
471

http://journals.tubitak.gov.tr/biology/

Turkish Journal of Biology Turk J Biol
(2018) 42: 471-476
© TÜBİTAK
doi:10.3906/biy-1805-42

Evaluation of genome scaffolding tools using pooled clone sequencing

Elif DAL, Can ALKAN*
Department of Computer Engineering, Faculty of Engineering, Bilkent University, Ankara, Turkey

* Correspondence: calkan@cs.bilkent.edu.tr

1. Introduction
Completion of the Human Genome Project (HGP) was
one of the greatest achievements in all life sciences research
(International Human Genome Sequencing Consortium,
2004). The HGP was started in 1990, and thanks to
the innovations in automated genome sequencing
technologies, the human genome was completed in 2004.
Today, >97% of the human genome is finished and released
as the human reference genome (version GRCh38). The
HGP has allowed researchers to learn functions of genes
and effects of their mutations, and it was the driving force
and motivation for the 1000 Genomes Project (The 1000
Genomes Project Consortium, 2015). The information we
gain thanks to the reference genome built by the HGP and
the subsequent analyses performed by the 1000 Genomes
Project and the ENCODE Project (ENCODE Project
Consortium, 2012) will be the main source of knowledge
in achieving precision medicine.

The first genome assembly algorithms were designed in
the early 1980s and 1990s (Kececioglu and Myers, 1995),
followed by the development of many different assemblers
that make use of different methodologies (Sutton et al.,
1995; Batzoglou et al., 2002; Mullikin and Ning, 2003).
With the help of emerging technologies, more powerful
computers, and massively parallel high-throughput
sequencing (HTS), scientists are now able to read and
assemble genomes faster than ever before (Mardis, 2008).

The assembly process is much like assembling a jigsaw
puzzle, trying to find the original places of each puzzle
piece by checking each piece next to each other to see
if they fit together. Computationally, it is similar to the
shortest superstring problem, known to be NP-complete,
where approximation algorithms still need to perform
billions of suffix-to-prefix comparisons, or extract and
compare all k-mers, even when short sequences are
assumed to be error-free (Steinberg et al., 2017). When
sequencing errors are considered in genome assembly,
each piece of a DNA fragment is sequenced several times
to correct for the errors, making the computational burden
more pronounced.

Creating a digital representation of a genome is
achieved in three main steps. First, the genome (collection
of chromosomes) is fragmented into shorter pieces,
then sequenced using HTS technologies (Mardis, 2008;
Shendure and Ji, 2008). Second, the billions of short reads
are evaluated to be assembled together to reconstruct
the original genome sequence using either prefix-suffix
overlaps (Batzoglou et al., 2002; Simpson and Durbin,
2012) or de Bruijn graphs (Chaisson et al., 2004; Zerbino
and Birney, 2008; Simpson et al., 2009). In this step,
contiguous segments (termed contigs) are obtained.
Contigs are long sequences without any information about
their order and orientation in the genome. To enhance
the assembly to include relative order and orientation of

Abstract: DNA sequencing technologies hold great promise in generating information that will guide scientists to understand how
the genome affects human health and organismal evolution. The process of generating raw genome sequence data becomes cheaper
and faster, but more error-prone. Assembly of such data into high-quality finished genome sequences remains challenging. Many
genome assembly tools are available, but they differ in terms of their performance and their final output. More importantly, it remains
largely unclear how to best assess the quality of assembled genome sequences. Here we evaluate the accuracies of several genome
scaffolding algorithms using two different types of data generated from the genome of the same human individual: whole genome
shotgun sequencing (WGS) and pooled clone sequencing (PCS). We observe that it is possible to obtain better assemblies if PCS data
are used, compared to using only WGS data. However, the current scaffolding algorithms are developed only for WGS, and PCS-aware
scaffolding algorithms remain an open problem.

Key words: Genome assembly and scaffolding, high-throughput sequencing, pooled clone sequencing, systems biology

Received: 11.05.2018 Accepted/Published Online: 02.11.2018 Final Version: 10.12.2018

Research Article

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://orcid.org/0000-0002-1687-3733
https://orcid.org/0000-0002-5443-0706

DAL and ALKAN / Turk J Biol

472

these contigs, scaffolding algorithms are used (Steinberg
et al., 2017). Scaffolding is briefly defined as delineating
the order and orientation of the contigs through “linking”
them together by estimating the gaps between contigs.

