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Abstract. We propose a novel block-row partitioning method in order to improve the conver-
gence rate of the block Cimmino algorithm for solving general sparse linear systems of equations. The
convergence rate of the block Cimmino algorithm depends on the orthogonality among the block rows
obtained by the partitioning method. The proposed method takes numerical orthogonality among
block rows into account by proposing a row inner-product graph model of the coefficient matrix. In
the graph partitioning formulation defined on this graph model, the partitioning objective of mini-
mizing the cutsize directly corresponds to minimizing the sum of interblock inner products between
block rows thus leading to an improvement in the eigenvalue spectrum of the iteration matrix. This
in turn leads to a significant reduction in the number of iterations required for convergence. Exten-
sive experiments conducted on a large set of matrices confirm the validity of the proposed method
against a state-of-the-art method.
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1. Introduction. Row projection methods are a class of iterative linear system
solvers [13, 14, 36] that are used for solving a linear system of equations of the form

(1.1) Ax = f,

where A is an n × n sparse nonsymmetric nonsingular matrix, x and f are column
vectors of size n. In these methods, the solution is computed through successive pro-
jections onto rows of A. There are mainly two major variations known as Kacmarz
[35] and Cimmino [18]. Kaczmarz obtains the solution through a product of orthog-
onal projections whereas Cimmino reaches the solution through a sum of orthogonal
projections. Cimmino is known to be more amenable to parallelism than Kaczmarz
[14]. However, Kaczmarz can be still parallelized via block Kaczmarz [36], CARP [32],
or multicoloring [27]. The required number of iterations for the Cimmino algorithm,
however, could be quite large. One alternative variation is the block Cimmino [7]
which is a block-row projection method. Iterative block Cimmino has been studied
extensively in [7, 9, 14, 17, 23, 25, 26]. A pseudodirect version of block Cimmino
based on the augmented block-row projections is proposed in [24]. However as in any
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other direct solver [3, 12, 40, 44], this approach also suffers from an extensive memory
requirement due to fill-in.

In the block Cimmino scheme, the linear system (1.1) is partitioned into K block
rows, where K ≤ n, as follows:

(1.2)


A1

A2

...
AK

x =


f1

f2

...
fK

 .

In (1.2), the coefficient matrix and right-hand side vector are partitioned conformably.
Here Ai is a submatrix of size mi×n and fi is a subvector of size mi for i = 1, 2, . . . ,K,
where

(1.3) n =

K∑
i=1

mi.

The block Cimmino scheme is given in Algorithm 1.1, where A+
i is the Moore–

Penrose pseudoinverse of Ai and it is defined as

(1.4) A+
i = AT

i (AiA
T
i )−1.

In Algorithm 1.1, A+
i is used for the sake of the clarity of the notation and it is never

computed explicitly. In fact, at line 4 of Algorithm 1.1, the minimum norm solution
of an underdetermined linear least squares problem is obtained via the augmented
system approach as discussed later. In Algorithm 1.1, δi vectors, which are of size n,
can be computed independently in parallel without any communication, hence, the
block Cimmino algorithm is quite suitable for parallel computing platforms. At line
6, the solution is updated by the sum of projections which is scaled by the relaxation
parameter (ω). In the parallel Cimmino algorithm, communication is required only
for summing up the δis.

Algorithm 1.1 Block Cimmino method.

1: Choose x(0)

2: while t = 0, 1, 2, . . . , until convergence do
3: for i = 1, . . . ,K do
4: δi = A+

i (fi −Aix
(t))

5: end for

6: x(t+1) = x(t) + ω
K∑
i=1

δi

7: end while

An iteration of the block Cimmino method can be reformulated as follows:

(1.5)

x(t+1) = x(t) + ω

K∑
i=1

A+
i

(
fi −Aix

(t)
)

=

(
I − ω

K∑
i=1

A+
i Ai

)
x(t) + ω

K∑
i=1

A+
i fi

= (I − ωH)x(t) + ω

K∑
i=1

A+
i fi

= Qx(t) + ω

K∑
i=1

A+
i fi,
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A NOVEL PARTITIONING METHOD FOR BLOCK CIMMINO C829

where Q is the iteration matrix for the block Cimmino algorithm. ωH = I −Q is the
sum of PR(AT

i )s (projections onto AT
i ) and it is defined by

ωH = ω

K∑
i=1

PR(AT
i ) = ω

K∑
i=1

A+
i Ai.(1.6)

The projections in block Cimmino iterations can be calculated using several ap-
proaches, such as normal equations [31], seminormal equations [30, 31], QR factor-
ization [31], and augmented system [6, 31]. The normal and seminormal equation
approaches are not considered since they have the potential of introducing numer-
ical difficulties that can be disastrous [21, 30] in some cases when the problem is
ill-conditioned. Although the QR factorization is numerically more stable, it is com-
putationally expensive. Therefore we use the augmented system approach, which
requires the solution of sparse linear systems that can be done effectively by using a
sparse direct solver [7]. Note that if submatrix Ai is in a column overlapped block
diagonal form, one could also use the algorithm in [45]. However, this approach is not
considered since we assume no structure for the coefficient matrix.

In the augmented system approach, we obtain the solution of (1.7) by solving the
linear system (1.8),

(1.7) Aiδi = ri (ri = fi −Aix
(t)),

(1.8)

(
I AT

i

Ai 0

)(
δi
ςi

)
=

(
0
ri

)
.

Hence, the solution of the augmented system gives δi.

1.1. The conjugate gradient acceleration of the block Cimmino method.
The convergence rate of the block Cimmino algorithm is known to be slow [14]. In [14],
the conjugate gradient (CG) method is proposed to accelerate the row projection
method. It is also reported that the CG accelerated Cimmino method competes fa-
vorably compared to classical preconditioned generalized minimum residual and CG
on normal equations for the solution of nonsymmetric linear systems that arise in an
elliptic partial differential equation. On the other hand, it should be noted that the
main motivation of the block Cimmino algorithm is its amenability to parallelism [23].

The iteration scheme of the block Cimmino (1.5) gives

(1.9) x(t+1) = (I − ωH)x(t) + ω

K∑
i=1

A+
i fi,

where the H matrix is symmetric and positive definite according to (1.6) if A is square
and full rank. Hence, one can solve the following system using CG,

(1.10) ωHx = ωξ,

where ξ =
∑K

i=1A
+
i fi and x is the solution vector of the system (1.1). Note that

since ω appears on both sides of (1.10), it does not affect the convergence of CG.
Algorithm 1.2 is the pseudocode for the CG accelerated block Cimmino method [47],
which is in fact the classical CG applied to the system given in (1.10). In the second
line of the algorithm, the initial residual is computed in the same way as the first
iteration of Algorithm 1.1. The matrix vector multiplications in the CG are expressed
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C830 F. SUKRU TORUN, MURAT MANGUOGLU, AND CEVDET AYKANAT

as the solution of K independent underdetermined systems at line 5 which can be done
in parallel and need to be summed to obtain ψ(t) by using an all-reduce operation.

Algorithm 1.2 CG acceleration of block Cimmino method.

