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Less Is More: A Comprehensive Framework for the
Number of Components of Ensemble Classifiers

Hamed Bonab and Fazli Can

Abstract— The number of component classifiers chosen for an
ensemble greatly impacts the prediction ability. In this paper,
we use a geometric framework for a priori determining the
ensemble size, which is applicable to most of the existing batch
and online ensemble classifiers. There are only a limited number
of studies on the ensemble size examining majority voting (MV)
and weighted MV (WMV). Almost all of them are designed
for batch-mode, hardly addressing online environments. Big
data dimensions and resource limitations, in terms of time
and memory, make the determination of ensemble size crucial,
especially for online environments. For the MV aggregation rule,
our framework proves that the more strong components we
add to the ensemble, the more accurate predictions we can
achieve. For the WMV aggregation rule, our framework proves
the existence of an ideal number of components, which is equal
to the number of class labels, with the premise that components
are completely independent of each other and strong enough.
While giving the exact definition for a strong and independent
classifier in the context of an ensemble is a challenging task, our
proposed geometric framework provides a theoretical explanation
of diversity and its impact on the accuracy of predictions.
We conduct a series of experimental evaluations to show the
practical value of our theorems and existing challenges.

Index Terms— Data stream, ensemble cardinality, ensemble
size, law of diminishing returns, majority voting (MV), supervised
learning, voting framework, weighted MV (WMV).

I. INTRODUCTION

OVER the last few years, the design of learning sys-
tems for mining the data generated from the real-world

problems has encountered new challenges such as the high
dimensionality of big data, as well as growth in volume,
variety, velocity, and veracity—the four V’s of big data.1 In
the context of data dimensions, the volume is the amount
of data, variety is the number of types of data, velocity is
the speed of data, and veracity is the uncertainty of data;
generated in real-world applications and processed by the
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learning algorithm. The dynamic information processing and
incremental adaptation of learning systems to the temporal
changes are among the most demanding tasks in the literature
for a long time [2], [3].

Ensemble classifiers are among the most successful and
well-known solutions to supervised learning problems, par-
ticularly for online environments [4]–[6]. The main idea is
to construct a collection of individual classifiers, even with
weak learners, and combine their votes. The aim is to build a
stronger classifier, compared with each individual component
classifier [7]. The training mechanism of components and the
vote aggregation method mostly characterize an ensemble
classifier [8].

There are two main categories of vote aggregation methods
for combining the votes of component classifiers: weighting
methods and metalearning methods [8], [9]. Weighting meth-
ods assign a combining weight to each component and aggre-
gate their votes based on these weights [e.g., majority voting
(MV), performance weighting, and Bayesian combination].
They are useful when the individual classifiers perform the
same task and have comparable success. Metalearning meth-
ods refer to learning from the classifiers and from the clas-
sifications of these classifiers on training data (e.g., stacking,
arbiter trees, and grading). They are best suited for situations
where certain classifiers consistently misclassify or correctly
classify certain instances [8]. In this paper, we study the
ensembles with the weighting combination rule. Metalearning
methods are out of the scope of this paper.

An important aspect of ensemble methods is to deter-
mine how many component classifiers should be included in
the final ensemble, known as the ensemble size or ensem-
ble cardinality [1], [8], [10]–[14]. The impact of ensemble
size on efficiency in terms of time and memory and pre-
dictive performance make its determination an important
problem [15], [16]. Efficiency is especially important for
online environments. In this paper, we extend our geometric
framework [1] for predetermining the ensemble size, applica-
ble to both batch and online ensembles.

Furthermore, diversity among component classifiers
is an influential factor for having an accurate
ensemble [8], [17]–[19]. Liu et al. [20] empirically studied
ensemble size on diversity. Hu [11] explained that component
diversity leads to uncorrelated votes, which in turn improves
predictive performance. However, to the best of our
knowledge, there is no explanatory theory revealing how and
why diversity among components contributes toward overall
ensemble accuracy [21]. Our proposed geometric framework
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introduces a theoretical explanation for the understanding of
diversity in the context of ensemble classifiers. The main
contributions of this paper are the following.

1) We present a brief comprehensive review of existing
approaches for determining the number of component
classifiers of ensembles.

2) We provide a spatial modeling for ensembles and use the
linear least squares (LSQs) solution [22] for optimizing
the weights of components of an ensemble classifier,
applicable to both online and batch ensembles.

3) We exploit the geometric framework for the first time
in the literature, for a priori determining the number of
component classifiers of an ensemble.

4) We explain the impact of diversity among component
classifiers of an ensemble on the predictive performance,
from a theoretical perspective and for the first time in
the literature.

5) We conduct a series of experimental evaluations on
more than 16 different real-world and synthetic data
streams and show the practical value of our theorems
and existing challenges.

II. RELATED WORKS

The importance of ensemble size is discussed in several
studies. There are two categories of approaches in the literature
for determining ensemble size. Several ensembles a priori
determine the ensemble size with a fixed value (such as
bagging), while others try to determine the best ensemble
size dynamically by checking the impact of adding new
components to the ensemble [8]. Zhou et al. [23] analyzed
the relationship between an ensemble and its components and
concluded that aggregating many of the components may be
the better approach. Through an empirical study, Liu et al. [20]
showed that a subset of the components of a larger ensemble
can perform comparably to the full ensemble, in terms of
accuracy and diversity. Ulaş et al. [24] discussed approaches
for incrementally constructing a batch-mode ensemble using
different criteria including accuracy, significant improvement,
diversity, correlation, and the role of search direction.

