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Abstract

Motivation: Genomic data-sharing beacons aim to provide a secure, easy to implement and stand-

ardized interface for data-sharing by only allowing yes/no queries on the presence of specific

alleles in the dataset. Previously deemed secure against re-identification attacks, beacons were

shown to be vulnerable despite their stringent policy. Recent studies have demonstrated that it is

possible to determine whether the victim is in the dataset, by repeatedly querying the beacon for

his/her single-nucleotide polymorphisms (SNPs). Here, we propose a novel re-identification attack

and show that the privacy risk is more serious than previously thought.

Results: Using the proposed attack, even if the victim systematically hides informative SNPs, it is

possible to infer the alleles at positions of interest as well as the beacon query results with very

high confidence. Our method is based on the fact that alleles at different loci are not necessarily in-

dependent. We use linkage disequilibrium and a high-order Markov chain-based algorithm for in-

ference. We show that in a simulated beacon with 65 individuals from the European population, we

can infer membership of individuals with 95% confidence with only 5 queries, even when SNPs

with MAF <0.05 are hidden. We need less than 0.5% of the number of queries that existing works

require, to determine beacon membership under the same conditions. We show that countermeas-

ures such as hiding certain parts of the genome or setting a query budget for the user would fail to

protect the privacy of the participants.

Availability and implementation: Software is available at http://ciceklab.cs.bilkent.edu.tr/beacon_

attack.

Contact: erman@cs.bilkent.edu.tr or cicek@cs.bilkent.edu.tr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Exciting times are on the horizon for the genomics field with the an-

nouncement of the precision medicine initiative (Collins and

Varmus, 2015) which was followed by the $55 million funding by

NIH for the sequencing of a million individuals and AstraZeneca’s

project of sequencing two million individuals (Ledford, 2016). Even

though such million-sized genomic datasets are invaluable resources

for research, sharing the data is a big challenge due to re-

identification risk. Several studies in the last decade have shown that

removal of personal identifiers from genomic data is not enough and

that individuals can be re-identified using allele frequency informa-

tion (Clayton, 2010; Homer et al., 2008; Jacobs et al., 2009;

Sankararaman et al., 2009; Visscher and Hill, 2009).

Genomic data-sharing beacons (referred to as beacons from now

on) are the gateways that let users and data owners exchange infor-

mation without—in theory—disclosing any personal information. A

user who wants to apply for access to the dataset can learn whether

individuals with specific alleles of interest are present in the beacon
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through an online interface. More specifically, the user submits a

query, asking whether a genome exists in the beacon with a certain

nucleotide at a certain position, and the beacon answers ‘yes’ or

‘no’. Beacons are easy to set up systems that provide very restricted

access to the stored data. The Beacon Project is an initiative by

the Global Alliance for Genomics and Health (GA4GH) which

creates policies to ensure standardized and secure sharing of

genomic data.

Beacons make it difficult for adversaries to re-identify individu-

als due to several reasons. First, the data access policy is very re-

strictive and allows only presence/absence queries for nucleotides

for specific positions in the genome. Given possibly large number of

individuals in a beacon, a ‘yes’ answer can be due to several individ-

uals and it cannot be tied to a specific person. Second, binary re-

sponse scheme makes the system secure against attacks that make

use of allele frequencies [e.g. (Wang et al., 2009)]. However, it has

been shown that such countermeasures are not sufficient to com-

pletely prevent the privacy threats raised by genomic data-sharing

beacons.

In 2015, Shringarpure and Bustamante introduced a likelihood-

ratio test (LRT) that predicts if an individual is in the beacon or not,

by repeatedly querying the beacon for single-nucleotide polymor-

phisms (SNPs) of the victim (dubbed the SB attack) (Shringarpure

and Bustamante, 2015). This attack is serious because inferring the

membership of an individual in a beacon that is associated with a

sensitive phenotype is equivalent to uncovering the sensitive pheno-

type about the victim. The SB attack does not use the allele frequen-

cies and can compensate sequencing errors. They show that they

could re-identify an individual in a beacon with 65 European indi-

viduals from the 1000 Genomes Project (Siva, 2008) with 250

queries (with 95% confidence). In their scheme, both the queries

posed and the answers received from the beacon are assumed to be

independent, therefore the hypothesis is tested based on a binomial

test. Very recently, the work by Raisaro et al. showed that if the at-

tacker has access to the minor allele frequencies (MAFs) of the

population, she/he can sort the victim’s SNPs and query the SNPs

starting from the one with the lowest MAF (dubbed the optimal at-

tack) (Raisaro et al., 2016). Unlike the SB attack, queries are not

random in this case. As low MAF SNPs are more informative,

Raisaro et al. show that fewer queries are needed to re-identify an

individual. Furthermore, Raisaro et al. proposed countermeasures

against re-identification attacks such as adding noise to the beacon

results and assigning a budget to beacon members which limits the

number of informative queries that can be asked on each member.

