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A Statistical Framework for Mapping Risk Genes
from De Novo Mutations
in Whole-Genome-Sequencing Studies
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Martina Krenzer,9 Yue Mei,2 Yan Wang,2 Nicholas Knoblauch,10 Jean Morrison,1 Siming Zhao,1

Yi Jiang,5,6 Evan Geller,7,9 Iuliana Ionita-Laza,11 Jinyu Wu,2,5 Kun Xia,6 James P. Noonan,7,9

Zhong Sheng Sun,2,5,* and Xin He1,*

Analysis of de novo mutations (DNMs) from sequencing data of nuclear families has identified risk genes for many complex diseases,

including multiple neurodevelopmental and psychiatric disorders. Most of these efforts have focused on mutations in protein-coding

sequences. Evidence from genome-wide association studies (GWASs) strongly suggests that variants important to human diseases often

lie in non-coding regions. Extending DNM-based approaches to non-coding sequences is challenging, however, because the functional

significance of non-codingmutations is difficult to predict. We propose a statistical framework for analyzing DNMs fromwhole-genome

sequencing (WGS) data. This method, TADA-Annotations (TADA-A), is a major advance of the TADA method we developed earlier for

DNM analysis in coding regions. TADA-A is able to incorporate many functional annotations such as conservation and enhancer marks,

to learn from data which annotations are informative of pathogenic mutations, and to combine both coding and non-coding mutations

at the gene level to detect risk genes. It also supports meta-analysis of multiple DNM studies, while adjusting for study-specific technical

effects. We applied TADA-A toWGS data of�300 autism-affected family trios across five studies and discovered several autism risk genes.

The software is freely available for all research uses.
Introduction

De novo mutations (DNMs) arise spontaneously in

offspring and are often detected by sequencing families

with disease occurrences, usually trios of parents and

affected children (trio-sequencing). Researchers can iden-

tify risk genes by searching for genes that harbor more de

novo mutations in affected offspring than expected by

chance. This approach has been highly successful in study-

ing a range of developmental and psychiatric disorders

including autism, intellectual disability, schizophrenia,

epilepsy, and congenital heart disease.1–6 DNMs tend to

have larger effects than standing variants because they

have not yet been acted on by natural selection. The

DNM approach may be particularly helpful for early-onset

diseases because standing risk variants for these pheno-

types are rare and hard to identify with GWASs.

Most existing work on DNMs focuses on mutations

in protein-coding regions. Even when whole-genome

sequence (WGS) data are available, researchers often

analyze only the coding portion of the genome due to a

lack of analytic tools for non-coding mutations.7–9 How-

ever, the majority of disease-associated variants identified

by GWASs are located in non-coding sequences, poten-
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tially affecting gene regulation rather than protein func-

tion. This suggests that non-coding DNMs represent a

large, currently unexplored source of genetic variation

that can aid gene discovery. The knowledge of non-coding

disease variants will provide additional benefits. As the

activity of regulatory elements tend to be cell type specific,

the analysis of DNMs could offer clues as to which cell

types are most relevant to disease etiology. A key research

challenge is thus to provide an analytic framework for

DNM data that incorporates non-coding mutations from

WGS studies of disease-affected families.

Current tools for DNM analysis perform some kind of

‘‘burden test’’ which evaluates whether the number of

mutations in a gene is larger than would be expected by

chance. He et al. propose the method TADA for

DNM analysis, which effectively performs a weighted

Bayesian burden analysis.10 TADA divides all mutations

into categories, such as nonsense and missense mutations.

Mutations in each category are weighted according to how

damaging they are expected to be, with the weights for

each category learned from the data. Another method,

FitDNM, similarly performs weighted burden analysis,

but the weights are assumed to be known (from external

source) instead of being estimated from data.11
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Figure 1. TADA-A and Its Application in Studying the Genetic Basis of ASD
(A) Overview of TADA-A. The blue frame illustrates the inputs of the model, including mutation counts, baseline mutation rates, and
annotations (assumed to be binary). The orange frame shows an example of relative risk estimates of different noncoding annotations
by TADA-A. The green frame illustrates our genemapping strategy. For each gene, we derived its noncoding BF based on the relative risks
of its noncoding mutations and calibrated mutation rates, which is then multiplied to the gene’s coding BF to get a total BF.

(legend continued on next page)
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Unlike protein-coding sequences, there is no simple

genetic code for researchers to predict the functional

effects of non-coding mutations, and thus difficult to

assign them to simple categories. Instead, we can describe

non-coding mutations using a number of overlapping

genomic annotations such as tissue-specific epigenomic

marks and cross-species conservation. Which annotations

are relevant to a particular disease is not known a priori.

Additionally, each annotation may be only weakly infor-

mative of pathogenic variants so we may need to combine

multiple annotations. Existing tests developed for de novo

coding mutations can not handle such complications:

TADA can handle only disjoint categories of DNMs and

has been used with only a small number of mutational

categories; FitDNM is designed for exome-sequencing

data, assuming that the probability of a variant affecting

protein function is known (from PolyPhen-2).11

In this work, we present a statistical framework for

analysis of DNMs, which we call TADA-Annotations (or

TADA-A). TADA-A uses a probabilistic model of mutation

counts for each position in the genome (Figure 1A). Specif-

ically, we model the mutation counts as following Poisson

distribution, and the background mutation rates depend

on covariates such as types of nucleotide changes and local

GC content. We expect the mutation rates in positions

assigned to a disease-associated gene to be elevated

compared with background rates, and the fold increases

depend on functional annotations in a log-linear model.

TADA-A offers several features important for WGS-based

DNM studies. First, the model can take an arbitrary num-

ber of possibly overlapping annotations and learn from

the data which annotations are enriched for causal muta-

tions. No arbitrary weighting scheme or variant filtering

is needed. Second, the method predicts risk genes by

combining information in both coding and non-coding

regions. In addition, the information from coding muta-

tions may come from an independent study, allowing a

WGS study to borrow strength from published whole-

exome sequencing (WES) studies. Finally, TADA-A

supports meta-analysis of multiple WGS studies. It adjusts

for possible difference in technical factors across studies by

fitting a different background mutation model for each

study.

We apply TADA-A to study the contribution of non-

coding sequences in autism spectrum disorder (ASD).

WES studies using DNMs in autism-affected families have

identified 65 ASD risk genes, highlighting the importance

of DNMs in the study of autism.1,12–14 Recently, efforts

have been expanded to whole-genome sequencing of

ASD-affected families. Two studies reportedmodest enrich-

ment of functional non-coding DNMs near known ASD
(B) Burden analyses of different types of de novo nonsynonymus mu
burdens (ORs), based on Fisher’s exact tests. On the top of each bar, w
(C) Estimated relative risks of different annotations using ASD DNMs
bars represent the 95% confidence intervals.
(D) Partition of de novo ASD risk into coding and non-coding mutati
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genes in autistic children, comparing with control subjects

or unaffected siblings.8,15 However, none of the published

work has utilized non-coding DNMs to map specific

risk genes or functional elements. We use TADA-A to

analyze a collection of five whole-genome DNM datasets,

leveraging a number of genomic annotations. We find

that brain enhancers marked by H3K27ac, conserved brain

enhancers marked by H3K27ac and high GERP scores

(GERP > 2), and regions predicted to affect splicing have

increased rates of DNMs in ASD-affected case subjects.

Our conservative estimates suggest that regulatory non-

coding mutations contribute to about a third of de novo

autism risk (i.e., autism risk attributable to all DNMs).