This led to the idea in ensemble construction, that it is
sometimes useful, to let the ensemble extend unlimitedly
and then prune the ensemble in order to get a more effec-
tive ensemble [8], [25]–[29]. Ensemble selection methods are
developed as pruning strategies for ensembles. However, with
today’s data dimensions and resource constraints, the idea
seems impractical. Since the number of data instances grows
exponentially, especially in online environments, there is a
potential problem of approaching an infinite number of compo-
nents for an ensemble. As a result, determining an upper bound
for the number of components with a reasonable resource
consumption is essential. As mentioned in [30], the errors
cannot be arbitrarily reduced by increasing the ensemble size
indefinitely.

There are a limited number of studies for batch-mode
ensembles. Latinne et al. [10] proposed a simple empiri-
cal procedure for limiting the number of classifiers based
on the McNemar nonparametric test of significance. Simi-
lar approaches [31], [32], suggested a range of 10–20 base

classifiers for bagging, depending on the base classifier and
data set.

Oshiro et al. [12] cast the idea that there is an ideal
number of component classifiers within an ensemble. They
defined the ideal number as the ensemble size where exploiting
more base classifiers brings no significant performance gain,
and only increases computational costs. They showed this
by using the weighted average area under the ROC curve,
and some data set density metrics. Fumera et al. [32], [33]
applied an existing analytical framework for the analysis of
linearly combined classifiers of bagging, using misclassifi-
cation probability. Hernández-Lobato et al. [13] suggested a
statistical algorithm for determining the size of an ensemble,
by estimating the required number of classifiers for obtaining
stable aggregated predictions, using MV.

Pietruczuk et al. [34], [35] recently studied the automatic
adjustment of ensemble size for online environments. Their
approach determines whether a new component should be
added to the ensemble by using a probability framework and
defining a confidence level. However, the diversity impact of
component classifiers is not taken into account, and there is a
possibility of approaching the infinite number of components
without reaching the confidence level. The assumption that the
error distribution is i.i.d cannot be guaranteed, especially with
a higher ensemble size; this reduces the improvements due to
each extra classifier [30].

III. GEOMETRIC FRAMEWORK

In this section, we propose a geometric framework for
studying the theoretical side of ensemble classifiers based
on [1]. We mainly focus on online ensembles since they are
more specific models compared with batch-mode ensembles.
The main difference is that online ensembles are trained and
tested over the course of incoming data while batch-mode
ensembles are trained and tested once. As a result, batch-mode
ensembles are also applicable to our framework, with a simpler
declaration. We use this geometric framework in [36] and [37]
for aggregating votes and proposing a novel online ensemble
for evolving data stream.

Suppose we have an ensemble of m component classifiers,
ξ = {C S1, C S2, . . . , C Sm}. Due to resource limitations, we are
only able to keep the n latest instances of an incoming data
stream as an instance window, I = {I1, I2, . . . , In}, where In

is the latest instance and all the true-class labels are available.
We assume that our supervised learning problem has p class
labels, C = {C1, C2, . . . , Cp}. For batch-mode ensembles, I
can be considered as the whole set of training data. Table I
presents the notation of symbols for our geometric framework.

Our framework uses a p-dimensional Euclidean space for
modeling the components’ votes and true-class labels. For
a given instance Ii (1 ≤ i ≤ n), each component classi-
fier C Sj (1 ≤ j ≤ m) returns a score-vector as si j =
〈S1

i j , S2
i j , . . . , S p

i j 〉, where
∑p

k=1 Sk
i j = 1. Considering all

the score-vectors in our p-dimensional space, the frame-
work builds a polytope of votes, which we call the score-
polytope of Ii . For the true-class label of Ii , we have
oi = 〈O1

i , O2
i , . . . , O p

i 〉 as the ideal-point. Note that oi is
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Fig. 1. Schema of the geometric framework (obtained from [1]). It with
class label yt = C1 is fed to the ensemble. Each component classifier, C S j ,
generates a score-vector, St j . These score-vectors construct a surface in the
Euclidean space, called score-polytope.

TABLE I

SYMBOL NOTATIONS OF THE GEOMETRIC FRAMEWORK

a one-hot vector in this paper. However, there are other super-
vised problems this assumption is not true—e.g., multilabel
classification [37]. Studying other variations of the supervised
problem is out of the scope of this paper. A general schema
of our geometric framework is presented in Fig. 1.

Example: Assume, we have a supervised problem with
three class labels, C = {C1, C2, C3}. For a given instance It ,
the true-class label is C2. The ideal-point would be ot =
〈0, 1, 0〉.

One could presumably define many different algebraic rules
for vote aggregation [38], [39]—minimum, maximum, sum,
mean, product, median, and so on. While these vote aggrega-
tion rules can be expressed using our geometric framework,
we study the MV and weighted MV (WMV) aggregation
rules in this paper. In addition, individual vote scores can be
aggregated based on two different voting schemes [40].

1) Hard Voting: The score-vector of a component classifier
is first transformed into a one-hot vector, possibly using
a hard-max function, and then combined.

2) Soft Voting: The score-vector is used for vote aggrega-
tion. We use soft voting for our framework.

