
SIAM J. SCI. COMPUT. c© 20XX Society for Industrial and Applied Mathematics
Vol. 0, No. 0, pp. 000–000

A HYPERGRAPH PARTITIONING MODEL FOR PROFILE
MINIMIZATION∗

SEHER ACER† , ENVER KAYAASLAN†‡ , AND CEVDET AYKANAT†

Abstract. In this paper, the aim is to symmetrically permute the rows and columns of a given
sparse symmetric matrix so that the profile of the permuted matrix is minimized. We formulate this
permutation problem by first defining the m-way ordered hypergraph partitioning (moHP) problem
and then showing the correspondence between profile minimization and moHP problems. For solving
the moHP problem, we propose a recursive-bipartitioning-based hypergraph partitioning algorithm,
which we refer to as the moHP algorithm. This algorithm achieves a linear part ordering via left-to-
right bipartitioning. In this algorithm, we utilize fixed vertices and two novel cut-net manipulation
techniques in order to address the minimization objective of the moHP problem. We show the
correctness of the moHP algorithm and describe how the existing partitioning tools can be utilized
for its implementation. Experimental results on an extensive set of matrices show that the moHP
algorithm obtains a

:
smaller profile than the state-of-the-art profile reduction algorithms, which then

results in considerable improvements in the factorization runtime in a direct solver.

Key words. sparse matrices, matrix ordering, matrix profile, matrix envelope, profile mini-
mization, profile reduction, hypergraph partitioning, recursive bipartitioning

AMS subject classifications. 05C50, 05C85, 65F05, 65F50, 68R10

DOI. 10.1137/17M1161245

1. Introduction. The focus of this work is to minimize the envelope size, i.e.,
profile, of a given m × m sparse symmetric matrix A = (aij) through symmetric
row/column permutation. The envelope of A, E(A), is defined as the set of index
pairs in each row that lie between the first nonzero entry and the diagonal. That is,

E(A) = {(i, j) : fc(i) ≤ j < i, i = 1, 2, . . . ,m},

where fc(i) denotes the column index of the first nonzero entry in row i, i.e., fc(i) =
min{j : aij 6= 0}. The size of the envelope of A is referred to as the profile of A, which
is denoted by P (A). Note that

:::
the

:
profile can also be expressed as the sum of row

widths in
::
an

:
envelope, that is,

P (A) = |E(A)| =
m∑
i=1

(i− fc(i)).

Diaz et al.
:::::
Dı́az,

:::::
Petit,

::::
and

::::::
Serna

:
[16] describe a number of graph layout problems

which are similar or equivalent to the profile minimization problem and the application
areas of these problems.

The profile minimization problem arises in various applications. The greatest at-
tention given to this problem is from the scientific computing domain due to improving
the performance of the sparse solvers. Basically, sparse Gaussian elimination bene-
fits from an ordering of the input matrix with small profile in terms of both storage

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section December
14, 2017; accepted for publication (in revised form) October 12, 2018; published electronically DATE.

http://www.siam.org/journals/sisc/x-x/M116124.html
†Computer Engineering Department, Bilkent University, 06800, Ankara, Turkey (acer@cs.bilkent.

edu.tr, enver@cs.bilkent.edu.tr, aykanat@cs.bilkent.edu.tr).
‡Currently with Google Switzerland, 8002, Zürich, Switzerland.

A1

http://www.siam.org/journals/sisc/x-x/M116124.html
mailto:acer@cs.bilkent.edu.tr
mailto:acer@cs.bilkent.edu.tr
mailto:enver@cs.bilkent.edu.tr
mailto:aykanat@cs.bilkent.edu.tr
AMA
Sticky Note
Author: This file is the copyedited manuscript. Please answer queries on pages 6, 8, 13, 16, 17, 18, and 25 of this file. 	The changes you see here have been implemented in the galley proof (see M116124-gg.pdf).

A2 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT

and number of floating-point operations [20, 37]. The computational complexity of
envelope methods is proportional to the sum of squares of row widths. Similarly, the
computational complexity of frontal methods is proportional to the sum of squares
of front sizes, where the sum of the profile and the number of rows gives the sum
of

:::
the

:
front sizes. While envelope methods are now outdated, frontal methods and

their extensions,
:

such as multifrontal ones
::::::::
methods,

:
are still actively used. Daviset

al. ,
::::::::::::::::::

Rajamanickam,and
::::::::::::
Sid-Lakhdar [14] list these methods in their recent and ex-

tensive survey on sparse direct methods. Besides direct methods, small profile is also
shown to be desirable for improving the performance of iterative methods, including
incomplete factorization preconditioners [11, 15, 19, 24, 39]. Furthermore, improving
cache hit rates in sparse matrix computations can be considered as another appli-
cation for this problem [8, 41]. In addition to the scientific computing domain, the
profile metric and the corresponding minimization problem are found to be useful in
applications from other domains such as bioinformatics, model checking, and visual-
ization [5, 6, 26, 28, 33, 34].

The profile minimization problem is NP-hard [32]. Heuristics proposed for solving
this problem are plentiful in the literature. In the following, we summarize the most
commonly-used

:::::::::
commonly

::::
used

:
profile reduction heuristics and refer the reader to the

recent systematic review in [4] for a more complete list. The earliest methods such
as RCM [21], GPS [23], Gibbs-King

:::::::::::
Gibbs–King [22], and Sloan [40] exploit the level

structure obtained on the standard graph representation of the given matrix. Most of
the successor methods use a spectral approach [3], which obtain

::::::
obtains

:
better results

compared to the earlier methods at the expense of higher ordering runtimes. These
runtimes are improved by hybrid methods [7, 29, 30, 35], which exploit both graph-
based and spectral approaches in a multilevel framework. These algorithms include
the one proposed by Hu and Scott [29], which obtains smaller profile values that

::::
than

the preceding algorithms. Reid and Scott [36] show that applying Hager’s exchange
methods [27] as a post-processing

:::::::::::::
postprocessing

:
step to the algorithm proposed by

Hu and Scott [29] achieves even better results.
The contributions of this paper are as follows. We first define an ordered version of

:::
the

:
hypergraph partitioning (HP) problem, which we referred

::::
refer

:
to as the m-way

ordered hypergraph partitioning (moHP) problem. Then, we formulate the profile
minimization problem as an moHP problem. To

:::
the

:::::
best

::
of
:

our knowledge, this
work is the first in the literature which formulates the profile minimization using
an HP problem. For solving the moHP problem, we propose the moHP algorithm,
which is based on the recursive bipartitioning (RB) paradigm. The moHP algorithm
achieves a linear part ordering via left-to-right bipartitioning. In order to address
the minimization objective of the moHP problem, the moHP algorithm utilizes fixed
vertices within the RB framework and two novel cut-net manipulation techniques.
We theoretically show that minimizing a cost metric in each RB step corresponds to
minimizing the objective of the moHP problem. We also show how existing HP tools
can be utilized in the proposed RB-based algorithm.

The rest of the paper is organized as follows. Section 2 provides background
information. Section 3 presents the moHP problem and shows its correspondence
to the profile minimization problem. Section 4 presents the proposed RB-based al-
gorithm for solving the moHP problem, discusses its correctness, and describes the
implementation of the proposed algorithm using existing partitioning tools. Section
5 provides the experimental results in comparison with the state-of-the-art profile
reduction algorithms

:
, and section 6 concludes.

A HYPERGRAPH MODEL FOR PROFILE MINIMIZATION A3

2. Preliminaries. A hypergraph H = (V,N) is defined as a set of n vertices
V = {v1, v2, . . . , vn} and a set of m nets N = {n1, n2, . . . , nm}. In H, each net
ni ∈ N connects a subset of vertices in V, which is denoted by Pins(ni). The vertices
in Pins(ni) are also referred to as the pins of ni. Each vertex vi ∈ V is assigned
a weight, which is denoted by w(vi). Each net ni ∈ N is assigned a cost, which is
denoted by c(ni).

Π = {V1,V2, . . . ,VK} is a K-way partition of H if the parts in Π are nonempty,
mutually disjoint,

:
and exhaustive. For a given partition Π, a net ni is said to connect

a part Vk if it has pins in Vk, i.e., Pins(ni) ∩ Vk 6= ∅. Net ni is said to be cut if
it connects multiple parts in Π, and uncut/internal, otherwise. The cutsize of Π is
defined as the sum of the costs of the cut nets, that is

:
,
:

(1) cutsize(Π) =
∑

ni∈Nc

c(ni),

where Nc denotes the set of cut nets in Π. The weight W (Vk) of a part Vk is defined
as the sum of the weights of the vertices in Vk, i.e., W (Vk) =

∑
vi∈Vk w(vi).

Given K and ε values, the hypergraph partitoning (HP)
::::::::::
partitioning

::::
(HP)

:
problem

is defined as the problem of finding a K-way partition of a given hypergraph so that
the cutsize (1) is minimized and a balance on the weights of the parts is maintained
by the constraint

(2) W (Vk) ≤ (1 + ε)

∑K
j=1W (Vj)
K

for k = 1, 2, . . . ,K.

Here, ε denotes the maximum allowable imbalance ratio on the weights of the parts.
The HP problem with fixed vertices is a constrained version of the HP problem

where
:
,
:
for each part, a subset of vertices can be preassigned to that part before

partitioning in such a way that, at the end of the partitioning, they remain in the
parts to which they are preassigned. These vertices are called fixed vertices. The set
of vertices that

:::::
which

:
are fixed to part Vk is denoted by Fk for k = 1, 2, . . . ,K. The

rest of the vertices are called free vertices as they can be assigned to any part.
If K = 2, then Π = {V1,V2} is also referred to as a bipartition. We use Π =

〈VL,VR〉 to denote a bipartition in which the order of the parts is relevant. Here,
VL and VRrespectively

:
,
::::::::::::
respectively,

:
denote the left and right parts. In case of

bipartitoning
::::::::::::
bipartitioning

:
with fixed vertices, FL and FR denote the sets of vertices

that are fixed to VL and VR, respectively.
For a given sparse matrix A, the row-net hypergraph H = (V,N) [9] is formed as

follows. As hinted
::::::
implied

:
by the name, each row i in A is represented by a net ni

in N . In a dual manner, each column j in A is represented by a vertex vj in V. For
each nonzero entry aij in A, net ni connects vertex vj in H.

3. The m-way ordered hypergraph partitioning formulation. In this sec-
tion, we first define a variant of the HP problem, the moHP problem, and then show
how the profile minimization problem can be formulated as an moHP problem.

3.1. The m-way ordered hypergraph partitioning (moHP) problem. In
the moHP problem, we use a special form of partition which is referred to as m-
way ordered partition (Πmo). Consider a hypergraph H = (V,N) with m vertices,
that is, V = {v1, v2, . . . , vm}. A partition of H is an m-way ordered partition if
each part contains exactly one vertex and the parts are subject to an order. We
use Πmo = 〈V1,V2, . . . ,Vm〉 to denote an m-way ordered partition. Figure 1 displays

A4 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT

v5 v8 v1 v4 v3 v2

n5 n8 n1 n4 n3 n2

v6 v7

n6 n7

v1 v2 v3 v4 v5 v6 v7 v8

Fig. 1. An m-way ordered partition of a hypergraph H with m = 8 vertices.

a sample m-way ordered partition of a hypergraph with m = 8 vertices. In this
figure, V1 = {v5}, V2 = {v8}, and so on. Given an m-way ordered partition Πmo,
the position of a vertex vi, φ(vi), is defined as the order of the part that contains vi.
That is, φ(vi) = k if and only if Vk = {vi}. For example, φ(v1) = 3 in Figure 1. The
leftmost vertex fi of a net ni is defined as the pin of ni with the minimum position.
That is,

fi = arg min
vj∈Pins(ni)

φ(vj).

For example, f3 = v1 in Figure 1. The left span of a net ni, ls(ni), is defined as the
difference between the positions of vertices vi and fi. That is,

(3) ls(ni) = φ(vi)− φ(fi).

Here, we assume that vi ∈ Pins(ni) for each ni ∈ N , ;
:
thus, ls(ni) is nonnegative.

For example, ls(n3) = 5− 3 = 2 in Figure 1.
The cost of an m-way ordered partition Πmo is defined as the sum of the left

spans of the nets in N . That is,

(4) cost(Πmo) =
∑
ni∈N

ls(ni).

For example, the cost of the m-way partiton
::::::::
partition

:
in Figure 1 is 8. Note that the

cost formulation in (4) is quite different than
::::
from

:
the traditional cutsize definition

in (1).

