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1. Introduction
Completion of the Human Genome Project (HGP) was 
one of the greatest achievements in all life sciences research 
(International Human Genome Sequencing Consortium, 
2004). The HGP was started in 1990, and thanks to 
the innovations in automated genome sequencing 
technologies, the human genome was completed in 2004. 
Today, >97% of the human genome is finished and released 
as the human reference genome (version GRCh38). The 
HGP has allowed researchers to learn functions of genes 
and effects of their mutations, and it was the driving force 
and motivation for the 1000 Genomes Project (The 1000 
Genomes Project Consortium, 2015). The information we 
gain thanks to the reference genome built by the HGP and 
the subsequent analyses performed by the 1000 Genomes 
Project and the ENCODE Project (ENCODE Project 
Consortium, 2012) will be the main source of knowledge 
in achieving precision medicine.

The first genome assembly algorithms were designed in 
the early 1980s and 1990s (Kececioglu and Myers, 1995), 
followed by the development of many different assemblers 
that make use of different methodologies (Sutton et al., 
1995; Batzoglou et al., 2002; Mullikin and Ning, 2003). 
With the help of emerging technologies, more powerful 
computers, and massively parallel high-throughput 
sequencing (HTS), scientists are now able to read and 
assemble genomes faster than ever before (Mardis, 2008).

The assembly process is much like assembling a jigsaw 
puzzle, trying to find the original places of each puzzle 
piece by checking each piece next to each other to see 
if they fit together. Computationally, it is similar to the 
shortest superstring problem, known to be NP-complete, 
where approximation algorithms still need to perform 
billions of suffix-to-prefix comparisons, or extract and 
compare all k-mers, even when short sequences are 
assumed to be error-free (Steinberg et al., 2017). When 
sequencing errors are considered in genome assembly, 
each piece of a DNA fragment is sequenced several times 
to correct for the errors, making the computational burden 
more pronounced.

Creating a digital representation of a genome is 
achieved in three main steps. First, the genome (collection 
of chromosomes) is fragmented into shorter pieces, 
then sequenced using HTS technologies (Mardis, 2008; 
Shendure and Ji, 2008). Second, the billions of short reads 
are evaluated to be assembled together to reconstruct 
the original genome sequence using either prefix-suffix 
overlaps (Batzoglou et al., 2002; Simpson and Durbin, 
2012) or de Bruijn graphs (Chaisson et al., 2004; Zerbino 
and Birney, 2008; Simpson et al., 2009). In this step, 
contiguous segments (termed contigs) are obtained. 
Contigs are long sequences without any information about 
their order and orientation in the genome. To enhance 
the assembly to include relative order and orientation of 
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these contigs, scaffolding algorithms are used (Steinberg 
et al., 2017). Scaffolding is briefly defined as delineating 
the order and orientation of the contigs through “linking” 
them together by estimating the gaps between contigs.

Efforts of assembling large and complex genomes, such 
as human (International Human Genome Sequencing 
Consortium, 2004), gorilla (Scally et al., 2012), pine 
(Zimin et al., 2014), and others, always resulted in 
assemblies fragmented into variably sized hundreds of 
thousands of contigs. This is because of several factors: 
the complexity of the genome (i.e. repeats and duplication 
content), errors imposed by the sequencing methodology, 
and depth of sequencing coverage. The human reference 
genome is largely constructed using the Sanger sequencing 
technology, in a hierarchical manner using BAC and 
plasmid cloning vectors. Sanger technology is able to 
generate long reads (700–1000 base pairs) to be sequenced 
with a very low error rate (International Human Genome 
Sequencing Consortium, 2004). However, it is also very 
costly: the HGP cost over 3 billion US dollars to complete. 
Newer sequencing technologies, commonly referred to as 
HTS, were first realized in 2005 (Margulies et al., 2005) 
and have evolved very rapidly since then. Although the 
most widely used HTS technology (i.e. Illumina) produces 
short reads (100–150 base pairs) with a higher error rate 
(~0.1%), the associated costs are substantially less, and 
it is possible to generate billions of reads in a single run. 
This enables these technologies to provide data at high 
redundancy, measured as depth of coverage, which in turn 
makes it possible to ameliorate the effect of sequencing 
errors.