1: Choose x(0)

2: r(0) = ξ −
∑K

i=1A
+
i Ai x

(0)

3: p(0) = r(0)

4: while t = 0, 1, 2, . . . , until convergence do

5: ψ(t) =
∑K

i=1A
+
i Ai p

(t)

6: α(t) = (r(t)T r(t))/(p(t)Tψ(t))

7: x(t+1) = x(t) + α(t)p(t)

8: r(t+1) = r(t) − α(t)ψ(t)

9: β(t) = (r(t+1)T r(t+1))/(r(t)T r(t))

10: p(t+1) = r(t+1) + β(t)p(t)

11: end while

1.2. The effect of partitioning. The convergence rate of the CG accelerated
block Cimmino algorithm is essentially the convergence rate of CG applied to (1.10).
A well-known upper bound on the convergence rate can be given in terms of the
extreme eigenvalues (λmin and λmax) of the coefficient matrix. Let

(1.11) κ =
λmax

λmin

be the 2-norm condition number of H. Then, as in [31], an upper bound on the
convergence rate of the CG accelerated block Cimmino can be given by

(1.12)
‖x(t) − x∗‖H
‖x(0) − x∗‖H

≤ 2

(√
κ− 1√
κ+ 1

)t

,

where x∗ is the exact solution and ‖y‖H = yTHy. Furthermore, it was shown that
the convergence rate of CG not only depends on the extreme eigenvalues but also
on the separation between those extreme eigenvalues and interior eigenvalues [46] as
well the clustering of the internal eigenvalues [34]. In summary, the convergence rate
of the CG accelerated block Cimmino depends on the extreme eigenvalues and the
number of clusters as well as the quality of the clustering.

Therefore, the partitioning of the coefficient matrix A into block rows is crucial
for improving the convergence rate of the CG accelerated block Cimmino algorithm,
since it can improve the eigenvalue distribution of H. Note that the eigenvalues of
H are only affected by the block-row partitioning of the coefficient matrix A and are
independent of any column ordering [23].

Let the QR factorization of AT
i be defined as

(1.13) QiRi = AT
i ,

where the matrices Qi and Ri have dimensions of n×mi and mi ×mi, respectively.
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A NOVEL PARTITIONING METHOD FOR BLOCK CIMMINO C831

Then, the H matrix can be written as follows [7];

(1.14)

H =

K∑
i=1

AT
i (AiA

T
i )−1Ai

=

K∑
i=1

QiQ
T
i

= (Q1, . . . , QK)(Q1, . . . , QK)T .

Since the eigenvalue spectrum of matrix (Q1, . . . , QK)(Q1, . . . , QK)T is the same as
the eigenvalue spectrum of matrix (Q1, . . . , QK)T (Q1, . . . , QK) [29], H is similar to

(1.15)



Im1×m1
Q1

TQ2 . . . Q1
TQK

Q2
TQ1 Im2×m2 . . . Q2

TQK

... . . .
. . .

...

QK
TQ1 QK

TQ2 . . . ImK×mK


,

where the singular values of matrix Qi
TQj represent the principal angles between

the subspaces spanned by the rows of Ai and Aj [11]. Hence, the smaller the off-
diagonals of the matrix (1.15), the more eigenvalues of H will be clustered around
one by the Gershgorin theorem [28]. Therefore, the convergence rate of the block
Cimmino method highly depends on the orthogonality among Ai blocks. If Ai blocks
are more orthogonal to each other, row inner products between blocks would be small
and hence the eigenvalues will be clustered around one. Consequently, CG is expected
to converge in a fewer number of iterations.

In the literature, Cuthill–Mckee- (CM-) [19] based partitioning strategies [23, 43,
47] are utilized to define block rows using CM level set information on the normal
equations of the original matrix. These strategies benefit from the level sets of CM
for creating the desired number of block rows. In CM, nodes in a level set have
the same distance from the starting node and these nodes have neighbors only in
the previous and the next level sets. Therefore a permuted matrix based on the
ordering of the level sets constitutes a block tridiagonal structure. These strategies
may suffer from not reaching the desired number of block rows due to a smaller
number of level sets. They also suffer from obtaining quite unbalanced partitions
due to relatively larger sizes of some level sets. Numerical values are only considered
when a dropping-based filtering strategy is used. Although filtering small elements
on normal equations before applying CM allows more freedom in partitioning by
increasing the number of level sets, it does not, however, hold the properties of the
strict two-block partitioning [9, 43, 47]. In addition, it is difficult to determine the
best filtering threshold value a priori and find a common threshold which is good for
all matrices.

In recent studies [23, 47], a hypergraph partitioning method is used to find a
good block-row partitioning for the CG accelerated block Cimmino algorithm. It is
reported that it performs better than CM-based methods (with or without filtering
small elements). In hypergraph partitioning, the partitioning objective of minimiz-
ing the cutsize corresponds to minimizing the number of linking columns among row
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blocks, where a linking column refers to a column that contains nonzeros in more
than one block row. This in turn loosely relates to increasing the structural orthogo-
nality [39] among row blocks. Here, two rows are considered to be structurally more
orthogonal if they have fewer nonzeros in the same columns. This measure depends
on only nonzero counts and ignores the numerical values of nonzeros.

In this work, we propose a novel graph theoretical block-row partitioning method
for the CG accelerated block Cimmino algorithm. For this purpose, we introduce a row
inner-product graph model of a given matrix A and then the problem of finding a good
block-row partitioning is formulated as a graph partitioning problem on this graph
model. The proposed method takes the numerical orthogonality between block rows
of A into account. In the proposed method, the partitioning objective of minimizing
the cutsize directly corresponds to minimizing the sum of interblock inner products
between block rows thus leading to an improvement in the eigenvalue spectrum of H.

The validity of the proposed method is confirmed against two baseline methods
by conducting experiments on a large set of matrices that arise in a variety of real
life applications. One of the two baseline methods is the state-of-the-art hypergraph
partitioning method introduced in [23]. We conduct experiments to study the effect
of the partitioning on the eigenvalue spectrum of H. We also conduct experiments to
compare the performance of three methods in terms of the number of CG iterations
and parallel CG time to solution. The results of these experiments show that the pro-
posed partitioning method is significantly better than both baseline methods in terms
of all of these performance metrics. Finally, we compare the preprocessing overheads
of the methods and show that the proposed method incurs much less overhead than
the hypergraph partitioning method, thus allowing a better amortization.

The rest of the paper is organized as follows. Section 2 presents the proposed
partitioning method and its implementation. In section 3, we present and discuss the
experimental results. Finally, the paper concludes with conclusions and directions for
future research in section 4.

2. The proposed partitioning method. In this section, we first describe the
row inner-product graph model and then show that finding a good block-row par-
titioning can be formulated as a graph partitioning problem on this graph model.
Finally, we give the implementation details for the construction and partitioning of
the graph model. We refer the reader to Appendix A for a short background on graph
partitioning.

2.1. Row inner-product graph model. In the row inner-product graph
GRIP(A) = (V, E) of matrix A, vertices represent the rows of matrix A and edges
represent nonzero inner products between rows. That is, V contains vertex vi for each
row ri of matrix A. E contains an edge (vi, vj) only if the inner product of rows ri
and rj is nonzero. That is,

(2.1) E = {(vi, vj) | rirTj 6= 0}.

Each vertex vi can be associated with a unit weight or a weight that is equal to the
number of nonzeros in row ri, that is,

(2.2) w(vi) = 1 or w(vi) = nnz(ri),

respectively. Each edge (vi, vj) is associated with a cost equal to the absolute value
of the respective inner product. That is,

(2.3) cost(vi, vj) =
∣∣rirTj ∣∣ for all (vi, vj) ∈ E .
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(a) Sample matrix A (b) Row inner-product graph GRIP of A

Fig. 1. Row inner-product graph model.

