs within any genomic sequence G

consists of locally aligning G onto itself, followed by the analysis of

all acceptable paths within a local alignment matrix. However, this

strategy is impractical for large jGj since the best known algorithms

for optimal local alignment require OðjGj2Þ time and space. Another

possible approach, which we take, is to solve this problem by iterating

through each pair of indices (i, j) within G and testing whether the

matching Gi and Gj satisfy the SD criteria through global alignment

(given a fixed size n of Gi and Gj). Although this method, if imple-

mented naı̈vely, is still too slow for larger genomes and requires quad-

ratic space, it can be significantly accelerated by filtering out any pair

(i, j) that is unlikely to form an SD. This iterative approach is the

cornerstone of our SD detection framework, SEDEF, which consists

of a novel seed and extend algorithm (Fig. 2):

• SD seeding: Initially, we aim to find all pairs of strings (Gi, Gj)—

called seed SD—such that the length of both strings is

n�1000 � ð1� dÞ ¼ 750, and such that Gi and Gj are believed to

satisfy the SD criteria. We achieve this by iterating through the

genome, and for each locus i in the genome rapidly enumerating

all feasible pairs j for which winnowed MinHash Jaccard similar-

ity between Gi and Gj goes over a pre-defined threshold s.
• SD extension: Here we relax the condition that both Gi and Gj

have the same size n, and keep expanding both seed regions Gi and

Gj until the winnowed MinHash estimate drops below s. These

enlarged seed SDs are called potential SD regions. We terminate

this extension when we either reach the maximal allowed value of

SD, or if the extension causes Gi and Gj to significantly overlap.
• SD chaining: Finally, we locate all ‘true’ SDs within any potential

SD region and calculate their alignments by locally aligning po-

tential SD regions via local chaining and sparse dynamic pro-

graming. Afterwards, we filter out any spurious hits and report

the remaining SDs.

3.1 Identifying seed SDs
In order to verify if the strings Gi and Gj have edit error � d
under the SD error model, we will calculate the Jaccard similarity of

their corresponding k-mer sets Xi and Xj and check if it is � s. For the

Fig. 2. Step-by-step depiction of the SEDEF framework. Our contribution is highlighted above the steps in the dark gray boxes
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sake of explanation, we will assume that n ¼ jGij ¼ jGjj (analogous

reasoning holds if this is not the case). If c is jXi \Xjj (number of

shared k-mers), and t ¼ n� kþ 1 (the size of sets Xi and Xj), we can

express the Jaccard similarity of those sets as JðXi;XjÞ ¼ c=ð2t � cÞ.
We will also assume that no k-mer occurs twice in these sets; this as-

sumption is sufficient for the calculation of lower bound below.

Simply using error d to calculate the expected lower bound of

Jaccard similarity s is infeasible in practice due to the large value of

d in our setting. However, as noted earlier, differences between

duplicated regions are not chosen uniformly at random, and thus we

can separate the error d into the dM þ dG, where dM is the error rate

of the small mutations and dG is the error rate of large indels, as

defined in the preliminaries. This separation of the two error rates is

one of the novel contributions of our work.

If there exists a valid SD spanning Gi and Gj, set Xj can be consid-

ered as a union of two disjoint sets XG
j and XM

j , where XM
j represents

the k-mers initially copied by the SD event and might have undergone

small mutations, while XG
j contains all ‘new’ k-mers introduced by

subsequent large events such as SVs and large indels (analogous separ-

ation applies to Xi as well). In this way we can separate the effects of

the small mutations and large-scale events. Ideally XG
j shares no k-

mers with Xi, while XM
j \XM

i 6¼ Ø since we expect some shared k-

mers to remain error-free after small mutations (see Fig. 1 for visual-

ization). Now let us also express t as tM þ tG, where tM ¼ jXM
j j and

tG ¼ jXG
j j (note that jXij ¼ jXjj implies jXG

i j 
 jXG
j j because the

small mutations keep strings that generate jXM
i j and jXM

j j similar in

size; thus we assume w.l.o.g that jXG
i j ¼ jXG

j j).
Let c=tM be the ratio of k-mers that are not mutated in both XM

i

and XM
j (we assume that XG

i and XG
j share no common k-mers,

which is a valid assumption for a lower bound calculation). Its

expected value, provided a Poisson error model introduced above, is

E½c=tM	 ¼ e�kdM (Jain et al., 2017).