Using the DNMs from WGS data as well a published WES

study, we were able to identify four ASD risk genes at a

FDR < 0.1. Multiple lines of evidence support the possible

roles of these genes in ASD.
Material and Methods

TADA-A Model
TADA-Aworks in two stages: first, it calibrates the backgroundmu-

tation rates (mutation model); second, it learns which functional

annotations are predictive of causal mutations and infer the risk

genes (functional model). In the mutation model step, we assume

that we have un-calibrated base-level mutation rates (summation

over all possible allele-specific mutation rates at each base) from

external data, e.g., from human-chimp comparison. We used the

trinucleotide-based mutation rates table from Samocha et al. as

our baseline rates.16 These baseline mutation rates are solely based

on the intergenic divergence between humans and chimps. For a

particular study, observed mutation rates may differ from these

un-calibrated rates as a result of study-specific technical factors.

For example, lower sequencing depth reduces the number of

called DNMs. Mutation rates may also depend on local genomic

features such as GC content. To account for this variability, we

calibrate the background mutation rates for each study. To

simplify the computation, TADA-A collapses DNMs in a 50-bp

genomic window into a single count. We model these mutation

counts as Poisson Generalized Linear Model (GLM):

Yi � Poisson

 
2N~mi,exp

 
a0 þ

X
k

akUik

!!
;

where N is the number of individuals, ~mi is the un-calibrated

baseline mutation rate of window i (summing up the mutation

rates of bases in window i), and the exponential term represents

the deviation of the actual mutation rate of window i from emi .

The variable Uik is the kth mutation-related feature of window i

and ak represents the effect of mutation feature k. The mutation

features may include GC content, whether a sequence is tran-

scribed, etc. TADA-A uses glm() in R to estimate the coefficients

of the genomic features. After fitting the model, the calibrated
tations. The error bars represent the 95% confidence intervals of
e labeled the number of mutations in ASD followed by in control.
and control DNMs. The x axis is the Log(Relative risks). The error

ons.
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allele-specificmutation rate at each base is the un-calibrated allele-

specific mutation rate multiplied by a factor, expða0 þ
P

kakUikÞ,
which is calculated for the window containing that base.

In the functional model, we model the dependency of allele-

specific mutation rates on the gene status (risk gene or not) and

functional genomic annotations. We make the functional model

allele aware because many annotations are allele specific. For

example, a de novo SNV could be nonsynonymous or synony-

mous, depending on what the mutant allele is. Noncoding anno-

tations, such as CADD and SPIDEX scores, are also dependent on

the genotypes of mutant alleles. As described in the main text, we

assume that all mutations have been uniquely assigned to genes.

Let Zg be a binary indicator of whether gene g is a risk gene or

not. When gene g is a risk gene ðZg ¼ 1Þ, the number of DNMs

mutating to allele t at base i aggregated from affected individuals

follows a Poisson distribution

Yit jZgðiÞ ¼ 1 � Poisson

 
2Nmitexp

 X
k

bkXitk

!!
;

where gðiÞ is the gene that base i belongs to, mit is the calibrated

mutation rate to allele t of base i from the previous step, Xitk is

the kth genomic annotation of base i if mutated to allele t, and

bk is the effect of the kth annotation. Note that we consider anno-

tations related to function at this step, such as conservation and

enhancer activity. Since the annotations are binary, ebk is the rela-

tive risk of the kth annotation, i.e., the fold increase of mutation

rates in positions with that annotation versus those without

the annotation. If gene g is a non-risk gene (ðZg ¼ 0Þ), the

number of DNMs mutating to allele t at base i simply follows

Yit

��ZgðiÞ ¼ 0 � Poissonð2NmitÞ.
Let Yg be the number of DNMs assigned to gene g. Assuming

that DNM events are independent, the likelihood of Yg given Zg ,

PðYg

��ZgÞ, is simply the product of the probabilities of DNM counts

at all bases over all possible mutant alleles, according to the equa-

tions above. Let pg be the prior probability of gene g being a risk

gene, we have the full likelihood over all genes:

PðY jb; pÞ ¼
Y
g

�
pg P

�
Yg jZg ¼ 1; b

�þ �1� pg

�
P
�
Yg jZg ¼ 0

��
:

TADA-A implements two options for estimating parameters,

both based on maximum likelihood. In the first option, pg is the

same for every gene, and we estimate its value by maximum likeli-

hood jointly with b. In the second option, we use informative

priors for pg of all genes from external data, and we estimate

only b. The confidence intervals of the parameters are based on

standard asymptotic approximations using Fisher information

matrix. When we have multiple annotations in the model,

TADA-A uses a standard feature selection protocol to choose

annotations. Specifically, it first fits a model with each single

annotation and selects those whose coefficients are significantly

different from 0 (at 95% confidence interval). It then refits the

model jointly with the selected features.

Once we estimate the parameters, we compute the Bayes factor

(BF) of a gene, as

P
�
Yg jZg ¼ 1; bb�.P�Yg jZg ¼ 0

�
;

where the probabilities are evaluated at the MLE of parameter

values. In our ASD analysis, we further multiply the BFs from

non-coding analysis with the BFs from previous results based

on coding mutations to obtain final BFs for all genes. We
1034 The American Journal of Human Genetics 102, 1031–1047, Jun
control for multiple testing using the Bayesian FDR control pro-

cedure.17

Because our likelihood is defined over all bases and all possible

mutant alleles, including those possessing no DNM events, naive

parameter estimation is computationally expensive. To alleviate

this computational burden, we reformulate the likelihood function

by collapsingmutations over all bases sharing the same set of anno-

tations, assuming all annotations are discrete. This strategy greatly

reduces the computation time (Supplemental Methods). TADA-A

software is available at GitHub (Web Resources).
DNMs from Whole-Genome Sequencing Data
The detailed information for each WGS dataset is summarized in

Table S1. To remove erroneously called de novo SNVs, we

excluded 8 individuals with more than 140 (2 times more than

the median of ASD DNMs per individual) DNMs and removed

all recurrent DNMs (i.e., exactly the same mutation in multiple

individuals). Our unpublished DNM data are from WGS of 32

ASD trios of Han Chinese ancestry (EMBL-EBI: PRJEB14713;

data URL provided in Web Resources, details in Supplemental

Methods). These filtered data were used for all the analyses in

this manuscript.

We also tried filtering out DNMs with a high allele frequency in

GnomADor BRAVO databases, as this could be oneway of filtering

sequencing errors. There are 167mutations in case subjects and 18

in control subjects that have allele frequency more than 0.01 in

either GnomAD or BRAVO. These mutations are not found in

any of the ASD-associated genes we identified. We found that

removing these mutations did not change the model parameters

(Figure S4), so it will have little impact on our results.
Non-coding Annotations Used in Analyzing ASD Data
For histone modifications, we used H3K27ac sites in fetal and

adult brains to define cis-regulatory regions. Fetal brain sites

from human cortex at embryonic stages 7, 8.5, and 12 p.c.w.

were obtained from a recent study.18 For each stage, only peak re-

gions consistent between two biological replicates were selected.

Adult brain H3K27ac sites were obtained from Roadmap

Epigenomics Project.19 They include regions from human angular

gyrus, anterior caudate, cingulate gyrus, middle hippocampus,

inferior temporal lobe, mid-frontal lobe, and substantia nigra.

We used MACS2 to call peaks from raw data and kept only peak

regions consistent between two biological replicates for each brain

region. We used BEDtools20 to merge H3K27ac sites from fetal and

adult brain.

For DNase I hypersensitivity sites, fetal brain DNase I sites

were downloaded from Roadmap Epigenomics (male and female

fetal brain) and adult brain DHS data were downloaded

from ENCODE (Cerebrum_frontal_OC, Frontal_cortex_OC and

Cerebellum_ OC).

For conservation scores, we used ANNOVAR to obtain GERPþþ
scores for all mutations.21,22 We binarized GERP (a base is consid-

ered to be conserved if GERP is greater than 2).