If we prescale the rows of coefficient matrix A such that each row has a unit
2-norm, then the cost of edge (vi, vj) will correspond to the cosine of the angle be-
tween the pair of rows ri and rj . Therefore we prescale the matrix and the right-hand
side vector in order to improve the effectiveness of the proposed graph model. We
note that the convergence of the block Cimmino algorithm is independent of row
scaling [25, 43, 47].

This graph is topologically equivalent to the standard graph representation of the
symmetric matrix resulting from the sparse matrix-matrix multiplication operation
C = AAT . That is, the sparsity pattern of C corresponds to the adjacency matrix
representation of GRIP. Each nonzero cij of the resulting matrix C incurs an edge
(vi, vj). Since each nonzero entry cij of C is computed as the inner product of row ri
and row rj , the absolute value of the nonzero cij determines the cost of the respective
edge (vi, vj). That is, since cij = rir

T
j , we have cost(vi, vj) = |cij |.

Figure 1(a) shows a 12 × 12 sample sparse matrix that contains 38 nonzeros.
Note that for the sake of clarity of presentation, rows of the sample matrix A are
not prescaled. Figure 1(b) depicts the proposed row inner-product graph GRIP for
this sample matrix. As seen in Figure 1(b), GRIP contains 12 vertices each of which
corresponds to a row and 35 edges each of which corresponds to a nonzero row inner
product. For example, the inner product of rows r2 and r4 is nonzero, where r2rT4 =
(9×12)+(6×18) = 216 so that GRIP contains the edge (v2, v4) with cost(v2, v4) = 216.
In Figure 1(b), edges with cost larger than 100 are shown with thick lines in order to
make such high inner-product values more visible.

Figure 4(a) shows the resulting matrix C of the sparse matrix-matrix multipli-
cation C = AAT . Only the off-diagonal nonzero entries together with their values
are shown since the values of the diagonal entries do not affect GRIP. The cells that
contain nonzeros larger than 100 are shown with black background in order to make
such high values more visible. Comparison of Figures 1(b) and 4(a) shows that the
topology of the standard graph model G(C) of matrix C = AAT is equivalent to the
topology of GRIP. As also seen in Figure 4(a), the values of the nonzero entries of
matrix C are equal to the costs of respective edges of GRIP. For example, nonzero c24

with a value 216 incurs an edge (v2, v4) with cost(v2, v4) = 216.

2.2. Block-row partitioning via partitioning GRIP. A K-way partition Π =
{V1,V2, . . . ,VK} of GRIP can be decoded as a partial permutation on the rows of A
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to induce a permuted matrix AΠ, where

(2.4) AΠ = PA =



AΠ
1
...
AΠ

k
...
AΠ

K

 =



R1

...
Rk

...
RK

 .

Here, P denotes the row permutation matrix which is defined by the K-way partition
Π as follows: the rows associated with the vertices in Vk+1 are ordered after the rows
associated with the vertices in Vk for k = 1, 2, . . . ,K − 1. That is, the block row Rk

contains the set of rows corresponding to the set of vertices in part Vk of partition Π,
where ordering of the rows within block row Rk is arbitrary for each k = 1, 2, . . . ,K.
Note that we use the notation Rk to denote both kth block row AΠ

k and the set of
rows in AΠ

k . Since the column permutation does not affect the convergence of the
block Cimmino algorithm [23], the original column ordering of A is maintained.

Consider a partition Π of GRIP. The weight Wk of a part Vk is either equal to
the number of rows or number of nonzeros in block row Rk depending on the vertex
weighting scheme used according to (2.2). That is,

(2.5) Wk = |Rk| or Wk =
∑

ri∈Rk

nnz(ri).

Therefore in partitioning GRIP, the partitioning constraint of maintaining balance
among part weights according to (A.2) corresponds to maintaining balance on either
the number of rows or the number of nonzeros among the block rows.

Consider a partition Π of GRIP. A cut edge (vi, vj) between parts Vk and Vm
represents a nonzero interblock inner product rir

T
j between block rows Rk and Rm.

Therefore the cutsize of Π (given in (A.3)) is equal to

(2.6)

cutsize(Π) ,
∑

(vi,vj)∈Ecut

cost(vi, vj) =
∑

1≤k<m≤K

∑
vi∈Vk
vj∈Vm

cost(vi, vj)

=
∑

1≤k<m≤K

∑
ri∈Rk
rj∈Rm

∣∣rirTj ∣∣,
which corresponds to the total sum of the interblock inner products (interIP(Π)). So,
in partitioning GRIP, the partitioning objective of minimizing the cutsize corresponds
to minimizing the sum of interblock inner products between block rows. Therefore
this partitioning objective corresponds to making the block rows numerically more or-
thogonal to each other. This way, we expect this method to yield a faster convergence
in the CG accelerated block Cimmino algorithm.

We introduce Figures 2 and 3 in order to clarify the proposed graph partition-
ing method for block-row partitioning. Figure 2(a) shows a straightforward 3-way
block-row partition {Rs

1,Rs
2, R

s
3} of the sample matrix A given in Figure 1(a), where

the first four, the second four, and the third four consecutive rows in the original
order constitute the block rows Rs

1,Rs
2, and Rs

3, respectively. Figure 2(b) shows
the 3-way vertex partition Πs(V) = {Vs

1 ,Vs
2 ,Vs

3} of GRIP that corresponds to this
straightforward 3-way block-row partition. Figure 3(a) shows a good 3-way vertex
partition Πg(V) = {Vg

1 ,V
g
2 ,V

g
3} of GRIP obtained by using the graph partitioning tool
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(a) (b)

Fig. 2. (a) Straightforward 3-way row partition of A and (b) 3-way partition Πs(V) of GRIP(A)
induced by Figure 2(a).

(a) (b)

Fig. 3. (a) Good 3-way partition Πg(V) of GRIP(A) and (b) 3-way row partition of A induced
by Figure 3(a).

METIS [38]. Figure 3(b) shows the permuted AΠ matrix and block-row partition
{Rg

1,R
g
2, R

g
3} induced by the 3-way vertex partition Πg(V).

As seen in Figures 2 and 3, both straightforward and good block-row partitions
achieve perfect balance on the row counts of blocks by having exactly four rows per
block. The quality difference between straightforward and good block-row partitions
can be easily seen by comparing the 3-way partitions of GRIP in Figures 2(b) and 3(a),
respectively. As seen in Figure 2(b), eight out of nine thick edges remain on the
cut of Πs(V), whereas all of the nine thick edges remain internal in Πg(V) as seen
in Figure 3(a).

Figure 4 shows the 3× 3 block-checkerboard partitioning of the resulting matrix
C = AAT induced by straightforward and good block-row partitioning of the sample
matrix A in Figures 2(a) and 3(b), respectively. Note that both rows and columns of
the C matrix are partitioned conformably with the row partitions of the A matrix.
The comparison of Figures 4(a) and 4(b) shows that large nonzeros (dark cells) are
scattered across the off-diagonal blocks of matrix C for the straightforward partition-
ing, whereas large nonzeros (dark cells) are clustered to the diagonal blocks of C for
the good partitioning.

We introduce Figure 5 to compare the quality of the straightforward and good
block-row partitions in terms of interblock row-inner-product sums. In the figure,
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(a) (b)

Fig. 4. 3 × 3 block-checkerboard partition of matrix C = AAT induced by 3-way (a) straight-
forward (Figure 2(a)) and (b) good (Figure 3(b)) block-row partitions of matrix A.