Efforts of assembling large and complex genomes, such
as human (International Human Genome Sequencing
Consortium, 2004), gorilla (Scally et al., 2012), pine
(Zimin et al., 2014), and others, always resulted in
assemblies fragmented into variably sized hundreds of
thousands of contigs. This is because of several factors:
the complexity of the genome (i.e. repeats and duplication
content), errors imposed by the sequencing methodology,
and depth of sequencing coverage. The human reference
genome is largely constructed using the Sanger sequencing
technology, in a hierarchical manner using BAC and
plasmid cloning vectors. Sanger technology is able to
generate long reads (700–1000 base pairs) to be sequenced
with a very low error rate (International Human Genome
Sequencing Consortium, 2004). However, it is also very
costly: the HGP cost over 3 billion US dollars to complete.
Newer sequencing technologies, commonly referred to as
HTS, were first realized in 2005 (Margulies et al., 2005)
and have evolved very rapidly since then. Although the
most widely used HTS technology (i.e. Illumina) produces
short reads (100–150 base pairs) with a higher error rate
(~0.1%), the associated costs are substantially less, and
it is possible to generate billions of reads in a single run.
This enables these technologies to provide data at high
redundancy, measured as depth of coverage, which in turn
makes it possible to ameliorate the effect of sequencing
errors.

The most difficult problem in genome assembly seems
to be resolving repeats and ensuring comprehensiveness
(Treangen and Salzberg, 2012). A relatively new
technology, called pooled clone sequencing (Kitzman
et al., 2011), aims to merge the cost efficiency of whole
genome shotgun sequencing (WGS) with the repeat-
resolving abilities of clone-based hierarchical sequencing,
which was employed by HGP. A newer version of the same
strategy is the recently announced linked-read sequencing
method by the 10x Genomics company (Mostovoy et al.,
2016).

In this paper we evaluate the efficacy of various genome
scaffolding algorithms when pooled clone sequencing
data are available and compare them against assemblies
generated with WGS-only data. Here we benchmark
four different scaffolding tools: Opera (Gao et al., 2011),
SCARPA (Donmez and Brudno, 2013), SSPACE (Boetzer
et al., 2011), and BESST (Sahlin et al., 2014), where we
assemble the longest and the shortest human chromosomes
(1 and 20) and compare them with the assembly generated
with ALLPATHS assembler (Gnerre et al., 2011). The
pooled clone sequencing dataset that we use in this study

was generated from the genome of the same individual
with the WGS data (NA12878), divided into 288 separate
pools that were sequenced using the Illumina technology
(Kitzman et al., 2011). In this manuscript we do not focus
on computational requirements of different scaffolding
algorithms, and we recommend another publication (Hunt
et al., 2014) to the interested reader.

2. Materials and methods
The WGS strategy using HTS is relatively inexpensive
but not powerful in resolving repeats, and the clone-
based hierarchical sequencing strategy is better for repeat
resolution but prohibitively expensive. Therefore, to
leverage the strengths of both strategies, we propose to use
a hybrid approach named pooled clone sequencing (PCS)
originally developed for haplotype phasing (Kitzman et al.,
2011).
2.1. Pooled clone sequencing
In this work, we used the genome of NA12878, an
individual from Utah of North European ancestry. We
obtained the data from the lab of Evan Eichler from the
University of Washington, and this dataset was previously
published in a study to characterize genomic structural
variation (Eslami Rasekh et al., 2017).

First, genomic DNA is broken into fragments using
restriction enzymes and all diploid fragments are size-
selected using gel electrophoresis. Those fragments with
size 150–200 kbp are then cloned using bacterial artificial
chromosome (BAC) cloning vectors. After a dense
solution of BAC clones are obtained, they are diluted into
288 pools. The main purpose of partitioning the genome
into a large number of pools is to prevent overlapping
regions from being in the same pool, thus reducing the
probability of generating reads from different copies of
interspersed genomic repeats in the same sequencing run.
In this experiment, each pool contains about 300 BAC
clones, which makes it very unlikely that two clones that
originate from the same genomic segment are included in
the same pool (Kitzman et al., 2011). Finally, each pool is
tagged with sequencing barcodes and sequenced using the
Illumina platform at 3–4× depth of coverage. The Figure
summarizes the entire protocol. To evaluate the efficacy of
PCS in genome scaffolding, we focused on chromosomes
1 and 20 of the human genome, which are the longest and
the shortest chromosomes in the latest human reference
genome, respectively (GRCh38).
2.2. Scaffolding tools used in this study
SSPACE (Boetzer et al., 2011) is the first scaffolder that use
reads generated with HTS platforms. Since the scaffolding
problem is NP-hard (Gao et al., 2011), the solutions are
typically based on heuristics. SSPACE applies a greedy
procedure, and it tries to solve the problem by starting