The most difficult problem in genome assembly seems 
to be resolving repeats and ensuring comprehensiveness 
(Treangen and Salzberg, 2012). A relatively new 
technology, called pooled clone sequencing (Kitzman 
et al., 2011), aims to merge the cost efficiency of whole 
genome shotgun sequencing (WGS) with the repeat-
resolving abilities of clone-based hierarchical sequencing, 
which was employed by HGP. A newer version of the same 
strategy is the recently announced linked-read sequencing 
method by the 10x Genomics company (Mostovoy et al., 
2016).

In this paper we evaluate the efficacy of various genome 
scaffolding algorithms when pooled clone sequencing 
data are available and compare them against assemblies 
generated with WGS-only data. Here we benchmark 
four different scaffolding tools: Opera (Gao et al., 2011), 
SCARPA (Donmez and Brudno, 2013), SSPACE (Boetzer 
et al., 2011), and BESST (Sahlin et al., 2014), where we 
assemble the longest and the shortest human chromosomes 
(1 and 20) and compare them with the assembly generated 
with ALLPATHS assembler (Gnerre et al., 2011). The 
pooled clone sequencing dataset that we use in this study 

was generated from the genome of the same individual 
with the WGS data (NA12878), divided into 288 separate 
pools that were sequenced using the Illumina technology 
(Kitzman et al., 2011). In this manuscript we do not focus 
on computational requirements of different scaffolding 
algorithms, and we recommend another publication (Hunt 
et al., 2014) to the interested reader. 

2. Materials and methods
The WGS strategy using HTS is relatively inexpensive 
but not powerful in resolving repeats, and the clone-
based hierarchical sequencing strategy is better for repeat 
resolution but prohibitively expensive. Therefore, to 
leverage the strengths of both strategies, we propose to use 
a hybrid approach named pooled clone sequencing (PCS) 
originally developed for haplotype phasing (Kitzman et al., 
2011). 
2.1. Pooled clone sequencing
In this work, we used the genome of NA12878, an 
individual from Utah of North European ancestry. We 
obtained the data from the lab of Evan Eichler from the 
University of Washington, and this dataset was previously 
published in a study to characterize genomic structural 
variation (Eslami Rasekh et al., 2017).

First, genomic DNA is broken into fragments using 
restriction enzymes and all diploid fragments are size-
selected using gel electrophoresis. Those fragments with 
size 150–200 kbp are then cloned using bacterial artificial 
chromosome (BAC) cloning vectors. After a dense 
solution of BAC clones are obtained, they are diluted into 
288 pools. The main purpose of partitioning the genome 
into a large number of pools is to prevent overlapping 
regions from being in the same pool, thus reducing the 
probability of generating reads from different copies of 
interspersed genomic repeats in the same sequencing run. 
In this experiment, each pool contains about 300 BAC 
clones, which makes it very unlikely that two clones that 
originate from the same genomic segment are included in 
the same pool (Kitzman et al., 2011). Finally, each pool is 
tagged with sequencing barcodes and sequenced using the 
Illumina platform at 3–4× depth of coverage. The Figure 
summarizes the entire protocol. To evaluate the efficacy of 
PCS in genome scaffolding, we focused on chromosomes 
1 and 20 of the human genome, which are the longest and 
the shortest chromosomes in the latest human reference 
genome, respectively (GRCh38). 
2.2. Scaffolding tools used in this study
SSPACE (Boetzer et al., 2011) is the first scaffolder that use 
reads generated with HTS platforms. Since the scaffolding 
problem is NP-hard (Gao et al., 2011), the solutions are 
typically based on heuristics. SSPACE applies a greedy 
procedure, and it tries to solve the problem by starting 
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with the largest contig first. It maps paired-end reads to 
contigs and looks for such read pairs that “link” different 
contigs. After contigs are linked using paired end reads, 
scaffolds are constructed iteratively by linking contigs if 
they have a sufficient number of connections between each 
other. SSPACE requires the minimum number of paired-
end reads that connect two contigs to be 5. The distance 
between contigs is estimated using the insert sizes of the 
paired-end reads. Ambiguities caused by alternative links 
are resolved using a threshold on read pair counts, and the 
scaffolding process continues until no more contigs joined. 
If no further contig is found to extend the current scaffold, 
the current scaffold is finalized. The process continues 
until all contigs are incorporated into scaffolds.