Definition 1 (the moHP problem). Consider a hypergraph H = (V,N) with
vertex set V = {v1, v2, . . . , vm} and net set N = {n1, n2, . . . , nm}. Assume that
vi ∈ Pins(ni) for each net ni ∈ N . Then, the moHP problem is the problem of finding
an m-way ordered partition Πmo of H so that the cost given in (4) is minimized.

3.2. Formulation. The following theorem shows how the profile minimization
problem can be formulated as an moHP problem.

Theorem 2. Let H(A) = (V,N) be the row-net hypergraph of an m ×m struc-
turally symmetric sparse matrix A with aii 6= 0 for i = 1, 2, . . . ,m. An m-way ordered
partition Πom of H(A) can be decoded as a row/column permutation P for A so that
minimizing the cost of Πmo corresponds to minimizing the profile of the permuted
matrix PAPT .

Proof. Consider an m-way ordered partition Πmo of H(A), which is decoded as
a row/column permutation for A in such a way that the order of row/column i in
the permuted matrix PAPT is the position φ(vi) of vertex vi in Πmo. That is, the
permutation matrix P is formulated as

P =
[
p1 p2 · · · pm

]
,

A HYPERGRAPH MODEL FOR PROFILE MINIMIZATION A5

5

8

1

4

3

2

6

7

5 8 1 4 3 2 6 7

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

v5 v8 v1 v4 v3 v2

n5 n8 n1 n4 n3 n2

v6 v7

n6 n7

v1

v2

v3

v4

v5

v6

v7

v8
n1

n2

n3

n4n5

n6

n7

n8

matrix A
row-net hypergraph H(A)

an m-way ordered partition of H(A)
permuted matrix PA P

T

v1 v2 v3 v4 v5 v6 v7 v8

Fig. 2. An illustration for the formulation of the profile minimization problem as an moHP
problem.

where pi is a column vector with all zeros except the φ(vi)’th entrybeing
::
th

::::::
entry,

:::::
which

::
is

:
equal to 1 , for i = 1, 2, . . . ,m. Consider a row i in PAPT . Note that aii is

the φ(vi)’th diagonal entry of PAPT . Let Ci denote the set of the columns in which
row i has a nonzero entry. By the row-net hypergraph formulation, vj ∈ Pins(ni) if
and only if j ∈ Ci. Since the order of each column j ∈ Ci in PAPT is set to be φ(vj),
the column representing vertex fi has the first nonzero entry of row i in PAPT . Thus,
the contribution of row i to the profile of PAPT is equal to the left span of ni in Πmo.
Hence, the profile of PAPT is equal to the cost of Πmo. Therefore, minimizing the
cost of Πmo corresponds to minimizing the profile of PAPT .

Figure 2 displays a sample 8× 8 structurally symmetric sparse matrix A with 22
nonzero entries and the row-net hypergraph H(A) of A with 8 vertices, 8 nets

:
, and 22

pins. The figure also displays an m-way ordered partition of H(A) and the permuted
matrix PAPT induced by this partition. For example, consider row 3 in A. As seen
in the figure, row 3 is ordered as the fifth row in PAPT since φ(v3) = 5. The left span
of net n3, which represents row 3, is computed as ls(n3) = φ(v3)−φ(f3) = 5− 3 = 2.
Note that the contribution of row 3 to the profile of PAPT is also 2, which is equal
to ls(n3). The profile of PAPT is 8, which is equal to the cost of the given m-way
ordered partition.

4. Recursive-bipartitioning-based moHP algorithm. This section describes
the proposed moHP algorithm, which aims at finding an m-way ordered partition
of a given hypergraph with minimum cost. The moHP algorithm is based on the
well-known recursive bipartitioning (RB) paradigm and adopts a left-to-right bipar-

A6 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT

Algorithm 1. Initial call to the recursive moHP algorithm.

Require: m×m struct. sym. sparse matrix A with nonzero diagonal entries
1: H(A) = (V,N)← row-net hypergraph of A
2: FL ← FR ← ∅
3: Πmo ← moHP(H(A),FL,FR) . Πmo = 〈V1,V2, . . . ,Vm〉
4: for i← 1 to m do
5: Order row/column i as the φ(vi)’th row/column in PAPT

6: return PAPT

titioning approach. In this approach, a natural order is assumed on the parts of each
bipartition

:
,
:
and the final partitions of the left and right parts are combined in such

a way that their respective orderings are preserved. Recall that the partitioning cost
is defined as the sum of the left spans of the nets in (4). Within the left-to-right
bipartitioning approach, the moHP algorithm utilizes fixed vertices in order to target
the minimization of these left span values.

4.1. Overall description. Algorithm 1 shows the initial invocation of the re-
cursive moHP algorithm. This algorithm first forms the row-net hypergraph H(A) of
the input m × m structurally symmetric sparse matrix A. In H(A), each vertex is
assigned a unit weight and each net is assigned a unit cost, that is, w(vi) = 1 for each
vi ∈ V and c(ni) = 1 for each ni ∈ N . Then, the moHP algorithm is invoked on H(A)
with empty fixed-vertex sets FL and FR, and at the end of this invocation, an m-way
ordered partition Πmo of H(A) is returned. Πmo is then utilized to symmetrically
permute the rows and columns of A in such a way that row/colum

:::::::
column i is ordered

as the φ(vi)’th row/column in the permuted matrix PAPT .
Algorithm 2 shows the basic steps of the recursive moHP algorithm. This algo-

rithm takes a hypergraph H = (V,N) and fixed-vertex sets FL ⊆ V and FR ⊆ V as
input and returns an m′-way ordered partition of H, where m′ denotes the number
of free vertices in H. Note that m′ = m for the initial invocation of this algorithm.
The base case and the recursive step of the moHP algorithm are covered in lines
1-2 and 3-8

:::
1–2

::::
and

::::
3–8, respectively. In the base case, i.e., when there is exactly

one free vertex in V, the singleton partition 〈vi〉 is returned, where vi denotes that
free vertex. In the recursive step, i.e., when there are multiple free vertices in V,
an ordered bipartition Π = 〈VL,VR〉 of H is first obtained. In this bipartitioning,
the objective is to minimize the left-cut-net metric (5), which is to be explained in
section 4.2. The ε value to be used in this bipartitioning (see (2)) is investigated in
section 5. After Π is obtained, the FORM algorithm is invoked in order to form new
hypergraphs HL = (VL,NL) and HR = (VR,NR) as well as new fixed-vertex sets FLR

and FRL. The details of the FORM algorithm are given in section 4.3. Then, the
moHP algorithm is recursively invoked on hypergraphs HL and HR to respectively
obtain

:::
an m′L-way ordered partition ΠL

mo of HL and an m′R-way ordered partition
ΠR

mo of HR, where m′L and m′Rrespectively
:
,
:::::::::::
respectively,

:
denote the numbers of free

vertices in HL and HR. Here, m′ = m′L + m′R. Finally, by concatenating ΠL
mo and

ΠR
mo, an m′-way ordered partition Πmo of H is obtained and returned.

As seen in the recursive invocations of the moHP algorithm in lines 6 and 7,
the old fixed-vertex sets FL and FR associated with the current hypergraph H are
inherited to

::
by the new hypergraphs HL and HR. That is, the left-fixed-vertex set FL

and the right-fixed-vertex set FR of H become the left-fixed-vertex set of HL and the
right-fixed-vertex set of HR, respectively. In other words, the vertices that become

AMA
Highlight

AMA
Text Box
AQ: OK as edited?

AMA
Line

A HYPERGRAPH MODEL FOR PROFILE MINIMIZATION A7

Algorithm 2. moHP(H,FL,FR).

Require: Hypergraph H = (V,N), fixed-vertex sets FL and FR

1: if V contains exactly one free vertex, say vi then
2: Πmo ← 〈vi〉
3: else
4: Π← bipartition(H,FL,FR) . Π = 〈VL,VR〉
5: (HL,HR,FLR,FRL)← FORM(H,Π)
6: ΠL

mo ← moHP(HL,FL,FLR) . recursive invocation on HL

7: ΠR
mo ← moHP(HR,FRL,FR) . recursive invocation on HR

8: Πmo ← 〈ΠL
mo,Π

R
mo〉

9: return Πmo

nb

va

vb

nb

vc

vd

va

vb

net-left splitting

HL HR

VL VR

ng

ve

vf

vg

vh

vg

vh

ve

vf
ng

ng

vg

vh

ve

vf

HL HR

VL VR

(net n : left-cut)

net duplication

g
(net n : cut, but not left-cut)b

Fig. 3. Upper part: cut
::
Cut

:
nets nb and ng. Net nb is not left-cut since vb ∈ VL, whereas net

ng is left-cut since vg ∈ VR. Lower part: net-left
:::::
Net-left

:
splitting and net duplication are applied

on nb and ng, respectively.

fixed to the left/right part in an invocation of the moHP algorithm remain fixed to
the left/right part in the further recursive invocations.

4.2. Left-cut-net metric. Consider the ordered bipartition Π = 〈VL,VR〉 ob-
tained in line 4 of Algorithm 2. Recall that a cut net is defined as a net connecting
multiple parts. For encoding the minimization objective of the moHP problem in in-
dividual bipartitioning steps, we introduce a special type of cut net, which is referred
to as left-cut net. A net ni is said to be a left-cut net if vi is assigned to VR and at
least one pin of ni is assigned to VL. Figure 3 displays sample cut nets, nb and ng,
where ng is a left-cut net while nb is not.

The set of the left-cut nets, which is denoted by N`c, is formulated as

N`c = {ni : Pins(ni) ∩ VL 6= ∅ and vi ∈ Pins(ni) ∩ VR}.

While obtaining the ordered bipartition Π of H, the objective is to minimize the
left-cut-net metric, which is defined as the number of left-cut nets in Π, i.e.,

(5) left-cut-net(Π) = |N`c|.

Section 4.4 shows the correctness of this bipartitioning objective in terms of minimiz-
ing the cost of the m-way ordered partition obtained by the moHP algorithm, whereas
section 4.5 describes how existing partitioning tools can be utilized for encapsulating
this bipartitioning objective.

A8 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT

4.3. Forming HL and HR by novel cut-net manipulation techniques.
Algorithm 3 displays the basic steps of the FORM algorithm. As input, it takes a
hypergraph H = (V,N) and an ordered bipartition Π = 〈VL,VR〉 of H, and it returns
new hypergraphs HL and HR with fixed-vertex sets FLR and FRL. This algorithm
goes over each net ni in N and depending on the distribution of the pins of ni in Π,
it includes ni in either net set NL or net set NR or both. If ni is internal to VL (i.e.,
Pins(ni) ⊆ VL), then it is included in NL as is. Similarly, if ni is internal to VR (i.e.,
Pins(ni) ⊆ VR), then it is included in NR as is. The moHP algorithm handles the
cut nets by two novel techniques as follows. If ni is a cut net, but not a left-cut one
(i.e., vi ∈ Pins(ni)∩VL and Pins(ni)∩VR 6= ∅), then the net-left-splitting technique
is applied. In this technique, even though ni has pins in both VL and VR, it is only
included in NL with its pins that are assigned to VL. If ni is a left-cut net (i.e.,
Pins(ni) ∩ VL 6= ∅ and vi ∈ Pins(ni) ∩ VR), then the net-duplication technique is
applied. In this technique, ni is copied to both NL and NR with its complete pin set
despite the fact that neither VL nor VR genuinely contains all of ni’s pins. In lines
12 and 13 of the algorithm, leftpins and rightpins denote the sets of the pins of ni
in VL and VR, respectively. The vertices in rightpins are added to vertex set VL and
they are fixed to the right part of HL, i.e., included in FLR. In a dual manner, the
vertices in leftpins are added to vertex set VR and they are fixed to the left part of
HR, i.e., included in FRL. After all nets in N are considered, new hypergraphs HL

and HR are formed by HL = (VL,NL) and HR = (VR,NR), respectively. As in H,
each net in HL and HR is assigned a unit cost. Each free vertex in HL and HR is
assigned a unit weight, whereas each fixed vertex is assigned a zero weight. Finally,
hypergraphs HL and HR and fixed-vertex sets FLR and FRL are returned.