In this paper, we introduce two new inference-based attacks that

(i) carefully select the SNPs to be queried and predict query results

of the beacon, and (ii) infer hidden or missing alleles of a victim’s

genome. First, we show that if the queried locus is in linkage disequi-

librium (LD) with others, it is enough to query for that particular al-

lele, as the attacker can infer the answers of the other alleles with

high confidence (Humbert et al., 2013). We refer to this method as

the query inference attack (QI-attack). Second, we introduce the

genome inference attack (GI-attack) which recovers hidden parts of

a victim’s genome by using a high-order Markov chain (Samani

et al., 2015).

We show that in a simulated beacon with 65 European individu-

als (CEU) from the HapMap Project (Gibbs et al., 2003), our QI-

attack requires 282 queries and our GI-attack requires only 5

queries on average to re-identify an individual, whereas the SB at-

tack requires 19 525 queries and the optimal attack requires 415

queries, all at the 95% confidence level when the victim’s SNPs with

MAFs <0.03 are hidden. Therefore, the attacker models presented

here can efficiently work when certain regions in the genome of the

victim are systematically hidden as a security countermeasure. The

number of queries required by the SB and the optimal attacks sub-

stantially increase as more SNPs are concealed, while the GI-attack

still requires only a few queries on average. Finally, we show that

the QI-attack can still re-identify individuals despite the stringent

query budget countermeasure proposed by Raisaro et al., 2016 and

the beacon censorship countermeasure proposed by Shringarpure

and Bustamante.

We demonstrate that the beacons are more vulnerable than pre-

viously thought and that the proposed countermeasures in the litera-

ture still fail to protect the privacy of the individuals. The

contributions of this paper can be summarized as follows:

• By inferring query results and alleles at certain positions, we

show that it is possible to significantly decrease the number of

required queries compared to other attacks in the literature:

Shringarpure and Bustamante; Raisaro et al.
• We show that beacons are vulnerable even under a weaker ad-

versary model, in which informative parts of a victim’s genome

are concealed (such as all SNPs with an MAF less than a

threshold).
• We discuss the feasibility and the effectiveness of the proposed

countermeasures in the literature and show that using the pre-

sented attack models, the participants are still under risk.

The rest of the manuscript is organized as follows: we describe

the methods in Section 2 and then present the results in Section 3.

Section 4 discusses the results and the effectiveness of counter-

measures proposed in the literature. Finally, we conclude in

Section 5.

2 Materials and methods

In this section, we first describe attacker models in the literature [i.e.

SB attack (Shringarpure and Bustamante, 2015) and the optimal at-

tack (Raisaro et al., 2016)] and then describe our proposed attacks.

In our first proposed model, the attacker not only has access to

MAFs of the victim’s population, but also can access or calculate the

corresponding LD values from public resources (QI-attack). In the

second model, the attacker has the same background knowledge as

the QI-attack, and also has access to VCF files of people from the

victim’s population from public sources (GI-attack). The four differ-

ent attacker models [SB attack (Shringarpure and Bustamante,

2015), optimal attack (Raisaro et al., 2016), QI-attack and GI-at-

tack] are described in Figure 1. We consider two scenarios. Scenario

1 assumes the attacker has access to the full genome of the victim. In

this case ‘full’ means that part of the DNA of the victim (e.g. a

chromosome) is available in full and no locus is systematically hid-

den. Scenario 2 considers a more realistic and weaker attacker

model. As publicly available genomic data is typically found partial-

ly, in this scenario, some SNPs are systematically hidden. That is,

SNPs with MAF < t are not available to the attacker.

2.1 Background: SB attack and optimal attack
Shringarpure and Bustamante proposed the SB attack, which

queries a beacon for the victim’s heterozygous SNP positions.

Queried SNPs are picked randomly and a LRT statistic is calcu-

lated. The null hypothesis (H0) refers to the query genome not

being in the beacon. Under the alternative hypothesis (H1), the

query genome is a member of the beacon. The attacker model is

visualized in Figure 2a.
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The log-likelihood under the null hypothesis has been defined as

LH0
Rð Þ ¼

Xn

i¼1

xi log 1�DNð Þ þ 1� xið Þ log DNð Þ; (1)

where R is the response set and DN the probability that no

individual in the beacon has the queried allele at that position.

xi is the answer of the beacon to the query at position i (1 for

yes, 0 for no), and n is the total number of posed queries.