For CADD, we downloaded publicly available CADD scores

(default parameters, v1.3) and binarized the scores (deleterious if

one allele has a CADD score greater than 15).

For splicing score, we used results from SPIDEX, a deep learning-

based approach to annotate variants that may affect splicing.23 An

SNV is considering a splicing SNV if its delta-psi score is less than

�1.416, which is the 10th percentile of all positions with SPIDEX

scores.
e 7, 2018



Meta-analysis Strategy and Applying TADA-A to ASD
In the ASD study, we first calibrate mutation rates of each study

separately using the mutation model of TADA-A (Poisson regres-

sion), as described in Results. We then fit the functional model

of TADA-A with non-coding annotations listed in the previous

section. Since the calibratedmutation rates for any base may differ

between studies, we calculated the likelihood of all genes for each

study separately, and then multiplied the likelihoods over all

studies to get a total likelihood. Note that the coefficients of the

functional annotations are shared among multiple studies. We

then estimate parameters via maximum likelihood. We take

advantage of a previous autism study to set the prior probabilities

of risk genes pg .
2 Specifically, we convert the Bayes factors reported

in that study to posterior probabilities (assuming each gene has

6% chance of being ASD gene) and use these probabilities as pg .

For computational reasons, we used the top 1,000 genes, ranked

by pg, in estimating the annotation parameters, since these genes

are the most informative of parameters. After the first round of

feature selection using all 12 annotations, only brain H3K27ac,

brain H3K27acþ GERP> 2, and splicing effects had significant ef-

fect sizes, so we refit the model with only these features jointly. In

the feature selection step, we define the search space of log(relative

risk) to be from �1 to 10 to cover a wide range of possible effect

sizes. Some annotations have the log(relative risk) estimated as

�1 due to this boundary limitation.

To validate our relative risk estimation results, we used two

different sets of informational priors. The first set is based on the

FDRs of predicted ASD genes using a human brain-specific interac-

tion network.24 For each gene, we derived its prior as 1 – FDR (we

used the top 1,000 genes for estimating relative risks). The second
Coding burden ¼ ASD nonsynonymous SNVs=ASD synonymous SNVs

control nonsynonymous SNVs=control synonymous SNVs
set is based on a collection of 2,601 genes implicated in neuropsy-

chiatric disorders (see the definition of ‘‘neuropsychiatric genes’’

in the next section for details). We assigned each neuropsychiatric

gene a prior 0.431 to make the expected number of ASD genes

consistent with the estimate that 0.06 of 18,665 protein-coding

genes are ASD risk genes.10,25

To identify specific ASD risk genes, we first derived the noncod-

ing BF of each gene using data from eachWGS dataset, thenmulti-

plied these BFs to get a total noncoding BF for each gene. This BF

for a gene is multiplied with the published coding BF based on

WES studies.2 We then estimated q-values as mentioned previ-

ously.17 We used p ¼ 0:06 as the fraction of ASD risk genes in

this step.10,25 We call a gene ‘‘novel ASD gene’’ (at a particular q-

value cutoff) if its final q-value falls below the cutoff and its coding

q-value from the previous study is above the cutoff. A gene that

has no noncoding DNM will not be considered a new finding

(even if a gene has no evidence from non-coding mutations, its

q-value could still change).
Definition of Gene Lists Used in the Analysis
Known ASD genes (194 genes) include genes with q-value < 0.3

from a combined analysis of CNVs, indels, and WES data using

TADA,2 SFARI category I (high confidence), and SFARI category II

(strong candidate) genes. Neuropsychiatric genes (2,601 genes)
The America
are a larger set of genes likely involved in neuropsychiatric disor-

ders, including genes with TADA q-value< 0.5,2 SFARI genes (cate-

gory I high confidence, category II strong evidence), AutismKB

genes,26 ASD risk genes summarized in a previous study,27 intellec-

tual disability genes,28 the union of gene sets enriched with SCZ de

novo coding mutations,29 high-confidence postsynaptic density

genes,30 and FMRP targets.31 The set of nonASD genes are the

1,000 genes with the highest TADA q-values.2 Intolerant genes

include genes with top 5% RVIS32 and haploinsufficient genes ob-

tained from two sources, one using copy number variations (genes

with predicted haploinsufficient probability greater than 0.95)33

and the other using estimated mutation rate.34 To define tolerant

genes, we started with genes with RVIS scores in the bottom

10%,32 genes with haploinsufficient probability smaller than

0.1,33 and genes that were used as control genes for LoF-deficient

genes.34 We then removed any genes that were in the intolerant

gene set. To define gene groups based on their expression levels,

we used the average expression level for each gene across all devel-

oping brain tissues from BrainSpan data.

Burden Analysis of Different Types of De Novo Coding

Mutations
In our burden analysis, we accounted for the difference in muta-

tion rates between ASD-affected subjects (�60/individual) and

control subjects (�39/individual) using ‘‘background sequences’’

(sequences/mutations not expected to have function). Specifically,

to assess the burden of nonsynonymous DNMs in ASD-affected

subjects versus control subjects, we used the numbers of synony-

mous SNVs in ASD-affected subjects and control subjects used as

background.
We tested whether nonsynonymous DNMs were enriched in

ASD-affected subjects versus control subjects using Fisher’s exact
test, and the burden was defined as the odds ratio (OR) from the

2 by 2 test.

Assessing Contribution of DNMs to ASD Risk
We treated ASD liability (risk) as a continuous trait and estimated

the percentage of variance in ASD liability explained by five types

of mutations. The variation of ASD liability explained by the jth

type of mutations is expressed as: Vj ¼ b2j � pj � ð1� pjÞ, where

bj is the effect size of the jth type of mutations at the liability scale

and pj is the probability that an individual carries a mutation of

type j (see Supplemental Methods). Note that only causal muta-

tions contribute to ASD liability, so both bj and pj are defined

for mutations affecting causal genes. We calculated bj from the

relative risk of jth type of mutation using standard quantitative

genetic calculations. To obtain pj, we calculated the total muta-

tion rate of type j mutations and then multiply this by 0.06 (frac-

tion of ASD risk genes) to obtain the rate of causal mutations of

type j.

Network Analysis of Candidate ASD Genes
We used two tools, DAWN andGeneMania, to analyze the connec-

tivity pattern of our candidate ASD genes in gene networks.
n Journal of Human Genetics 102, 1031–1047, June 7, 2018 1035



DAWN (detecting association with networks) algorithm35,36 is a

guilt-by-association-based gene prediction algorithm. Its funda-

mental assumption is that risk genes tend to be functionally

related with each other, and thus tightly connected in gene net-

works. A gene has a high posterior risk probability if it has a

high prior risk probability, interacts in a network with other risk

genes, or both. The prior risk probabilities came from published

WES results.25 For the underlying network, we constructed partial

co-expression networks for two spatial-temporal windows: the

mid-fetal prefrontal cortex (PFC) and the infancy mediodorsal

cerebellar cortex (MD-CBC), which are indicated as high risk win-

dows for ASD.37 BrainSpanmicroarray dataset is used as the source

for spatial-temporal gene expression data. DAWN was run sepa-

rately for each above-mentioned network. We used regularization

parameter (lambda) ¼ 0.12, p value cutoff ¼ 0.1, and correlation

thresholds 0.7 for PFC and 0.85 for MD-CBC, respectively. In

Table 2, posterior risk scores (q-values) are shown for the candidate

genes. A dash means that the corresponding gene is not co-

expressed with other risk genes in any of the spatial-temporal

windows.

GeneMania38 is a tool for studying interactions among genes in

a network using various types of information, such as gene co-

expression and protein-protein interactions (PPIs). We studied

the connection between our candidate genes with high-

confidence ASD genes (genes with coding TADA FDR < 0.1 and

genes in SFARI categories I and II) using co-expression data. The

significance of the number of connections is assessed by randomly

sampling gene sets of the same sizes as the candidate genes.