Figure 3 illustrates an example for each of the net-left splitting and net duplication

::::::::::::::
net-left-splitting

::::
and

::::::::::::::
net-duplication techniques. In the figures throughout the paper,

fixed vertices are denoted by triangles pointing a direction, whereas free vertices are
denoted by circles. Each vertex fixed to the left part is denoted by a triangle pointing
left, whereas each vertex fixed to the right part is denoted by a triangle pointing right.
Note that for any net ni, vertex vi is special compared to the other pins of ni since
the part assignment of vi determines whether cut net ni is left-cut or not. Therefore,
the connection of ni to vi is drawn thicker in the figures for any net ni.

Figure 4 displays an example for the moHP algorithm run on the hypergraph
given in Figure 2. In Figure 4, each rectangular shape with a green border and a
white background denotes a hypergraph to be bipartitioned during the moHP algo-
rithm, whereas each rectangular shape with a yellow background denotes a part in an
ordered bipartition. To be able to refer

::
to the individual hypergraphs, we label them

with a Matlab-like
:::::::::
MATLAB

::::
like notation according to their coverage on the parts

of the resulting m-way ordered partition. For example, the initial hypergraph H is
labeled with H1:8 since it covers all eight parts in the resulting m-way ordered parti-
tion, while the left and right hypergraphs obtained by bipartitioning H1:8 are labeled
with H1:4 and H5:8, respectively. Each left-cut net in the figure is shown in a gray
background. Consider the ordered bipartition Π of H1:8. Note that nets n1, n3, and
n4 are cut in Π, whereas only n3 is left-cut among them. Then, left-cut-net(Π) = 1
for this bipartition. Since n1 and n4 are cut but not left-cut, the net-left splitting

::::::::::::::
net-left-splitting

:
technique is applied on them, that is, they are only included in the

left hypergraph HL = H1:4 with their respective pins assigned to the left part VL.
Since n3 is left-cut, the net duplication technique is applied on it, that is, n3 is in-
cluded in both hypergraphs HL = H1:4 and HR = H5:8. Due to the net duplication,
the vertices in rightpins = {v3, v6} are added to the left hypergraph H1:4 as right-

AMA
Highlight

AMA
Highlight

AMA
Text Box
AQ: Figures will be color online but black and white in print. Should we add "(color available online)" after "bipartition" on line 5 of this paragraph? Or would you rather change "yellow" to "gray" as you have below and "green" to "black"?

AMA
Highlight

AMA
Highlight

AMA
Line

A HYPERGRAPH MODEL FOR PROFILE MINIMIZATION A9

Algorithm 3. FORM(H,Π).

Require: Hypergraph H = (V,N), ordered bipartition Π = 〈VL,VR〉
1: NL ← NR ← ∅
2: FLR ← FRL ← ∅
3: for each ni ∈ N do
4: if Pins(ni) ⊆ VL then . ni is an internal net in VL
5: NL ← NL ∪ {ni}
6: else if Pins(ni) ⊆ VR then . ni is an internal net in VR
7: NR ← NR ∪ {ni}
8: else if vi ∈ VL then . ni is cut, but not left-cut: net-left splitting
9: Pins(ni)← Pins(ni) ∩ VL

10: NL ← NL ∪ {ni}
11: else . ni is left-cut: net duplication
12: leftpins← Pins(ni) ∩ VL
13: rightpins← Pins(ni) ∩ VR
14: NL ← NL ∪ {ni}
15: VL ← VL ∪ rightpins
16: FLR ← FLR ∪ rightpins . rightpins are copied to HL as right-fixed

17: NR ← NR ∪ {ni}
18: VR ← VR ∪ leftpins
19: FRL ← FRL ∪ leftpins . leftpins are copied to HR as left-fixed

20: HL ← (VL,NL)
21: HR ← (VR,NR)
22: return HL,HR,FLR,FRL

fixed, whereas the vertices in leftpins = {v4, v1} are added to the right hypergraph
H5:8 as left-fixed.

4.4. Correctness of the moHP algorithm. In this section, Theorem 7 shows
that minimizing the left-cut-net metric (5) in each bipartition of the moHP algorithm
corresponds to minimizing the cost (4) of resulting m-way ordered partition. Before
that, we provide a brief discussion on the special pins and give some definitions and
lemmas to be used in Theorem 7.

We first show that vi ∈ Pins(ni) for each net ni during the entire moHP al-
gorithm. Note that vi ∈ Pins(ni) for each net in the initial row-net hypergraph.
Consider a net ni in a hypergraph H = (V,N) on which the moHP algorithm is
invoked and assume that vi ∈ Pins(ni) for each ni ∈ N . If ni is included in HL

or HR as is (lines 5 and 7 in Algorithm 3), then vi ∈ Pins(ni) trivially. If net-left
splitting is applied on ni (lines 9-10

::::
9–10

:
in Algorithm 3), then vi ∈ Pins(ni) since

vi ∈ VL. If net duplication is applied on ni (lines 12-19
:::::
12–19

:
in Algorithm 3), then

vi ∈ Pins(ni) for both copies of ni in HL and HR since the whole pin set of ni is
duplicated to HL and HR.

For the nets in the moHP algorithm, we introduce four different states that indi-
cate the connections of the nets to fixed vertices. We call a net ni

(i) free , if it connects no fixed vertices,
(ii) left-anchored , if it connects some left-fixed vertices but no right-fixed ones,
(iii) right-anchored , if it connects some right-fixed vertices but no left-fixed ones,
(iv) left-right-anchored , if it connects some left-fixed and some right-fixed vertices.

A10 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT

v5

v8 v1

v4 v2

n5

n8

n1

n4

n3

n2

v7

n7

v6

v3

n6

v5

v8 v1

v4

n5

n8

n1

n3

v3n4
v3 v2

v6 v7

n2

n7

n6n3

v5

v8 v1

v4

n5

n1

n8

n3

v3 v6

v2 v7

n3

n6

n2

n7

v5

v8

n5

n1

n8

v1

v4

n3

n4

n1
v2

v3

n2

n6n3

n7

n6

n7

v6

v7

v5

n4

v8
n1

n5

n8 v1

n1

v4

n3

n4 v3n3 n7

n2
v2

n6

v6
v7

n6

n7

v1

v2

v3

v4

v5

v6

v7

v8
n1

n2

n3

n4n5

n6

n7

n8

v5 v8 v1 v4 v3 v2 v6 v7

v6

v4

v1

v3

v6

v4

v1

v4

v1

v3

v6

v6

v7

v3

v2

v8v1

v1 v8

v3
v6 v4

v1 v6
v7 v3

v2

bipartition

FORM

bipartition bipartition

V1 V2 V3 V4 V5 V6 V7 V8

H1:8

H1:4 H5:8

H1:2 H3:4 H5:6
H7:8

bipartition bipartition bipartition bipartition

FORM FORM

Fig. 4. An example run of the moHP algorithm on the hypergraph given in Figure 2. Left-cut
nets are shown in gray background.

A HYPERGRAPH MODEL FOR PROFILE MINIMIZATION A11

left-right-anchored

left-anchored

free

right-anchored

not left-cut

left-cut,

added in H not left-cut or

left cut, added in H

left-cut

left-cut, added in HLleft-cut, added in HR

L

not left-cut or

left cut, added in H R

left-cut,

added in HL R

Fig. 5. The state diagram for the states of net ni in the moHP algorithm.

Recall that new fixed vertices are only introduced by the net duplication
:::::::::::::
net-duplication

operation and fixed vertices remain fixed in the descendant invocations of the moHP
algorithm. Hence, if a net ni is right-anchored or left-right-anchored, it implies that
ni became left-cut in a bipartition performed in an earlier invocation, and among
the two copies of ni formed after that bipartition, this copy is the one added to the
left hypergraph connecting right-fixed vertices that include vi. Therefore, for each
right-anchored or left-right-anchored net ni, the special pin of ni, i.e., vi, is among
its right-fixed pins. With a dual reasoning, for each free or left-anchored net ni, the
special pin of ni is among its free pins. Finally, for each free or right-anchored net ni,
pin fi is among its free pins.

Figure 5 displays a state diagram for the states of a net ni changing through
the recursive invocations of the moHP algorithm. Note that all nets are free in the
initial invocation of the moHP algorithm,

:
;
:
so is ni. Since the pins of ni become

fixed vertices only after applying net duplication on ni, ni stays free as long as it
does not become left-cut. If ni becomes left-cut, net duplication copies it to HL and
HR so that it becomes right-anchored and left-anchored in HL and HR, respectively.
Similar to the free nets, left-anchored and right-anchored nets do not change their
states until they become left-cut. If a left-anchored net ni becomes left-cut, then ,
it becomes left-right-anchored in HL while remaining left-anchored in HR after net
duplication. In a dual manner, if a right-anchored net ni becomes left-cut, then ,
it becomes left-right-anchored in HR while remaining right-anchored in HL after net
duplication. Left-right-anchored nets are doomed to become left-cut in all further
bipartitionings, ;

:
hence, a left-right-anchored net ni remains in the same state in both

HL and HR.
The recursive invocations of the moHP algorithm forms

::::
form

:
a hypothetical full

binary tree, which is referred to as an RB tree [1, 2, 38]. Each node in the RB
tree represents a hypergraph H on which the moHP algorithm is invoked. If H
contains a single free vertex, which is the base case of the moHP algorithm, then
the corresponding node is a leaf node,

:
; otherwise, it has one left and one right child

nodes
::::
node, respectively representing HL and HR obtained in line 5 of Algorithm 2.

The RB tree rooted at the node corresponding to hypergraph H is denoted by T H.
Figure 4 displays a sample RB tree with m = 8 leaf nodes.

Given a net ni in a hypergraph H = (V,N) and an RB tree T H, let µ(ni, T H)
denote the number of bipartitions in T H in which ni is left-cut. In the following

A12 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT

lemmas and theorem, we abuse the notation and use Π ∈ T H to refer to the fact that
bipartition Π is performed in one of the nodes of T H. The following lemmas provide
the formulation of µ(ni, T H) for each different state of ni. Each of Lemmas 3, 4,
and 5 is used in the proof(s) of the subsequent lemma(s), whereas Lemma 6 is used in
the proof of Theorem

:::
the

:::::::
theorem. Although we skip the proofs of these lemmas and

refer the reader to the Appendix
:::::::::
Appendix

::
A for them, we present all of the lemmas

in this section for the sake of completeness. In these lemmas, V̂ denotes the set of
free nodes in H, i.e., V̂ = V − (FL ∪ FR).

Lemma 3. If ni is left-right-anchored in H, then µ(ni, T H) is equal to the number
of free nodes in H minus one, that is,

µ(ni, T H) = |V̂| − 1.

Lemma 4. If ni is right-anchored in H, then µ(ni, T H) is equal to the number of
free nodes in H that are ordered after fi in Πmo, that is,

µ(ni, T H) = |{v ∈ V̂ : φ(v) > φ(fi)}|.

Lemma 5. If ni is left-anchored in H, then µ(ni, T H) is equal to the number of
free nodes at H that are ordered before vi in Πmo, that is,

µ(ni, T H) = |{v ∈ V̂ : φ(v) < φ(vi)}|.

Lemma 6. If ni is free in H, then µ(ni, T H) is equal to the number of free nodes
in H that are ordered between fi and vi in Πmo inclusive minus one, that is,

µ(ni, T H) = |{v ∈ V̂ : φ(fi) ≤ φ(v) ≤ φ(vi)}| − 1.

Theorem 7. Consider a hypergraph H = (V,N) on which the moHP algorithm
is initially invoked, where V = {v1, v2, . . . , vm}, N = {n1, n2, . . . , nm}, and vi ∈
Pins(ni) for each net ni ∈ N . Minimizing the left-cut-net metric in each bipartition
performed in the moHP algorithm corresponds to minimizing the cost of the resulting
m-way ordered partition Πmo of H.

Proof. Consider an m-way ordered partition Πmo of H obtained by the moHP
algorithm and the left span of a net ni in H. Note that all nets in H are free,

:
; so is

ni. Recall that ls(ni) is defined as φ(vi)− φ(fi) in (3), ;
:
then,

ls(ni) = φ(vi)− φ(fi) = |{v ∈ V : φ(fi) ≤ φ(v) ≤ φ(vi)}| − 1.

Then, by Lemma 6,

(6) ls(ni) = µ(ni, T H),.

Recall that in (4), cost(Πmo) is defined as the sum of the left spans of the nets in H,

:
; then by (6),

cost(Πmo) =
∑
ni∈N

ls(ni) =
∑
ni∈N

µ(ni, T H).

Since µ(ni, T H) is equal to the number of bipartitions in T H in which ni is left-cut,
it can also be expressed as

µ(ni, T H) =
∑

Π∈T H:ni∈NΠ
`c

1.