The Euclidean norm is used as the loss function, loss(· , · ),
for optimization purposes [22]. The Euclidean distance of any
score-vector and ideal-point expresses the effectiveness of that
component for the given instance. Using aggregation rules,
we aim to define a mapping function from a score-polytope
into a single vector and measure the effectiveness of our
ensemble. Wu and Crestani [41] applied a similar geometric
framework for data fusion of information retrieval systems.
In this paper, some of our theorems are obtained and adapted
to ensemble learning from their framework.

A. Majority Voting (MV)

The mapping of a given score-polytope into its centroid
can be expressed as the MV aggregation—plurality voting or
averaging. For a given instance, It , we have the following
mapping to the centroid-point, at = 〈A1

t , A2
t , . . . , A p

t 〉

Ak
t = 1

m

m∑

j=1

Sk
t j (1 ≤ k ≤ p). (1)

Theorem 1: For It , the loss between the centroid-point at

and ideal-point ot is not greater than the average loss between
m score-vectors and ot , that is to say

loss(at , ot ) ≤ 1

m

m∑

j=1

loss(st j , ot ). (2)

Proof: Based on Minkowski’s inequality for sums [42]
√
√
√
√
√

p∑

k=1

⎛

⎝
m∑

j=1

θ k
j

⎞

⎠

2

≤
m∑

j=1

√
√
√
√

p∑

k=1

(
θ k

j

)2
.

Letting θ k
j = Sk

t j − Ok
t and substituting results

√
√
√
√
√

p∑

k=1

⎛

⎝m

⎛

⎝ 1

m

m∑

j=1

(
Sk

t j − Ok
t

)
⎞

⎠

⎞

⎠

2

≤
m∑

j=1

√
√
√
√

p∑

k=1

(
Sk

t j − Ok
t

)2
.

Since m > 0, we have the following
√
√
√
√
√

p∑

k=1

⎛

⎝
1

m

m∑

j=1

Sk
t j − Ok

t

⎞

⎠

2

≤ 1

m

m∑

j=1

√
√
√
√

p∑

k=1

(
Sk

t j − Ok
t
)2

.

Using (1) and loss definition, (2) can be achieved. �
Discussion: Theorem 1 shows that the performance of an

ensemble with the MV aggregation rule is at least equal to the
average performance of all individual components.

Theorem 2: For It , let ξl = ξ − {C Sl} (1 ≤ l ≤ m) be
a subset of ensemble ξ without C Sl . Each ξl has atl as its
centroid-point. We have

loss(at , ot ) ≤ 1

m

m∑

l=1

loss(atl, ot ). (3)

Proof: at is the centroid-point of all atl points accord-
ing to the definition. Assume ξl as an individual classifier
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with score-vector of atl . Theorem 1 for every ξl results (3)
directly. �

Discussion: Theorem 2 can be generalized for any subset
definition with (m − f ) components, 1 ≤ f ≤ (m − 2).
This shows that an ensemble with m components performs
better (or at least equal) compared with the average per-
formance of ensembles with m − f components. It can be
concluded that better performance can be achieved if we
aggregate more component classifiers. However, if we keep
adding poor components to the ensemble, it can diminish
overall prediction accuracy by increasing the upper bound
in (2). This is in agreement with the result of the Bayes error
reduction analysis [43], [44]. Setting a threshold, as expressed
in [30], [34], [35], and [44], can give us the ideal number of
components for a specific problem.

B. Weighted Majority Voting (WMV)

For this aggregation rule, a weight vector w =
〈W1, W2, . . . , Wm〉 for components of ensemble is defined,
W j ≥ 0 and

∑
W j = 1 for 1 ≤ j ≤ m. For a given instance,

It , we have the following mapping to the weighted-centroid-
point, bt = 〈B1

t , B2
t , . . . , B p

t 〉

Bk
t =

m∑

j=1

W j Sk
t j (1 ≤ k ≤ p). (4)

Note that giving equal weights to all the components will
result in the MV aggregation rule. WMV presents a flexible
aggregation rule. No matter how poor a component classifier
is, with a proper weight vector we can cancel its effect on
the aggregated results. However, as discussed earlier, this is
not true for the MV rule. In the following, we give the formal
definition of the optimum weight vector, which we aim to find.

Definition 1 (Optimum Weight Vector): For an ensemble,
ξ , and a given instance, It , weight vector wo with the
weighted-centroid-point bo is the optimum weight vector
where for any wx with weighted-centroid-point bx the fol-
lowing is true; loss(bo, ot ) ≤ loss(bx , ot ).

Theorem 3: For a given instance, It , let the optimum weight
vector, wo, and the weighted-centroid-point bt . The following
must hold

loss(bt , ot ) ≤ min{loss(st1, ot ), . . . , loss(stm, ot )}. (5)

Proof: Assume that the least loss belongs to component
j , among m score-vectors. We have the following two cases.

1) Maintaining the Performance: Simply giving a weight
of 1 to j ’s component and 0 for the remaining components
result in the equality case; loss(bt , ot ) = loss(st j , ot ).