Enhancers with Recurrent De Novo SNVs
We used all brain H3K27ac regions not overlapping with exons

(not limited to sequences within 10 kb of TSS). We observed 25

enhancers with at least two de novo SNVs in ASD samples, and

we performed simulations to assess significance. In each simula-

tion, we randomly re-distributed de novo SNVs of all brain en-

hancers, following a multinomial distribution. The multinomial

probability of an enhancer is the ratio between the calibrated mu-

tation rate of that enhancer and the sum of calibrated mutation

rates across all enhancers. (For each study, we first calibrated the

trinucleotide-based mutation rates of all enhancers, accounting

for sample size, GC contents, and local 1 Mb human-macaque

divergence. We then added up this study-specific calibrated muta-

tion rate across the five studies to get the total calibrated mutation

rates for each enhancer.) We performed simulations 10,000 times

and obtained the distribution of the number of enhancers with

recurrent SNVs.

Power Analysis
We generated de novo mutation data for all genes in the human

genome (�18,700 genes) using the TADA-A model (see Supple-

mental Methods for details). In brief, we performed five simula-

tions for each sample size, defined as the number of trios. For

each iteration, we randomly assigned genes to ASD risk genes

with a probability of 0.06, based on previous estimates.10,25 For

each risk gene, we sampled DNMs from each category (LoF, Mis3,

less conserved regulatory SNVs, conserved regulatory SNVs, and

splicing SNVs) according to allele-specific mutation rates and the

average relative risks of these mutational categories, based on the

TADA-A model. For non-risk genes, we set the relative risk at 1

for allmutational categories.We then used TADA-A to assess the ev-

idence for each gene, using either coding mutations (WES

approach) or all types ofmutations (WGS approach).We then iden-
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tified ASD risk genes with q-values< 0.1. To study cost effectiveness

between WES and WGS, we translated trio sample size into budget

(WES: $500/sample; WGS: $1,000/sample) and compared the

number of identified ASD risk genes at each budget level.

TADs with Recurrent De Novo SNVs
For each TAD region, we calculated the regulatory mutation rate as

the sum of per-base calibrated mutation rates of brain H3K27ac

sites within the TAD. (For each study, we first calibrated mutation

rates of these H3K27ac sites and their 2.5 kb flanking regions,

accounting for sample size, GC contents, and 1 Mb human-

macaque divergence. We then added up the calibrated mutation

rates across five studies together.) Under the null hypothesis, the

count of regulatory SNVs follows a Poisson distribution, whose

rate is the regulatory mutation rate.10,16 We then calculated the

p value of each TAD region using the Poisson test and used the

Benjamini-Hochberg procedure to control FDR.
Results

Overview of TADA-Annotations (TADA-A)

TADA-A consists of two steps. In the first step, study-

specific, background mutation rates are estimated at each

position. We use an initial estimate based solely on a trinu-

cleotide mutation rates table from the literature.16 These

mutation rates are derived from the divergence in inter-

genic regions between humans and chimps, which are

subject to less natural selection comparing with coding re-

gions.We then adjust for genomic and technical covariates

such as sequencing depth, local GC content, and 1-Mb

local divergence scores between humans and macaques.

In the second andmain step, we use DNMs and annotation

information to identify risk genes. We assume that we can

assign each DNM to one gene, but we could also analyze at

the level of genomic regions and the DNM-to-gene assign-

ment is not strictly necessary (see Discussions). TADA-A

takes as input the number of DNMs at each genomic

position, summing over all affected subjects, and a set of

possibly overlapping, genomic annotations (Figure 1A, up-

per panel). Genomic annotations might include cell-spe-

cific histone modifications or evolutionary conservation.

TADA-A produces two main outputs: (1) the annotations

that are informative of causal mutations and their effect

sizes and (2) the predictions of specific susceptibility genes

of the disease of interest (Figure 1A, bottom panel). We

measure the effect of an annotation by its relative risk,

i.e., the fold increase of disease risk for a variant carrying

that annotation versus a variant without that annotation

(assuming the annotation is binary). Themodel of TADA-A

is general enough that it can analyze either coding or non-

coding mutations. If both types of mutations are analyzed,

the results could be easily combined by multiplying the

resulting Bayes factors (BFs).

The intuition behind TADA-A is that, in affected indi-

viduals, disease-causing mutations should appear at

higher rates than expected from the baseline mutation

rate. Our model can be written as yit � Poissonð2NmitgitÞ,
where yit is the observed number of de novo mutations at
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position imutating to allele t (yit is usually 0 or 1), mit is the

expected background mutation rate estimated in the first

step, N is the sample size, and git is the relative risk of a

DNM at position i mutating to allele t (greater than 1 for

risk mutations). To model the relative risk, git , we define

a binary (unobserved) variable for each gene indicating

whether it is a risk gene or not. For a non-risk gene, all

its positions have relative risk equal to 1. For risk genes,

we model logðgitÞ as a linear function of the genomic an-

notations. Each gene has a prior probability of being risk

gene. TADA-A offers the option of using informative prior

probabilities, e.g., a likely risk gene from previous WES

studies would have high prior probability. Intuitively,

this allows us to put more emphasis on highly plausible

risk genes to estimate the parameters of annotations,

while discounting the unlikely disease-associated genes.

This is important when statistical signals in the annota-

tions are weak.

We estimate model parameters (mainly the relative risk

of each annotation) using maximum likelihood. Since an-

notations could be partially redundant (e.g., an enhancer

may be associated with multiple annotations such as open

chromatin and H3K27ac) and not all annotations are

informative, we implement a feature selection protocol

to first select annotations that are informational to predict

pathogenic mutations and then jointly estimate the rela-

tive risks of these selected annotations. Once we have es-

timates of all the parameters, we predict whether a gene is

a risk gene or not using Bayes factor (BF), combining

information in all its associated DNMs. Similar to the orig-

inal TADA method, we test each gene separately and

contrast the null model where the relative risk is always

1 with the alternative model described above for risk

genes (relative risks dependent on annotations). To use

TADA-A in a meta-analysis setting that combines multiple

studies with possibly different rates and patterns of

DNMs (e.g., in relation to GC content), we fit a different

background mutation model for each study, but estimate

a common set of parameters related to functional

annotations.

TADA-A can be used to answer several questions about

genetics of a complex disease, ASD in our case. What anno-

tations are associated with causative mutations? Based on

this knowledge, can we learn about the genetic architec-

ture of the disease, especially about the relative contribu-

tion of coding versus non-coding DNMs to the disease lia-

bility? Finally, can we identify specific disease-associated

genes? We present below our results in answering these

questions for ASD.

Whole-Genome Sequencing Data of ASD and Mutation

Rate Calibration

We analyzed DNM data from five WGS studies of ASD

trios or quartets, with a total of 314 affected subjects

(Table S1). Mutation data are limited to de novo SNVs.

The validation rate of de novo SNVs based on Sanger

sequencing ranges from 85% to 94% in the five
The America
studies.39–41 The number of DNMs per subject ranges

from 57 to 63. Additionally, we collected the control

data from a cohort of �700 non-ASD-affected subjects.

While TADA-A does not need control data, we use this

additional dataset to perform burden analysis often

employed in DNM studies, comparing the rate of DNMs

in affected subjects with the rate in control subjects

(see Material and Methods). Our main results are limited

to sequences close to genes, including protein-coding

sequences, non-coding sequences within 510 kb of

TSSs, and potential splicing-regulatory regions that are

not covered by these two categories. In a later section,

we present results based on distal sequences.