A HYPERGRAPH MODEL FOR PROFILE MINIMIZATION A13

vi vj vk

ni

vi vj vk

ni

v
L

v
R

ni

in H in H

Fig. 6. Net ni in H and the net pair (n′i, ni) added to H′ for ni.

Here, NΠ
lc denotes the set of left-cut nets in Π. Then, cost(Πmo) can be formulated

as

cost(Πmo) =
∑
ni∈N

µ(ni, T H) =
∑
ni∈N

∑
Π∈T H:ni∈NΠ

`c

1 =
∑

Π∈T H

∑
ni∈NΠ

`c

1

=
∑

Π∈T H

left-cut-net(Π).

Since cost(Πmo) =
∑

Π∈T H left-cut-net(Π), minimizing the left-cut-net metric in each
bipartition in the moHP algorithm corresponds to minimizing the cost of the resulting
m-way partition.

4.5. Minimizing the left-cut-net metric. Currently, no existing tool is able
to bipartition a given hypergraph with the objective of minimizing the left-cut met-
ric (5). For this reason, in this section, we formulate the bipartitioning problem
with the objective of minimizing the left-cut-net metric as an ordinary hypergraph
bipartitioning problem with the objective of minimizing the usual cutsize (1).

Let H = (V,N) be a hypergraph which is bipartitioned in line 4 of Algorithm 2.
We first transform H into an extended hypergraph which is denoted by H′ = (V ′,N ′).
In this transformation, we introduce new vertices vL and vR to the extended vertex set
V ′ in addition to the existing ones in V. That is, V ′ = V∪{vL, vR}. Vertices vL and vR
arerespectively

:
,
:::::::::::
respectively,

:
fixed to the left and right parts, so ,

:
;
::
so

:
the fixed-vertex

sets F ′L and F ′R of H′ are obtained from the fixed-vertex sets FL and FR of H by
F ′L = FL∪{vL} and F ′R = FR∪{vR}, respectively. Moreover, for each net ni ∈ N , we
add an updated version of ni and a new net n′i to the extended net set N ′. Net ni is
updated by the addition of vR to its pin set, that is, Pins(ni)← Pins(ni)∪{vR}. The
new net n′i connects only vi and vL, that is, Pins(n′i) = {vi, vL}. Figure 6 displays
an example net ni in H and the net pair (ni, n

′
i) added to H′ for ni.

A bipartition Π′ = 〈V ′L,V ′R〉 of the extended hypergraph H′ can be decoded as a
bipartition Π = 〈VL,VR〉 of H by simply removing the newly added vertices vL and
vR from Π′. Note that vL ∈ V ′L and vR ∈ V ′R due to being fixed to the respective
part,

:
; hence, VL = V ′L − {vL} and VR = V ′R − {vR}. The following theorem shows

the correspondence between the cutsize (1) of the bipartition Π′ of the extended
hypergraph H′ and the left-cut-net metric (5) of the ordered bipartition Π = 〈VL,VR〉
of H.

Theorem 8. Let H = (V,N) be a hypergraph which is bipartitioned in line 4
of Algorithm 2

:
,
:

and let H′ = (V ′,N ′) be the corresponding extended hypergraph.
Consider a bipartition Π′ = 〈V ′L,V ′R〉 of H′ and the bipartition Π = 〈VL,VR〉 of H
induced by Π′. Then, minimizing the cutsize of the bipartition Π′ (1) corresponds to
minimizing the left-cut-net metric in Π (5).

AMA
Highlight

AMA
Text Box
AQ: Should this be "left-cut-net metric" as in the section heading?

AMA
Line

A14 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT

Proof. We first show the following:
• both ni and n′i are cut in Π′ if ni is left-cut in Π (Case 1),
• one of ni and n′i is cut in Π′ , otherwise (Case 2).

(Case 1). Assume that ni is left-cut in Π. Then, vi ∈ VR and there exists
vj ∈ Pins(ni) such that vj ∈ VL. It is clear that j 6= i. Then, vi ∈ V ′R and vj ∈ V ′L
in Π′. Thus, n′i is cut in Π′, since it connects both V ′L and V ′R, respectively

:
, due to

pins vL ∈ V ′L and vi ∈ V ′R. Similarly, ni is cut in Π′ since it connects both V ′L and
V ′R, respectively

:
, due to pins vj ∈ V ′L and vi ∈ V ′R.

(Case 2.a). Next, assume that ni is not left-cut in Π and vi ∈ VL. Then, vi ∈ V ′L
in Π′. Thus, n′i is not cut in Π′, since it connects only V ′L,

:
;
:
i.e., both of its pins (vi

and vL) reside in V ′L. On the other hand, ni is cut in Π′, since it connects both V ′L
and V ′R, respectively,

:
due to pins vi ∈ V ′L and vR ∈ V ′R.

(Case 2.b). Finally, assume that ni is not left-cut in Π and vi ∈ VR. If there
existed any pins of ni in VL, then ni would be left-cut,

:
;
:
hence, all pins of ni reside

in VR in Π. Note that vR is added to the pin set of ni in H′ and vR ∈ V ′R. Then ni
is not cut in Π′, since all pins of ni reside in V ′R. On the other hand, n′i is cut in Π′,
since it connects both V ′L and V ′R, respectively,

:
due to pins vL ∈ V ′L and vi ∈ V ′R.

Since there exist two cut nets in Π′ for each left-cut net in Π, and one cut net in
Π′ for each other net in H, the cutsize of Π′ is equal to the left-cut-net metric in Π
plus the number of nets in H, that is,

cutsize(Π′) = left-cut-net(Π) + |N |.

Since |N | is fixed, minimizing the cutsize of Π′ (1) corresponds to minimizing the
left-cut-net metric in Π (5).

Figure 7 displays hypergraph H5:8 given in Figure 4, its extended hypergraph
H′5:8, a bipartition Π′ of H′5:8, and the bipartition Π of H5:8 induced by Π′. In this
figure, the left-cut nets in Π and their corresponding cut nets in Π′ are shown in a gray
background. Observe that cutsize(Π′) = 6, where left-cut-net(Π) = 2 and |N | = 4,

:
; hence, cutsize(Π′) = |N |+ left-cut-net(Π).

5. Experiments. In this section, we provide the implementation details of the
proposed moHP algorithm and the experimental results that compare the perfor-
mance of the moHP algorithm against those of the state-of-the-art profile reduction
algorithms on an extensive dataset. Our experiments are three-fold

::::::::
threefold:

• sensitivity-analysis experiments that compare six different parameter settings
for the moHP algorithm in terms of profile and runtime (section 5.3),

• experiments that compare the moHP algorithm against three baseline algo-
rithms in terms of profile and runtime (section 5.4), and

• experiments that compare the moHP algorithm against the best baseline al-
gorithm in terms of the factorization performance in a direct sparse solver
(section 5.5).

All experiments are conducted on a Linux workstation equipped with four 18-core
CPUs (Intel Xeon Processor E7-8860 v4) and 256 GB of memory.

5.1. Implementation. Recall that in the proposed moHP algorithm, recursion
stops when the current hypergraph contains exactly one free vertex. However,

:
in our

implementation, we allow the flexibility of early stopping when the number of free
vertices in the current hypergraph is smaller than or equal to a threshold, which is
denoted by t. We refer to this scheme as early stopping. Note that early stopping
with t = 1 is equivalent to the original moHP algorithm. Using t > 1 results in

A HYPERGRAPH MODEL FOR PROFILE MINIMIZATION A15

v3

v2

v6

v7

n3

v4v1

v3 v2

v6 v7

n2

n7

n6

n3

v4

v1

n6

n2

n7

n3

n6

n2

n7

v
L

v
R

v3 v6

v2 v7

n3

n6

n2

n7

v4

v1

bipartition

v3 v6

v2 v7

v4
v1

v
R

v
L

n3

n6

n6

n7

n7

n2

n3

n2

∏
∏

H5:8 H5:8

Fig. 7. H5:8 in Figure 4, its extended hypergraph H′5:8, bipartition Π′ of H′5:8, and the bipar-
tition Π of H5:8 induced by Π′.

an ordered partition with multiple vertices in each part. This partition induces a
partial permutation on the rows/columns of the input matrix in such a way that
the rows/columns corresponding to the vertices in part Vk are ordered before those
corresponding to the vertices in part Vk+1 and after those corresponding to the vertices
in part Vk−1. In order to determine the internal orderings of the resulting row/column
blocks, we adapt and use the weighted greed heuristic proposed for profile reduction
in [27]. In the original version of this heuristic, a row/column which maximizes a
weight function is selected at each iteration and ordered in the right/bottom of the
matrix. In our algorithm, we run this heuristic once for each row/column block so
that the selection only considers the rows/columns inside the corresponding block.

The motivation for early stopping is that the quality of the bipartitions obtained
by multi-level

:::::::::
multilevel

:
partitioning tools on very small hypergraphs may not always

::
be

:
worth the total runtime of these many bipartitionings on small hypergraphs. Early

stopping enables us to exploit the trade-off between the quality and the runtime of the
proposed algorithm. Note that the early-stopping scheme with t = α saves at least
logα recursion levels from incurring bipartitioning overhead while losing the merit of
performing these unrealized recursion levels. Hence, using a larger threshold results
in a faster reordering with a larger profile. The experimental results that compare
the performance of the moHP algorithm for varying threshold values are given in
section 5.3.

Since the ultimate goal of the proposed model is to obtain an ordering rather
than a balanced partitioning, we use a loose balance constraint, i.e., a large ε value
in (2), in the bipartitionings performed in the proposed algorithm. Using a looser
constraint widens the solution space ,

::::
and hence is likely to result in a better quality.

The experimental results that compare the performance of the moHP algorithm for

A16 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT

varying ε values are given in section 5.3.
The proposed algorithm is implemented in C and compiled using gcc version

4.9.2 with optimization level two. All source code is available for download.1 In
each bipartitioning step, PaToH is used as the hypergraph partitioner. In the pre-
liminary experiments, we observed that the performance of the proposed algorithm
varies with the parameters of PaToH (see manual [10]) and using Sweep (the vertex
visit order), Absorption Matching (the coarsening algorithm)and Kernihgan-Lin ,

::::
and

:::::::::::::
Kernihgan–Lin

:
(the refinement algorithm) generally gives a better result. Note that

the extended hypergraph H′ is obtained from each hypergraph H to be bipartitioned
in line 4 of Algorithm 2. In our efficient implementation, the FORM algorithm ob-
tains the extended hypergraphs H′L and H′R directly from the extended hypergraph
H′, instead of first forming HL and HR and then obtaining H′L and H′R.

5.2. Dataset. The experiments are conducted on an extensive dataset of sym-
metric matrices obtained from the SuiteSparse (formerly known as UFL) Sparse Ma-
trix Collection [13]. This dataset is formed by merging the following sets of matrices:

• 131 matrices that are used in the well-known profile reduction works. Since
these works were published some time ago, some of these matrices are small
in

::
by

:
today’s standards. These matrices are all symmetric and include :

– the 18 matrices in Kumfert and Pothen’s collection, which is used in [3,
7, 29, 30, 35, 36],

– the 8 matrices in the NASA collection, which is used in [3, 27],
– the 44 AAT matrices2 with more than 1000 rows in the Netlib Linear

Programming Problem collection, which is used in [27],
– the 71 matrices with more than 1000 rows in the Harwell–Boeing collec-

tion, which is used in [3, 27, 29].
• 176 symmetric matrices in SuiteSparse Collection

:::
the

:::::::::::
SuiteSparse

:::::::::
collection

with the number of nonzeros between 1,000,000 and 100,000,000, excluding
the ones whose problem kind

::::
type

:
is “graph”.

::
.”

:

Duplicate matrices are excluded from the dataset, ;
:
that is, only one of the matrices

with the same sparsity pattern is kept in the dataset. An error is encountered when
HSL code MA67, which is included in the tested baseline algorithms, is run on eight
matrices (boyd1, c-73, boyd2, lp1, c-big, ins2, TSOPF FS b39 c30

:
,
:
and mip1), ;

hence those eight matrices are excluded from the dataset as well. The resulting
dataset3 consists of 295 matrices.

5.3. Sensitivity analysis. In this section, we analyze the effects of the following
parameters (mentioned in section 5.1) on the resulting profile and the runtime of the
moHP algorithm:

• t: threshold value for early stopping,
:
and

• ε: maximum imbalance ratio allowed in each bipartitioning (2). Note that
0 ≤ ε ≤ 1 for a bipartition.