SCARPA (Donmez and Brudno, 2013) uses linear 
programming to find near-optimal scaffolds. The most 
challenging problem for scaffolders is misassemblies, 
and SCARPA tries to fix assembly mistakes during the 
scaffolding process. As a preprocessing step, SCARPA 
filters mapping files to remove ambiguous mappings to 
perform several calculations on the mapping properties, 

such as the average fragment size and standard deviation. 
During preprocessing, if SCARPA detects an ambiguity 
in paired-end read span (i.e. fragment size not within 
3 standard deviations of the average length), SCARPA 
considers that the relevant contig is misassembled and 
discards it. This increases scaffold accuracy, but also causes 
loss of data.

Opera (Gao et al., 2011) aims to find an exact solution 
for scaffolding instead of applying heuristics. Since the 
scaffolding problem is NP-hard (Gao et al., 2011), the 
exact solution cannot be calculated efficiently without 
any constraints. Therefore, Opera calculates an optimal 
solution under specified constraints. Opera is a graph-
based algorithm, where contigs are represented as nodes 
and paired end reads that map to contigs form the edges. 
Initially, two orientations (i.e. strands) are assigned for 
each contig, and then one orientation is determined using 
the mapping properties of the paired-end reads. Gao et al. 
proved that the scaffolding problem cannot be efficiently 
solved using a scaffold graph without any constraints (Gao 
et al., 2011). To relax the problem and make it feasible to 

Figure. Pooled clone sequencing. 1) A dense solution that contains large segments of DNA is prepared. 2) The collection of genomic 
fragments is diluted and separated into a large number of pools, resulting in a low chance of overlaps within a pool. 3) DNA in each pool 
is further fragmented to prepare sequencing libraries and barcodes are attached to be able to separate reads after sequencing. 4) All pools 
tagged with different barcodes are merged and sequenced using the Illumina platform.
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solve, Opera introduces a lower bound for initial contig 
lengths and an upper bound for the number of paired-end 
reads that link the contigs.

BESST is a scaffolding algorithm that differs from 
others in estimating gap lengths in scaffolds (Sahlin et al., 
2014). BESST models the distribution of reads that span 
a gap and derives a machine learning-based formulation 
that was previously used by other scaffolders to estimate 
the gap sizes. 

3. Results
We evaluated the performance of scaffolding experiments 
and the efficacy of using PCS data. In the experiments, 
we used the de novo assembly of the NA12878 genome 
(Gnerre et al., 2011) as the main contig source and PCS data 
generated from the same genome (Kitzman et al., 2011; 
Eslami Rasekh et al., 2017) for scaffolding. To understand 
the additional benefit of having PCS data, we also merged 
all reads in the PCS dataset to emulate WGS-based 
scaffolding (i.e. no additional information from PCS). We 
investigated the value of the PCS dataset by collectively 
and hierarchically applying scaffolding pool-by-pool. 
Collective application of scaffolding refers to the usage 
of all reads generated in the sequencing experiment, thus 
discarding the additional information that can be gained 
from PCS sequencing. On the other hand, hierarchical 
application of scaffolding refers to running the scaffolding 
tools for each “pool” of the PCS-generated data, one-by-
one, in a hierarchical manner. The hierarchical application 
of scaffolding substantially reduces the probability that 
reads that may originate from different copies of the same 
repeat type are handled separately. 
3.1. Evaluation criteria
We compared the scaffolding performance using four 
metrics:
1. Number of scaffolds: a lower number of scaffolds is 
deemed to be better in comparison. An ideal assembly 
would have as many scaffolds as there are chromosomes 
in the respective organism (e.g., 22 autosomes and 2 sex 
chromosomes for humans).
2. Total number of base pairs: a higher number of total 
base pairs is deemed better, where the additional base 
pairs should be N characters that mark the space between 
contigs within scaffolds.
3. GC%: the ratio of G and C bases. We do not expect 
significant changes in G+C content; however, it may 
decrease slightly due to the newly inserted N characters in 
scaffolding (see above).
4. Assembly contiguity: we used both N50 and N90 metrics. 
When scaffold lengths are summed up in decreasing order, 
N50 corresponds to the length of the scaffold when the 
summation just exceeds 50% of the total assembly length. 
A higher number is deemed better since it shows that the 
assembly is less fragmented. N90 is calculated similarly, 