Now we proceed to estimate the minimal required Jaccard simi-

larity JðXi;XjÞ of Xi and Xj. Note that so far:

1. jXi \Xjj ¼ jXM
i \XM

j j;
2. tG=ðtM þ tGÞ� dG ) tG � tM � dG=ð1� dGÞ; and

3. jXG
i [XG

j j �2jXG
j j ¼ 2tG because jXG

i j ¼ jXG
j j (equality holds

for the ideal condition where jXG
i \XG

j j ¼ Ø).

It follows that:

JðXi;XjÞ ¼
jXi \Xjj
jXi [Xjj

¼
jXM

i \XM
j j

jXM
i [XM

j j þ jXG
i [XG

j j
(by 1)

�
jXM

i \XM
j j

jXM
i [XM

j j þ 2tG
(by 2)

�
jXM

i \XM
j j

jXM
i [XM

j j þ
2dG

1� dG
jXM

i [XM
j j

¼ 1� dG

1þ dG

jXM
i \XM

j j
jXM

i [XM
j j
¼ 1� dG

1þ dG
JðXM

i ;X
M
j Þ:

(by 3)

Since JðXM
i ;X

M
j Þ ¼ c=ð2tM � cÞ and the expected value of c=tM is

e�kdM , it clearly follows that the minimum required expectation of

Jaccard similarity s is at least:

s ¼ E½JðXi;XjÞ	 �
1� dG

1þ dG
� 1

2ekdM � 1
:

To find the seed SDs, we follow a similar strategy as described in

(Jain et al., 2017), where our Gi and Gj correspond to the long reads

and the genomic hits. We start by indexing a genome G and con-

structing an index IG of genome G that is a sorted list of unique pairs

(i, x) where x is a k-mer in the winnow WðGÞ and i is a starting pos-

ition of x in G. We also construct a reverse index I�1
G : it provides for

any input k-mer x a list of all positions i in G such that ði;xÞ 2 IG.

These two tables are computationally inexpensive to calculate and

allow us to quickly calculate winnow WðXiÞ of any substring Gi in

G. For any locus i within G, we enumerate a list of all pairs

C ¼ fðj;xÞ 2 IG : x 2WðGiÞg. By using the winnowed MinHash

lemma, we know that substring Gj starting at some locus j is a poten-

tial SD match for Gi if WðGiÞ and WðGjÞ share at least s � s k-mers,

where the sketch size s is set to jWðGiÞj. Since C is sorted by index,

we can use this lemma to efficiently select all candidate locations

j 2 ½ja; jb	 for which JðGi;GjÞ� s by ‘rolling’ a MinHash calculation

as follows (Jain et al., 2017). We start by setting j¼ ja, and then con-

struct an ordered set

L¼ fðy;bÞ : y 2WðXiÞ [WðXjÞ and b¼ 1 if y 2WðXiÞ \WðXjÞg;

where each element y is assigned 1 if it belongs to the intersection of

WðXiÞ \WðXjÞ and zero otherwise (Such a set can be efficiently

implemented with a balanced binary tree where any update oper-

ation costs only Oðlog jLjÞ.). Then we keep ‘rolling’ Gj by increasing

j: this corresponds to checking the similarity between Gi:iþn and

Gjþ1:jþnþ1, wherein we remove any minimizer from L which

occurred at position j and add any minimizer that occurs at the

position jþ nþ 1. Note that any such step costs at most Oðlog sÞ
operations (where s is the sketch size). With the appropriate auxil-

iary structures, we can calculate the winnowed MinHash estimate of

WðXiÞ and WðXjþ1Þ in O(1) time. Once we find a j for which the

corresponding MinHash estimate is maximal and above s, we add

the pair (i, j) to the list of found SD seeds.