We test four different t values (1, 25, 250, and 2500) and two different ε values
(0.50 and 0.90), ;

:
hence the number of compared parameter settings is eight. These

experiments are conducted on the dataset of 295 matrices described in section 5.2.
Figure 8 displays two performance profile plots [17] which compare the eight

different parameter settings for the moHP algorithm. In these plots, label εA− tB

1https://github.com/seheracer/profilereduction
2AAT is performed using MATLAB.
3https://github.com/seheracer/profilereduction/blob/master/dataset

https://github.com/seheracer/profilereduction
https://github.com/seheracer/profilereduction/blob/master/dataset
AMA
Highlight

AMA
Text Box
AQ: OK to have changed "kind" to "type" here and in what follows?

AMA
Line

A HYPERGRAPH MODEL FOR PROFILE MINIMIZATION A17

1.00 1.05 1.10 1.15 1.20 1.25 1.30
τ= Profile relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 m

at
ric

es

ε0.50−t1
ε0.50−t25

ε0.50−t250

ε0.50−t2500

ε0.90−t1
ε0.90−t25

ε0.90−t250

ε0.90−t2500

1 2 3 4 5 6 7
τ= Runtime relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 m

at
ric

es

Fig. 8. Performance profile plots comparing the eight versions of the moHP algorithm in terms
of profile and runtime.

refers to using ε = A and t = B. The plot in
::
on

:
the left compares these eight

settings in terms of profile, whereas the plot in the right compares them in terms of
runtime (of the moHP algorithm). Since we apply the weighted greed heuristic [27]
for determining the internal ordering of each row/column block for t > 1 as mentioned
in section 4.5, the runtime values include the runtime of that heuristic as well.

In a performance profile plot [17], the line associated to a method a passing
through a point (τ, f) means that in 100f% of the instances, the result obtained by a
is at most τ times worse than the best result obtained by the compared methods on
the corresponding instance. So, the upper a line is, the better the method associated
to that line performs.

In Figure 8, the plot in the left shows that ε0.90−t25 and ε0.90−t1 perform the
same and outperform the other parameter settings in terms of profile. Observe that
for a fixed ε value, using a smaller t value improves profile except for going from t = 25
to t = 1. As the t value decreases, the rate of improvement in profile also decreases
and converges to zero for t = 1. This finding is in agreement with the motivation
of the early stopping scheme described in section 5.1. Also observe that for a fixed
t value, ε = 0.90 performs better than ε = 0.50. This can be attributed to the fact
that using ε = 0.90 poses a looser constraint compared to using ε = 0.50 ,

::::
and hence

has a larger solution space, as mentioned in section 5.1. Although we only present
the results for ε = 0.50 and ε = 0.90, we also tried using ε = 0.70. Expectedly,
the performance of ε = 0.70 is better than that of ε = 0.50 but worse than that of
ε = 0.90.

In Figure 8, the plot in the right shows that ε0.50−t2500 is the fastest setting,
whereas ε0.90− t1 is the slowest one. Observe that using a smaller t value always
increases the runtime of the moHP algorithm due to the reasons explained in sec-
tion 5.1. Using a larger ε value also increases the runtime, which can be attributed

AMA
Text Box
AQ: Do you mean "the higher a line is"?

AMA
Line

AMA
Highlight

A18 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT

to the enlargened
:::::::
enlarged

:
solution space again.

Considering both of these parameters, one consistent finding is that the runtime
of the moHP algorithm increases as the resulting profile decreases. In the experiments
given in sections 5.4 and 5.5, we use ε0.90−t25 because it is one of the best performers
along with ε0.90−t1 in terms of profile

:
, and it is considerably faster than ε0.90−t1.

5.4. Comparison against baseline algorithms. In this section, we compare
the performance of the moHP algorithm against those of four baseline algorithms,
each of which consists of two phases. The heuristics used in these baseline algorithms
constitute the state of the art in this field, as also confirmed by [4, 25]. In the first
phase of our baseline algorithms, we use one of the following heuristics: RCM [21],
GibbsKing [22], Sloan [40], and HuScott [29]. For RCM, we use the implementation
provided by Reid and Scott [35] in HSL code MC60 [12]. For GibbsKing, we use the
efficient implementation provided by Lewis [31] in ACM Algorithm 582. For Sloan,
we use the enhanced Sloan algorithm provided by Reid and Scott [35] in HSL code
MC60 [12]. For HuScott, we use the multilevel hybrid algorithm provided by Hu and
Scott [29] in HSL code MC73 [12]. In the second phase of each baseline algorithm,
we use Hager ’s exchange algorithm [27] provided by Reid and Scott [36] in HSL
code MC67 [12], because Reid and Scott [36] report that applying Hager’s exchange
algorithm as a second phase to certain profile reduction algorithms yields better results
than using them separately. Then, the baseline algorithms against which we compare
the proposed moHP algorithm are summarized as follows:

• RCMH (RCM+Hager): MC60 with JCNTL(1)=1 followed by MC67.
• GKH (GibbsKing+Hager): The ACM Algorithm 582 followed by MC67.
• SH (Sloan+Hager): MC60 with JCNTL(1)=0 followed by MC67.
• HSH (HuScott+Hager): MC73 followed by MC67.

Each of these codes is used with default setting and compiled with gfortran version
4.9.2 with the -O2 optimization flag. The double-precision versions are used for the
HSL codes.

Figure 9 displays two performance profile plots comparing the proposed moHP
algorithm against the baseline algorithms on the dataset of 295 matrices described
in section 5.2. Similar to Figure 8, the one in

::
on

:
the left compares them in terms

of profile, whereas the one in
::
on

:
the right compares them in terms of runtime. As

seen in the plot in
:::
on the left, moHP performs significantly better than each baseline

algorithm in terms of profile. This can be attributed to the correct formulation of
the profile minimization problem as an moHP problem as well as the solution of this
problem via recursive bipartitioning utilizing the successful hypergraph partitioning
tool PaToH [10]. Among the baseline algorithms, HSH outperforms the rest and is
followed by SH and GKH in order. The plot in

::
on

:
the right shows that SH is the

fastest algorithm, followed by HSH and GKH in order. The moHP algorithm, on
the other hand, is the slowest algorithm, which can be explained with

:::::::::
attributed

::
to

the expensive nature of hypergraph partitioning. As will be seen in section 5.5, the
quality of the orderings obtained by the moHP algorithm may justify the runtime of
the moHP algorithm.

Figure 10 displays eight performance profile plots comparing the proposed moHP
algorithm against the baseline algorithms in terms of profile, one for each problem
kind

:::
type

:
having at least ten matrices in our dataset of 295 matrices. The title of

each plot displays the respective problem kind
::::
type and the number of matrices with

that kind
::::
type

:
in parentheses. As seen in the figure, except for kinds

:::::
types

:
2D/3D

and Structural,
:::
the

:
moHP algorithm performs significantly better than the baseline

AMA
Highlight

AMA
Text Box
AQ: OK as edited?

AMA
Line

A HYPERGRAPH MODEL FOR PROFILE MINIMIZATION A19

1.0 1.1 1.2 1.3 1.4
τ= Profile relative to the best

0.0

0.2

0.4

0.6

0.8

Fr
ac

tio
n

of
 m

at
ric

es

moHP HSH SH GKH RCMH

2 4 6 8 10
τ= Runtime relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 m

at
ric

es

Fig. 9. Performance profile plots comparing the moHP algorithm and the baseline algorithms
in terms of profile and runtime.

algorithms. In those problem kinds
:::::
types, moHP is usually followed by HSH, SH,

GKH,
:
and RCMH in order. For kind

::::
type

:
Structural, moHP and HSH performs

comparable
:::::::
perform

:::::::::::
comparably, followed by SH, GKH

:
, and RCMH in order. For kind

::::
type

:
2D/3D, HSH performs better than all compared algorithms, followed by moHP,

SH, GKH
:
,
:
and RCMH in order.

5.5. Factorization experiments. In this section, we compare the moHP al-
gorithm only against HSH, which achieves the smallest profile among the baseline
algorithms on the average. For the evaluation, in addition to the profile and the or-
dering runtime, we also consider the factorization performance in a sparse solver, HSL
code MA57 [12, 18]. MA57 solves sparse symmetric system(s) of linear equations by
using a direct multifrontal method, which is based on a sparse variant of Gaussian
elimination. We run MA57 on the matrices reordered by HSH and moHP with default
settings,

:
and the ordering of each given matrix is kept as is by setting ICNTL(6)=1.

The reader is referred to the manual4 for the details of MA57. It is compiled with
gfortran version 4.9.2 and ATLAS BLAS version 3.11.11.

We consider the following performance metrics obtained during the factorization,
i.e., MA57BD:

• storage
:::::::
Storage: the

::::
The number of entries in factors (in millions), i.e., INFO(15)/106.

• FLOP count: the number of floating-point operations for the elimination (in
billions), i.e., RINFO(4)/109.

• runtime
:::::::
Runtime: the

::::
The runtime of MA57BD (in seconds).

We perform the MA57 experiments on a dataset containing only large matrices,
derived from the dataset given in section 5.2. First, we included all matrices in the
initial dataset with number of rows between 100,000 and 500,000. Then, we excluded
each matrix whose factorization (MA57BD) takes longer than six hours when the
subject matrix is reordered by HSH. The resulting dataset contains 32 matrices
whose numbers of nonzeros range between 1,423,116 and 32,886,208. The properties

4http://www.hsl.rl.ac.uk/specs/ma57.pdf

http://www.hsl.rl.ac.uk/specs/ma57.pdf

A20 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT

1.0 1.1 1.2 1.3 1.4
τ= Profile relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 m

at
ric

es

2D/3D (27)

moHP HSH SH GKH RCMH

1.0 1.1 1.2 1.3 1.4
τ= Profile relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 m

at
ric

es

Computational Fluid Dynamics (12)

1.0 1.1 1.2 1.3 1.4
τ= Profile relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 m

at
ric

es

Linear Programming (43)

1.0 1.1 1.2 1.3 1.4
τ= Profile relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 m

at
ric

es
Model Reduction (12)

1.0 1.1 1.2 1.3 1.4
τ= Profile relative to the best

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Fr
ac

tio
n

of
 m

at
ric

es

Optimization (15)

1.0 1.1 1.2 1.3 1.4
τ= Profile relative to the best

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Fr
ac

tio
n

of
 m

at
ric

es

Power Network (15)

1.0 1.1 1.2 1.3 1.4
τ= Profile relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 m

at
ric

es

Structural (127)

1.0 1.1 1.2 1.3 1.4
τ= Profile relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 m

at
ric

es

Theoretical/Quantum Chemistry (14)

Fig. 10. Performance profile plots comparing the moHP algorithm and the baseline algorithms
in terms of profile for different problem kinds

:::
types. (·) denotes the number of matrices in the

respective problem kind
:::
type.

A HYPERGRAPH MODEL FOR PROFILE MINIMIZATION A21

of those matrices and the performance results obtained on them are given in Table 1.
In this table, the matrices are sorted in the increasing order of the profile obtained
by HSH.

Table 1 displays the properties of the 32 test matrices and the results obtained
by HSH and moHP on these matrices. Columns 1, 2

:
, and 3respectively

:
,
:::::::::::
respectively,

display the matrix name, the number of rows/columns (m),
:
and the number of nonze-

ros (nnz). Columns 4-7
:::
4–7

:
display the ordering results, whereas columns 8-13

::::
8–13

:
display the MA57 results. Column pairs 4-5 and 6-7 respectively

:::
4–5

::::
and

::::
6–7,

:::::::::::
respectively, denote profile and ordering runtime. Column pairs 8-9, 10-11 and 12-13
respectively

::::
8–9,

::::::
10–11,

:::::
and

::::::
12–13,

::::::::::::
respectively,

:
denote storage, FLOP count

:
,
:
and

runtime of MA57BD. In each column pair, we compare the performances of HSH
and moHP in the respective metric and show the better result in boldface on each
matrix. Note that column pair 6-7

:::
6–7

:
displays the runtime of the ordering algorithm,

whereas column pair 12-13
:::::
12–13

:
displays the runtime of the factorization when the

respective matrix is reordered by the corresponding algorithm.
As seen in Table 1, HSH performs better than moHP in terms of profile on matrices

with small profile, i.e., those on which HSH obtains profile smaller than 230 × 106,
except for matrices filter3D, d pretok

:
, and 2cubes sphere. In this set of matrices

with small profile, although moHP obtains
:
a
:
larger profile than HSH on bmwcra 1

and
:
a
:
comparable profile on shipsec8 and shipsec1, it obtains smaller MA57BD

runtime than HSH on these matrices. On all the matrices with large profile, i.e.,
those on which HSH obtains

:
a
:
profile larger than 230 × 106, moHP performs better

than HSH except for Lin.
As seen in Table 1, HSH runs faster than moHP on all matrices except for Lin.