2) Improving the Performance: Using a linear combination
of j and other components with proper weights result in
a weighted-centroid-point closer to the ideal point. We can
always find such a weight vector in the Euclidean space if
other components are not the exact same as j . �

Using the squared Euclidean norm as the measure of close-
ness for the linear LSQ problem [22] results

min
w

||o − wS||22 (6)

where for each instance Ii in the instance window, S ∈ R
m×p

is the matrix with score-vectors si j in each row corresponding
to the component classifier j , w ∈ R

m is the vector of weights
to be determined, and o ∈ R

p is the vector of the ideal-point.
We use the following function for our optimization solution

f (W1, W2, . . . , Wm) =
p∑

k=1

⎛

⎝
m∑

j=1

(
W j Sk

i j

) − Ok
i

⎞

⎠

2

. (7)

Taking a partial derivation over Wq (1 ≤ q ≤ m), setting the
gradient to zero, ∇ f = 0, and finding optimum points give us
the optimum weight vector. Letting the following summations
as λq j and γq

λq j =
p∑

k=1

Sk
iq Sk

i j , (1 ≤ q, j ≤ m) (8)

γq =
p∑

k=1

Ok
i Sk

iq , (1 ≤ q ≤ m) (9)

lead to m linear equations with m variables (weights). Briefly,
�w = γ , where � ∈ R

m×m is the coefficients matrix and γ ∈
R

m is the remainders vector—using (8) and (9), respectively.
The proper weights in the matrix equation are our intended
optimum weight vector. Here, we only use a single instance
of the instance window for simplicity of equations, however,
a summation on all the instances of the instance window can
give us the optimal weights. For a more detailed explanation,
see [36].

Discussion: According to (8), � is a symmetric square
matrix. If � has full rank, our problem has a unique solution.
On the other hand, in the sense of the LSQ solution [22],
it is probable that � is rank-deficient, and we may not have
a unique solution. Studying the properties of this matrix lead
us to the following theorem.

Theorem 4: If the number of component classifiers is not
equal to the number of class labels, m �= p, then the coefficient
matrix would be rank-deficient, det � = 0.

Proof: Since we have p dimensions in our Euclidean
space, p independent score-vectors would be needed for the
basis spanning set. Any number of vectors, m, more than p
is dependent on the basis spanning set, and any number of
vectors, m, less than p is insufficient for constructing the basis
spanning set. �

Discussion: The above-mentioned theorem excludes some
cases in which we cannot find optimum weights for aggregat-
ing votes. There are several numerical solutions for solving
rank-deficient LSQs problems (e.g., QR factorization and
singular value decomposition), however, the resulting solution
is relatively expensive, may not be unique, and optimality
is not guaranteed. Theorem 4’s outcome is that the number
of independent components for an ensemble is crucial for
providing a full-rank coefficient matrix, in the aim of an
optimal weight vector solution.

C. Diversity Among Components

Theorem 4 shows that for weight vector optimality, m = p
should be true. However, the reverse cannot be guaranteed
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Fig. 2. Four score-vector possibilities of an ensemble with size three. The true-class label of the instance is C1 for a binary classification problem. If two
of these score-vectors exactly match each other for several data instances, we cannot consider them to be independent and diverse enough components.

in general. Assuming m = p and letting det � = 0 for
the parametric coefficient matrix results in some conditions
where we have vote agreement, and cannot find a unique
optimum weight vector. As an example, suppose we have
two component classifiers for a binary classification task,
m = p = 2. Letting det � = 0, results the following
equations; S1

11 + S2
12 = 1 or S2

11 + S1
12 = 1, meaning the

agreement of component classifiers—i.e., the exact same vote
vectors. More specifically, this suggests another condition for
weight vector optimality: the importance of diversity among
component classifiers.

Fig. 2 presents four mainly different score-vector possibili-
ties for an ensemble with size three. The true-class label of the
examined instance is C1 for a binary classification problem.
All score-vectors are normalized and placed on the main
diagonal of the spatial environment. The counter-diagonal line
divides the decision boundary for the class label determi-
nation based on the probability values. If the component’s
score-vector is in the lower triangular, it is classified C1
and similarly, if it is in the left triangular part it is classi-
fied C2. Fig. 2(a) and (b) shows the misclassification and true
classification situations, respectively. Fig. 2(c) and (d) shows
disagreement among components of the ensemble.

If for several instances, in a sequence of data, the score-
vectors of two components are equal (or act predictably
similar), they are considered dependent components. There
are several measurements for quantifying this dependence
for ensemble classifiers (e.g., Q-statistic) [19]. However, most
of the measurements in practice use the oracle output of
components (i.e., only predicted class labels) [19]. Our geo-
metric framework shows the potential importance of using
score-vectors for diversity measurements. It is out of the
scope of this paper to propose a diversity measurement using
score-vectors and we leave it as a future work.

To the best of our knowledge, there is no explana-
tory theory in the literature revealing why and how diver-
sity among components contribute toward overall ensemble
accuracy [17], [21]. Our geometric modeling of ensemble’s
score-vectors and the optimum weight vector solution provide
a theoretical insight for the commonly agreed upon idea that
“the classifiers should be different from each other, otherwise
the overall decision will not be better than the individual
decisions” [19]. Optimum weights can be reached when we
have the same number of independent and diverse component

classifiers as class labels. Diversity has a great impact on
the coefficient matrix that consequently impacts the accurate
predictions of an ensemble. For the case of MV, adding
more dependent classifiers will dominate the decision of other
components.

Discussion: Our geometric framework supports the idea
that there is an ideal number of component classifiers for
an ensemble, with which we can reach the most accurate
results. Increasing or decreasing the number of classifiers
from this ideal point may deteriorate predictions, or bring
no gain to the overall performance of the ensemble. Having
more components than the ideal number of classifiers can
mislead the aggregation rule, especially for MV. On the other
hand, having fewer is insufficient for constructing an ensemble
which is stronger than the single classifier. We refer to this
situation as “the law of diminishing returns in ensemble
construction.”