3.2 Finding potential SD regions
So far, we have assumed that the value of n is fixed and that

n ¼ jGij ¼ jGjj. Now we lift this restriction and attempt to extend

any seed SD as much as possible in both directions in order to ensure

that we can find the boundaries of ‘true’ SDs. This can be done

by iteratively increasing the values of n and m by one [each step takes

Oðlog sÞ time], which essentially keeps expanding the sets WðXiÞ and

WðXjÞ: any minimizer which occurs at loci iþ nþ 1 and jþmþ 1

within G is added to the ordered set L. Here we utilize the same struc-

tures as in the previous step (see Section 3.4), and keep extending SD

region until the value of the winnowed MinHash estimate goes below

s. We also terminate extension if both n and m become too large (we

limit SEDEF to find potential SDs of at most 1 Mbp in length, as per

WGAC). Note that the term jSðWðXiÞ [WðXjÞÞj keeps growing

while jSðWðXiÞ \WðXjÞÞj stays the same if two regions stop being

similar after some time, which iteratively lowers the Jaccard estimate.

We also interrupt the extension if the strings Gi and Gj begin to over-

lap. Note that we can perform this extension in the reverse fashion,

by slowly decreasing the values i and j and applying the same techni-

ques as described above. Finally, we report the largest Gi and Gj

whose corresponding MinHash estimates are above s.
For each potential SD, we also apply a q-gram filter (Jokinen and

Ukkonen, 1991) in order to further reduce the rate of false positives

as follows. Define the q-gram similarity QðGi;GjÞ of strings Gi and

Gj to be the total number of q-mers shared by both Gi and Gj. We
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adapt the well-known q-gram lemma for our problem as follows: any

Gi and Gj whose edit error is below d and satisfies the SD error model

will share at least nð1� dG � qdMÞ � ðnpG þ 1Þ � ðq� 1Þ q-grams,

where we assume that n�m and where pG is the expected number of

gaps per basepair in the genome. This modification allows us to loss-

lessly reject any pair of substrings Gi and Gj that do not satisfy the SD

error model for the given value of pG.

The aforementioned algorithm performed on the whole human

genome produces >500 million potential SD regions due to the pres-

ence of various small repeats in the genome. In order to alleviate this

problem, we only use k-mers that contain at least one non-repeat-

masked nucleotide during the detection of seed SDs. In order to

allow the case of repeats being inserted in the SD during the evolu-

tionary process, the SD extension step uses any available k-mer to

extend seed SDs. Finally, we pad each potential SD region with a

pre-defined number of bases (which is a function of the size of the

potential SD region) in order to further increase the probability of

locating large SDs within the potential regions.

3.3 Detecting final SDs
After finding the potential SD regions, we enumerate all local align-

ments of size 1000 within those regions that satisfy the SD criteria. In

order to do this efficiently, SEDEF employs a two-tiered local chaining

algorithm similar to those in (Abouelhoda and Ohlebusch, 2003;

Myers and Miller, 1995). In the first part, we use a seed-and-extend

method to construct the list of matching seed locations (of size 11 and

higher), and proceed by finding the longest chains formed by those

seeds via an Oðnlog nÞ sparse dynamic programing algorithm as

described in Abouelhoda and Ohlebusch (2003) and Myers and

Miller (1995). In this step, we restrict the maximum gap size between

the seeds to l � dG in order to cluster the seeds within a chain as ‘close’

as possible. After finding these initial chains (which might span

<1000bp), we refine them by further chaining them into the large

final chains by allowing larger gaps. In order to retain compatibility

with WGAC, which allows arbitrary large gaps within the SD (since it

does not penalize the gap extension), we use the affine gap penalty

during the construction of SD chains; however, we limit gaps to no

longer than 10 000 bp in order to avoid low-quality alignments.

Chaining is accompanied by the global alignments which are done

with the KSW2 library, which utilizes ‘single instruction, multiple

data’ (SIMD) parallelization through Streaming SIMD Extensions

(SSE) instructions to speed up the global sequence alignment (Li,

2017). Importantly, we report all our alignments in standard BEDPE

format, together with corresponding edit strings in CIGAR format (Li

et al., 2009) and various other useful metrics similar to WGAC such

as Kimura two parameter genetic distance (Kimura and Ohta, 1972)

and Jukes-Cantor distance (Jukes and Cantor, 1969).