Accordingly, the log-likelihood of the alternative hypothesis has

been stated as

LH1
Rð Þ ¼

Xn

i¼1

xi log 1� dDN�1ð Þ þ 1� xið Þ log dDN�1ð Þ; (2)

where DN�1 represents the probability of no individual except for

the queried person having the queried SNP. d represents a possible

sequencing error. Finally, the LRT statistic is stated as follows:

K ¼ nBþC
Xn

i¼1

xi; (3)

where B and C are defined as B ¼ log DN=dDN�1ð Þ and C ¼
log dDN�1 1�DN=DN 1� dDN�1ð Þð Þð , respectively. The null hy-

pothesis is rejected for any K that is less than a certain threshold.

The Optimal attack introduced by Raisaro et al. integrates pub-

licly available MAF information into the attacker’s background

knowledge (Raisaro et al., 2016). In this attack, the victim’s SNPs

are sorted with respect to their MAFs. The beacon is queried starting

from the first heterozygous SNP with the lowest MAF. The model

of this attack is illustrated in Figure 2b. In this setting, the

computations of DN�1 and DN depend on the queried position i and

change at each query as shown as follows:

Di
N�1 ¼ 1� fið Þ2N�2; (4)

Di
N ¼ 1� fið Þ2N ; (5)

where fi represents the MAF of the SNP at position i. Accordingly, K

changes as follows:

K ¼
Xn

i¼1

log
Di

N

dDi
N�1

� �
þ log

dDi
N�1 1�Di

N

� �
Di

N 1� dDi
N�1

� �
 !

xi: (6)

2.2 Query inference attack
The QI-attack uses pairwise SNP correlations (LD) in order to infer

the answers of unasked queries from previously answered queries.

Fig. 1. Four attacker models: SB attack (Shringarpure and Bustamante, 2015),

Optimal attack (Raisaro et al., 2016), QI-attack and GI-attack and their back-

ground knowledge for two scenarios are shown. In the first scenario t ¼ 0 and

in the second scenario t > 0, where t is the threshold up to which SNPs of the

victim with an MAF < t are hidden as a countermeasure. In Scenario 1, the

attacker has access to the full genome of the victim (no hidden SNPs). In

Scenario 2, SNPs with an MAF < t are hidden and the attacker has partial ac-

cess to the genome of the victim

(a)

(b)

(c)

(d)

Fig. 2. System models of the four attacker models (a) SB attack (Shringarpure

and Bustamante, 2015), (b) optimal attack (Raisaro et al., 2016), (c) QI-attack

and (d) GI-attack. Upper-case letters represent the major allele at a SNP pos-

ition and the lower-case letters the corresponding minor allele. The SB attack

randomly selects the minor allele from heterozygous SNP positions of the vic-

tim and queries those. The Optimal attack first sorts the heterozygous SNPs

regarding their MAFs and queries for the minor alleles starting with the low-

est frequency. Depending on the threshold t, SNPs with MAF < t are hidden

and are not available to the attacker. The QI-attack extends the optimal attack

by inferring beacon answers using LD correlations between SNP pairs. The

GI-attack infers the hidden SNPs with MAFs < t , using a high-order Markov

chain and queries the beacon for the minor alleles of those positions

Beacon attack 3
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In this model, the attacker uses the LD value of a SNP pair to calcu-

late the correlation of two minor alleles at the corresponding loci.

The correlation is equal to the probability of the two minor alleles

occurring together. Let p2 be the MAF of SNP A (with minor allele

a) and q2 be the MAF of SNP B (with minor allele b). Assuming A

and B are in LD, the probability of two major or two minor alleles

in these loci occurring together increases. This can be calculated as

Pr abð Þ ¼ p2q2 þD, where D represents the strength of the correl-

ation of the two SNPs (see Supplementary Material, Part A for

details). On this basis, the attacker constructs a SNP network that

uses weighted, directed edges between SNPs in high LD (see

Supplementary Fig. SA.1). The weight corresponds to the probabil-

ity of two minor alleles occurring together. Figure 2c illustrates this

model. First, the attacker selects the SNPs to be queried. This step is

identical to the optimal attack and leads to a set of candidate SNPs S

to be queried, starting from the lowest MAF SNPi. Second, if any

non-queried SNPj in S is a neighbor of SNPi in the SNP network, the

attacker infers the result of the query and does not pose a query for

SNPj. In the following, we present the null and the alternative

hypotheses in this model which also integrates the inference error.