Our framework suggests that the number of class labels of a
data set as the ideal number of component classifiers, with the
premise that they generate independent scores and aggregated
with optimum weights. However, real-world data sets and
existing ensemble classifiers do not guarantee this premise
most of the time. Determining the exact value of this ideal
point for a given ensemble classifier, over real-world data,
is still a challenging problem due to the different complexities
of data sets.

IV. EXPERIMENTAL EVALUATION

The experiments conducted in [1] showed that for ensem-
bles trained with a specific data set, we have an ideal number
of components in which having more will deteriorate or at
least provide no benefit to our prediction ability. Our extensive
experiments in [36] show the practical value of this geometric
framework for aggregating votes, Geometrically Optimum
and Online-Weighted Ensemble (GOOWE). An adaption of
the framework for the multilabel classification task, called
GOOWE-ML, is introduced in [37]. The theoretical complex-
ity analysis of the optimal weight calculation is presented
in [37].

Here, through a series of experiments, we first inves-
tigate the impact of the number of class labels and the
number of component classifiers for MV and WMV using
a synthetic data set generator. Then, we study the impact
of miscellaneous data streams using several real-world and
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Fig. 3. Prediction behavior of WMV and MV aggregation rules, in terms of accuracy, for RBF-C data sets with increasing both the number of component
classifiers, m, and the number of class labels, p. The equality case, m = p, is shown on each plot using a green dashed vertical line.

synthetic data sets. Finally, we explore the outcome of
our theorems on the diversity of component classifiers
and the practical value of our study. All the experi-
ments are implemented using the Massive On-line Analy-
sis (MOA) framework [45] and interleaved-test-then-train is
used for accurate measurements. An instance window, with
a length of 500 instances, is used for keeping the latest
instances.

A. Impact of Number of Class Labels

1) Setup: To investigate the sole impact of the number of
class labels of the data set, i.e., the p value, on the accuracy
of an ensemble, we use the GOOWE [36] method. It uses
our optimum weight vector calculation for vote aggregation
using WMV. The Hoeffding Tree (HT) [46] is used as the
component classifier, due to its high adaptivity to data stream
classification. For a fair comparison, we modify GOOWE
for having MV aggregation rule by simply providing equal
weights to the components. These two variations of GOOWE,
i.e., WMV and MV, are used for this experiment. Each of
these variations trained and tested using different ensemble
size values, starting from only two components and doubling
at each step—i.e., our investigated ensemble sizes, m values,
are 2, 4, . . . , 128.

2) Data Set: Since existing real-world data sets are not
consistent, in terms of classification complexity, we are only
able to use synthetic data for this experiment in order to
have reasonable comparisons. We choose the popular random
radial basis function (RBF) generator since it is capable of
generating data streams with an arbitrary number of features

and class labels [47]. Using this generator, implemented in
the MOA framework [45], we prepare six data sets, each
containing 1 million instances with 20 attributes, with the
default parameter settings of the RBF generator. The only
difference is the number of class labels among data sets which
are 2, 4, 8, 16, 32, and 64. We reflect this in data set naming
as RBF-C2, RBF-C4, . . ., respectively.

3) Results: Fig. 3 presents prediction accuracy for WMV
and MV with increasing component counts, m, on each data
set. To mark the equality of m and p, we use a green
dashed vertical line. We can make the following interesting
observations.

1) A weighted aggregation rule becomes more vital with
an increasing number of component classifiers.

2) WMV performs more resiliently in multiclass problems,
compared with binary classification problems, when
compared with MV. The gap between WMV and MV
seems to increase with greater numbers of class labels.

3) There is a peak point in the accuracy value, and it is
dependent on the number of class labels. This can be
seen by comparing RBF-C2, RBF-C4, and RBF-C8 (the
first row in Fig. 3) with RBF-C16, RBF-C32, and RBF-
C64 (the second row in Fig. 3) plots. In the former set,
we see that after a peak point, the accuracy starts to
drop. However, in the latter set, we see that the peak
points are with m = 128.

4) The theoretical vertical line, i.e., the equality case
m = p, seems to precede the peak point on each
plot. We suspect that this might be due to Theorem 4’s
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Fig. 4. Prediction behavior of WMV and MV aggregation rules, in terms of accuracy, for miscellaneous synthetic data sets, with increasing both the number
of component classifiers, m, and class labels, p. The equality case, m = p, is marked on each plot using a green dashed vertical line.

premise conditions: generating independent scores and
aggregating with optimum weights.

B. Impact of Data Streams

1) Setup: There are many factors when the complex-
ity of classification problems are considered—concept drift,
the number of features, and so on. To this end, we investigate
the number of component classifiers for WMV and MV on
a wide range of data sets. We use an experimental setup
similar to the previous experiments on different synthetic
and real-world data sets. We aim to investigate some general
patterns in more realistic problems.

2) Data Set: We select eight synthetic and eight real-world
benchmark data sets used for stream classification problems in
the literature. A summary of our data sets is given in Table II.
For this selection, we aim to have a mixture of different
concept drift types, number of features, number of class labels,
and noise percentages. Synthetic data sets are similar to the
ones used for the GOOWE evaluation [36]. For real-world
data sets, Sensor, PowerSupply, and HyperPlane data sets are
taken from.2 The remainder of real-world data sets are taken
from.3 See [1], [36] for a detailed explanations of the data
sets.