However, when we consider the total runtime, which can be expressed as the sum
of the ordering and factorization runtimes, moHP performs better than HSH on the
matrices with large profile except for Lin. For example, consider the largest matrix
among those given in Table 1, which is dielFilterV3clx with 420,408 rows/columns
and 32,886,208 nonzeros. The ordering runtime of moHP on this largest matrix is
102.3 seconds, which is the highest ordering runtime of the moHP algorithm in the
given dataset. Even on this matrix, the total runtimes of HSH and moHPrespectively

:
,
:::::::::::
respectively,

:
are 11.9 + 953.3 = 965.2 seconds and 102.3 + 743.3 = 845.6 seconds,

so , moHP performs 965.2/845.6 = 1.14x better than HSH in terms of the total
runtime. Similarly, consider the matrix with the largest profile, which is SiO2 with
155,331 rows/columns and 11,283,503 nonzeros. On this matrix, the total runtimes of
HSH and moHPrespectively ,

::::::::::::
respectively, are 11.0 + 20,719.7 = 20,730.7 seconds and

62.7 + 15,324.9 = 15,387.6 seconds, so , moHP performs 20,730.7/15,387.6 = 1.35x
better than HSH in terms of the total runtime. Hence, for the matrices with large
profile, the better but slower orderings obtained by the moHP algorithm generally pay
off very well since they significantly reduce the factorizaton

:::::::::::
factorization runtimes.

6. Conclusion. We formulated the profile minimization problem as a constrained
version of the hypergraph partitioning (HP) problem, which we refer to as the m-way
ordered hypergraph partitioning (moHP) problem. For solving the moHP problem, we
proposed the moHP algorithm, which utilizes the recursive bipartitioning approach.
The moHP algorithm addresses the minimization objective of the moHP problem by
utilizing fixed vertices and two novel cut-net manipulation techniques. We theoret-
ically showed the correctness of the proposed moHP algorithm and described how
the existing partitioning tools can be utilized in the moHP algorithm. We tested
the performance of the moHP algorithm against the state-of-the-art profile reduction

A22 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT
T

a
b
l
e

1
P

er
fo

rm
a

n
ce

co
m

pa
ri

so
n

o
f

H
S

H
a

n
d

m
o

H
P

in
te

rm
s

o
f

p
ro

fi
le

,
o

rd
er

in
g

ru
n

ti
m

e :, :
a

n
d

M
A

5
7
B

D
’s

st
o

ra
ge

,
F

L
O

P
co

u
n

t :, :
a

n
d

ru
n

ti
m

e.

O
rd

er
in

g
M

A
5
7
B

D
M

a
tr

ix
p

ro
p

er
ti

es
P

ro
fi

le
(1

0
6
)

R
u

n
ti

m
e

(s
)

S
to

ra
g
e

(1
0
6
)

F
L

O
P

co
u

n
t

(1
0
9
)

R
u

n
ti

m
e

(s
)

N
a
m

e
m

n
n
z

H
S

H
m

o
H

P
H

S
H

m
o
H

P
H

S
H

m
o
H

P
H

S
H

m
o
H

P
H

S
H

m
o
H

P
t
h
e
r
m
o
m
e
c
h
d
M

2
0
4
,3

1
6

1
,4

2
3
,1

1
6

2
8
.7

3
2
.3

1
.5

1
8
.6

3
0
.4

3
4
.0

4
.8

5
.9

4
.1

5
.7

D
u
b
c
o
v
a
3

1
4
6
,6

8
9

3
,6

3
6
,6

4
9

6
0
.6

6
9
.4

1
.4

1
3
.6

6
1
.4

6
8
.6

2
9
.1

3
6
.4

1
8
.7

2
4
.3

f
i
l
t
e
r
3
D

1
0
6
,4

3
7

2
,7

0
7
,1

7
9

6
5
.6

5
2
.0

1
.5

1
4
.7

6
6
.5

5
1
.6

4
6
.9

2
7
.7

3
1
.6

1
9
.3

d
a
r
c
y
0
0
3

3
8
9
,8

7
4

2
,1

0
1
,2

4
2

9
4
.8

1
0
8
.5

2
.5

3
1
.2

9
8
.1

1
1
1
.5

2
8
.2

3
6
.7

2
0
.6

2
6
.2

d
p
r
e
t
o
k

1
8
2
,7

3
0

1
,6

4
1
,6

7
2

9
4
.9

9
4
.5

1
.3

1
7
.5

9
6
.6

9
6
.1

5
8
.4

5
6
.8

4
0
.3

3
9
.1

b
m
w
7
s
t
1

1
4
1
,3

4
7

7
,3

3
9
,6

6
7

1
0
6
.1

1
3
3
.3

2
.5

1
9
.9

1
0
1
.9

1
1
6
.9

8
4
.3

1
1
6
.6

5
5
.6

7
5
.4

t
u
r
o
n
m

1
8
9
,9

2
4

1
,6

9
0
,8

7
6

1
1
3
.1

1
1
3
.7

1
.8

1
8
.4

1
1
4
.8

1
1
5
.1

7
2
.9

7
6
.0

5
0
.3

5
1
.9

c
f
d
2

1
2
3
,4

4
0

3
,0

8
7
,8

9
8

1
3
1
.0

1
3
6
.9

1
.5

1
7
.5

1
3
2
.1

1
3
6
.9

1
4
9
.3

1
7
3
.2

9
8
.9

1
1
3
.7

h
o
o
d

2
2
0
,5

4
2

1
0
,7

6
8
,4

3
6

1
3
9
.2

1
6
4
.9

3
.4

3
0
.3

1
4
0
.9

1
4
7
.5

1
0
0
.6

1
0
6
.2

6
1
.6

6
4
.2

B
e
n
E
l
e
c
h
i
1

2
4
5
,8

7
4

1
3
,1

5
0
,4

9
6

1
5
2
.7

1
8
1
.4

3
.7

3
1
.7

1
5
4
.4

1
7
1
.1

1
0
2
.9

1
3
5
.3

7
0
.3

9
0
.4

2
c
u
b
e
s
s
p
h
e
r
e

1
0
1
,4

9
2

1
,6

4
7
,2

6
4

1
5
4
.9

1
4
3
.8

1
.2

1
4
.7

1
5
5
.7

1
4
4
.0

2
6
4
.4

2
2
9
.0

1
7
7
.7

1
5
1
.6

p
w
t
k

2
1
7
,9

1
8

1
1
,6

3
4
,4

2
4

1
5
9
.3

1
7
6
.5

4
.2

2
6
.2

1
5
9
.7

1
6
7
.6

1
1
9
.3

1
3
5
.4

8
0
.3

8
9
.5

b
m
w
c
r
a
1

1
4
8
,7

7
0

1
0
,6

4
4
,0

0
2

1
5
9
.9

1
8
2
.3

3
.4

3
2
.8

1
6
1
.1

1
4
0
.7

1
9
8
.2

1
4
9
.8

1
2
9
.1

9
7
.3

s
h
i
p
0
0
3

1
2
1
,7

2
8

8
,0

8
6
,0

3
4

1
6
4
.6

1
9
3
.8

2
.3

1
9
.7

1
5
2
.5

1
6
7
.4

2
1
7
.4

2
9
8
.0

1
3
6
.9

1
9
2
.1

s
h
i
p
s
e
c
8

1
1
4
,9

1
9

6
,6

5
3
,3

9
9

1
8
0
.5

1
8
1
.9

2
.0

1
6
.8

1
7
4
.7

1
6
9
.2

2
9
9
.7

2
9
2
.3

1
9
2
.1

1
8
4
.7

h
e
l
m
2
d
0
3

3
9
2
,2

5
7

2
,7

4
1
,9

3
5

1
9
4
.7

2
0
1
.8

8
.9

3
3
.9

1
9
8
.1

2
0
5
.1

1
1
4
.1

1
2
2
.1

7
8
.2

8
3
.7

s
h
i
p
s
e
c
1

1
4
0
,8

7
4

7
,8

1
3
,4

0
4

2
0
3
.1

2
0
9
.7

2
.4

2
0
.2

1
9
8
.7

1
8
9
.0

3
1
5
.9

3
0
2
.9

2
0
3
.0

1
9
3
.0

s
h
i
p
s
e
c
5

1
7
9
,8

6
0

1
0
,1

1
3
,0

9
6

2
2
9
.6

3
0
4
.8

3
.3

2
5
.0

2
2
8
.8

2
5
3
.6

3
0
4
.3

4
6
3
.2

1
9
3
.2

3
0
1
.0

b
o
n
e
S
0
1

1
2
7
,2

2
4

6
,7

1
5
,1

5
2

2
4
5
.5

2
2
6
.5

2
.2

2
0
.5

2
4
5
.5

2
1
9
.5

5
4
9
.1

4
4
4
.3

3
6
6
.4

2
8
9
.1

b
m
w
3
2

2
2
7
,3

6
2

1
1
,2

8
8
,6

3
0

2
8
5
.9

2
7
2
.5

4
.7

3
2
.0

2
7
8
.6

2
5
3
.9

4
0
0
.3

3
4
9
.0

2
6
0
.5

2
2
2
.5

w
a
v
e

1
5
6
,3

1
7

2
,1

1
8
,6

6
2

2
9
3
.0

2
6
5
.7

2
.2

2
1
.3

2
9
4
.3

2
6
6
.4

6
4
0
.8

5
1
9
.0

4
7
7
.5

3
7
1
.9

C
u
r
l
C
u
r
l
1

2
2
6
,4

5
1

2
,4

7
2
,0

7
1

4
1
4
.4

3
8
0
.6

1
.4

2
7
.7

4
1
6
.2

3
6
1
.6

9
5
7
.5

7
0
8
.5

7
1
8
.5

4
9
3
.3

m
s
d
o
o
r

4
1
5
,8

6
3

2
0
,2

4
0
,9

3
5

4
1
6
.5

3
9
3
.9

6
.9

5
9
.7

4
1
9
.7

3
6
7
.4

4
6
1
.3

3
4
9
.5

2
8
0
.3

2
1
2
.2

o
f
f
s
h
o
r
e

2
5
9
,7

8
9

4
,2

4
2
,6

7
3

5
1
6
.9

3
8
8
.8

3
.2

4
0
.2

5
1
8
.9

3
7
7
.4

1
,1

7
1
.9

6
5
6
.3

8
6
2
.5

4
4
6
.4

L
i
n

2
5
6
,0

0
0

1
,7

6
6
,4

0
0

5
4
4
.6

5
8
5
.6

1
0
6
.5

2
9
.1

5
4
6
.8

5
8
7
.8

1
,3

1
7
.8

1
,5

4
0
.6

9
4
7
.6

1
,1

2
9
.9

F
1

3
4
3
,7

9
1

2
6
,8

3
7
,1

1
3

5
9
2
.9

6
5
2
.2

1
2
.9

9
0
.9

5
9
4
.6

5
5
1
.4

1
,2

0
9
.6

1
,0

6
6
.8

7
9
3
.2

6
8
9
.1

d
i
e
l
F
i
l
t
e
r
V
3
c
l
x

4
2
0
,4

0
8

3
2
,8

8
6
,2

0
8

7
3
1
.0

6
9
8
.7

1
1
.9

1
0
2
.3

7
3
0
.6

6
7
5
.1

1
,4

6
0
.9

1
,1

9
4
.2

9
5
3
.3

7
4
3
.3

G
e
9
9
H
1
0
0

1
1
2
,9

8
5

8
,4

5
1
,3

9
5

1
,1

4
4
.9

9
6
0
.6

8
.6

4
8
.4

1
,1

4
5
.7

9
6
1
.5

1
3
,2

4
2
.9

9
,0

0
4
.0

1
0
,1

5
2
.1

6
,7

5
9
.9

G
a
1
0
A
s
1
0
H
3
0

1
1
3
,0

8
1

6
,1

1
5
,6

3
3

1
,1

5
7
.2

1
,0

1
8
.0

5
.6

4
5
.0

1
,1

5
8
.0

1
,0

1
8
.9

1
3
,8

1
9
.8

1
0
,2

8
0
.9

1
0
,5

2
7
.5

7
,7

6
2
.1

G
e
8
7
H
7
6

1
1
2
,9

8
5

7
,8

9
2
,1

9
5

1
,1

6
9
.8

9
5
5
.7

7
.7

4
6
.7

1
,1

7
0
.6

9
5
6
.5

1
3
,9

8
1
.3

8
,9

0
7
.3

1
0
,7

8
5
.8

6
,7

1
3
.3

G
a
1
9
A
s
1
9
H
4
2

1
3
3
,1

2
3

8
,8

8
4
,8

3
9

1
,5

2
3
.7

1
,3

1
1
.5

1
0
.2

5
9
.6

1
,5

2
4
.7

1
,3

1
2
.6

2
0
,1

6
6
.4

1
4
,3

6
2
.3

1
5
,6

8
1
.2

1
1
,1

2
4
.0

S
i
O
2

1
5
5
,3

3
1

1
1
,2

8
3
,5

0
3

1
,9

1
0
.2

1
,6

9
5
.9

1
1
.0

6
2
.7

1
,9

1
1
.5

1
,6

8
4
.3

2
6
,5

7
8
.2

2
0
,0

3
6
.9

2
0
,7

1
9
.7

1
5
,3

2
4
.9

A HYPERGRAPH MODEL FOR PROFILE MINIMIZATION A23

algorithms on a large dataset of 295 matrices
:
,
:
and the experimental results showed

the validity of the proposed approach.