IP(Πs) =

(a)

IP(Πg) =

(b)

Fig. 5. Interblock row inner-product matrix IP(Π) for (a) straightforward and (b) good block-
row partitions.

each off-diagonal entry ipkm of the 3 × 3 IP matrix shows the sum of the interblock
row inner products between the respective block rows Rk and Rm. That is,

(2.7) ipkm ,
∑

ri∈Rk
rj∈Rm

∣∣rirTj ∣∣ for k 6= m.

As seen in Figure 5, ips
12 = 1,222 for the straightforward partition, whereas ipg

12 = 70
for the good partition. Note that ipkm is also equal to the sum of the absolute values
of the nonzeros of the off-diagonal block Ckm at the kth row block and mth column
block of the C matrix, i.e.,

(2.8) ipkm =
∑

ri∈Rk
rj∈Rm

|cij |.
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10
-2

10
-1

10
0

2.53     3.0 10
-2

(a) Straightforward partitioning (Figure 2(a))

10
-2

10
-1

10
0

1.55     5.1 10
-1

(b) Good partitioning (Figure 3(b))

Fig. 6. Eigenvalue spectrum of H for the block-row partitionings of the sample matrix given
in Figure 1(a).

Therefore the total sum of interblock inner products is

(2.9)
interIP(Πs) = ips

12 + ips
13 + ips

23

= 1,222 + 624 + 323 = 2,169

for the straightforward partition, whereas for the good partition it is

(2.10) interIP(Πg) = 70 + 94 + 90 = 254.

Figures 6(a) and 6(b), respectively, show the eigenvalue spectrum of H for the
straightforward and good partitionings. As seen in the figures, for the straightfor-
ward partitioning the eigenvalues reside in the interval [3.0 × 10−2, 2.53], whereas
for good partitioning the eigenvalues reside in the interval [5.1× 10−1, 1.55]. As seen
in Figure 6(b), after using GRIP partitioning the eigenvalues are much better clustered
around 1 and the smallest eigenvalue is much larger than that of the straightforward
partitioning method.

2.3. Implementation. Implementation of the proposed partitioning method
consists of two stages which are constructing GRIP and partitioning GRIP.

Constructing GRIP. For constructing GRIP, we choose to use basic sparse
matrix-matrix multiplication (SpGEMM) [33] kernel due to existing efficient imple-
mentations. The edges of the GRIP are obtained from the nonzeros of the C = AAT

matrix, whereas their weights are obtained from the absolute values of those nonzeros.
Note that when matrix A has dense column(s), the corresponding matrix C =

AAT will be quite dense. In other words, when a column has nz nonzeros, the corre-
sponding C matrix will have at least nz2 nonzeros. For example, Figure 7(a) shows a
25×25 sparse matrix A which has a dense column having 23 nonzero entries. As seen
in Figure 7(b), matrix AAT is dense as it has 531 nonzero entries. Clearly, a large
number of nonzeros in C (i.e., a large number of edges in GRIP) increases the memory
requirement and computation cost of SpGEMM as well as the time requirement for
partitioning GRIP.

In order to alleviate the aforementioned problem, we propose the following met-
hodology for sparsifying C. We identify a column A(:, i) (in MATLAB [41] nota-
tion) of an n×n matrix A as a dense column if it contains more than

√
n nonze-

ros (nnz(A(:, i)) >
√
n). Given A, we extract a sparse matrix Ã by keeping the

largest (in absolute value)
√
n nonzeros of dense columns of A. That is, the smallest

nnz(A(:, i)) −
√
n entries of a dense A-matrix column A(:, i) is ignored during con-

structing column Ã(:, i) of Ã. Hence, the SpGEMM operation is performed on Ã to
obtain sparsified resulting matrix C̃ = ÃÃT . This will lead to a sparsified G̃RIP graph.
For example, Figure 7(c) shows this sparsity pattern of a sparse matrix Ã which is
extracted from A by keeping the 5 largest nonzeros in the dense column of A. As seen
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(a) A
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(b) C = AAT
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(d) C̃ = ÃÃT

Fig. 7. Nonzero patterns of A, AAT , Ã, and ÃÃT .

in Figure 7(d), matrix C̃ = ÃÃT is very sparse with respect to Figure 7(b). Note that
both Ã and C̃ are used only for constructing G̃RIP of A. After the partitioning stage,
both matrices are discarded. In the rest of the paper, G̃RIP will be referred to as GRIP

for the sake of the simplicity of presentation.
Partitioning GRIP. We use multilevel graph partitioning tool METIS [38] for

partitioning GRIP. In order to compute integer edge weights required by METIS, we
multiply the floating-point edge cost values with α and round them up to the nearest
integer value; wgt(vi, vj) = dα× cost(vi, vj)e, where α is a sufficiently large integer.
Here, cost(vi, vj) is the edge cost computed according to (2.3) and wgt(vi, vj) is the
weight of the respective edge provided to METIS. Since the rows of matrix A are
prescaled to have the 2-norm equal to one in the preprocessing phase, each edge cost
cost(vi, vj) should be in the range (0, 1] and the resulting edge weight wgt(vi, vj) will
be an integer in the range [1, α].

3. Experimental results.

3.1. Experimental framework. In the experiments, we used the CG acceler-
ated block Cimmino implementation available in ABCD Solver v1.0 [48]. In ABCD
Solver, we used the MUMPS 5.1.2 [3] sparse direct solver to factorize the systems
in (1.8) once and solve the system iteratively. We note that the proposed scheme
is designed for the classical block Cimmino by improving the numerical orthogonal-
ity between blocks and it does not intend to improve the structural orthogonality.
Hence, it is not applicable to the augmented block Cimmino algorithm that is also
available in the ABCD Solver where the number of augmented columns depends only
on structural orthogonality.

We adopted the same matrix scaling procedure [4] as in ABCD Solver. This is
a parallel iterative procedure which scales the columns and rows of A so that the
absolute value of the largest entry in each column and row is one. We first perform
row and column scaling in order to avoid problems due to poor scaling of the input
matrix. Then, we also perform row scaling on A to have 2-norm equal to exactly
one, so that the actual values in AAT would then correspond to cosines of the angles
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between pairs of rows in A [23, 47]. We note that H is numerically independent
of row scaling. However the column scaling affects H and it can be considered as
preconditioner [43, 47].

ABCD Solver includes a stabilized block-CG accelerated block Cimmino algo-
rithm [9] especially for solving systems with multiple right-hand side vectors. Since
the classical CG is guaranteed to converge [42] for systems where the coefficient matrix
is symmetric and positive definite and its convergence theory is well-established, in
this work we utilized the classical CG accelerated block Cimmino in Algorithm 1.2 for
solving a sparse linear system of equations with single right-hand side vector rather
than the block-CG acceleration.

In parallel CG accelerated block Cimmino algorithm, the work distribution among
processors is performed in exactly the same way as in ABCD Solver. That is, if
the number of row blocks is larger than the number of processors, row blocks are
distributed among processors so that each processor has equal workload in terms of
number of rows. If the number of row blocks is smaller than the number of processors,
a master-slave computational approach [5, 23, 24] is adopted. Each master processor
owns a distinct row block and is responsible for inner-product and matrix-vector
computations. Each slave processor is a supplementary processor which helps the
specific master processor in the factorization and solution steps of MUMPS. After the
analysis phase of MUMPS, slave processors are mapped to some master processors
according to the information of FLOP estimation in the analysis phase.