LH0
ðRÞ ¼

Xn

i¼1

�
xi logð1�Di

NÞ þ ð1� xiÞ logðDi
NÞ

þ
Xm
j¼1

cxi logð1�Dj
NÞ þ cð1� xiÞ logðDj

NÞ
� (7)

LH1
ðRÞ ¼

Xn

i¼1

�
xi logð1� dDi

N�1Þ þ ð1� xiÞ logðdDi
N�1Þ

þ
Xm
j¼1

cxi logð1� dDj
N�1Þ þ cð1� xiÞ logðdDj

N�1Þ
� (8)

where n is the number of posed queries, m is the number of neigh-

bors that can be inferred for each posed query xi, and c corresponds

to the confidence of the inferred answer, obtained from the SNP net-

work. K is then determined as

K ¼
Xn

i¼1

�
log

�
Di

N

dDi
N�1

�
þ log

�
dDi

N�1ð1�Di
NÞ

Di
Nð1� dDi

N�1Þ

�
xi

þ
Xm
j¼1

log

�
Dj

N

dDj
N�1

�
þ log

�
dDj

N�1ð1�Dj
NÞ

Dj
Nð1� dDj

N�1Þ

�
cxi

�
:

(9)

By not querying the beacon for answers that can be inferred with

high confidence, this model requires less number of queries com-

pared to the optimal attack, while achieving the same response set.

For more detail, see Supplementary Material, Part B.

2.3 Genome inference attack
Individuals may publicly share their genomes by taking necessary

precautions, such as hiding their sensitive SNP positions with MAFs

< t (Scenario 2 in Fig. 1). The GI-attack performs allele inference to

recover hidden SNP positions and infers alleles at the victim’s hidden

loci. Note that Scenario 1 (Fig. 1) is not applicable to the GI-attack,

since in that scenario, the attacker can access SNPs with low MAFs.

The attacker uses a high-order Markov chain to model SNP correla-

tions as described by Samani et al.

The model of this attack is illustrated in Figure 2d. Depending

on the threshold t, the attacker infers SNP positions with MAF < t

that are not available in the victim’s VCF file. Based on the victim’s

genome sequence, the attacker calculates the likelihood of the victim

having a heterozygous position at the chosen SNP position i as

follows

Pk SNPið Þ ¼ P SNPijSNPi�1; SNPi�2; . . . ; SNPi�kð Þ; (10)

where k is the order of the Markov chain. In order to use a high-

order Markov chain to infer hidden SNPs, genome sequences from

public sources such as the 1000 Genomes project or HapMap can be

used to train the model. Such publicly available genome datasets are

typically available with the population information about its anony-

mized participants. In such a case, we use a dataset that is consistent

with the victim’s population to build our high-order model. If the

population information is not available in a dataset, it can be

extracted by using ancestry inference techniques. Accordingly,

Samani et al. define the kth-order model as

Pk SNPið Þ ¼
0 if F SNPi�k;i�1

� �
¼ 0

F SNPi�k;i

� �
F SNPi�k;i�1

� � if F SNPi�k;i�1

� �
> 0;

0
BB@ (11)

where F SNPi;j

� �
is the frequency of occurrence of the sequence that

contains SNPi to SNPj. The SNPs are ordered according to their phys-

ical position on the genome. The model works by comparing the SNPs

in SNPi;j which are prior to SNPi on the genome sequence to the same

SNP positions in the training dataset. If the training set contains other

genomes with the same SNP sequence and these sequences are fol-

lowed by a heterozygous position, we can calculate the probability of

SNPi being heterozygous for our victim. As an example, the victim’s

4th-order SNP sequence is [AA, AT, CC, TT]. We would now like to

determine whether the following SNPi, that is hidden in the VCF file

at hand, is likely to be a heterozygous position. Therefore, we identify

other genomes in the training dataset with the same sequence and

compute the frequency of this sequence being followed by a heterozy-

gous position. That is, [AA, AT, CC, TT]! [AG]. As a result, we can

determine the probability of the four SNPs being followed by a hetero-

zygous position, which we can use to query the beacon.

If the calculated likelihood of the victim having a heterozygous

position is high enough (in this case equal to 1), the attacker queries

the beacon for the inferred SNP position, starting from the SNP with

the lowest MAF.

