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Automatic Estimation of Taste Liking through
Facial Expression Dynamics
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Abstract—The level of taste liking is an important measure for a number of applications such as the prediction of long-term consumer
acceptance for different food and beverage products. Based on the fact that facial expressions are spontaneous, instant and
heterogeneous sources of information, this paper aims to automatically estimate the level of taste liking through facial expression
videos. Instead of using handcrafted features, the proposed approach deep learns the regional expression dynamics, and encodes
them to a Fisher vector for video representation. Regional Fisher vectors are then concatenated, and classified by linear SVM
classifiers. The aim is to reveal the hidden patterns of taste-elicited responses by exploiting expression dynamics such as the speed
and acceleration of facial movements. To this end, we have collected the first large-scale beverage tasting database in the literature.
The database has 2970 videos of taste-induced facial expressions collected from 495 subjects. Our large-scale experiments on this
database show that the proposed approach achieves an accuracy of 70.37% for distinguishing between three levels of taste-liking.
Furthermore, we assess the human performance recruiting 45 participants, and show that humans are significantly less reliable for
estimating taste appreciation from facial expressions in comparison to the proposed method.

Index Terms—Taste liking, taste appreciation, facial expression dynamics, spontaneous expression, taste-induced expression.

F

1 INTRODUCTION

F OOD is one of the primary necessities of life. Nowadays,
the quality of food (e.g. lower fat and sugar) is important

to prevent obesities and promote healthier ingredients. To obtain
different food composition (e.g. lower fat, sugar and salt) with
similar taste liking, the challenge is to measure the appreciation
of food in an objective, spontaneous and instant way. In general,
the human face can be used as a cue to determine if someone
likes a particular taste or not as it offers rich and spontaneous
data in terms of facial expressions. Previous studies show that the
face reveals appreciation or dislike while eating and drinking [1],
[2]. Such spontaneous facial expressions can be used to measure
quality and intensity of the taste.

In contrast to above studies based on human observations, in
this paper, the aim is to automatically recognize taste-induced
facial expressions for taste liking. Many studies in human facial
analysis categorize facial expressions and connect them to emo-
tional states [3], [4]. In tasting, however, facial expressions are
not directly indicative of these inner emotional states, but rather
a spontaneous motor response to flavor. Therefore, facial analysis
for emotion classification (e.g. Action Units) is not directly ap-
plicable to taste liking. For instance, a person may display facial
Action Units (AU) that correspond to disgust expression (e.g. AU
15: lip corner depressor, AU 9: nose wrinkler) when tasting lemon
juice, yet, this does not necessarily mean that he/she dislikes the
taste. Similarly, we cannot expect to observe a joy expression
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Fig. 1. Overview of the proposed approach: (a) Facial landmark tracking,
(b) extraction of facial dynamics (location, speed, and acceleration), (c)
deep learning of regional representations through stacked denoising au-
toencoders, and (d) computation of regional Fisher vectors to represent
videos.

(e.g. AU 12: lip corner puller) in response to every positive taste.
Beside the appearance of taste-induced facial expressions, subtle
dynamic information hidden in such expressions is important.
The aim is to discover this hidden information by analyzing the
expression dynamics such as the acceleration and speed of the
facial movements. In this paper, the focus is on facial expressions
for the estimation of taste liking as they provide spontaneous,
instant and heterogeneous human data.

We aim to automatically measure taste liking by means of
a holistic interpretation of facial expressions. Facial analysis is
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done by considering the expression dynamics such as acceleration
and speed of regional facial movements. To this end, inner facial
movements are tracked in videos. Facial regions are proposed
corresponding to important parts of faces to incorporate locality
as pixels within these regions move together. Per frame, deep-
learned regional dynamics are obtained using stacked denoising
autoencoders, which are then coded into a Fisher vector for
video representation. The regional Fisher vectors are concatenated
and used as input of an SVM classifier to classify taste liking.
Overview of the proposed approach is visualized in Figure 1.

Unfortunately, no large-scale taste datasets of facial expres-
sions are available today. Therefore, to test and compare the pro-
posed method, a new large-scale taste database has been collected
containing spontaneous facial expressions while drinking different
types of beer. Such a database is a milestone to automatically
interpret taste-induced facial behavior in real-life scenarios. To
differentiate from using hand-crafted features, deep learning is
applied to obtain efficient feature representations. This is made
possible by the enormous amount of newly collected spontaneous
facial expression data. Although automatic face analysis has been
used in different computer vision applications, this is the first
paper on automatic taste liking tested on a large-scale database.

People are quite reliable and accurate in distinguishing be-
tween emotional facial expressions, however, human ability to
predict taste appreciation from facial expressions has not been
investigated yet. To this end, we have recruited 45 participants,
and assess human performance for this task in comparison to the
proposed method.

Our key contributions can be listed as follows: (1) First time
in the literature, we propose to learn a deep representation for per-
frame dynamics of facial responses by jointly encoding location,
speed, and acceleration parameters of densely sampled facial
landmarks. (2) We introduce an efficient temporal representation
for taste-induced facial expressions by combining the deep-learned
per-frame dynamics of each frame in a given video through Fisher
vector encoding. (3) We propose the first automatic approach
for estimating the level of taste liking using facial expression
dynamics. (4) We have collected the first large-scale beverage
tasting database in the literature. (5) We provide new empirical
findings on taste-elicited facial dynamics. (6) We assess the human
performance for estimating taste appreciation from facial expres-
sions. Finally, (7) we show that the proposed method can also be
used for other face analysis tasks such as smile classification.