In all experiments with the CG accelerated block Cimmino, we use the normwise
backward error [8] at iteration t,

(3.1) γ(t) =
‖Ax(t) − f‖∞

‖A‖∞‖x(t)‖1 + ‖f‖∞
< 10−10,

as the stopping criterion and we use 10,000 as the maximum number of iterations.
The right-hand side vectors of the systems are obtained by multiplying the coefficient
matrices with a vector whose elements are all one. In all instances, the CG iterations
are started from the zero vector.

In the experiments, we have compared the performance of the proposed graph
partitioning method (GP) against two baseline partitioning methods already available
in ABCD Solver. The first baseline method, which is referred to as the uniform
partitioning (UP) method in ABCD Solver, partitions the rows of the coefficient
matrix into a given number of block rows with almost an equal number of rows
without any permutation on the rows of A. Note that the UP method is the same as
the straightforward partitioning method mentioned in section 2.

The second baseline method is the hypergraph partitioning (HP) method [23].
This method uses the column-net model [15] of sparse matrix A in which rows and
columns are, respectively, represented by vertices and hyperedges both with unit
weights [23]. Each hyperedge connects the set of vertices corresponding to the rows
that have a nonzero on the respective column. In the HP method, a K-way partition
of the vertices of the column-net model is used to find K block rows. The partitioning
constraint of maintaining balance on part weights corresponds to finding block rows
with an equal number of rows.

CM-based partitioning strategies [23, 43, 47] are also considered as another base-
line approach. However, our experiments showed that CM-based strategies fail in
producing the desired number of balanced partitions and achieving convergence for
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most of the test instances. Due to a significantly larger number of failures of CM-
based strategies compared to UP and HP, UP and HP are selected as much better
baseline algorithms.

The HP method in ABCD Solver uses the multilevel hypergraph partitioning tool
PaToH [16] for partitioning the column-net model of matrix A. Here, we use the
same parameters for PaToH specified in ABCD Solver. That is, the final imbalance
(i.e., ε in (A.2)) and initial imbalance (imbalance ratio of the coarsest hypergraph)
parameters in PaToH are set to 50% and 100%, respectively. The other parameters
are left as a default of PaToH as in ABCD Solver.

Parallel block Cimmino solution times on some real problems are experimented
upon by using PaToH with different imbalance ratios in [23]. It is reported that
although partitioning with weak balancing greatly reduces the number of intercon-
nections which lead to a decrease in the number of iterations; however, it increases the
parallel solution time because of highly unbalanced computational workload among
processors. Therefore, finding good partition imbalance ratios can be important for
the parallel performance of block Cimmino. Due to the space limitation, the impact
of different imbalance ratios on the parallel performance is left as future work.

In the proposed GP method, as mentioned in subsection 2.3, the multilevel graph
partitioning tool METIS is used to partition the row inner-product graph model GRIP

of A. The imbalance parameter of METIS is set to 10% and the k-way option is used.
For the sake of a fair comparison between HP and GP methods, unit vertex weights
are used in GRIP. The other parameters are left as a default of METIS. Since both
PaToH and METIS use randomized algorithms, we report the results of the geometric
mean of 5 experiments with different seeds for each instance.

Here and hereafter, we use GP, HP, and UP to refer to the respective block-row
partitioning methods as well as ABCD Solver that utilizes the regular block Cimmino
algorithm for solving the systems partitioned by the respective method.

The extensive numerical experiments were conducted on a shared memory system.
The shared memory system is a four socket 64-core computer that contains four AMD
Opteron 6376 processors, where each processor has 16 cores running at 2.3 GHz and
a total of 64 GB of DDR3 memory. Due to memory bandwidth limitations of the
platform, experiments are performed with 32 cores.

ABCD Solver [48] is implemented in C/C++ programming language with MPI-
and OpenMP-based hybrid parallelism. Furthermore, an additional parallelism level
can be incorporated with multithreaded BLAS/LAPACK libraries. However, in the
experiments, we used pure MPI-based parallelism which gives the best performance
for our computing system.

3.2. Effect of block-row partitioning on the eigenvalue spectrum of H.
The convergence rate of the CG accelerated block Cimmino algorithm is related to
the eigenvalue spectrum of H. By the nature of the block Cimmino algorithm, most
of the eigenvalues of H are clustered around 1, but there can be some eigenvalues at
extremes of the spectrum.

In this subsection, we conduct experiments to study the effect of the partition-
ing on the eigenvalue spectrum of H by comparing the proposed GP method against
UP and HP. In these experiments, in order to be able to compute the eigenvalue
spectrum requiring a reasonable amount of time and memory, we use four small non-
symmetric sparse matrices: sherman3, GT01R, gemat11, and LeGresley 4908 from the
SuiteSparse matrix Collection [20]. The first and the second matrices arise in com-
putational fluid dynamics problems, whereas the third and fourth matrices arise in
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(a) sherman3 : n = 5,005, nnz = 20,033 (b) GT01R : n = 7,980, nnz = 430,909

(c) gemat11 : n = 4,929, nnz = 33,108 (d) LeGresley 4908 : n = 4,908, nnz = 30,482

Fig. 8. Eigenvalue spectrum of H (with the smallest and largest eigenvalues) and the number
of CG iterations (iters) required for convergence.

power network problems. We partition the matrices into 8 block rows for all of the
three partitioning methods UP, HP, and GP.

Figure 8 shows the eigenvalue spectrum of H obtained by UP, HP, and GP meth-
ods for each test instance. The figure also reports the number of CG iterations (iters)
required for convergence as well as the smallest and largest eigenvalues of H. As
seen in the figure, both HP and GP methods achieve significantly better clustering of
the eigenvalues around 1 compared to UP. This experimental finding is reflected in
a remarkable decrease in the number of CG iterations attained by both HP and GP
over UP.

In the comparison of HP and GP, GP achieves better eigenvalue clustering and
hence a better convergence rate than HP for all instances. For sherman3, GT01R,
gemat11, and LeGresley 4908 instances, the better clustering quality attained by
GP over HP leads to significant improvement in the convergence rate by 66%, 39%,
61%, and 15%, respectively.

3.3. Dataset for performance analysis. For the following experiments, we
selected all nonsingular nonsymmetric square matrices whose dimensions are between
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50,000 and 5,000,000 rows and columns from the SuiteSparse Matrix Collection [20].
The number of matrices based on this criteria turns out to be 112. Only the HV15R

and cage14 matrices are excluded due to memory limitations. We have observed that
at least one of the three partitioning methods was able to converge in 76 instances
out of these 110 in less than 10,000 CG iterations. Table 1 shows the properties of
those 76 matrices that are used in the experiments. We note that the main advantage
of the block Cimmino algorithm is its amenability to parallelism and requirement of
less storage compared to direct methods. It would not be competitive for the smallest
problems in the dataset against direct solvers or classical preconditioned iterative
solvers.

In Table 1, the matrices are displayed in increasing sorted order according to their
sizes. The matrices are partitioned into a number of partitions where each row block
has approximately 20,000 rows if n> 100,000 or 10,000 rows if n< 100,000. Thus in
our dataset, the smallest matrix is partitioned into 6 row blocks whereas the largest
matrix is partitioned into 235 row blocks.

3.4. Convergence and parallel performance. In this subsection, we study
the performance of the proposed GP method against UP and HP in terms of the
number of CG iterations and parallel CG time to solution.