but the summation of the lengths is required to exceed 
90% of the total assembly length. A higher number is 
deemed better. 
3.2. Scaffolding without PCS information
We first applied scaffolding tools using the PCS dataset 
but without using the pool information. The results are 
summarized in Table 1 for chromosome 1 and in Table 2 
for chromosome 20. Unfortunately, SCARPA failed in the 
chromosome 1 experiment due to excessive memory usage. 
Although BESST resulted in a lower number of scaffolds 
and higher N50 and N90 values for both chromosomes 1 
and 20, it also returned a lower total number of base pairs. 
This is because BESST removed those contigs it deemed 
incorrectly assembled based on read mapping properties. 
There exist two algorithms, namely Opera and SSPACE, 
that can decrease resulting scaffold numbers while 
increasing the grand total of base pairs. 
3.3. Hierarchical scaffolding using PCS
Next we repeated the scaffolding experiment using the 
same dataset, but this time making use of the pooling 
information. For this purpose, we ran scaffolding tools one 
pool at a time and repeated the scaffolding runs until all 
pools were processed. This strategy lowered the probability 
of using reads that originate from repeats in the same run 
of scaffolding. 

Tables 3 and 4 summarize the scaffolding results for 
chromosomes 1 and 20, respectively. Once again, SCARPA 
failed due to high memory usage for chromosome 1, and 
SSPACE failed to scaffold chromosome 20. Overall, Opera 
yielded the best N50 and N90 values, and the BESST 
algorithm removed most of the data from the assembly. 
We observed that BESST performed worse with the pool 
information. 
3.4. Evaluation
The hierarchical/iterative scaffolding strategy yielded 
slightly better results in terms of N50 and N90 statistics. 
We note that the sequencing depth of coverage for the PCS 
data was very small (3–4×), and the accuracy gain could 
further be improved with the availability of more sequence 
coverage. 

We analyzed the effects of minimum number of read 
pairs supporting links between contigs to assembly quality. 
By default, the minimum number of read pairs supporting 
links between contigs is set to 5 in all four scaffolding 
algorithms. Since the PCS dataset that we used in this 
experiment had only about 4× coverage, we reduced this 
threshold to 2. However, this lowered threshold did not 
produce any significantly different results compared to the 
default value.
 
4. Discussion
The genome assembly problem is typically solved 
by a two-stage process: contig assembly followed by 
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scaffolding. Obtaining longer scaffolds is of importance 
for achieving a more complete assembly. However, similar 
to the contig assembly, scaffolding is also highly prone to 
errors, especially when it is generated using short reads or 
repetitive sequences. 

Even small genomes, such as those of bacteria, contain 
significant numbers of repeats, and it is extremely difficult, 
if not impossible, to assemble the human genome using 
short reads only (Treangen and Salzberg, 2012; Steinberg 
et al., 2017). De novo assembly with short reads results in a 
set of contigs with gaps at each repeat region that are longer 
than read lengths. To bridge these gaps, BAC libraries are 
very useful when sufficient coverage is obtained. For this 
reason, we decided to use a BAC library that was split into 
288 pools, providing about 5% physical coverage of the 
genome. 