To account for technical difference among studies that

may affect observed mutation rates, we use published

mutation rates from Samocha et al. as an initial esti-

mate16 and adjust for covariates using a Poisson regres-

sion model, separately for each of the five datasets (see

Material and Methods). We perform analysis at the level

of 50-bp non-overlapping sliding windows and consider

four covariates for estimating baseline mutation rates:

(1) whether a window is in coding regions (transcribed

sequences may have lower mutation rates because of

transcription-coupled repair); (2) whether the window is

in promoter regions (CpG (de)methylation in promoters

might affect mutation rates); (3) the percent GC in the

window, which may correlate with sequencing depth

and hence DNM detectability;8 and (4) the divergence

score between humans and macaques of the 1-Mb

window around the window, which is used to capture

the local deviation from the trinucleotide-based mutation

rates. The effects of these covariates are summarized

in Table S2. In all of the five studies, the intercept

in the regression model is significantly different from 0

(p < 0.05), suggesting systematic departure of average

mutation rates from the published rates. In three of the

five ASD studies, GC content has a negative effect on

the observed DNM rate (p < 0.05 for three). The muta-

tion features representing whether a sequence is in cod-

ing or promoter region were found to have a relatively

large effect in specific studies (e.g., the coding feature in

Jiang et al.7 was significant at p ¼ 0.003). As expected,

local divergence scores have a positive effect on the

observed mutation rates in all of the five studies, though

the effect is small and not statistically significant. The

results from our mutation rate modeling thus support

the importance of accounting for difference in studies

in meta-analysis of DNM datasets.

We notice that although some studies have a small sam-

ple size, the numbers of DNMs are still much larger than

the number of parameters. For example, even for the data-

set with the smallest sample size (the data of Michaelson

et al.82 has a sample size of 10), we still have 79 DNMs in

the 50-bp windows that are included in ourmodel. In addi-

tion, we fit mutation rate parameters separately for each

study, so a study with small sample size will not impact

the estimates for a larger study.
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Table 1. Mutation Frequency (the Number of Mutations per Subject) and the Relative Risks of Different Types of De Novo Mutations

Mutation Class Mutation Frequency Relative Mutational Exposure (%) Relative Risk
Variance of ASD Liability Explained
(100%)

Mis3 0.0175 12.5 4.70 0.83

Loss-of-function 0.00405 2.90 20.0 1.08

H3K27ac SNV (Gerp < ¼ 2) 0.0839 59.9 1.54 0.24

H3K27ac SNV (Gerp > 2) 0.0164 11.7 3.42 0.46

Splicing SNV 0.0183 13.1 3.22 0.46
Risk-Increasing Mutations in ASD Are Associated with

Active Enhancer Mark and Damaging Effects on Splicing

We first assessed the quality of data using coding

DNMs. We performed a simple burden analysis of pro-

tein-coding sequences in probands versus control sub-

jects. We adjusted for the difference in baseline mutation

rates in the ASD studies and control subjects using synon-

ymous mutations (whose true mutation rates should be

the same across studies, see Material and Methods). As

expected, we found that the average rate of non-

synonymous mutations per subject is about 1.2-fold

higher in ASD-affected subjects versus control subjects

(Figure 1B), in line with previous estimates.2,12,42 We

also observed an increased rate of non-synonymous

mutations in gene sets enriched with ASD risk genes,

including known ASD genes, genes likely involved in

neuropsychiatric disorders (dubbed neuropsychiatric

genes), genes intolerant to mutations, and genes highly

expressed in the brain (Figure 1B). Only the burden in

mutation-intolerant genes is statistically significant

(p < 0.01). Synonymous mutations have recently been re-

ported to be enriched in ASD-affected case subjects as

they may disrupt transcriptional regulatory processes,

such as splicing.8 Thus we think that using synonymous

mutations only makes our results more conservative: if

there is indeed enrichment in synonymous mutations,

the burden of nonsynonymous mutations would be un-

der-estimated as a result of adjusting mutation rates using

synonymous mutations.

For TADA-A analysis, we use a total of 12 functional an-

notations (Figure 1C). Some annotations measure the reg-

ulatory function of variants, including fetal and adult

brain H3K27ac18,19 and fetal19 and adult brain43 DNase

hypersensitive sites (DHS). H3K27ac is a mark of active

enhancers and DHS is a mark of open chromatin, often

suggestive of regulatory functions. We also use a conserva-

tion score GERP22 and an aggregate variant score CADD44

and composite annotations of regulatory regions and

GERP or CADD. Splicing has been shown to be important

for many human diseases, so we include the splicing ef-

fects predicted by SPIDEX.23 We choose the 10th percentile

of SPIDEX scores as a cutoff. SNVs with a SPIDEX score

smaller than this cutoff were classified as affecting

splicing. These SNVs are enriched within 20 bp around

exon/intron junctions (Figure S1).We limit our analysis
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to sequences within 10 kb of transcription start sites

(TSSs) of protein-coding genes (not including UTRs) and

potential splicing-regulating regions (which could be far

away from TSSs). To increase the power of TADA-A to

detect predictive annotations, we take advantage of exist-

ingWES studies. For each gene, we summarize the findings

of previous WES studies as the probability of being an ASD

risk gene,2 which is then used as the prior probability of

being a risk gene in the TADA-A model. This step allows

us to put large weights on known ASD risk genes, whose

probabilities are close to 1, comparing with average genes

(about 0.06).

In our initial analysis of feature selection using TADA-A,

we found that among 12 annotations, only brain

H3K27ac, brain H3K27ac þ GERP > 2, and the SPIDEX

score, when estimated separately, make marginally signifi-

cant contributions (p < 0.05, Figure 1C). We therefore

retrain the model using only these three features and

jointly estimate their relative risks at 1.54, 3.42, and

3.22, respectively (Table 1 and Table S3). In the following

analysis, we refer to de novo SNVs in H3K27ac regions

within 10 kb of genes as regulatory SNVs (those with

GERP > 2 as conserved regulatory SNVs), and de novo

SNVs predicted by SPIDEX to affect splicing as splicing

SNVs. To study whether the splicing signal is robust, we

also used another simple but commonly used way to pre-

dict splicing mutations. We predicted splicing SNVs as

any SNVs that are within 20 bp windows of exon/intron

junctions. The estimate of Log(Relative risk) is very close

to SPIDEX prediction, though is less significant (logRR es-

timate is 1.09, lower bound is �0.18, and upper bound is

2.35). This difference may be due to the fact that many

of the bases within 20 bp of exon/intron junctions do

not regulate splicing. We also tried using two other sets

of informative priors to analyze the 12 annotations: one

based on a genome-wide prediction of ASD genes in the

context of a human brain-specific gene interaction

network24 and the other based on a neuropsychiatric disor-

der gene set (see Material and Methods for details). The re-

sulting estimates for functional annotations are largely

similar, suggesting that our estimates are quite robust (Fig-

ures S2A and S2B).