Table 2 shows the number of CG iterations and parallel CG time for each matrix.
In the table, “F” denotes that an algorithm fails to reach the desired backward error
in 10,000 iterations for the respective matrix instance. As seen in Table 2, UP and
HP fail to converge in 26 and 18 test instances, respectively, whereas GP does not fail
in any test instance.

In Table 2, the best result for each test instance is shown in bold. As seen in the
table, out of 76 instances, the proposed GP method achieves the fastest convergence
in 58 instances, whereas HP and UP achieve the fastest convergence in only 8 and
11 instances, respectively. As also seen in Table 2, GP achieves the fastest iterative
solution time in 56 instances, whereas HP and UP achieve the fastest solution time
in 11 and 9 instances, respectively.

Figure 9 shows the performance profiles [22] of 76 matrix instances which compare
multiple methods over a set of test instances. A performance profile is used to compare
multiple methods with respect to the best performing method for each test instance
and report the fraction of the test instances in which performance is within a factor of
that of the best method. For example, in Figure 9(a) a point (abscissa = 2, ordinate
= 0.40) on the performance curve of a method refers to the fact that the performance
of the respective method is no worse than that of the best method by a factor of 2 in
approximately 40% of the instances. If a method is closer to the top-left corner, then
it achieves a better performance.

In Figures 9(a) and 9(b), we show the performance profiles in terms of the number
of CG iterations and parallel CG times, respectively. As seen in Figure 9(a), the
number of CG iterations required by GP for convergence does not exceed that of
the best method by a factor of 2 in approximately 95% of the instances, whereas
HP and UP achieve the same relative performance compared to the best method in
approximately 42% and 30% of the instances, respectively. As seen in Figure 9(b),
the CG time using GP is not slower than that of the best method by a factor of
2 in approximately 95% of the instances. Whereas HP and UP achieve the same
relative performance compared to the best method in approximately 45% and 23% of
the instances, respectively. Figures 9(a) and 9(b) show that the CG time is directly
proportional to the number of CG iterations as expected.
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Table 1
Matrix properties (n: number of rows/columns, nnz: number of nonzeros).

Matrix name n nnz Matrix name n nnz

rajat26 51,032 247,528 dc3 116,835 766,396
ecl32 51,993 380,415 trans4 116,835 749,800
2D 54019 highK 54,019 486,129 trans5 116,835 749,800
bayer01 57,735 275,094 matrix-new 3 125,329 893,984
TSOPF RS b39 c30 60,098 1,079,986 cage12 130,228 2,032,536
venkat01 62,424 1,717,792 FEM 3D thermal2 147,900 3,489,300
venkat25 62,424 1,717,763 para-4 153,226 2,930,882
venkat50 62,424 1,717,777 para-10 155,924 2,094,873
laminar duct3D 67,173 3,788,857 para-5 155,924 2,094,873
lhr71c 70,304 1,528,092 para-6 155,924 2,094,873
shyy161 76,480 329,762 para-7 155,924 2,094,873
circuit 4 80,209 307,604 para-8 155,924 2,094,873
epb3 84,617 463,625 para-9 155,924 2,094,873
poisson3Db 85,623 2,374,949 crashbasis 160,000 1,750,416
rajat20 86,916 604,299 majorbasis 160,000 1,750,416
rajat25 87,190 606,489 ohne2 181,343 6,869,939
rajat28 87,190 606,489 hvdc2 189,860 1,339,638
LeGresley 87936 87,936 593,276 shar te2-b3 200,200 800,800
rajat16 94,294 476,766 stomach 213,360 3,021,648
ASIC 100ks 99,190 578,890 torso3 259,156 4,429,042
ASIC 100k 99,340 940,621 ASIC 320ks 321,671 1,316,085
matrix 9 103,430 1,205,518 ASIC 320k 321,821 1,931,828
hcircuit 105,676 513,072 ML Laplace 377,002 27,582,698
lung2 109,460 492,564 RM07R 381,689 37,464,962
rajat23 110,355 555,441 language 399,130 1,216,334
Baumann 112,211 748,331 CoupCons3D 416,800 17,277,420
barrier2-1 113,076 2,129,496 largebasis 440,020 5,240,084
barrier2-2 113,076 2,129,496 cage13 445,315 7,479,343
barrier2-3 113,076 2,129,496 rajat30 643,994 6,175,244
barrier2-4 113,076 2,129,496 ASIC 680k 682,862 2,638,997
barrier2-10 115,625 2,158,759 atmosmodd 1,270,432 8,814,880
barrier2-11 115,625 2,158,759 atmosmodj 1,270,432 8,814,880
barrier2-12 115,625 2,158,759 Hamrle3 1,447,360 5,514,242
barrier2-9 115,625 2,158,759 atmosmodl 1,489,752 10,319,760
torso2 115,967 1,033,473 atmosmodm 1,489,752 10,319,760
torso1 116,158 8,516,500 memchip 2,707,524 13,343,948
dc1 116,835 766,396 circuit5M dc 3,523,317 14,865,409
dc2 116,835 766,396 rajat31 4,690,002 20,316,253

It is clear that GP mainly aims at improving the convergence rate, whereas HP
mainly aims at reducing total communication volume. We made additional measure-
ments in order to discuss this trade-off between these two methods. Due to the lack of
space, here we only summarize the average results using 32 processors. Although GP
incurs 44% more total communication volume than HP per iteration, this results in
only a 6% increase in the per-iteration execution time. Here, the per-iteration execu-
tion time for a given instance shows the overall parallelization efficiency attained by
the respective partitioning method irregardless of its convergence performance. This
experimental finding can be attributed to several other factors affecting the communi-
cation overhead in addition to the total communication volume as well as the fact that
per-iteration execution time is dominated by the computational cost of local solution
of the linear systems via a direct solver in block Cimmino. On average, although GP
incurs only 6% more per-iteration time than HP, GP requires 59% fewer iterations for
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Table 2
Number of CG iterations and parallel CG times in seconds.

Matrix name
# of CG iterations Parallel CG time to soln.