DAL and ALKAN / Turk J Biol

473

with the largest contig first. It maps paired-end reads to
contigs and looks for such read pairs that “link” different
contigs. After contigs are linked using paired end reads,
scaffolds are constructed iteratively by linking contigs if
they have a sufficient number of connections between each
other. SSPACE requires the minimum number of paired-
end reads that connect two contigs to be 5. The distance
between contigs is estimated using the insert sizes of the
paired-end reads. Ambiguities caused by alternative links
are resolved using a threshold on read pair counts, and the
scaffolding process continues until no more contigs joined.
If no further contig is found to extend the current scaffold,
the current scaffold is finalized. The process continues
until all contigs are incorporated into scaffolds.

SCARPA (Donmez and Brudno, 2013) uses linear
programming to find near-optimal scaffolds. The most
challenging problem for scaffolders is misassemblies,
and SCARPA tries to fix assembly mistakes during the
scaffolding process. As a preprocessing step, SCARPA
filters mapping files to remove ambiguous mappings to
perform several calculations on the mapping properties,

such as the average fragment size and standard deviation.
During preprocessing, if SCARPA detects an ambiguity
in paired-end read span (i.e. fragment size not within
3 standard deviations of the average length), SCARPA
considers that the relevant contig is misassembled and
discards it. This increases scaffold accuracy, but also causes
loss of data.

Opera (Gao et al., 2011) aims to find an exact solution
for scaffolding instead of applying heuristics. Since the
scaffolding problem is NP-hard (Gao et al., 2011), the
exact solution cannot be calculated efficiently without
any constraints. Therefore, Opera calculates an optimal
solution under specified constraints. Opera is a graph-
based algorithm, where contigs are represented as nodes
and paired end reads that map to contigs form the edges.
Initially, two orientations (i.e. strands) are assigned for
each contig, and then one orientation is determined using
the mapping properties of the paired-end reads. Gao et al.
proved that the scaffolding problem cannot be efficiently
solved using a scaffold graph without any constraints (Gao
et al., 2011). To relax the problem and make it feasible to

Figure. Pooled clone sequencing. 1) A dense solution that contains large segments of DNA is prepared. 2) The collection of genomic
fragments is diluted and separated into a large number of pools, resulting in a low chance of overlaps within a pool. 3) DNA in each pool
is further fragmented to prepare sequencing libraries and barcodes are attached to be able to separate reads after sequencing. 4) All pools
tagged with different barcodes are merged and sequenced using the Illumina platform.

DAL and ALKAN / Turk J Biol

474

solve, Opera introduces a lower bound for initial contig
lengths and an upper bound for the number of paired-end
reads that link the contigs.

BESST is a scaffolding algorithm that differs from
others in estimating gap lengths in scaffolds (Sahlin et al.,
2014). BESST models the distribution of reads that span
a gap and derives a machine learning-based formulation
that was previously used by other scaffolders to estimate
the gap sizes.