Appendix A. Proofs of lemmas. We prove each of Lemmas 3, 4, 5, and 6 by
induction on the depth of the RB tree. We assume that the depth of T H is k > 0.
One important observation is that the depths of subtrees T HL and T HR are both less
than k. The base case for the induction in each proof corresponds to the depth of T H
being equal to zero, which implies that H is represented by a leaf node. In this case,
no further moHP invocations are carried on, ;

:
hence, µ(ni, T H) = 0.

In the following proofs, we use V̂, V̂L, and V̂R to denote the number of free vertices
in H, HL, and HR, respectively.

A.1. Lemma 3.

Proof. In the base case, V̂ − 1 = 0 since there is exactly one free vertex in H, ;

hence, µ(ni, T H) = |V̂| − 1 holds.
We assume µ(ni, T H) = |V̂| − 1 holds when the tree depth is less than k. Since

ni is left-right-anchored, it is left-cut in the bipartition of H. Thus, ni is copied to
both HL and HR by net duplication

:::
the

::::::::::::::
net-duplication technique and it is left-right-

anchored in both of them. By the inductive hypothesis, µ(ni, T HL) = |V̂L| − 1 and
µ(ni, T HR) = |V̂R| − 1. Notice that V̂L and V̂R are disjoint and V̂ = V̂L ∪ V̂R. Since
ni is left-cut in the bipartition of H, we have

µ(ni, T H) = µ(ni, T HL) + µ(ni, T HR) + 1 = (|V̂L| − 1) + (|V̂R| − 1) + 1

= |V̂L|+ |V̂R| − 1 = |V̂| − 1.

A.2. Lemma 4.

Proof. Recall that ni connects fi in H since it is right-anchored. In the base case,
V̂ = {fi} since there is exactly one free vertex in H. Then, |{v ∈ V̂ : φ(v) > φ(fi)}| =
0,

:
; hence, µ(ni, T H) = |{v ∈ V̂ : φ(v) > φ(fi)}| holds.

We assume µ(ni, T H) = |{v ∈ V̂ : φ(v) > φ(fi)}| holds when the tree depth is
less than k. We investigate the cases of ni being cut or not in the bipartition of H as
follows.

1. ni is cut: Since ni is right-anchored, it is left-cut. Then, ni is copied to
both HL and HR by net duplication

:::
the

::::::::::::::
net-duplication technique and it is

right-anchored and left-right-anchored in HL and HR, respectively. By the
inductive hypothesis, µ(ni, T HL) = |{v ∈ V̂L : φ(v) > φ(fi)}|. Moreover, by
Lemma 3, µ(ni, T HR) = |V̂R| − 1. Notice that each vertex in V̂R is numbered
after fi since fi ∈ V̂L. Since ni is left-cut in the bipartition of H, we have

µ(ni, T H) = µ(ni, T HL) + µ(ni, T HR) + 1

= |{v ∈ V̂L : φ(v) > φ(fi)}|+ (|V̂R| − 1) + 1

= |{v ∈ V̂L : φ(v) > φ(fi)}|+ |V̂R| = |{v ∈ V̂ : φ(v) > φ(fi)}|.

2. ni is not cut: Since ni is right-anchored, it is internal to the right part, which
implies that it appears only in HR. Then, ni is right-anchored in HR. Then,
by inductive hypothesis,

µ(ni, T H) = µ(ni, T HR) = |{v ∈ V̂R : φ(v) > φ(fi)}| = |{v ∈ V̂ : φ(v) > φ(fi)}|.

A24 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT

A.3. Lemma 5.

Proof. Recall that ni connects fi in H since it is left-anchored. In the base case,
V̂ = {vi} since there is exactly one free vertex. Then, |{v ∈ V̂ : φ(v) < φ(vi)}| = 0, ;

hence, µ(ni, T H) = |{v ∈ V̂ : φ(v) < φ(vi)}| holds.
We assume µ(ni, T H) = |{v ∈ V̂ : φ(v) < φ(vi)}| holds when the depth is less

than k. We investigate the cases of ni being left-cut or not in the bipartition of H as
follows.

1. ni is left-cut. ni is copied to both HL and HR by net duplication and it
is left-right-anchored and left-anchored at HL and HR, respectively. By the
inductive hypothesis, µ(ni, T HR) = |{v ∈ V̂R : φ(v) < φ(vi)}|. Moreover, by

Lemma 3, µ(ni, T HL) = |V̂| − 1. Notice that each vertex in V̂R is numbered

before vi since vi ∈ V̂R. Since ni is left-cut in the bipartition of H, we have

µ(ni, T H) = µ(ni, T HL) + µ(ni, T H
R

) + 1

= (|V̂L| − 1) + |{v ∈ V̂R : φ(v) < φ(vi)}|+ 1

= |V̂L|+ {v ∈ V̂R : φ(v) < φ(vi)}| = |{v ∈ V̂R : φ(v) < φ(vi)}|.

2. ni is not left-cut: Since ni is left-anchored, ni appears only in HL. Then, ni
is left-anchored in HL and a vertex v ∈ V̂ is in V̂L whenever φ(v) < φ(vi).
Then, by the inductive hypothesis,

µ(ni, T H) = µ(ni, T HL) = |{v ∈ V̂L : φ(v) < φ(vi)}| = |{v ∈ V̂ : φ(v) < φ(vi)}|.

A.4. Lemma 6.

Proof. Recall that both fi and vi are free vertices and connected by ni in H since
ni is free. In the base case, V̂ = {fi = vi} since there is exactly one free vertex. Then,
|{v ∈ V̂ : φ(fi) ≤ φ(v) ≤ φ(vi)}| − 1 = 0, ;

:
hence, µ(ni, T H) = |{v ∈ V̂ : φ(fi) ≤

φ(v) ≤ φ(vi)}|.
We assume µ(ni, T H) = |{v ∈ V̂ : φ(fi) ≤ φ(v) ≤ φ(vi)}| holds when the depth is

less than k. We investigate the cases of ni being left-cut or not in the bipartition of
H as follows.

1. ni is left-cut: ni is copied to both HL and HR by net duplication and it is
right-anchored and left-anchored in HL and HR, respectively. By Lemma 4,
µ(ni, T HL) = |{v ∈ V̂L : φ(v) > φ(fi)}|. By Lemma 5, µ(ni, T HR) = |{v ∈
V̂R : φ(v) < φ(vi)}|. Notice that each vertex in V̂L is numbered before vi
since vi ∈ V̂R. Also notice that each vertex in V̂R is numbered after fi since
fi ∈ V̂L. Since ni is left-cut in the bipartition of H, we have

µ(ni, T H) = µ(ni, T HL) + µ(ni, T HR) + 1

= |{v ∈ V̂L : φ(v) > φ(fi)}|+ |{v ∈ V̂R : φ(v) < φ(vi)}|+ 1

= (|{v ∈ V̂L : φ(v) ≥ φ(fi)}| − 1) + (|{v ∈ V̂R : φ(v) ≤ φ(vi)}| − 1) + 1

= |{v ∈ V̂ : φ(fi) ≤ φ(v) ≤ φ(vi)}| − 1.

2. ni is not left-cut: Since ni is free in H, ni appears in only one of HL and HR

wherein ni remains to be free. Consider a vertex v ∈ V̂ satisfying φ(fi) ≤
φ(v) ≤ φ(vi). If ni ∈ HL, v ∈ V̂L, ;

:
otherwise, v ∈ V̂R. Without loss

A HYPERGRAPH MODEL FOR PROFILE MINIMIZATION A25

of generality, assume that ni appears in only HL. Then, by the inductive
hypothesis,

µ(ni, T H) = µ(ni, T HL) = |{v ∈ V̂L : φ(fi) ≤ φ(v) ≤ φ(vi)}| − 1

= |{v ∈ V̂ : φ(fi) ≤ φ(v) ≤ φ(vi)}| − 1.

Acknowledgment. We thank the anonymous referees for their valuable com-
ments, which helped us substantially improve the presentation of this paper.

REFERENCES

[1] S. Acer, E. Kayaaslan, and C. Aykanat, A recursive bipartitioning algorithm for permuting
sparse square matrices into block diagonal form with overlap, SIAM J. Sci. Comput., 35
(2013), pp. C99–C121

:
, https://doi.org/10.1137/120861242.

[2] S. Acer, O. Selvitopi, and C. Aykanat, Improving performance of sparse matrix dense ma-
trix multiplication on large-scale parallel systems, Parallel Computing

::::::
Comput., 59 (2016),

pp. 71–96, Theory and Practice of Irregular Applications, https://doi.org/10.1016/j.parco.
2016.10.001, .

[3] S. T. Barnard, A. Pothen, and H. D. Simon, A spectral algorithm for envelope reduction of
sparse matrices, Numerical Linear Algebra with Applications

:::::
Numer.

::::::
Linear

::::::
Algebra

::::
Appl.,

2 (1995), pp. 317–334, https://doi.org/10.1002/nla.1680020402.
[4] J. A. B. Bernardes and S. L. G. de Oliveira, A systematic review of heuristics for

profile reduction of symmetric matrices, Procedia Computer Science
:::::::
Comput.

::::
Sci., 51

(2015), pp. 221–230, International Conference on Computational Science, ICCS 2015,
https://doi.org/10.1016/j.procs.2015.05.231, .

[5] M. W. Berry, B. Hendrickson, and P. Raghavan, Sparse matrix reordering schemes
for browsing hypertext, in Lectures in Applied Mathematics 32, American Mathematical
Society,

::::
AMS,

::::::::::
Providence,

:::
RI, 1996, pp. 99–124.

[6] M. E. Bolanos, S. Aviyente, and H. Radha, Graph entropy rate minimization and the
compressibility of undirected binary graphs, in 2012 IEEE Statistical Signal Processing
Workshop (SSP),

::::
IEEE,

:::::::::::
Washington,

:::
DC,

:
2012, pp. 109–112, https://doi.org/10.1109/

SSP.2012.6319634.
[7] E. G. Boman and B. Hendrickson, A Multilevel Algorithm for Reducing the Envelope of

Sparse Matrices, Tech. Report
:::::
report SCCM-96-14, Stanford University, Stanford, CA,

1996.
[8] D. Burgess and M. Giles, Renumbering unstructured grids to improve the performance of

codes on hierarchical memory machines, Advances in Engineering Software
::::
Adv.

::::::
Engrg.

:::::
Softw., 28 (1997), pp. 189–201, https://doi.org/10.1016/S0965-9978(96)00039-7, .

[9] Ü. V. Çatalyürek and C. Aykanat, Hypergraph-partitioning-based decomposition for par-
allel sparse-matrix vector multiplication, IEEE Transactions on Parallel and Distributed
Systems

:::::
Trans.

::::::
Parallel

:::::::::
Distributed

::::
Syst., 10 (1999), pp. 673–693, https://doi.org/10.1109/

71.780863.
[10] Ü. V. Çatalyürek and C. Aykanat, PaToH: A Multilevel Hypergraph Partitioning Tool,

Version 3.0, Dept. of Computer Engineering, Bilkent University, Ankara, 06533 Turkey,
1999; PaToH is available at http://bmi.osu.edu/∼umit/software.htm.