In our experiments, we used k¼12 for the seed SD stage and

k¼11 for chaining step (note that this parameter is configurable by

user). While lower values of k may improve the sensitivity, we found

that any such improvement is rather negligible and not worth the in-

crease in the running time. On the other hand, higher values of k im-

prove the running time while lowering the sensitivity.

4 Results

We evaluated SEDEF using the human reference genome (UCSC

hg19) and mouse reference genome (UCSC mm8), and compared its

calls to WGAC calls. Note that as mentioned in the Introduction it

is not possible to run WGAC without Sun Solaris operating system;

therefore, we were not able to benchmark it ourselves. WGAC calls

were obtained from http://humanparalogy.gs.washington.edu and

http://mouseparalogy.gs.washington.edu. WGAC calls are the cur-

rent gold (and only) standard of SDs in both human and mouse

genomes, and are used as SD annotations by UCSC Genome

Browser.

In case of human genome, the entire process took around 10

CPU h with the peak RAM usage of 7 GB in single-CPU mode.

SEDEF is also highly parallelizable, and it took only 14 min for the

whole process to finalize on 80 CPU cores. This is a significant im-

provement over WGAC, which takes several weeks to complete (pri-

vate communication). Similar running times were observed in mouse

genome, despite the fact that mouse genome contains significantly

more repeats than human genome and thus necessitates longer run-

ning times (She et al. 2008). Run times on a single CPU and 80 CPU

cores when ran in parallel via GNU Parallel (Tange, 2011) are given

in Table 1.

SEDEF initially detected around 2 250 000 seed SD regions in

human genome. After the chaining process, the final number of SDs

was reduced to 
186 400. Finally, after filtering out the common

repeats and other spurious hits, we report 67 882 final SD pairs that

cover 219 Mbp of the human genome. This is a significant increase

over WGAC data, which reports 24 477 SD pairs that cover 159

Mbp of the genome. Of this 60 Mbp increase in the duplication con-

tent, 30 Mbp belongs to regions in the genome without common

repeats. Figure 3 shows the genome coverage, together with size and

error distribution of SDs found by SEDEF and WGAC. The majority

of SEDEF SDs have cumulative error d (with affine gap penalty)

around 15%. As for the mouse genome, SEDEF found 352 991 final

SDs which cover 259 Mbp of the genome, as compared with 140

Mbp covered by 117 213 WGAC SDs. Of the additional 120 Mbp

found by SEDEF, 45 Mbp belongs to non common repeat regions.

4.1 Filter and alignment accuracy
4.1.1 Simulations

We also evaluated the accuracy of the seeding and chaining

process based on total error rate d. For this purpose, we generated

1000 random sequences of sizes 1–100 Kbp for each

d 2 f0:01; 0:02; . . . ; 0:30g (i.e. up to 30%), and for each such se-

quence generated a random SD according to the SD criteria defined

above (where dM and dG are randomly chosen such that they are

both less than min f0:15; dg). All sequences and mutations were ran-

domly generated with uniform distribution. These two sequences

(original one and the randomly mutated one) were fed to SEDEF,

and then we checked whether SEDEF finds a match between these

two sequences, and whether this match covers the original SDs (a

match covers SD if >95% of the SD bases are included in the

Table 1. Running time performance of SEDEF in single-core mode and multi-core mode on 80 Intel Xeon E7-4860 v2 cores at 2.60 GHz

Human (hg19) Mouse (mm8)

Total Seeding and extending Chaining and aligning Total Seeding and extending Chaining and aligning

1 core 10 h 30 min 7 h 33 min 2 h 57 m 13 h 7 min 7 h 53 min 5 h 14 min

80 cores 0 h 14 min 0 h 10 min 0 h 04 m 0 h 30 min 0 h 10 min 0 h 20 min
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match). As shown in Figure 3, SEDEF’s overall sensitivity is

99.94%, and the sensitivity drops slowly as d increases. However,

even for d ¼ 0:30, sensitivity remains above 99%.

We performed a similar experiment on chromosome 1, where we

randomly fetched 10 000 sequences (uniform distribution) of various

lengths and introduced random mutations to simulate a SD event. In

this experiment, SEDEF had only a 0.15% false negative rate (i.e.

undetected SDs), where all missed duplications were very small SDs

of lengths 
1000.