3) Results: Figs. 4 and 5 present the prediction accuracy
difference for WMV and MV for increasing component clas-
sifier counts, m, on each data set. For marking the equality
of m and p, we use a green dashed vertical line, similar to
the previous experiments. As we can see, given more broad
types of data sets, each with completely different complexities,
it is difficult to conclude strict patterns. We have the following

2Access URL: http://www.cse.fau.edu/∼xqzhu/stream.html
3Access URL: https://www.openml.org/

TABLE II

SUMMARY OF DATA SET CHARACTERISTICS

interesting observations: 1) for almost all the data sets, WMV,
with optimum weights, outperforms MV; 2) we can see the
same results as the previous experiments: there is a peak point
in the accuracy value and it is dependent on the number of
class labels; 3) the theoretical vertical line, i.e., the equality
case m = p, seems to precede the peak point on each plot;
and 4) optimum weighting seems to be more resilient in the
evolving environments, i.e., data streams with concept drift,
regardless of the type of concept drift.

The observations we have with the real-world data streams
provide strong evidence that supports our claim which indi-
cates that the number of class labels has an important influence
on the ideal number of component classifiers and prediction
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Fig. 5. Prediction behavior of WMV and MV aggregation rules, in terms of accuracy, for miscellaneous real-world data sets with increasing both the number
of component classifiers, m, and class labels, p. The equality case, m = p, is marked on each plot using a green dashed vertical line.

performance. In Fig. 5, we observe that the peak performances,
with one exception, are not observed with the maximum
ensemble size. In other words, as we increase the number
of component classifiers and move away from the green line
and employ an ensemble of size 128, in all cases, prediction
performance becomes lower than that of a smaller size ensem-
ble. The only exception is observed with ClickPrediction; even
with that one, no noticeable improvement is provided with
the largest ensemble size. Furthermore, in all data streams,
except ClickPrediction, the peak performances are closer to
the green line rather than being closer to the largest ensemble
size.

C. Impact of Diversity

1) Setup: In order to study the impact of diversity in
ensemble classifiers and show the practical value of our
theorems, we design two different scenarios for the binary
classification problem. We select a binary classification for
the purpose of this experiment since the difference between
WMV and MV are almost always insignificant for binary
classification, compared with multiclass problems. In addition,
multiclass problems can potentially be modeled as several
binary classification problems [48].

To this end, we recruit a well-known and state-of-
the-art online ensemble classifier, called leverage bagging
(LevBag) [49] as the base ensemble method for our com-
parisons. It is based on the OzaBagging ensemble [50], [51]
and is proven to react well in online environments. It exploits
resampling with replacement (i.e., input randomization), using
a Poisson(λ) distribution to train diversified component
classifiers.

We use LevBag in our experiments since it initializes a fixed
number of component classifiers—i.e., unlike GOOWE, where

component classifiers are dynamically added and removed
during training in the course of incoming stream data [36], for
LevBag the number of component classifiers are fixed from the
initialization and the ensemble does not alter them. In addi-
tion, LevBag uses error-correcting output codes for handling
multiclass problems and transforms them into several binary
classification problems [49]. MV is used for vote aggregation,
as the baseline of our experiments.

2) Design: For our analysis, we train different LevBag
ensembles with 2, 4, . . . , 64, and 128 components of
classifiers—named LevBag-2, LevBag-4, . . ., respectively. The
HT [46] is used as the component classifier.

We design two experimental scenarios and compare them
with LevBag ensembles as baselines. Each scenario is
designed to show the practical value of our theorems with
different perspectives. Here is a brief description.

1) Scenario 1: We select the two most diverse components
out of a LevBag-10 ensemble’s pool of component
classifiers, called Sel2Div ensemble, and aggregate their
votes. For pairwise diversity measurements among the
components of the ensemble, Yule’s Q-statistic [19] is
used. Minku et al. [52] used it for pairwise diversity
measurements of online ensemble learning. Q-statistic is
measured between all the pairs, and the highest diverse
pair is chosen. For two classifiers C Sr and C Ss , the
Q-statistic is defined in the following. Nab is the number
of instances in the instance window that C Sr predicts a
and C Ss predicts b

Qr,s = N11 N00 − N01 N10

N11 N00 + N01 N10 .

2) Scenario 2: We train a hybrid of two different algorithms
as component classifiers, a potentially diverse ensemble.
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TABLE III

CLASSIFICATION ACCURACY IN PERCENTAGE (%)—THE HIGHEST ACCURACY FOR EACH DATA SET IS BOLD

TABLE IV

MULTIPLE COMPARISONS FOR FRIEDMAN STATISTICAL TEST RESULTS.
MINIMUM REQUIRED DIFFERENCE OF MEAN RANK IS 2.635. HIGHER

MEAN RANK MEANS BETTER PERFORMANCE

For this, one instance of the HT and the naive Bayes
(NB) [47] algorithms are exploited; both are trained
on the same instances of data stream—without input
randomization. We call this the Hyb-HTNB ensemble.

The ensemble sizes for both of these scenarios are two. For
each instance, vote aggregation in both scenarios is done using
our geometric weighting framework. An instance window
of 100 latest incoming instances are kept, and using (8) and (9)
weights are calculated—�w = γ .