In the analyses above, we borrowed priors from other

studies to increase our power to detect non-coding signals

which are generally weaker than coding signals. When
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Table 2. MutationalCountsandEvidenceofFour ‘‘NovelASDGenes’’

Gene Name NRXN1a APBB1 TANC2 PNPLA7
Enrichment
p Value

LoF 1 1 1 1 –

Mis3 1 0 1 1 –

Regulatory SNV 0 1 0 0 –

Conserved
regulatory SNV

0 2 0 0 –

Splicing SNV 1 0 1 1 –

HI Y Y Y N 2.93 3 10�3

RVIS (%) 2.25 19.93 0.67 64.97 0.037

ExAC
zscore (%)

3.32 14.25 1.32 76.73 0.042

FMRP targets Y Y Y N 3.20 3 10�4

BrainSpan
expression (%)

12.03 3.41 18.09 69.90 0.049

DAWN 0.001 – – – 0.30

In the evidence rows, Y means overlap with a gene set and N otherwise. Lower
RVIS and ExAC z scores percentiles correspond to higher constraint. Lower
BrainSpan percentiles correspond to higher brain expression. Enrichment p
values were calculated by hypergeometric tests. In RVIS, ExAC z score, and
Brainspan, we tested the enrichment of ‘‘novel ASD genes’’ in genes in the
lower quartiles. In DAWN analysis, we tested the enrichment of ‘‘novel
ASD genes’’ in genes with DAWN q-value < 0.05. The DAWN q-value for
each gene in the table is the minimum of the q-values of that gene in two brain
regions, mid-fetal prefrontal cortex (PFC) and infancy mediodorsal cerebellar
cortex (MD-CBC).
aNRXN1 was not identified as a significant ASD gene with WES de novo SNV
data by Sanders et al.2 but with the inclusion of small deletions.
using a uniform prior of 0.06 to perform relative risk esti-

mation, we found that while the sign of several annota-

tions, including brain H3K27ac þ GERP > 2 and SPIDEX,

remain the same (Figure S2C), the strength of statistical

evidence is much weaker. This is consistent with our

expectation and underscores the advantage of using infor-

mative priors to increase the sensitivity of signal

detection.

To demonstrate that the signal discovered by TADA-A is

specific to ASD, we run TADA-A using the control data. All

the annotations now have relative risk estimates close to

or smaller than 1, except for one feature (GERP > 2),

though the lower bound of Log(Relative risk) is very close

to 0 (0.024) (Figure 1C). In addition, combining this

feature with other epigenomic features did not increase

the effect size as it did when analyzing ASD data. So we

believe that the result of this annotation is likely due to

noise.

Enhancer and Splicing Mutations Make Substantial

Contributions to the De Novo Risk of Autism

A fundamental question in genetics is how the risk variants

are distributed among various functional classes, such as

protein-coding sequences, enhancer sequences, non-

coding RNAs, etc. This question has been studied

recently using common variants.45,46 It was found that

even though variants in protein-coding regions are highly
The America
enriched with risk variants, they explain only a small frac-

tion of total disease risk. The results from the previous

TADA-A analysis allows us to address this ‘‘risk partition’’

problem from a different angle, using DNMs. Based on

TADA-A results, we considered three types of non-coding

de novo SNVs—regulatory SNVs with GERP % 2 (less

conserved regulatory SNVs), regulatory SNVs with GERP

> 2 (conserved regulatory SNVs), and splicing SNVs—in

addition to two classes of coding mutations: LoF and

probably damaging missense (predicted by PolyPhen-2,

denoted as Mis3). We quantify the contribution of a muta-

tion type as liability variance explained (LVE), taking into

account both the frequencies of this mutation type and

its average relative risk (see Material and Methods). For

coding mutations (LoF and mis3), the relative risks were

obtained from published TADA estimates in WES

studies.10 For non-coding SNVs, we used the relative risks

estimated by TADA-A.

The relative risks of regulatory SNVs and splicing SNVs

are lower than those of coding SNVs (Table 1). Despite a

lower risk per variant, regulatory SNVs are much more

frequent than other classes of mutations, making the total

contribution of regulatory SNVs comparable to LoF or

missense coding mutations. Each class of mutation ex-

plains only a small fraction of estimated total ASD genetic

risk (Table 1), consistent with the conclusion of an earlier

study.47 Considering only the risk due to de novo muta-

tions, we found that non-coding SNVs (including less

conserved regulatory SNVs, conserved regulatory SNVs,

and splicing SNVs) explain 38% of the de novo risk

(Figure 1D). This estimate, however, is likely very conserva-

tive (Discussion).

TADA-A Identifies ASD Risk Genes by Combining Coding

and Noncoding Mutations

A recent WES study (�3,500 samples) identified 58 ASD

risk genes at FDR < 0.12 using de novo SNVs. Applying

TADA-A on the WGS data and combining them with the

WES results, we discovered 4 ‘‘novel ASD genes’’ at FDR

< 0.1 (Table 2) and 12 at FDR < 0.3 (Table S4). Each of

the four genes at FDR < 0.1 has at least one LoF or Mis3

mutation, and the evidence for these genes is strengthened

by the presence of regulatory or splicing SNVs. We found

extensive evidence supporting the plausibility of these

genes as ASD risk genes. APBB1, NRXN1, and TANC2 are

the targets of neuronal-RNA binding protein FMRP,

whose loss of function causes fragile X syndrome and

autistic features (Tables 2 and S5, hypergeometric test,

p ¼ 0.00032). These three genes have been identified as

haploinsufficient genes33,34 (Tables 2 and S5, hypergeo-

metric test, p ¼ 0.00293) and are highly expressed in the

brain (Tables 2 and S5, hypergeometric test, top 25% of

all genes, p ¼ 0.049). The genes also tend to be evolution-

arily constrained as measured by either RIVS (Tables 2 and

S5, hypergeometric test, RVIS top 25% genes, p ¼ 0.037) or

another metric based on tolerance of LoF variants in ExAC

(Tables 2 and S5, hypergeometric test, ExAC top 25%
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genes, p ¼ 0.042). Evolutionary constraint in the human

population has been shown to be a strong predictor of

autism genes.16

We performed network analyses to further establish the

link of candidate genes to autism. DAWN35,36 is a recently

developedmethod that predicts autism risk genes by virtue

of the genes’ association with known ASD genes in co-

expression networks of early developing brain. A gene

receives a high DAWN score if it is highly connected

with other likely ASD genes. We found that NRXN1 has a

DAWN q-value < 0.05 in at least one of the two critical

spatial-temporal developmental windows for ASD37

(Tables 2 and S5, fold of enrichment 2.92, though the hy-

pergeometric test p ¼ 0.30 is not significant, but the power

of the test is small as there are only four ‘‘novel’’ genes).

Using GeneMania,38 we found our candidate genes were

highly connected to high-confidence ASD genes in the

gene co-expression network constructed from multi-tissue

gene expression data (91 co-expression links between the

two gene sets, p ¼ 0.04, Figure 2A). These analyses, using

different analytic tools and genomic data, thus support

that our identified genes are functionally related to known

ASD genes.

Expanding our analysis to the 12 ‘‘novel ASD genes’’ at

FDR < 0.3, we observed significant enrichment of multiple

gene annotations (Table S4), including haploinsufficient

genes (Table S5, hypergeometric test, p ¼ 0.00035), con-

strained genes (Table S5, hypergeometric test, p ¼ 0.0012

using RVIS and p ¼ 0.0096 using variant frequency in

ExAC), and genes significantly co-expressed with known

ASD genes from DAWN analysis (Table S5, hypergeometric

test, p ¼ 0.0022). The 12 ‘‘novel ASD genes’’ are also signif-

icantly enriched in genes predicted to be ASD risk genes

(FDR < 0.1) by a recently developed machine learning

approach that utilizes a brain-specific functional gene

network (Table S5, hypergeometric test, p ¼ 0.028).24

Literature inspection provides further support of the roles

of most of these genes in ASD (Table S6).

Distal Enhancers and TADs with Multiple De Novo

Mutations Implicate Additional Risk Genes

Our TADA-A analyses were performed at the gene level and

considered only enhancers within 10 kb of TSSs. Applying

TADA-A to distal enhancers is challenging largely because

of the uncertainty of assigning these enhancers to their

target genes. Various studies have shown that only in

10%–30% of cases, distal enhancers target their nearest

genes. We use a different approach in this section to test

whether distal enhancers may play some roles in autism.