4.1.2 WGAC coverage

It is worth mentioning that SEDEF-detected human SDs completely

cover 
98% of the previously reported SD intervals (
99.6% in

basepairs) by WGAC. SEDEF entirely misses <0.3% (70) of SD

intervals reported in WGAC results, and for the 1.4% of WGAC

SDs, SEDEF reports partial overlap (i.e. <80% reciprocal overlap).

All together, SEDEF misses about 0.6 Mbp out of 159 Mbp as

reported by WGAC (
0.4%), where 0.5 Mbp contained short com-

mon repeats. We note that several WGAC SDs are in fact common

repeats, and that several WGAC alignments contain long gaps. This

is likely due to the dependency of WGAC on common repeat anno-

tations, which may not be comprehensive. Additionally, WGAC

employs several heuristics to reinsert common repeats to fuguized

putative duplications that might ‘glue’ very short non common re-

peat segments into larger segments with high repeat content that

show similar alignment properties to a SD. This effect is much more

present in mouse genome, where SEDEF misses 16 471 WGAC SDs

(14.1%), and partially covers 2.2% of such SDs. However, in terms

of basepairs SEDEF only misses 1.5 Mbp (0.1 Mbp non common re-

peat elements). After extra validation, we found that most of missed

WGAC SDs (
14 470) are in fact common repeats incorrectly

reported as SDs; thus SEDEF misses only 1.7% of the correct

WGAC SD calls.

4.2 Comparison to other methods
We also evaluated the SD discovery accuracy of whole-genome

aligners Minimap2 (Li, 2018) and MUMmer/nucmer (Marçais

et al., 2018) on the human genome assembly (UCSC hg19). These

tools do not support SD detection out of the box; however, a self

assembly-to-assembly comparison can be performed in order to

identify the repetitive regions in the genome. These regions can be

refined into SDs after applying further processing with SDDetector

(Dallery et al., 2017) and filtering out candidate SDs which consist

solely of common short repeats. When compared with these tools,

SEDEF is an integrated pipeline for identifying SDs from scratch on

a given assembly. Note that other similar tools, such as DupMasker

(Jiang et al., 2008), are developed to annotate SDs and require al-

ready existing SD database from similar genomes to be able to mark

SDs in a given genome (Table 2).

We ran these tools on 20 CPU cores using the GNU Parallel

(Tange, 2011) by aligning all pairs of chromosomes in hg19.

Minimap2-based approach identified only 29% of the SD intervals

reported by WGAC, which spanned 33% of the duplicated basepairs

(53 Mbp out of 159 Mbp). MUMmer/nucmer approached better SD

coverage performance, which identified 98.8% of WGAC regions

that spanned 89% of duplicated basepairs (143 out of 159 Mbp), but

the analysis was much slower and completed in 20 h in the same com-

pute setting. Minimap2 required 1.5 h of run times using 20 CPU

cores (in comparison, SEDEF takes only 36 min on 20 cores).

Overall, analysis misses a significant amount of duplications

in a self-comparison task when using the recommended parameters

of intra-species assembly-to-assembly comparison. Meanwhile

MUMmer/nucmer-based approach covers the SD regions more con-

sistently with those reported by WGAC; however it still misses

many WGAC calls which are found by SEDEF. Finally, SEDEF is

able to find more calls compared with the other tools in much

shorter amount of time, as shown in Table 2.
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Fig. 3. (Left) Performance of SEDEF’s algorithm on simulated SDs. x-axis is the total simulated SD error rate d, whereas y axis is the number of correctly detected

SDs (total 1000 for each d). Since SEDEF successfully detects more than 995 simulated SDs for any d, the plot area is cropped. (Right) Venn diagram depicts the

SD coverage of the human and mouse genome (in Mbp) as calculated by SEDEF and WGAC. Intersected region stands for the bases covered by both SEDEF and

WGAC

Table 2. SD coverage of the human genome (hg19) as reported by

different tools

Tool Covers Misses Extra Time (h: m)

WGAC (gold standard) 159.5 0.0 0.0 weeks

SEDEF 218.8 0.6 60.0 0:36

Minimap2 53.3 107.3 1.1 1:30

MUMmer/nucmer 142.6 30.8 13.9 �20:00

SDDetector 30.1 130.8 1.5 �1:00a

Note: Misses and Extra are calculated with respect to the WGAC SD calls,

which are currently the gold standard of SD calls. Note that we have filtered

out all calls where at least one mate is composed solely of common short

repeats (Minimap2, MUMmer/nucmer and SDDetector) as we did on SEDEF.