3) Data Set: We examine our experiments using three
real-world and three synthetic data streams, all with two-class
labels. For real-world data sets, we use the exact same
real-world data sets with two-class labels as with the previous
experiments, see Table II. For synthetic data sets, we gener-
ate 500 000 instances of RBF, streaming ensemble algorithm
(SEA), and HyperPlane generator (HYP) stream generator
from the MOA framework [45]. For the settings of these
generators, the default values are used, except for the number
of class labels, which are two.

4) Results: Table III shows the prediction accuracy of dif-
ferent ensemble sizes and experimental scenarios for examined
data sets. The highest accuracy for each data set is bold.
We can see that the ensemble size and component selection
have a crucial impact on the accuracy of prediction.

To differentiate the significance of differences in accuracy
values, we exploited the nonparametric Friedman statistical
test, with α = 0.05 and F(8, 40). The null-hypothesis for this
statistical test claims that there is no statistically significant
difference among all examined ensembles, in terms of accu-
racy. The resulting two-tailed probability value, P = 0.002,
rejects the null-hypothesis and shows that the differences are
significant.

The Friedman multiple pairwise comparisons are conducted
and presented in Table IV. We observe that there is no sig-
nificant difference among LevBag-8, LevBag-16, LevBag-32,
LevBag-64, LevBag-128, and Sel2Div ensembles. Given that
all are trained using the same component classifier, the impact
of this result is important; only two base classifiers can be
comparably good with 128 of them when they trained in a
diverse enough fashion and weighted optimally.

On the other hand, the Hyb-HTNB ensemble performs
equivalently as good as LevBag-2, LevBag-4, and LevBag-
8, according to statistical significance tests. Hyb-HTNB is a
naturally diverse ensemble; we included this in our experiment
to show the impact of diversity on prediction accuracy. Since
NB is a weak classifier compared with HT, it is reasonable
that Hyb-HTNB is not performing as good as the Sel2Div
ensemble.

V. CONCLUSION

In this paper, we studied the impact of ensemble size
using a geometric framework. The entire decision-making
process through voting is adapted to a spatial environment and
weighting combination rules, including MV, are considered
for providing better insight. The main focus of the study is
online ensembles; however, nothing prevents us from using
the proposed model on batch ensembles.

The ensemble size is crucial for online environments, due
to the dimensionality growth of data. We discussed the effect
of ensemble size with MV and optimal weighted voting
aggregation rules. The highly important outcome is that we
do not need to train a near-infinite number of components to
have a good ensemble.

We delivered a framework which heightens the understand-
ing of the diversity and explains why diversity contributes to
the accuracy of predictions.

Our experimental evaluations showed the practical value
of our theorems and highlighted existing challenges. Prac-
tical imperfections across different algorithms and different
learning complexities on our various data sets prevent us to
clearly show that m = p is the ideal ensemble size and
diversity are the core decisions to be used in the ensemble
design. The experimental results show that the number of
class labels has an important effect on the ensemble size. For
example, in seven out of eight real-world data sets, the peak
performances are closer to the ideal m = p point rather than
being closer to the largest ensemble size.
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As a future work, we aim to define some diversity measures
based on this framework, while also studying the coefficient
matrix specifications. We also plan to study the ideal number
of components for multilabel classification [37], and the use
of an ensemble of ensembles in multistream environments.
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[24] A. Ulaş, M. Semerci, O. T. Yıldız, and E. Alpaydın, “Incremental
construction of classifier and discriminant ensembles,” Inf. Sci., vol. 179,
no. 9, pp. 1298–1318, 2009.

[25] L. Rokach, “Collective-agreement-based pruning of ensembles,” Com-
put. Statist. Data Anal., vol. 53, no. 4, pp. 1015–1026, 2009.

[26] D. D. Margineantu and T. G. Dietterich, “Pruning adaptive boosting,”
in Proc. Int. Conf. Mach. Learn. (ICML), vol. 97, 1997, pp. 211–218.

[27] C. Toraman and F. Can, “Squeezing the ensemble pruning: Faster and
more accurate categorization for news portals,” in Proc. Eur. Conf. Inf.
Retr. (ECIR). Berlin, Germany: Springer-Verlag, 2012, pp. 508–511.

[28] R. Elwell and R. Polikar, “Incremental learning of concept drift in
nonstationary environments,” IEEE Trans. Neural Netw., vol. 22, no. 10,
pp. 1517–1531, Oct. 2011.

[29] T. Windeatt and C. Zor, “Ensemble pruning using spectral coefficients,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 4, pp. 673–678,
Apr. 2013.

[30] K. Tumer and J. Ghosh, “Analysis of decision boundaries in lin-
early combined neural classifiers,” Pattern Recognit., vol. 29, no. 2,
pp. 341–348, 1996.

[31] E. Bauer and R. Kohavi, “An empirical comparison of voting classifica-
tion algorithms: Bagging, boosting, and variants,” Mach. Learn., vol. 36,
nos. 1–2, pp. 105–139, 1999.

[32] G. Fumera, F. Roli, and A. Serrau, “A theoretical analysis of bagging
as a linear combination of classifiers,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 30, no. 7, pp. 1293–1299, Jul. 2008.

[33] G. Fumera and F. Roli, “A theoretical and experimental analysis of linear
combiners for multiple classifier systems,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 27, no. 6, pp. 942–956, Jun. 2005.