Our idea is that the probability of multiple DNMs

occurring in a single enhancer by chance is very low. We

found 25 H3K27ac enhancers with 2 or more SNVs in

ASD-affected case subjects, significantly higher than

random expectation based on simulations (Figure 2B,

p ¼ 0.0014). We predicted the likely target genes of recur-

rent enhancers based on cross-tissue correlation between

enhancer activity and gene expression from Roadmap
1040 The American Journal of Human Genetics 102, 1031–1047, Jun
Epigenomics (Table S7). We found a recurrent enhancer

putatively targeting ZMIZ1, more than 250 kb away

(Figure 2C). The region contains two other DNMs in two

enhancers, one of which also has correlated activities

with the ZIMZ1 promoter. A target of FMRP, ZMIZ1 is high-

ly expressed in the brain and interacts with neuron-specific

chromatin remodeling complex (nBAF), which is impor-

tant in regulating synaptic functions.48,49 Several nBAF

members have been linked to autism, such as ARID1B

and BCL11A.50 The pathogenic potential of ZMIZ1 is

further supported by the observation of a de novo gene-dis-

rupting translocation in an individual with intellectual

disability.51 These results strongly support the role of

ZMIZ1 in autism and also highlight the mechanism that

DNMs may increase ASD risk by disrupting distal regulato-

ry elements.

We applied the similar idea of recurrent DNM analysis at

the level of topologically associating domains (TADs).52

These are megabase-sized chromatin interaction domains

that are stable across cell types and have been proposed

to demarcate transcriptional regulatory units.52 Based on

estimated mutation rates, we found two TADs with a

significant (at FDR < 0.3) number of regulatory SNVs

(Figure S3 and Table S8). In both TADs, there are only

two or three genes, and we conjecture that SRBD1 and

MRSA are likely the underlying ASD genes in the two

TADs (see Discussion).
Power of Mapping ASD Risk Genes with WGS and WES

Enlightened by the de novo genetic architecture of ASD

(Table 1), we used simulations to address how the power

of a DNM-focused WES or WGS study depends on its

sample size and sequencing budget. We randomly sample

ASD risk using a prior probability of 0.06 based on previous

estimates of the total number of ASD risk genes;1,53

randomly sampled mutations according to mutation rates

and the TADA-A model (causal genes tend to have more

deleterious coding and non-coding mutations compared

to expectations) and then applied TADA-A to identify

risk genes at q-value < 0.1. We found that the power of

the simulated WGS design is about 50%–120% higher

than that of the WES (Figure 3A). The gain of power by

WGS is more obvious when the sample size is smaller.

We next investigated whether the additional power gained

from WGS is justifiable on the basis of cost. At the current

per-sample cost level (WES: $500 and WGS: $1,000), we

found that WES is still more cost effective than WGS

(Figure 3B).
Discussion

Analyzing DNMs from exome-sequencing data has been

shown to be a powerful paradigm for mapping risk genes

of developmental and psychiatric disorders. Extending

this to the non-coding genome is the natural next step

and has the potential to transform our understanding of
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Figure 2. Predicted Risk Genes and Enhancers of ASD
(A) GeneMania network analysis of the four ‘‘novel ASD genes.’’ Red circles represent novel ASD genes while gray circles represent known
ones. Two genes are connected if their co-expression acrossmultiple tissues reaches a threshold. Only connections between the two gene
sets are shown.
(B) Distribution of the number of enhancers with recurrent (two or more) de novo SNVs from 10,000 simulations. The vertical red arrow
marks the observed number of enhancers with recurrent de novo SNVs.
(C) A distal enhancer (marked by a star) of ZMIZ1 with recurrent SNVs. Grey curves represent possible interactions between
enhancers and promoters (correlated activities across multiple tissues). Note that the region contains two additional DNMs in other
sequences.
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Figure 3. Comparison of Power between WES and WGS from Simulations
Power is measured as the number of discovered ASD risk genes at q-value < 0.1 and is obtained at each level of sample size (A) and
sequencing cost (B). Error bars represent the standard deviations of the numbers of the discovered ASD risk genes.
these complex disorders. In this work, we present a

comprehensive statistical framework to support such anal-

ysis. Our described method, TADA-A, is able to leverage

multiple functional genomic annotations to better detect

and prioritize risk-predisposing mutations. More impor-

tantly, TADA-A is able to combine information of all

DNMs of a gene, in both coding and non-coding regions,

to maximize the power to detect risk genes. The results of

our meta-analysis of autism WGS datasets demonstrate

the effectiveness of TADA-A. We show that de novo non-

coding mutations make substantial contributions to the

risk of autism (comparable to de novo LoF or missense

mutations) and identified several promising ASD risk

genes. We note that the method can be applied to any

units, other than genes, such as regulatory elements or

sequence windows, though analysis at the gene level has

the benefit of permitting us to borrow external informa-

tion from previous WES studies.

A common strategy for analyzing DNM data is the

burden analysis, which contrasts the rates of DNMs in

affected individuals, often limited to likely functional

mutations, with the expected rates due to chance alone.

When researchers have no matched sibling or control

data, the burden analysis can be confounded by technical

factors such as sequencing depth. The burden analysis in

non-coding regions is even more challenging because the

statistical signal is considerably weaker than the coding

signal, as reported by recent publications as well as our

own study (Table 1). TADA-A greatly improves the standard

burden analysis in several ways. Our mutation model,

based on Poisson regression, incorporates covariates

known to influence background mutation rates. In our

ASD analysis, while we do not have access to genome-

wide sequencing depth information, we used GC content

as a proxy. Incorporating prior information of which genes

are likely risk genes is critical for estimating parameters of
1042 The American Journal of Human Genetics 102, 1031–1047, Jun
annotations, while using a uniform prior largely lost the

signals (Figure S2C).

One of the main challenges in making use of noncoding

mutations in risk gene mapping is that we do not know

a priori, from many possible noncoding annotations,

which ones are disease relevant. TADA-A provides a conve-

nient way to tackle this challenge. It allows users to analyze

as many annotations as possible and learn which ones are

informative of pathological mutations. In the application

of TADA-A to ASD WGS data, we found that mutations

with H3K27ac marks or with possible splicing effects

contribute to ASD risk. These findings are consistent with

previous research implicating a role of transcriptional

mis-regulation in ASD etiology: chromatin remodeling

and histone modification have been implicated in

genes with ASD-associated DNMs;1,54 trans-acting splicing

modulators, such as FMRP, have been identified as syn-

dromic ASD genes;55 and atypical splicing patterns of

synaptic genes have been observed in individuals with

autism.56–58 While we think enhancers (as marked by

H3K27ac) and splicing regulations are involved in possibly

most complex diseases, the exact annotations that are

informative of disease variants may differ from our find-

ings. For instance, it is possible that enhancers in only spe-

cific tissues, which are not known a priori, may be relevant

to a given disease. And one may need to intersect H3K27ac

with other annotations, e.g., conservation or open chro-

matin, to better identify functionally active enhancers.

TADA-A provides an automatic way of learning such anno-

tations (and their combinations).

Previous knowledge of the role of non-coding variants

in diseases comes mostly from GWASs. The challenge

with GWASs is that regulatory elements are much

shorter (�1 kb) than regions of linkage disequilibrium

(LD, hundreds of kb on average). It is thus not straight-

forward to assess the contribution of non-coding variants
e 7, 2018



or to identify specific regulatory elements from GWASs.45

Indeed, the estimated contribution of DHS sites to herita-

bility of complex diseases ranges widely from 79% to 25%

in literature,45,59 largely because of LD. By using DNMs,

our work provides independent estimation of the contribu-

tion of both coding and non-coding variants to the risk of

complex diseases.45 We estimated a modest average relative

risk of about 1.5 for de novo mutations in less conserved

brain H3K27ac enhancers and 3.4 in conserved brain

H3K27ac enhancers, compared to 4–5 for missense and

20 for LoF mutations. We were not able to detect signal in

evolutionarily conserved sequences (GERP, if not combined

with tissue-specific enhancers) or putative deleterious vari-

ants (CADD, trained mostly from non-brain tissues). These

results suggest that evolutionary constraint is only weakly

correlated with pathogenicity in ASD32 and that regulatory

variants of ASD probably act in a tissue- and time-specific

manner.60 Compared to a previous study,47 our estimate

of ASD risk attributable to coding mutations is somewhat

higher (1.9% versus 1.1%), mainly due to a significant

contribution frommissense DNMs (0.83% versus the previ-

ous estimate of 0.04%). We believe this difference is due to

our different modeling assumptions: we treated all muta-

tions in a category as a mixture of causal and non-causal

mutations, whereas the previous study treated all muta-

tions in a category equally (see Material and Methods).47

We estimated that de novo coding (1.9%), non-coding

(1.16%), and copy number variants (1.46%, estimated by

a previous study47) together contribute 4.5% of ASD risk.