UP HP GP UP HP GP

rajat26 F 3303 245 F 62.4 8.4
ecl32 5307 1253 314 246.0 36.8 10.1
2D 54019 highK 42 4 9 0.9 0.1 0.2
bayer01 2408 382 131 63.8 8.7 3.4
TSOPF RS b39 c30 676 262 473 24.9 4.6 8.0
venkat01 54 37 34 1.8 0.9 0.9
venkat25 915 625 599 30.8 14.3 14.4
venkat50 1609 975 970 56.2 23.5 23.7
laminar duct3D 466 630 394 29.6 39.0 23.0
lhr71c F 6164 4166 F 193.3 136.5
shyy161 13 20 15 0.4 0.6 0.5
circuit 4 F 256 183 F 15.5 12.3
epb3 2583 3089 2318 87.7 100.9 77.9
poisson3Db 4797 983 715 715.0 51.9 41.0
rajat20 629 641 322 81.5 40.9 34.6
rajat25 1172 937 448 121.0 62.6 48.9
rajat28 556 369 207 86.3 22.3 21.2
LeGresley 87936 F 7625 3102 F 266.5 122.2
rajat16 6834 1022 180 835.0 68.5 20.0
ASIC 100ks F 23 45 F 1.0 2.1
ASIC 100k 76 324 49 22.7 93.5 13.4
matrix 9 3944 F 9276 272.0 F 704.0
hcircuit 2061 2477 460 591.0 136.5 32.7
lung2 12 12 13 0.9 0.8 0.9
rajat23 F 7770 501 F 465.6 33.4
Baumann 732 1551 1340 47.4 86.5 89.8
barrier2-1 F F 1219 F F 145.1
barrier2-2 F F 1024 F F 99.8
barrier2-3 F F 1013 F F 106.1
barrier2-4 F F 1360 F F 116.0
barrier2-10 F F 1206 F F 135.8
barrier2-11 F F 1169 F F 125.7
barrier2-12 F F 1139 F F 116.1
barrier2-9 F F 1306 F F 136.2
torso2 16 14 15 0.7 0.6 0.7
torso1 F 4376 9200 F 322.1 833.7
dc1 629 2059 83 255.0 745.4 32.9
dc2 478 1313 68 170.3 504.0 22.4
dc3 2172 3329 90 793.0 1220.1 31.9
trans4 292 1416 23 105.9 452.1 5.8
trans5 1006 4533 33 368.7 1693.1 8.5
matrix-new 3 F 9739 6707 F 709.7 519.4
cage12 9 12 10 1.7 3.1 2.2
FEM 3D thermal2 67 54 45 4.9 4.3 3.8
para-4 7675 F 3546 1600.0 F 423.4
para-10 F F 5565 F F 588.6
para-5 F F 5054 F F 610.5
para-6 F F 5019 F F 574.1
para-7 F F 4576 F F 508.6
para-8 F F 4973 F F 535.7
para-9 F F 5667 F F 682.0
crashbasis 68 17 21 10.0 1.1 1.4
majorbasis 48 16 18 6.6 1.0 1.2
ohne2 2623 F 3881 F 2103.1 820.8
hvdc2 F 5622 3042 F 446.7 262.1
shar te2-b3 23 27 26 9.3 8.9 8.8
stomach 8 11 9 1.1 1.4 1.3
torso3 22 30 11 5.2 7.0 3.1
ASIC 320ks F 20 2 F 4.5 0.6
ASIC 320k 114 37 11 56.9 40.4 8.0
ML Laplace 8615 9136 8438 3890.3 4220.8 4215.4
RM07R F F 3944 F F 10200.0
language 974 661 453 335.0 196.4 159.0
CoupCons3D 277 132 107 100.0 57.8 48.3
largebasis 1155 701 348 549.1 174.8 88.3
cage13 10 13 12 6.7 14.7 10.6
rajat30 157 200 61 229.0 274.5 86.3
ASIC 680k 10 19 2 11.3 38.2 3.5
atmosmodd 744 2055 1183 869.2 2115.2 1279.6
atmosmodj 787 2235 1253 994.0 2323.2 1293.1
Hamrle3 F 2394 2010 F 2375.8 2012.9
atmosmodl 1206 805 379 1800.6 1005.3 484.0
atmosmodm 1164 697 202 1730.0 871.4 257.6
memchip 3278 1002 379 7450.3 1589.9 862.3
circuit5M dc 173 58 10 512.0 143.6 23.4
rajat31 2840 2767 1500 9590.1 9456.2 5166.6

Number of bests 11 8 58 9 11 56
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Fig. 9. Performance profiles for (a) convergence rate and (b) parallel CG time.

convergence than HP. This explains the significant overall performance improvement
achieved by GP against HP.

3.5. Preprocessing overhead and amortization. In this subsection, we ana-
lyze the relative preprocessing overhead of the three methods UP, HP, and GP in order
to find out whether the intelligent partitioning methods HP and GP are amortized.
For all of the three block-row partitioning methods, the preprocessing overhead in-
cludes matrix scaling, block-row partitioning, creating the submatrices corresponding
to these block rows and distributing these submatrices among processors. Recall that
the partitioning for UP is straightforward and hence it incurs only negligible addi-
tional cost to the preprocessing overhead. On the other hand, intelligent partitioning
algorithms utilized in HP and GP incur considerable amount of cost to the overall
preprocessing overhead. Furthermore, for GP, construction of the row inner-product
graph also incurs a significant amount of cost.

In Table 3, we display total preprocessing time and total execution time for all
three methods for each one of the 76 test instances. In the table, total execution
time is the sum of the total preprocessing and the total solution times. Here the total
solution time includes parallel factorization and parallel CG solution times. Note that
the factorization in block Cimmino algorithm in ABCD Solver is performed by parallel
sparse direct solver MUMPS [3]. The factorization, which needs to be performed only
once, involves symbolic and numerical factorizations of the coefficient matrices of
the augmented systems that arise in the block Cimmino algorithm. Note that this
factorization process is embarrassingly parallel since the factorization of the coefficient
matrices of the augmented systems are done independently. Recall that MUMPS is
also used during the iterative solution stage, where at each iteration a linear system
is solved using the factors of the augmented systems that were computed during the
factorization stage.

As seen in Table 3, in terms of the preprocessing time, UP is the clear winner in all
of the 76 instances as expected, whereas GP incurs much less preprocessing time than
HP in all except 7 instances. As also seen in Table 3, comparing all three methods,
GP achieves the smallest total execution time in 57 instances, whereas UP and HP,
respectively, achieve the smallest total execution time in only 15 and 4 instances.

In the relative comparison of GP and UP, GP incurs only 209% more preprocess-
ing time than UP, on average, which leads GP to achieve less total execution time
than UP in 61 out of 76 instances. In other words, compared to UP, the sequential
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Table 3
Preprocessing time and total execution time (including preprocessing) in seconds.