Here we evaluated the performance of several 
commonly used state-of the-art genome scaffolders. 
We specifically tested whether the extra long range 
information obtained by PCS improved the scaffold 
contiguity compared to more traditional WGS-based 
scaffolding. We demonstrated marginal improvement in 
N50 and N90 statistics when the pool information was 
used; however, this gain in scaffolding accuracy can be 
improved if the depth of coverage is increased. We also 
observed that the scaffolders vary in their usability, speed, 
and accuracy. Overall, SSPACE is very useful since it is 
very easy to install and run. BESST is good at making joins 
in an aggressive way. Opera and SCARPA are better when 
handling misassemblies. 

Although we tried to enlarge sequences into scaffolds, 
we recognized that resulting scaffolds’ total base pairs are 
less than the total number of base pairs in the original 
contigs. We think that this is an important source of 
error of scaffolding tools. Possible reason for this might 
be as follows. After scaffolding processes, we expect an 
increment of the total number of base pairs or at least not 
a decrease because in the process of scaffolding contigs are 
sorted and gaps between different contigs are filled with 
N characters, N being the number of bases in the gap. The 
main reason for reduction in the base pair number may 
be the elimination of the contigs that cannot be ordered 
or oriented. 

As a future work, it would be interesting to see the effects 
of the size of the pooled clones, i.e. using 40 kb fosmids 
versus 150 kb BAC clones. Additionally, a comparison 
of the more recent linked-read sequencing technologies 
such as 10x Genomics and Hi-C based scaffolding such 
as Dovetail Genomics data would be beneficial for the 
community.
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Table 1. Statistics of scaffolding chromosome 1 without PCS.

Tools # Scaffolds # Base pairs GC% N50 N90
Baseline 9977 121,404,443 41.57 28,272 5757
SSPACE 9891 121,405,472 41.57 28,279 5757
SCARPA* NA NA NA NA NA
Opera 9408 121,412,030 41.57 28,159 5757
BESST 7028 99,697,046 42.12 32,938 6709

*SCARPA run failed due to excessive memory usage. ‘Baseline’ 
refers to the original contigs as assembled using ALLPATHS-LG.

Table 2. Statistics of scaffolding chromosome 20 without PCS.

Tools # Scaffolds # Base pairs GC% N50 N90
Baseline 250 10,019,750 44.75 49,769 22,871
SSPACE 249 10,019,741 44.75 49,769 22,871
SCARPA 248 10,019,787 44.75 50,183 22,871
Opera 248 10,019,760 44.75 50,183 23,331
BESST 115 4,683,891 45.44 48,117 23,589

‘Baseline’ refers to the original contigs as assembled using 
ALLPATHS-LG.

Table 3. Statistics of scaffolding chromosome 1 using PCS.

Tools # Scaffolds # Base pairs GC% N50 N90
Baseline 9977 121,404,443 41.57 27,634 4668
SSPACE 9569 121,501,965 41.57 29,121 5936
SCARPA* NA NA NA NA NA
Opera 9897 121,406,580 41.57 28,531 5757
BESST 513 1,564,335 50.66 4520 1319

*SCARPA run failed due to excessive memory usage. ‘Baseline’ 
refers to the original contigs as assembled using ALLPATHS-LG.

Table 4. Statistics of scaffolding chromosome 20 using PCS.

Tools # Scaffolds # Base pairs GC% N50 N90
baseline 250 10,019,750 44.75 49,272 22,521
SSPACE* NA NA NA NA NA
SCARPA 247 10,019,775 44.75 50,018 23,331
Opera 250 10,019,760 44.75 49,272 22,521
BESST 17 4,683,891 45.44 22,521 10,538

*SSPACE run failed. ‘Baseline’ refers to the original contigs as 
assembled using ALLPATHS-LG.
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