3 Results

To evaluate our attacks, we tested our methods on (i) a simulated

beacon and compared our results with the SB attack (Shringarpure

and Bustamante, 2015) and the optimal attack (Raisaro et al., 2016)

(Section 3.1), and (ii) the beacons of the beacon-network (http://

www.beacon-networg.org) operated by GA4GH Beacon-Network

and compared our results with the optimal attack (Raisaro et al.,

2016) (Section 3.2).

3.1 Re-identification on a simulated beacon
In this section, we evaluated the performance of the four attacks on

a simulated beacon with 65 people from the CEU population of the

HapMap dataset. While testing for the alternative hypothesis, we

used 20 randomly-picked people from the beacon. For the null hy-

pothesis, we used 40 additional people from the same population of

the HapMap project. The CEU population is the population of

choice because previous works [SB attack (Shringarpure and

Bustamante, 2015) and optimal attack(Raisaro et al., 2016)] have

also been evaluated on this population. The LD scores, allele fre-

quencies and genotype data were also obtained from the CEU

4 N.von Thenen et al.
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dataset of the HapMap project (Gibbs et al., 2003). For the GI-

attack, we used a 4th-order Markov chain (see Supplementary

Material, Part C for details of selecting the order).

We show the power curves for the optimal, the QI-attack and

the GI-attack each at 5% false positive rate in Figure 3 and the num-

ber of queries needed to receive the first negative response in

Table 1. We empirically build the null hypothesis. That is, we deter-

mine the distribution of K under the null hypothesis using the 40

people who are not in the beacon. When K is less than a threshold,

the null hypothesis is rejected. Similar to Raisaro et al., we reject the

null hypothesis when K < ta. We find the threshold ta from the null

hypothesis with a ¼ 0:05 (corresponding to 5% false positive rate).

The power 1� b is then the proportion of the individuals in the con-

trol set having a K value, where K < ta. See Supplementary

Material, Part D for more information on the power calculation.

We observed that the SB attack requires the highest number of

queries (1400–56 800). The QI-attack requires 30% less number of

queries on average compared to the optimal attack. The GI-attack

requires only five queries for all tested thresholds of t.

Compared to the monotonically increasing behavior of the

power curves for the optimal attack, the power curve for the QI-

attack shows a zig-zag behavior. This is because ta is recalculated at

each posed query and the K values change based on the number of

inferred queries.

The threshold t of hidden SNPs significantly affects the perform-

ance of the attacks. As t increases, more common SNPs are available

to the attacker which means that the likelihood of another individ-

ual in the beacon having the same allele increases. When the beacon

was queried for each of the 40 people who are not in the beacon, the

SB attack was not able to receive a ‘no’ response with 100 000

queries, (i) for four people when SNPs with an MAF <0.04 were

hidden and (ii) for 12 people when SNPs with an MAF <0.05 were

hidden. Therefore, it was not possible to correctly determine beacon

membership for all test individuals to reach 100% power for larger

t values. Compared to the GI-attack, the optimal and the QI-attack

required a significantly higher amount of queries to determine bea-

con membership and reach 100% power. The GI-attack successfully

determined the correct status for all 40 individuals despite the high

threshold of t with only a few queries.

3.2 Re-identification on existing beacons
We tested our methods on the beacons of the beacon-network. We

selected an individual from the Personal Genomes Project (PGP)

(Person’s id: PGP180/hu2D53F2) (Church, 2005) as the victim. To

determine if this person is a member of the beacons, we applied the

SB attack as ground truth as detailed in Supplementary Material,

Part E. For the QI-attack, we used the same SNP network as for the

simulated beacon in Section 3.1 (based on the CEU population of

HapMap). The Markov chain of the GI-attack was trained on the

CEU population of the HapMap (Gibbs et al., 2003) dataset. We

again used a 4th-order Markov chain.

The beacons can return an empty response, that is, the beacon has

no information at that position, a ‘no’-response, and a ‘yes’-response.

We consider two cases for the evaluation of the query results. In the first

case, an empty answer is treated as a ‘no’ (results shown in Table 2), in

the second case an empty answer is not treated as a ‘no’, as it is also pos-

sible that the beacon has a different copy of the victim’s genome (results

shown in Supplementary Table SF.1 in Supplementary Material, Part

F). As the results are similar, we concentrate on the first case.

Unlike all other beacons, the 1000 Genome Project beacon

required fewer number of queries for re-identification as t is increased.