All running times were adjusted for 20 CPU cores (all tools which support

parallelization were run on 20 cores).
aAdjusted running time for 20 cores; in reality, SDDetector spends � 8

hours in the single threaded pre-processing stage. Furthermore, the reported

running time only includes post-processing and does not include initial

BLAST alignment calculations.
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5 Conclusion

SDs are among the most important forms of genomic rearrange-

ments that drive genome evolution. However, their accurate identifi-

cation is lacking due to the unavailability of necessary

computational tools. In this article we presented SEDEF to help fill

this gap in methodology.

In future work, we aim to characterize the effect of various edit

distance embeddings and techniques such as gapped q-grams (Bar-

Yossef et al., 2004; Burkhardt and Kärkkäinen, 2002). Although

many of these techniques have been previously implemented

(Hanada et al., 2017), our initial experiments did not show that any

such embeddings or techniques are beneficial for strings with large

edit distances.

SEDEF is designed as a fast, accurate, and user friendly tool to dis-

cover duplicated segments in genome assemblies. Therefore it aims to

help researchers easily identify duplicated segments in genomes from

several organisms, enabling them to extend their ability to perform

comparative genomic studies in complex regions of the genome. We

aim to extend it with an A-Bruijn graph based analysis (Jiang et al.,

2007) to provide a full view of the evolution of SDs. Armed with the

extensions as we mention earlier, we will then use SEDEF to fully ana-

lyze reference genome assemblies from various genomes to both

evaluate the assembly accuracy, and to better understand the role of

SDs in organism evolution.

Acknowledgements

We thank Evan E. Eichler for early discussions on formulating the problem,

and Ashwin Narayan for helpful suggestions.

Funding

This work was supported in part by National Science and Engineering

Research Council Discovery Grant to F.H., EMBO Installation Grant [IG-

2521 to C.A.] and National Institutes of Health [grant GM108348 to B.B.].

Conflict of Interest: none declared.

References

Abouelhoda,M.I. and Ohlebusch,E. (2003) A local chaining algorithm and its

applications in comparative genomics. In: Benson, G. and Page, R.D.M.

(eds.) Algorithms in Bioinformatics. Springer, Berlin Heidelberg, pp. 1–16.

Alkan,C. et al. (2009) Personalized copy number and segmental duplication

maps using next-generation sequencing. Nat. Genet., 41, 1061–1067.

Alkan,C. et al. (2011a) Genome structural variation discovery and genotyping.

Nat Rev. Genet., 12, 363–376.

Alkan,C. et al. (2011b) Limitations of next-generation genome sequence as-

sembly. Nat. Methods, 8, 61–65.

Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215,

403–410.

Andoni,A. et al. (2010) Polylogarithmic approximation for edit distance and

the asymmetric query complexity. In: Proceedings of the 51th Annual IEEE

Symposium on Foundations of Computer Science, FOCS ’10, IEEE

Computer Society, Las Vegas, Nevada, USA, pp. 377–386.

Backurs,A. and Indyk,P. (2015) Edit distance cannot be computed in strongly

subquadratic time (unless SETH is false). In: Proceedings of the

Forty-seventh Annual ACM Symposium on Theory of Computing, STOC

‘15. ACM, New York, NY, USA, pp. 51–58.

Bailey,J.A. et al. (2001) Segmental duplications: organization and impact

within the current human genome project assembly. Genome Res., 11,

1005–1017.

Bailey,J.A. et al. (2002) Recent segmental duplications in the human genome.

Science, 297, 1003–1007.

Bar-Yossef,Z. et al. (2004) Approximating edit distance efficiently. In:

Proceedings of the 45th Annual IEEE Symp. Foundations of Computer

Science, pp. 550–559.

Broder,A.Z. (1997) On the resemblance and containment of documents. In:

Proceedings of the Compression and Complexity of SEQUENCES 1997

(Cat. No.97TB100171), pp. 21–29.
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