[11] S. S. Clift and W.-P. Tang, Weighted graph based ordering techniques for preconditioned
conjugate gradient methods, BITNumerical Mathematics, 35 (1995), pp. 30–47, https://
doi.org/10.1007/BF01732977.

[12] Computational Mathematics Group, HSL. A Collection of Fortran Codes for Large Scale
Scientific Computation, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire,
England, http://www.hsl.rl.ac.uk/.

[13] T. A. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, ACM
Transactions on Mathematical Software

::::
Trans.

:::::
Math.

::::::
Softw., 38 (2011), pp. 1–25

::
25, http:

//www.cise.ufl.edu/research/sparse/matrices.
[14] T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar, A survey of direct methods for

sparse linear systems, Acta Numerica
::::::
Numer., 25 (2016), pp. 383–566, https://doi.org/10.

1017/S0962492916000076.
[15] E. F. D’Azevedo, P. A. Forsyth, and W.-P. Tang, Ordering methods for preconditioned

conjugate gradient methods applied to unstructured grid problems, SIAM J. Matrix Anal.
Appl., 13 (1992), pp. 944–961, https://doi.org/10.1137/0613057.

https://doi.org/10.1137/120861242
https://doi.org/10.1016/j.parco.2016.10.001
https://doi.org/10.1016/j.parco.2016.10.001
https://doi.org/10.1002/nla.1680020402
https://doi.org/10.1016/j.procs.2015.05.231
https://doi.org/10.1109/SSP.2012.6319634
https://doi.org/10.1109/SSP.2012.6319634
https://doi.org/10.1016/S0965-9978(96)00039-7
https://doi.org/10.1109/71.780863
https://doi.org/10.1109/71.780863
http://bmi.osu.edu/~umit/software.htm
https://doi.org/10.1007/BF01732977
https://doi.org/10.1007/BF01732977
http://www.hsl.rl.ac.uk/
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
https://doi.org/10.1017/S0962492916000076
https://doi.org/10.1017/S0962492916000076
https://doi.org/10.1137/0613057
AMA
Text Box
AQ: Do you wish to add DOIs to references that don't currently have them listed? If so, please provide them when you send in your corrections.

AMA
Highlight

AMA
Text Box
AQ: The changes aren't shown here, but this was originally reference [1]. I added the author and location and moved the reference for alphabetical order. OK as edited?

AMA
Line

AMA
Highlight

AMA
Text Box
AQ: I don't think this is the right URL. It's the page for Ohio State U's College of Medicine & Biomedical Informatics department. If this is wrong please give us the right URL or we can just delete this.

AMA
Line

A26 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT

[16] J. D́ıaz, J. Petit, and M. Serna, A survey of graph layout problems, ACM Comput. Surv.,
34 (2002), pp. 313–356, https://doi.org/10.1145/568522.568523, .

[17] E. D. Dolan and J. J. Morè, Benchmarking optimization software with performance profiles,
Mathematical Programming

:::::
Math.

:::::::
Program., 91 (2002), pp. 201–213, https://doi.org/10.

1007/s101070100263.
[18] I. S. Duff, Ma

:::
MA57—a code for the solution of sparse symmetric definite and indefinite sys-

tems, ACM Trans. Math. Softw., 30 (2004), pp. 118–144, https://doi.org/10.1145/992200.
992202, .

[19] I. S. Duff and G. A. Meurant, The effect of ordering on preconditioned conjugate gradients,
BITNumerical Mathematics, 29 (1989), pp. 635–657, https://doi.org/10.1007/BF01932738.

[20] C. A. Felippa, Introduction to finite element methods
:::::
Finite

::::::
Element

:::::::
Methods, Department of

Aerospace Engineering Sciences and Center for Aerospace Structures, University of Col-
orado Boulder, (2001).

::::
2001.

:
[21] A. George, Computer Implementation of the Finite Element Method, Ph.D. thesis, Stanford

University, Stanford, CA, 1971.
[22] N. E. Gibbs, Algorithm 509: A hybrid profile reduction algorithm [F1], ACM Trans. Math.

Softw., 2 (1976), pp. 378–387, https://doi.org/10.1145/355705.355713, .
[23] N. E. Gibbs, W. G. Poole,

:::
Jr.,

:
and P. K. Stockmeyer, An algorithm for reducing the

bandwidth and profile of a sparse matrix, SIAM J. Numer. Anal., 13 (1976), pp. 236–250,
https://doi.org/10.1137/0713023, , .

[24] S. L. Gonzaga de Oliveira, J. A. B. Bernardes, and G. O. Chagas, An evaluation of re-
ordering algorithms to reduce the computational cost of the incomplete Cholesky-conjugate
gradient method, Computational and Applied Mathematics, (2017),

:::::::
Comput.

::::
Appl.

::::::
Math.,

::
37

:::::
(2018),

:::
pp.

:::::::::
2965–3004,

:
https://doi.org/10.1007/s40314-017-0490-5.

[25] S. L. Gonzaga de Oliveira, J. A. B. Bernardes, and G. O. Chagas, An evaluation of low-
cost heuristics for matrix bandwidth and profile reductions, Computational and Applied
Mathematics

::::::
Comput.

:::::
Appl.

:::::
Math., 37 (2018), pp. 1412–1471, https://doi.org/10.1007/

s40314-016-0394-9.
[26] P. Grindrod, Range-dependent random graphs and their application to modeling large small-

world proteome
:::::::
Proteome

:
datasets, Phys. Rev. E, 66 (2002), 066702, https://doi.org/10.

1103/PhysRevE.66.066702, .
[27] W. W. Hager, Minimizing the profile of a symmetric matrix, SIAM J. Sci. Comput., 23 (2002),

pp. 1799–1816,
:
https://doi.org/10.1137/S1064827500379215.

[28] D. J. Higham, Unravelling small world networks, Journal of Computational and Applied
Mathematics

:
J.

:::::::
Comput.

:::::
Appl.

::::::
Math., 158 (2003), pp. 61–74, selection of papers from

the Conference on Computational and Mathematical Methods for Science and Engineering,
Alicante University, Spain, 20-25 September 2002, https://doi.org/10.1016/S0377-0427(03)
00471-0, .

[29] Y.
::
F. Hu and J.

::
A. Scott, A multilevel algorithm for wavefront reduction, SIAM J. Sci.

Comput., 23 (2001), pp. 1352–1375, https://doi.org/10.1137/S1064827500377733, , .
[30] G. Kumfert and A. Pothen, Two improved algorithms for envelope and wavefront reduc-

tion, BITNumerical Mathematics, 37 (1997), pp. 1–32
::::::
559–590, https://doi.org/10.1007/

BF02510240.
[31] J. G. Lewis, Implementation of the Gibbs-Poole-Stockmeyer and Gibbs-King algorithms, ACM

Trans. Math. Softw., 8 (1982), pp. 180–189, https://doi.org/10.1145/355993.355998, .
[32] Y. Lin and J. Yuan, Profile minimization problem for matrices and graphs, Acta

Mathematicae Applicatae Sinica
::::
Math.

:::::
Appl.

::::
Sin., 10 (1994), pp. 107–112, https://doi.

org/10.1007/BF02006264.
[33] J. Meijer and J. van de Pol, Bandwidth and wavefront reduction for static variable or-

dering in symbolic reachability analysis, Springer International Publishing
:
in
::::
2016

::::::
NASA

:::::
Formal

:::::::
Methods

::::::::::
Symposium,

::::::
Springer, Cham, 2016, pp. 255–271, https://doi.org/10.1007/

978-3-319-40648-0 20.
[34] C. Mueller, B. Martin, and A. Lumsdaine, A comparison of vertex ordering algorithms

for large graph visualization, in 2007 6th International Asia-Pacific Symposium on Vi-
sualization ,

:::::::
(Sydney,

:::::
NSW,

:::::::::
Australia),

::::::
IEEE,

::::::::::
Washington,

::::
DC,

:
2007, pp. 141–148,

https://doi.org/10.1109/APVIS.2007.329289.
[35] J. K. Reid and J. A. Scott, Ordering symmetric sparse matrices for small profile and wave-

front, International Journal for Numerical Methods in Engineering
::::::
Internat.

::
J.
:::::::

Numer.

::::::
Methods

::::::
Engrg., 45 (1999), pp. 1737–1755.

[36] J. K. Reid and J. A. Scott, Implementing Hager’s exchange methods for matrix profile
reduction, ACM Trans. Math. Softw., 28 (2002), pp. 377–391, https://doi.org/10.1145/
592843.592844, .

https://doi.org/10.1145/568522.568523
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100263
https://doi.org/10.1145/992200.992202
https://doi.org/10.1145/992200.992202
https://doi.org/10.1007/BF01932738
https://doi.org/10.1145/355705.355713
https://doi.org/10.1137/0713023
https://doi.org/10.1007/s40314-017-0490-5
https://doi.org/10.1007/s40314-016-0394-9
https://doi.org/10.1007/s40314-016-0394-9
https://doi.org/10.1103/PhysRevE.66.066702
https://doi.org/10.1103/PhysRevE.66.066702
https://doi.org/10.1137/S1064827500379215
https://doi.org/10.1016/S0377-0427(03)00471-0
https://doi.org/10.1016/S0377-0427(03)00471-0
https://doi.org/10.1137/S1064827500377733
https://doi.org/10.1007/BF02510240
https://doi.org/10.1007/BF02510240
https://doi.org/10.1145/355993.355998
https://doi.org/10.1007/BF02006264
https://doi.org/10.1007/BF02006264
https://doi.org/10.1007/978-3-319-40648-0_20
https://doi.org/10.1007/978-3-319-40648-0_20
https://doi.org/10.1109/APVIS.2007.329289
https://doi.org/10.1145/592843.592844
https://doi.org/10.1145/592843.592844

A HYPERGRAPH MODEL FOR PROFILE MINIMIZATION A27

[37] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2003.
::::
2003, https:

//doi.org/10.1137/1.9780898718003
:
.

[38] O. Selvitopi, S. Acer, and C. Aykanat, A recursive hypergraph bipartitioning framework
for reducing bandwidth and latency costs simultaneously, IEEE Transactions on Parallel
and Distributed Systems

::::
Trans.

:::::::
Parallel

:::::::::
Distributed

::::
Syst., 28 (2017), pp. 345–358, https:

//doi.org/10.1109/TPDS.2016.2577024.
[39] D. Silva, M. Velazco, and A. Oliveira, Influence of matrix reordering on the performance of

iterative methods for solving linear systems arising from interior point methods for linear
programming, Mathematical Methods of Operations Research

:::::
Math.

:::::::
Methods

:::::
Oper.

:::
Res.,

85 (2017), pp. 97–112, https://doi.org/10.1007/s00186-017-0571-7.
[40] S. W. Sloan, An algorithm for profile and wavefront reduction of sparse matrices, International

Journal for Numerical Methods in Engineering
::::::
Internat.

::
J.
:::::::

Numer.
:::::::
Methods

::::::
Engrg., 23

(1986), pp. 239–251, https://doi.org/10.1002/nme.1620230208.
[41] S. Xu, W. Xue, and H. X. Lin, Performance modeling and optimization of sparse

matrix-vector multiplication on nvidia cuda
::::::

NVIDIA
::::::

CUDA
:

platform, The Journal
of Supercomputing

::
J.

:::::::::::
Supercomput., 63 (2013), pp. 710–721, https://doi.org/10.1007/

s11227-011-0626-0.

https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1109/TPDS.2016.2577024
https://doi.org/10.1109/TPDS.2016.2577024
https://doi.org/10.1007/s00186-017-0571-7
https://doi.org/10.1002/nme.1620230208
https://doi.org/10.1007/s11227-011-0626-0
https://doi.org/10.1007/s11227-011-0626-0

	Introduction
	Preliminaries
	The m-way ordered hypergraph partitioning formulation
	The m-way ordered hypergraph partitioning (moHP) problem
	Formulation

	Recursive-bipartitioning-based moHP algorithm
	Overall description
	Left-cut-net metric
	Forming H_L and H_R by novel cut-net manipulation techniques
	Correctness of the moHP algorithm
	Minimizing the left-cut-net metric

	Experiments
	Implementation
	Dataset
	Sensitivity analysis
	Comparison against baseline algorithms
	Factorization experiments

	Conclusion
	Appendix A. Proofs of lemmas
	Lemma 3
	Lemma 4
	Lemma 5
	Lemma 6

	Acknowledgment
	References