Note that the victim’s SNPs are sorted based on the CEU population’s

allele frequencies. Thus, SNPs that we query are not necessarily the

Fig. 3. (a) Close-up of the power curves, where number of queries <10. (b) Power curves of the optimal attack (Raisaro et al., 2016), the QI-attack, and the GI-attack

for different thresholds of t on a beacon with 65 members constructed with individuals from the CEU dataset of the HapMap project. t indicates the threshold up

to which SNPs with an MAF < t are hidden as a countermeasure

Table 1. Average number of queries needed to receive the first

negative response for the SB attack (Shringarpure and

Bustamante, 2015), the optimal attack (Raisaro et al., 2016), the QI-

attack and the GI-attack for different thresholds of t on a beacon

with 65 members constructed with 40 case individuals from the

CEU dataset of the HapMap project

# of queries

t SB attack Optimal attack QI-attack GI-attack

0 1 418 3 3 NA

0.03 19 525 270 160 2

0.05 56 759 1495 1031 2

Note: t indicates the threshold up to which SNPs with an MAF < t are hid-

den. As the GI-attack concentrates on inferring hidden parts of the genome,

we do not consider t ¼ 0 (nothing is hidden) for the GI-attack.
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rarest in the queried beacon, which can explain this behavior.

Furthermore, the SNP network used is also based on the CEU popula-

tion and therefore, does not include all SNPs of the victim’s genome.

The GI-attack performed as expected, that is constant over the two

tested thresholds of t and outperformed the optimal attack (Raisaro

et al., 2016) as well as the QI-attack for t > 0. For the 1000 Genomes

Beacon the GI-attack required the same amount of queries as the other

attacks, as the number of queries needed is already very low.

In summary, for six of the nine tested beacons, we were able to

determine that the victim is not a member of the beacons. For the

Known VARiants (Kaviar), the Cafe CardioKit, and the NCBI, it

was not possible within 1000 queries (Fig. 5). Overall, we observed

that the experiments on real beacon support our findings in Section

3.1. That is, the optimal and the QI-attack need more queries as t

increases, the GI-attack is stable over all thresholds, and the QI-

attack requires less queries than the optimal attack.

4 Discussion

Recent works by Shringarpure and Bustamante and Raisaro et al.

have shown, that beacon servers fail at protecting their members’

privacy. As beacons are often associated with a certain phenotype,

the membership identification of an individual could leak sensitive

information. They proposed countermeasures such as (i) user

budget, (ii) adding noise and (iii) increasing beacon size to improve

the security level of existing beacons.

In this work, we have shown that beacon membership can be

detected with even a lower number of queries and with high confi-

dence, despite strict countermeasures. Overcoming the proposed

countermeasures is possible by including publicly available informa-

tion such as MAF, LD and VCF files [from e.g. HapMap (Gibbs

et al., 2003) or 1000 Genomes Project (Siva, 2008)] into the attacker

model. Previous works in the field of genomics and privacy have

shown that it is possible to increase the success rate of genomic re-

identification attacks by including LD information into the attacker

model. Namely, Wang et al. showed that individuals can be re-

identified by using (i) publicly available SNP-to-disease correlation

information, and (ii) SNPs in LD. Humbert et al. showed how LD

can be used to build a framework to reconstruct the genomes of peo-

ple using the genome of a family member.

The success of our QI-attack depends significantly on the

structure of the underlying SNP network. The larger and denser the

network becomes, the more query responses can be inferred.

Additionally, the strength of the SNP correlations is an important

factor. In this work, we included SNP pairs that are in strong LD

(i.e. r2 > 0:7) in our SNP network to limit inference error.

The GI-attack shows that even if genomes do not contain any

SNPs with low MAFs, individuals’ privacy is not ensured, as it is

possible to infer these loci using information from publicly available

datasets [e.g. HapMap (Gibbs et al., 2003) or 1000 Genomes

Project (Siva, 2008)]. Additionally, the GI-attack still performs as

good even when the attacker trains the high-order Markov chain on

a different population than the victim’s.

Our experiments on a simulated beacon (Section 3.1) and exist-

ing beacons (Section 3.2) show that as the threshold up to which

SNPs of the victim with an MAF < t are hidden (t) increases, our

attacks require fewer queries than existing attacks [SB attack

(Shringarpure and Bustamante, 2015) and optimal attack (Raisaro

et al., 2016)]. Table 2 shows that for the existing beacons the num-

ber of queries needed increases as t increases and that the margins

are even larger compared to the simulated beacon (Table 1).