Matrix name
Preprocessing time Total execution time

UP HP GP UP HP GP

rajat26 0.12 0.53 0.52 F 63.7 9.3
ecl32 0.20 0.98 0.54 246.7 39.3 11.8
2D 54019 highK 0.22 0.69 0.50 1.5 1.4 1.3
bayer01 0.14 0.41 0.39 64.4 9.7 4.0
TSOPF RS b39 c30 0.47 0.93 0.87 26.1 6.2 9.4
venkat01 0.75 2.02 1.44 3.0 3.4 2.8
venkat25 0.67 2.05 1.55 32.0 16.9 16.7
venkat50 0.76 2.07 1.46 57.3 26.0 25.8
laminar duct3D 1.30 5.89 4.63 34.3 53.8 33.8
lhr71c 0.60 1.82 1.68 F 197.0 140.3
shyy161 0.16 0.50 0.32 1.2 1.7 1.5
circuit 4 0.16 0.79 1.13 F 16.6 13.1
epb3 0.21 0.70 0.44 88.3 102.1 78.7
poisson3Db 1.10 6.02 5.08 723.0 60.2 48.6
rajat20 0.31 2.05 2.05 83.0 44.1 37.8
rajat25 0.28 2.10 2.01 122.1 66.5 49.9
rajat28 0.30 2.02 2.06 87.9 25.8 24.4
LeGresley 87936 0.35 0.88 0.64 F 294.7 123.5
rajat16 0.24 1.97 1.82 836.5 71.8 22.9
ASIC 100ks 0.37 1.50 1.32 F 3.1 4.1
ASIC 100k 0.51 2.24 1.62 27.7 99.5 18.2
matrix 9 0.57 2.19 1.81 275.0 F 753.9
hcircuit 0.27 0.73 0.81 593.4 137.8 34.2
lung2 0.24 0.52 0.46 1.6 1.8 1.9
rajat23 0.31 1.12 1.77 F 467.9 37.9
Baumann 0.39 1.39 0.81 49.4 89.5 92.5
barrier2-1 1.10 4.40 3.58 F F 150.2
barrier2-2 1.10 4.40 3.56 F F 109.0
barrier2-3 1.10 4.42 3.45 F F 121.0
barrier2-4 1.10 4.35 3.58 F F 125.8
barrier2-10 1.20 4.42 3.61 F F 147.2
barrier2-11 1.20 4.40 3.66 F F 136.3
barrier2-12 1.10 4.47 3.61 F F 128.0
barrier2-9 1.10 4.32 3.54 F F 145.7
torso2 0.46 1.17 0.86 1.8 2.6 2.4
torso1 3.10 35.19 7.59 F 421.5 983.1
dc1 0.37 1.82 1.49 287.7 752.9 51.3
dc2 0.35 1.77 1.44 204.0 514.1 30.3
dc3 0.37 1.80 1.51 828.1 1233.9 48.5
trans4 0.39 2.01 1.54 129.5 462.0 9.9
trans5 0.40 2.05 1.42 377.3 1705.9 12.4
matrix-new 3 0.42 1.90 1.37 F 715.0 524.1
cage12 0.97 5.47 3.99 23.9 64.2 33.6
FEM 3D thermal2 1.40 4.90 3.75 8.3 11.6 10.3
para-4 1.40 6.62 4.99 1605.4 F 478.3
para-10 1.00 4.45 3.07 F F 673.6
para-5 0.91 4.82 3.20 F F 619.7
para-6 1.10 4.57 3.13 F F 610.2
para-7 1.00 4.62 3.20 F F 552.0
para-8 1.10 4.57 3.07 F F 608.8
para-9 1.00 4.72 3.23 F F 691.2
crashbasis 0.84 2.50 2.01 13.2 5.2 5.1
majorbasis 0.72 2.40 2.11 9.6 5.1 5.0
ohne2 2.40 12.24 9.27 F 2128.6 843.9
hvdc2 0.79 1.82 1.34 F 449.4 264.2
shar te2-b3 0.16 2.97 3.10 24.2 35.2 35.8
stomach 1.20 5.12 3.21 5.1 9.5 7.8
torso3 1.90 9.27 4.90 14.1 25.5 17.4
ASIC 320ks 1.10 3.02 3.02 F 8.7 5.2
ASIC 320k 1.30 12.45 5.34 61.9 64.9 20.4
ML Laplace 9.30 58.70 29.05 3913.4 4269.0 4288.5
RM07R 14.00 110.00 69.14 F F 10727.5
language 1.20 4.50 4.32 338.5 204.8 160.3
CoupCons3D 6.40 32.72 17.66 109.5 103.0 84.5
largebasis 2.20 6.37 4.61 553.1 182.9 98.8
cage13 4.20 30.25 17.10 78.6 301.1 217.3
rajat30 2.90 19.71 14.99 326.9 350.0 127.5
ASIC 680k 2.60 16.21 7.79 19.3 228.2 23.8
atmosmodd 5.60 36.38 11.97 881.9 2165.8 1464.6
atmosmodj 6.80 36.17 12.29 1006.7 2372.9 1535.1
Hamrle3 4.70 20.00 9.92 F 2406.8 2469.9
atmosmodl 7.20 45.18 14.71 1815.8 1067.0 585.5
atmosmodm 8.00 45.68 14.07 1747.3 934.9 333.2
memchip 10.00 43.12 20.15 7476.3 1640.0 893.4
circuit5M dc 16.00 58.06 25.95 540.3 209.7 64.5
rajat31 25.00 74.36 37.53 9634.0 9539.1 5220.2

Geometric means Number of bests
0.9 4.2 2.9 15 4 57
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Fig. 10. Performance profiles for (a) preprocessing time and (b) total execution time for GP,
HP and UP methods.

implementation of GP amortizes its preprocessing cost for those 61 instances by reduc-
ing the number of CG iterations sufficiently. That is, GP amortizes its preprocessing
cost for the solution of those 61 instances even if we solve only one linear system
with a single right-hand side vector. Note that in many applications in which sparse
linear systems arise, the solution of consecutive linear systems are required where the
coefficient matrix remains the same but the right-hand side vectors change. In such
applications, the amortization performance of the proposed GP method will further
improve. For example, the amortization performance of GP will improve from 61 to
64 instances for solving only two consecutive linear systems.

In Figures 10(a) and 10(b), we show the performance profiles in terms of the pre-
processing time and the total execution time, respectively. As seen in Figure 10(a), the
preprocessing overhead incurred by GP remains no worse than that of the best method
UP by a factor of 4 in approximately 77% of instances. As seen in Figure 10(b), the
total execution time attained by GP does not exceed that of the best method by a
factor of 2 in 96% of the instances. On the other hand, HP and UP achieve the same
relative performance compared to the best method only in approximately 44% and
33% of the instances, respectively.

4. Conclusion and future work. In this paper, we proposed a novel parti-
tioning method in order to improve the CG accelerated block Cimmino algorithm.
The proposed partitioning method takes the numerical orthogonality between block
rows of the coefficient matrix into account. The experiments on a large set of real
world systems show that the proposed method improves the convergence rate of the
CG accelerated block Cimmino compared to the state-of-the-art hypergraph parti-
tioning method. Moreover, it requires not only less preprocessing time and a fewer
number of CG iterations, but also much less total execution time than the hypergraph
partitioning method.

As a future work, we consider two issues: further reducing the number of it-
erations through preconditioning and reducing the preprocessing overhead through
parallelization.

Even though the H matrix is not available explicitly, it could still be possible to
obtain a preconditioner, further reducing the required number of CG iterations. One
viable option could be using a sparse approximate inverse-type preconditioner where
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the coefficient matrix does not need to be available explicitly. This approach could
be viable especially when consecutive linear systems are needed to be solved with the
same coefficient matrix.

The proposed method involves two computational stages, namely, constructing
a row inner-product graph via computing the SpGEMM operation and partitioning
this graph. For parallelizing the first stage, parallel SpGEMM [1, 2, 10] operation
could be used to construct local subgraphs on each processor. For parallelizing the
second stage, a parallel graph partitioning tool ParMETIS [37] could be used. In each
processor, the local subgraphs generated in parallel in the first stage could be used as
input for ParMETIS.

Appendix A. Graph and graph partitioning. An undirected graph G =
(V, E) consists of a set of vertices V and a set of edges E . Each edge (vi, vj) ∈ E
connects a pair of distinct vertices vi and vj . Each vertex vi ∈ V can be assigned a
weight shown as w(vi) and each edge (vi, vj) ∈ E can be assigned a cost shown as
cost(vi, vj).

Π = {V1,V2, . . . ,VK} is defined as a K-way vertex partition of G if parts are
mutually disjoint and exhaustive. An edge (vi, vj) is said to be cut if the vertices vi
and vj belong to different vertex parts and uncut otherwise. The set of cut edges of
a partition Π is denoted as Ecut. In a given partition Π of G, the weight Wk of a part
Vk is defined as the sum of the weights of the vertices in Vk, i.e.,

(A.1) Wk ,
∑

vi∈Vk

w(vi).

In the graph partitioning problem, the partitioning constraint is to maintain a given
balance condition on the part weights, i.e.,

(A.2) Wk ≤Wavg(1 + ε) for k = 1, 2, . . . ,K, where Wavg =
∑
vi∈V

w(vi)/K.

Here ε is the predefined maximum imbalance ratio. The partitioning objective is to
minimize the cutsize defined as the sum of the costs of the cut edges, i.e.,

(A.3) cutsize(Π) ,
∑

(vi,vj)∈Ecut

cost(vi, vj).
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