3. Results
We evaluated the performance of scaffolding experiments
and the efficacy of using PCS data. In the experiments,
we used the de novo assembly of the NA12878 genome
(Gnerre et al., 2011) as the main contig source and PCS data
generated from the same genome (Kitzman et al., 2011;
Eslami Rasekh et al., 2017) for scaffolding. To understand
the additional benefit of having PCS data, we also merged
all reads in the PCS dataset to emulate WGS-based
scaffolding (i.e. no additional information from PCS). We
investigated the value of the PCS dataset by collectively
and hierarchically applying scaffolding pool-by-pool.
Collective application of scaffolding refers to the usage
of all reads generated in the sequencing experiment, thus
discarding the additional information that can be gained
from PCS sequencing. On the other hand, hierarchical
application of scaffolding refers to running the scaffolding
tools for each “pool” of the PCS-generated data, one-by-
one, in a hierarchical manner. The hierarchical application
of scaffolding substantially reduces the probability that
reads that may originate from different copies of the same
repeat type are handled separately.
3.1. Evaluation criteria
We compared the scaffolding performance using four
metrics:
1. Number of scaffolds: a lower number of scaffolds is
deemed to be better in comparison. An ideal assembly
would have as many scaffolds as there are chromosomes
in the respective organism (e.g., 22 autosomes and 2 sex
chromosomes for humans).
2. Total number of base pairs: a higher number of total
base pairs is deemed better, where the additional base
pairs should be N characters that mark the space between
contigs within scaffolds.
3. GC%: the ratio of G and C bases. We do not expect
significant changes in G+C content; however, it may
decrease slightly due to the newly inserted N characters in
scaffolding (see above).
4. Assembly contiguity: we used both N50 and N90 metrics.
When scaffold lengths are summed up in decreasing order,
N50 corresponds to the length of the scaffold when the
summation just exceeds 50% of the total assembly length.
A higher number is deemed better since it shows that the
assembly is less fragmented. N90 is calculated similarly,

but the summation of the lengths is required to exceed
90% of the total assembly length. A higher number is
deemed better.
3.2. Scaffolding without PCS information
We first applied scaffolding tools using the PCS dataset
but without using the pool information. The results are
summarized in Table 1 for chromosome 1 and in Table 2
for chromosome 20. Unfortunately, SCARPA failed in the
chromosome 1 experiment due to excessive memory usage.
Although BESST resulted in a lower number of scaffolds
and higher N50 and N90 values for both chromosomes 1
and 20, it also returned a lower total number of base pairs.
This is because BESST removed those contigs it deemed
incorrectly assembled based on read mapping properties.
There exist two algorithms, namely Opera and SSPACE,
that can decrease resulting scaffold numbers while
increasing the grand total of base pairs.
3.3. Hierarchical scaffolding using PCS
Next we repeated the scaffolding experiment using the
same dataset, but this time making use of the pooling
information. For this purpose, we ran scaffolding tools one
pool at a time and repeated the scaffolding runs until all
pools were processed. This strategy lowered the probability
of using reads that originate from repeats in the same run
of scaffolding.

Tables 3 and 4 summarize the scaffolding results for
chromosomes 1 and 20, respectively. Once again, SCARPA
failed due to high memory usage for chromosome 1, and
SSPACE failed to scaffold chromosome 20. Overall, Opera
yielded the best N50 and N90 values, and the BESST
algorithm removed most of the data from the assembly.
We observed that BESST performed worse with the pool
information.
3.4. Evaluation
The hierarchical/iterative scaffolding strategy yielded
slightly better results in terms of N50 and N90 statistics.
We note that the sequencing depth of coverage for the PCS
data was very small (3–4×), and the accuracy gain could
further be improved with the availability of more sequence
coverage.

We analyzed the effects of minimum number of read
pairs supporting links between contigs to assembly quality.
By default, the minimum number of read pairs supporting
links between contigs is set to 5 in all four scaffolding
algorithms. Since the PCS dataset that we used in this
experiment had only about 4× coverage, we reduced this
threshold to 2. However, this lowered threshold did not
produce any significantly different results compared to the
default value.

4. Discussion
The genome assembly problem is typically solved
by a two-stage process: contig assembly followed by

DAL and ALKAN / Turk J Biol

475

scaffolding. Obtaining longer scaffolds is of importance
for achieving a more complete assembly. However, similar
to the contig assembly, scaffolding is also highly prone to
errors, especially when it is generated using short reads or
repetitive sequences.

Even small genomes, such as those of bacteria, contain
significant numbers of repeats, and it is extremely difficult,
if not impossible, to assemble the human genome using
short reads only (Treangen and Salzberg, 2012; Steinberg
et al., 2017). De novo assembly with short reads results in a
set of contigs with gaps at each repeat region that are longer
than read lengths. To bridge these gaps, BAC libraries are
very useful when sufficient coverage is obtained. For this
reason, we decided to use a BAC library that was split into
288 pools, providing about 5% physical coverage of the
genome.