Several countermeasures against re-identification attacks have been

proposed in the literature. Shringarpure and Bustamante discusses the

following: (i) increasing the beacon size, (ii) sharing only small genomic

regions, (iii) using single population beacons, (iv) not publishing the

metadata of a beacon and (v) adding control samples to the beacon

dataset (Shringarpure and Bustamante, 2015). Lately, Al Aziz et al.

(2017) proposed two algorithms which are based on randomizing the

response set of the beacons with the goal of protecting beacon members’

privacy while maintaining the efficacy of the beacon servers.

Raisaro et al. have analyzed the behavior of the beacon when

applying three different countermeasures. First, they propose the

beacon should only respond ‘yes’ for an allele if multiple samples

have it. The second countermeasure adds noise to the responses.

However, this countermeasure significantly reduces the utility of the

dataset. Instead, the beacon could return an empty answer. Second,

they discuss assigning a query budget per sample. That is, every

member of the beacon is assigned with a certain budget that is

reduced if a query to the beacon matches the sample. As an example,

if a user queries the beacon for allele A in position 1000 of chromo-

some 21, then the budget of every member with an allele A in that

position is reduced. The amount of the budget reduction is deter-

mined based on the risk of the query, where the lower the allele fre-

quency of the queried allele is, the higher the risk becomes. The

budget is calculated as bi ¼ log pð Þ, where Raisaro et al. use

P ¼ 0.05. The risk then is calculated as ri ¼ �log 1�Di
N

� �
. If the

budget of a beacon member is depleted, the beacon stops including

the member into the beacon responses. We argue that adding noise to

beacon answers makes the system useless due to the significant de-

crease in utility and should not be applied. We show that an attacker

using the QI-attack can overcome this countermeasure. For instance,

in our simulated beacon as described in Section 3.1, an attacker using

the optimal attack needs seven queries to re-identify the victim [indi-

vidual ‘NA12272’ of the HapMap project (Gibbs et al., 2003)], when

no SNPs are hidden. However, the beacon would start giving false

responses after six queries as the budget would be depleted, which

means the attack would fail. By using the QI-attack, an attacker would

only need five queries. Therefore, a query budget that is merely based

on the SNPs’ MAFs and that does not consider SNP correlations would

fail to protect an individual’s privacy. An attacker using the QI-attack

would not exhaust the budget but still be able to determine the victim’s

beacon membership.

Table 2. Number of queries required to receive a ‘no’ within 1000

queries to existing beacons using an individual from PGP (Church,

2005) when t ¼ f0; 0:03; 0:05g for the optimal attack (Raisaro et al.,

2016), the QI-attack and the GI-attack

Optimal attack QI-attack GI-attack

Beacon name t ¼ 0j0:03j0:05 0j0:03j0:05 0:03j0:05

Known VARiants �j � j� �j � j� �j�
Broad institute 2j2j2 2j2j2 1j1
1000 Genomes project 4j3j2 4j3j2 3j3
Cafe CardioKit �j � j� �j � j� �j�
Wellcome trust — — —

Sanger institute 1j1j1 1j1j1 1j1
NCBI �j � j� �j � j� �j�
ICGC 1j � j� 1j � j� 1j1
AMPLab 20j45j73 20j40j73 39j39

1000 Genomes

Project phase 3 20j130j250 20j116j250 48j48

Note: Here, empty answers (i.e. the beacon has no information about the

queried locus in the underlying dataset and returns neither a ‘no’ nor a ‘yes’) are

not considered as a ‘no’ response. ‘-’ means in no ‘no’ was found in 1000 queries.
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Using the QI-attack, we tested how the size and the diversity beacon

affect the privacy breach. First, we repeated our power analysis on the

CEU population, while varying the size of the beacon as 45, 65, 85 and

105. Figure 4 shows that increasing beacon size also increases the num-

ber of queries needed to achieve 100% power (5% FDR).

To see the effect of diversity of the beacon on the privacy breach,

we created new simulated beacons of different populations. That is,

we first selected 65 individuals from the Mexican (MEX) population

and 65 individuals from the Yoruba Nigerian (YRI) population. Then,

we added these separately on top of the simulated CEU beacon, for

which the results were reported in Figure 3, to obtain (CEUþMEX),

(CEUþYRI) and (CEUþMEXþYRI) beacons. Figure 5 shows that

adding YRI population into the CEU beacon reduces the power of the

attack, while adding MEX population does not affect the number of

required queries to reach to 100% power (FDR ¼ 5%). Comparing

(CEUþMEX) and (CEUþMEXþYRI) beacons shows that the number

of required queries is eight times more when three populations are

mixed (40). Comparing (CEUþYRI) and (CEUþMEXþYRI) beacons

shows that the number of required queries is slightly less for the three-

way mixture, which indicates that YRI population contains different

variants than MEX and CEU.