We think that we significantly under-estimated the contri-

bution of non-coding mutations to ASD risk for several rea-

sons. First, we considered only enhancers within 10 kb of

TSSs, which constitute about 36% of all enhancers in

our data. Second, our dataset contains only regulatory

sequences active early in development (7, 8.5, and 12weeks

after conception) or in the adult brain. Third, larger

genomic alterations, such as indels, potentially have larger

effect sizes and are expected to increase the power for risk

gene prediction. However, the false positive rates of calling

de novo indels are much higher than SNVs. Besides, there is

no good de novo mutation rate model for indels, which

makes it difficult to model indels and estimate the relevant

parameters. Thus de novo indels were not considered in

this study. We also did not include de novo CNVs because

of the difficulty of estimating mutation rates and attrib-

uting the contribution of a CNV to a risk gene.

Iossifov et al. used ascertainment differential, defined as

the difference of DNM rates between probands and unaf-

fected siblings, to measure the contribution of DNMs to

ASD risk.14 Based on higher DN nonsynonymous muta-

tion rates in probands, they estimate that DNMs contrib-

utes to about 21% of case subjects. We note, however,

this does not mean that the DNMs explain all these case

subjects, since the DNMs are rarely fully penetrant. A bet-

ter approach would estimate the contribution of DNMs to

the disease liability, similar to the widely used heritability

analysis, by taking into account the effect sizes of variants.
The America
Using this approach, both Gaugler et al. and our method

reach similar estimates that DNMs contribute to a few

percent of the ASD risk.47 To appreciate the difference of

Iossifov et al.14 and the liability approach, consider a

two-hit model where an individual has high ASD liability

from inherited variants and one DNM with small effect

pushing him above the liability threshold. In this case,

DNM certainly contributes, but its effect is small. The

ascertainment differential approach will not give us a cor-

rect picture of the true impact of DNMs in this scenario.

We identified four ‘‘novel ASD genes,’’ three of which

are strongly supported by other evidence. APBB1 is

an adaptor protein localized in the nucleus. It is down-

regulated in ASD cerebellum compared to control

cerebellum,61 and its microexons are mis-regulated in

the brains of ASD-affected individuals.56 NRXN1 belongs

to a group of presynaptic cell adhesion molecules that

controls synapse development.62 It has been implicated

as a top candidate gene for neurodevelopmental and

neuropsychiatric conditions.63 Interestingly, alternative

splicing of Nrxn1 has been reported to cause defects of

synaptic formation in the hippocampus region in a

mouse model (the gene is supported by a splicing SNV,

Table 2).64 TANC2 is a member of postsynaptic scaffold

proteins. It is highly expressed in the brain and play roles

in the regulation of dendritic spines and excitatory syn-

apses.65 One WES study reported TANC2 as a candidate

intellectual disability gene.66

Most of the ASD genes at FDR < 0.3 are supported

by functional or association studies (summarized in

Table S6). JUP is a member of the catenin/cadherin super-

family, which has important roles in neuron connections

and interactions.67 It is strongly expressed in the primate

prefrontal cortex and hippocampus.68 Dll1 is expressed

in most of the neural tube during CNS development in

mice.69 Studies of Dll1-deficient mice suggest that Dll1

plays an important role in the expansion and differentia-

tion of mesencephalic dopaminergic neural precursor

cells into neurons.70 PPM1D has recently been identified

as a risk gene for intellectual disability.71 MSL2, DLL1,

SMARCC2, ARHGAP44, and GAPVD1 are predicted as

autism risk genes by a recently developed machine-

learning approach that utilizes a brain-specific functional

interaction network24 (q-values 0.038, 0.0186, 0.0319,

0.0859, and 0.08, respectively).

We also found that the two TAD regions with excess reg-

ulatory SNVs in ASD are supported by CNV studies. In one

TAD, recurrent, rare CNVs (chr2: 45455651–45984915)

spanning the entire SRBD1 gene (the only protein coding

gene disrupted by the CNVs within this TAD) were re-

ported in ASD-affected subjects.72 In a later independent

study, CNVs in this TAD region were found to be enriched

in ASD-affected case subjects versus control subjects.72

These results suggest that SRBD1 is likely the risk gene

in this TAD. In the other TAD region, ASD-associated

duplication of 8p23.1–8p23.2 introduces a breakpoint

between MSRA and RP1L1.73 MSRA is a member of the
n Journal of Human Genetics 102, 1031–1047, June 7, 2018 1043



methionine-sulfoxide reductase system whose function is

to alleviate oxidative stress. Increased exposure to oxida-

tive stress plays an important role in the pathogenesis of

ASD.74 In addition, GWASs have established associations

of MSRA with schizophrenia75 and bipolar disorder.76

One caveat of using multiple datasets for meta-analysis

using TADA-A is that DNM load is likely to be different be-

tween simplex and multiplex families. Ideally, we would

like to treat the data from simplex and multiplex families

differently, but in practice, this would reduce sample size

and make the estimates less reliable. Several lines of

reasoning suggest that the extent of difference may be

limited. (1) When choosing simplex families, it is hard to

exclude families with high genetic risks, because the family

sizes are often small. A high-risk family by chance could

give rise to two affected siblings or one affected and one

unaffected sibling. The former would be classified as multi-

plex and the latter simplex. It is estimated that more than

85% of such high-risk families with two children, at least

one with autism, would be included in Simons Simplex

Collection.77 (2) The de novo CNV burden of simplex and

multiplex families were found to be similar. In Pinto

et al., the rates of de novo CNVs is 5.9% in simplex and

5.8% in multiplex families.78 (3) The burden of nonsynon-

ymous mutations from our data (Figure 1B, OR about 1.2),

in which multiplex families from Yuen et al. takes a major-

ity proportion is quite similar to the burden based on

simplex families.14 (4) Yuen et al. found identical DNMs

existed in 19% of the sibling pairs of multiplex families

they investigated.79 This observation suggests that, even

inmultiplex families, DNMs derived from germlinemosaic

mutations could play a significant role in increasing ASD

risk. These ‘‘mosaic’’ DNMs are thus similar to DNMs in

simplex families, in a sense. With more data from simplex

and multiplex families available, accounting for this differ-

ence would be a future direction.

We believe that TADA-A can be further developed along

several directions. The baselinemutationmodel of TADA-A

is relatively simple, and recent studies demonstrate that

broader sequence context and additional genomic features

can be highly correlated with mutation rates.80 Addition-

ally, in the current analysis, we focus on regulatory

sequences close to genes. However, a large fraction of

regulatory sequences are distal to transcription start sites.

The challenge is that the target genes of these sequences

are often unknown. We plan to integrate chromatin inter-

action data (e.g., Hi-C) in the future to better analyze mu-

tations in distal enhancers. Finally, TADA-A uses a linear

model for predicting effects of mutations from annota-

tions. A more powerful method may use a non-linear

model such as deep neuron networks.81
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