Here we evaluated the performance of several
commonly used state-of the-art genome scaffolders.
We specifically tested whether the extra long range
information obtained by PCS improved the scaffold
contiguity compared to more traditional WGS-based
scaffolding. We demonstrated marginal improvement in
N50 and N90 statistics when the pool information was
used; however, this gain in scaffolding accuracy can be
improved if the depth of coverage is increased. We also
observed that the scaffolders vary in their usability, speed,
and accuracy. Overall, SSPACE is very useful since it is
very easy to install and run. BESST is good at making joins
in an aggressive way. Opera and SCARPA are better when
handling misassemblies.

Although we tried to enlarge sequences into scaffolds,
we recognized that resulting scaffolds’ total base pairs are
less than the total number of base pairs in the original
contigs. We think that this is an important source of
error of scaffolding tools. Possible reason for this might
be as follows. After scaffolding processes, we expect an
increment of the total number of base pairs or at least not
a decrease because in the process of scaffolding contigs are
sorted and gaps between different contigs are filled with
N characters, N being the number of bases in the gap. The
main reason for reduction in the base pair number may
be the elimination of the contigs that cannot be ordered
or oriented.

As a future work, it would be interesting to see the effects
of the size of the pooled clones, i.e. using 40 kb fosmids
versus 150 kb BAC clones. Additionally, a comparison
of the more recent linked-read sequencing technologies
such as 10x Genomics and Hi-C based scaffolding such
as Dovetail Genomics data would be beneficial for the
community.

Acknowledgments
This study was supported by a TÜBİTAK grant (112E135)
to the second author.

Table 1. Statistics of scaffolding chromosome 1 without PCS.

Tools # Scaffolds # Base pairs GC% N50 N90
Baseline 9977 121,404,443 41.57 28,272 5757
SSPACE 9891 121,405,472 41.57 28,279 5757
SCARPA* NA NA NA NA NA
Opera 9408 121,412,030 41.57 28,159 5757
BESST 7028 99,697,046 42.12 32,938 6709

*SCARPA run failed due to excessive memory usage. ‘Baseline’
refers to the original contigs as assembled using ALLPATHS-LG.

Table 2. Statistics of scaffolding chromosome 20 without PCS.

Tools # Scaffolds # Base pairs GC% N50 N90
Baseline 250 10,019,750 44.75 49,769 22,871
SSPACE 249 10,019,741 44.75 49,769 22,871
SCARPA 248 10,019,787 44.75 50,183 22,871
Opera 248 10,019,760 44.75 50,183 23,331
BESST 115 4,683,891 45.44 48,117 23,589

‘Baseline’ refers to the original contigs as assembled using
ALLPATHS-LG.

Table 3. Statistics of scaffolding chromosome 1 using PCS.

Tools # Scaffolds # Base pairs GC% N50 N90
Baseline 9977 121,404,443 41.57 27,634 4668
SSPACE 9569 121,501,965 41.57 29,121 5936
SCARPA* NA NA NA NA NA
Opera 9897 121,406,580 41.57 28,531 5757
BESST 513 1,564,335 50.66 4520 1319

*SCARPA run failed due to excessive memory usage. ‘Baseline’
refers to the original contigs as assembled using ALLPATHS-LG.

Table 4. Statistics of scaffolding chromosome 20 using PCS.

Tools # Scaffolds # Base pairs GC% N50 N90
baseline 250 10,019,750 44.75 49,272 22,521
SSPACE* NA NA NA NA NA
SCARPA 247 10,019,775 44.75 50,018 23,331
Opera 250 10,019,760 44.75 49,272 22,521
BESST 17 4,683,891 45.44 22,521 10,538

*SSPACE run failed. ‘Baseline’ refers to the original contigs as
assembled using ALLPATHS-LG.

DAL and ALKAN / Turk J Biol

476

References

Batzoglou S, Jaffe DB, Stanley K, Butler J, Gnerre S, Mauceli E, Berger
B, Mesirov JP, Lander, E (2002). ARACHNE: A whole-genome
shotgun assembler. Genome Res 12: 177-189.

Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano, W
(2011). Scaffolding pre-assembled contigs using SSPACE.
Bioinformatics 27: 578-579.

Chaisson M, Pevzner P, Tang H (2004). Fragment assembly with
short reads. Bioinformatics 20: 2067-2074.