Among the countermeasures mentioned above, increasing the

size and diversity of the beacon are shown to be effective in increas-

ing privacy while fully preserving the utility. However, despite the

increase in the number of required queries, the attacks are still ap-

plicable. Budget countermeasure can be effective, but again, we

show that attack models proposed here can get around the budget.

Also, the utility decreases significantly when many individuals in the

beacon are removed due to budget depletion. One possible counter-

measure could be assigning budgets to users rather than beacon par-

ticipants. This requires having users sign up for the beacon with

institutional accounts and agree to the terms. This would let the

data owner monitor and restrict user activity without removing peo-

ple from beacons’ answers, and hence without decreasing utility.

5 Conclusion

Throughout the course of this work, we showed that data-sharing

beacons are sensitive to re-identification attacks. Additionally, we

showed that countermeasures that do not consider the MAFs and

correlations of SNPs fail to protect the beacon members’ privacy.

Furthermore, even if individuals apply countermeasures before

releasing their genome, such as systematically hiding SNPs with low

MAFs, their privacy still could be at stake. Therefore, new counter-

measures are needed to ensure privacy of individuals.

Funding

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under the Marie Skłodowska-Curie grant

agreement No 707135.

Conflict of Interest: none declared.

References

Al Aziz,M.M. et al. (2017) Aftermath of bustamante attack on genomic bea-

con service. BMC Med. Genomics, 10, 43.

Church,G.M. (2005) The personal genome project. Mol. Syst. Biol., 1, E1.

Clayton,D. (2010) On inferring presence of an individual in a mixture: a

Bayesian approach. Biostatistics, 11, 661–673.

Collins,F.S. and Varmus,H. (2015) A new initiative on precision medicine.

New Engl. J. Med., 372, 793–795.

Gibbs,R.A. et al. (2003) The international hapmap project. Nature, 426, 789–796.

Homer,N. et al. (2008) Resolving individuals contributing trace amounts of

dna to highly complex mixtures using high-density snp genotyping microar-

rays. PLoS Genet., 4, e1000167.

Humbert,M. et al. (2013) Addressing the concerns of the lacks family: quanti-

fication of kin genomic privacy. In: Proceedings of the 2013 ACM SIGSAC

Conference on Computer & Communications Security, pp. 1141–1152.

ACM, New York, NY, USA.

Jacobs,K.B. et al. (2009) A new statistic and its power to infer membership in

a genome-wide association study using genotype frequencies. Nature

Genet., 41, 1253–1257.

Ledford,H. (2016) Astrazeneca launches project to sequence 2 million

genomes. Nature, 532, 427.

Raisaro,J.L. et al. (2016) Addressing beacon re-identification attacks: quantifi-

cation and mitigation of privacy risks. J. Am. Med. Inform. Assoc., 1, 1–1.

Samani,S.S. et al. (2015) Quantifying genomic privacy via inference attack

with high-order SNV correlations. In: 2015 IEEE Security and Privacy

Workshops (SPW), pp. 32–40. IEEE.

Sankararaman,S. et al. (2009) Genomic privacy and limits of individual detec-

tion in a pool. Nature Genet., 41, 965–967.

Shringarpure,S.S. and Bustamante,C.D. (2015) Privacy risks from genomic

data-sharing beacons. Am. J. Hum. Genet., 97, 631–646.

Siva,N. (2008) 1000 genomes project. Nature Biotechnol., 26, 256.

Visscher,P.M. and Hill,W.G. (2009) The limits of individual identification

from sample allele frequencies: theory and statistical analysis. PLoS Genet.,

5, e1000628.

Wang,R. et al. (2009) Learning your identity and disease from research papers:

information leaks in genome wide association study. In: Proceedings of the

16th ACM Conference on Computer and Communications Security, pp.

534–544. ACM.

Fig. 4. Power curves for the QI-attack for varying beacon sizes (t¼0). All beacons

contain only CEU individuals and only chromosome 4 is used for inference.

Fig. 5. Power curves of the QI-attack for (CEUþMEX), (CEUþYRI) and

(CEUþMEXþYRI) beacons (t ¼ 0). Each population has 65 individuals in each

beacon, so the beacons contain 130, 130 and 195 individuals, respectively.

Only chromosome 4 is used for the experiment
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