[34] L. Pietruczuk, L. Rutkowski, M. Jaworski, and P. Duda, “A method for
automatic adjustment of ensemble size in stream data mining,” in Proc.
IEEE Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2016, pp. 9–15.

[35] L. Pietruczuk, L. Rutkowski, M. Jaworski, and P. Duda, “How to adjust
an ensemble size in stream data mining?” Inf. Sci., vol. 381, pp. 46–54,
Mar. 2017.

[36] H. R. Bonab and F. Can, “GOOWE: Geometrically optimum and online-
weighted ensemble classifier for evolving data streams,” ACM Trans.
Knowl. Discovery Data, vol. 12, no. 2, pp. 25:1–25:33, Jan. 2018.

[37] A. Büyükçakir, H. Bonab, and F. Can, “A novel online stacked ensemble
for multi-label stream classification,” in Proc. 27th Int. Conf. Inf. Knowl.
Manage. (CIKM), 2018, pp. 1063–1072.

[38] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority:
An ensemble method for drifting concepts,” J. Mach. Learn. Res., vol. 8,
pp. 2755–2790, Dec. 2007.

[39] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority: A new
ensemble method for tracking concept drift,” in Proc. IEEE Int. Conf.
Data Mining (ICDM), Nov. 2003, pp. 123–130.

[40] D. J. Miller and L. Yan, “Critic-driven ensemble classification,” IEEE
Trans. Signal Process., vol. 47, no. 10, pp. 2833–2844, Oct. 1999.

[41] S. Wu and F. Crestani, “A geometric framework for data fusion in
information retrieval,” Inf. Syst., vol. 50, pp. 20–35, Jun. 2015.

[42] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Func-
tions: with Formulas, Graphs, and Mathematical Tables, vol. 55.
North Chelmsford, MA, USA: Courier Corp., 1964.

[43] K. Tumer and J. Ghosh, “Error correlation and error reduction in
ensemble classifiers,” Connection Sci., vol. 8, no. 3, pp. 385–404, 1996.

[44] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-drifting data
streams using ensemble classifiers,” in Proc. Int. Conf. Knowl. Discovery
Data Mining (SIGKDD), 2003, pp. 226–235.

[45] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer,
“MOA: Massive online analysis,” J. Mach. Learn. Res., vol. 11,
pp. 1601–1604, May 2010.

[46] P. Domingos and G. Hulten, “Mining high-speed data streams,” in Proc.
Int. Conf. Knowl. Discovery Data Mining (SIGKDD), 2000, pp. 71–80.

[47] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà,
“New ensemble methods for evolving data streams,” in Proc. Int. Conf.
Knowl. Discovery Data Mining (SIGKDD), 2009, pp. 139–148.

[48] R. Rifkin and A. Klautau, “In defense of one-vs-all classification,”
J. Mach. Learn. Res., vol. 5, pp. 101–141, Dec. 2004.

[49] A. Bifet, G. Holmes, and B. Pfahringer, “Leveraging bagging for evolv-
ing data streams,” in Proc. Int. Conf. Mach. Learn. Knowl. Discovery
Databases (ECML-PKD), 2010, pp. 135–150.

[50] N. C. Oza, “Online ensemble learning,” Ph.D. dissertation, Comput. Sci.
Division, Univ. California, Berkeley, CA, USA, Sep. 2001.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BONAB AND CAN: LESS IS MORE: A COMPREHENSIVE FRAMEWORK FOR THE NUMBER OF COMPONENTS 11

[51] N. C. Oza and S. Russell, “Experimental comparisons of online and
batch versions of bagging and boosting,” in Proc. Int. Conf. Knowl.
Discovery Data Mining (SIGKDD), 2001, pp. 359–364.

[52] L. L. Minku, A. P. White, and X. Yao, “The impact of diversity on
online ensemble learning in the presence of concept drift,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 5, pp. 730–742, May 2010.

Hamed Bonab received the B.S. degree in computer
engineering from the Iran University of Science
and Technology, Tehran, Iran, and the M.S. degree
in computer engineering from Bilkent Univer-
sity, Ankara, Turkey. He is currently pursuing the
Ph.D. degree with the College of Information and
Computer Sciences, University of Massachusetts
Amherst, Amherst, MA, USA.

His current research interests include stream
processing, data mining, machine learning, and
information retrieval.

Fazli Can received the B.S. and M.S. degrees in
electrical and electronics and computer engineering
and the Ph.D. degree in computer engineering from
Middle East Technical University, Ankara, Turkey,
in 1976, 1979, and 1985, respectively. He conducted
his Ph.D. research under the supervision of Prof. E.
Ozkarahan; at Arizona State University, Tempe, AZ,
USA, and Intel, Chandler, AZ, USA; as a part of the
RAP Database Machine Project.

He is currently a Faculty Member at Bilkent Uni-
versity, Ankara. Before joining Bilkent, he was a

tenured Full Professor at Miami University, Oxford, OH, USA. He co-edited
ACM SIGIR Forum from 1995 to 2002 and is a Co-Founder of the Bilkent
Information Retrieval Group, Bilkent University. His interest in dynamic
information processing dates back to his 1993 incremental clustering paper in
ACM Transactions on Information Systems and some other earlier work with
Prof. E. Ozkarahan on dynamic cluster maintenance. His current research
interests include information retrieval and data mining.