Donmez N, Brudno M (2013). SCARPA: scaffolding reads with
practical algorithms. Bioinformatics 29: 428-434.

ENCODE Project Consortium (2012). An integrated encyclopedia
of DNA elements in the human genome. Nature 489: 57-74.

Eslami Rasekh M, Chiatante G, Miroballo M, Tang J, Ventura
M, Amemiya CT, Eichler EE, Antonacci F, Alkan C (2017).
Discovery of large genomic inversions using long range
information. BMC Genomics 18: 65.

Gao S, Sung WK, Nagarajan N (2011). Opera: reconstructing
optimal genomic scaffolds with high-throughput paired-end
sequences. J Comput Biol 18: 1681-1691.

Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker
BJ, Sharpe T, Hall G, Shea TP, Sykes S et al (2011). High-quality
draft assemblies of mammalian genomes from massively
parallel sequence data. P Natl Acad Sci USA 108: 1513-1518.

Hunt M, Newbold C, Berriman M, Otto TD (2014). A comprehensive
evaluation of assembly scaffolding tools. Genome Biology 15:
R42.

International Human Genome Sequencing Consortium (2004).
Finishing the euchromatic sequence of the human genome.
Nature 431: 931-945.

Kececioglu JD, Myers EW (1995). Combinatorial algorithms for
DNA sequence assembly. Algorithmica 13: 7.

Kitzman JO, Mackenzie AP, Adey A, Hiatt JB, Patwardhan RP,
Sudmant PH, Ng SB, Alkan C, Qiu R, Eichler EE et al (2011).
Haplotype-resolved genome sequencing of a Gujarati Indian
individual. Nat Biotechnol 29: 59-63.

Mardis ER (2008). The impact of next-generation sequencing
technology on genetics. Trends Genet 24: 133-141.

Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben
LA, Berka J, Braverman MS, Chen YJ, Chen Z et al (2005).
Genome sequencing in microfabricated high-density picolitre
reactors. Nature 437: 376-380.

Mostovoy Y, Levy-Sakin M, Lam J, Lam ET, Hastie AR, Marks P, Lee
J, Chu C, Lin C, Džakula Ž et al (2016). A hybrid approach for
de novo human genome sequence assembly and phasing. Nat
Methods 13: 587-590.

Mullikin JC, Ning Z (2003). The phusion assembler. Genome Res 13:
81-90.

Sahlin K, Vezzi F, Nystedt B, Lundeberg J, Arvestad L (2014). BESST–
efficient scaffolding of large fragmented assemblies. BMC
Bioinformatics 15: 281.

Scally A, Dutheil JY, Hillier LW, Jordan GE, Goodhead I, Herrero,
J, Hobolth A, Lappalainen T, Mailund T, Marques-Bonet
T (2012). Insights into hominid evolution from the gorilla
genome sequence. Nature 483: 169-175.

Shendure J, Ji H (2008). Next-generation DNA sequencing. Nat
Biotechnol 26: 1135-1145.

Simpson JT, Durbin R (2012). Efficient de novo assembly of large
genomes using compressed data structures. Genome Res 22:
549-556.

Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I
(2009). ABySS: a parallel assembler for short read sequence
data. Genome Res 19: 1117-1123.

Steinberg KM, Schneider VA, Alkan C, Montague MJ, Warren WC,
Church DM, Wilson RK (2017). Building and improving
reference genome assemblies. P IEEE 105: 422-435.

Sutton GG, White O, Adams MD, Kerlavage AR (1995). TIGR
assembler: A new tool for assembling large shotgun sequencing
projects. Genome Science and Technology 1: 9-19.

The 1000 Genomes Project Consortium (2015). A global reference
for human genetic variation. Nature 526: 68-74.

Treangen TJ, Salzberg SL (2012). Repetitive DNA and next-generation
sequencing: computational challenges and solutions. Nat Rev
Genet 13: 36-46.

Zerbino DR, Birney E (2008). Velvet: algorithms for de novo short
read assembly using de Bruijn graphs. Genome Res 18: 821-
829.

Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M,
Marçais G, Puiu D, Roberts M, Wegrzyn JL, de Jong PJ et al
(2014). Sequencing and assembly of the 22-gb loblolly pine
genome. Genetics 196: 875-890.