2 RELATED WORK

Taste of food and beverage products are extensively evaluated to
predict consumer acceptance, before market introduction. Current
methods for evaluating taste liking depend almost entirely on self-
report ratings that may bias the participants to respond in a non-
spontaneous, rational way. Consequently, instant, objective and
spontaneous rating of the respondents about the product cannot
be measured by these methods. Facial expressions, however, can
reveal such likings.

Facial expressions are strong indicators of spontaneous feel-
ings and emotions, as well as displaying innate responses to basic
tastes. Many studies report that positive facial expressions are
elicited by liked (sweet) tastes, while disliked (bitter) tastes induce
negative expressions in neonates [5], [6], [7]. Moreover, taste-
elicited facial responses of adults are shown to be similar to those
found in newborns [1], [8]. Recent findings indicate that liking

is associated with more subtle and neutral facial expressions,
while unpleasant tastes evoke more facial responses with higher
intensities [9], [10].

Although the scientific interest on taste-elicited facial ex-
pression analysis is rapidly increasing, most studies use manual
coding of facial action units [11] to analyze the relations of
facial responses with liking level and with basic tastes such as
bitter, salty, sour, sweet, and umami [1], [2], [10]. A few recent
works use automatically recognized facial expressions for these
tasks. Due to the limited accuracy of automatic facial action unit
estimation, detectors of basic emotional expressions (e.g. anger,
happiness, disgust, sadness, fear, and surprise) are employed in
such studies [9], [12], [13]. Whilst the use of automatic analysis
is promising, [14] indicates that a large number of emotions
are needed to be measured to fully characterize the emotional
response to foods. Therefore, the use of a few carefully selected
measures, such as basic emotional expressions, can be argued to
miss potentially valuable information.

Our approach is different from previous work because our goal
is to automatically measure taste liking using a holistic, efficient
representation based on deep learning for the full interpretation
of dynamic facial expressions. Furthermore, none of the methods
for taste-elicited facial expression analysis exploit subtle dynamic
patterns of expressions such as speed and acceleration. In contrast
to all published material, in this paper, we use facial expression
dynamics for estimating the level of taste liking, as well as
proposing the very first automatic approach for this task.

Temporal information is shown to be discriminative for several
face analysis tasks including facial AU detection [15], emotional
expression recognition [16], [17], spontaneity detection [18], [19],
facial age estimation [20], and kinship verification [21], [22]. To
this end, while some studies focus on engineering descriptors
to capture temporal dynamics such as amplitude, speed, and
acceleration of fiducial point displacements [18], [19], [20], or
to represent temporal change in appearance [23], [24], others aim
to learn changes in facial shape and appearance during expressions
using temporal models such as hidden Markov models [16], [25].

Following the recent dramatic improvements in the field of
deep learning, newer approaches [15], [17], [26] have shifted the
focus to the deep architectures for temporal analysis of facial
expressions. For instance, Jung et al. [26] models temporal appear-
ance and shape of basic expressions using a deep Convolutional
Neural Network (CNN), and a two-hidden-layer neural network,
respectively. Yet, since such networks require a fixed input dimen-
sionality, the duration of facial videos is downscaled to a fixed
length. Obtained frames are then fed to a CNN so as to use each
frame as a different input channel. Normalized coordinates of the
fiducial points in these frames are combined into a single vector
and fed to a feedforward network to model facial shape. In [17], 3-
dimensional (3D) CNNs are used for learning regional changes in
facial appearance during emotional expressions. However, the size
of spatio-temporal blocks needs to be equal for 3D convolutions.
Thus, the method is applied to videos using a sliding window
approach. Once the whole video is processed, estimations for all
windows are fused to obtain the final prediction.

Jaiswal et al. [15] propose to jointly model temporal change in
appearance and shape through a combined architecture of CNN
and Bi-directional Long Short-Term Memory Neural Network
(BLSTM) [27] for facial AU recognition. To include shape in-
formation in the analysis, regional binary masks are used together
with texture images. In order to capture dynamics of shape and
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appearance changes, each frame of binary mask and texture
sequences is described not only by itself but also by its difference
from adjacent frames in a neighborhood of two frames, resulting
a 5-frames temporal window representation. These frame-based
shape and texture features are fed to two parallel convolution
blocks. Their responses are fused, and followed by two additional
convolution layers and a fully connected layer. Once per-frame
representations are learned by the CNN, temporal dependencies in
the sequence of obtained features are modeled by a BLSTM.

All the aforementioned temporal models except BLSTMs tend
to learn characteristics of the temporal flow instead of capturing
dynamics. However, facial behavior is complex, and temporally
ordered facial responses cannot be expected during tasting. Fur-
thermore, downscaling the duration of expressions to obtain a
fixed-length representation causes the loss of temporal dynamics
information (e.g. speed and acceleration). Relying on a fixed-
length temporal window to learn the dynamic characteristics, on
the other hand, limits the use of available temporal information.
Although recurrent architectures such as long short-term memory
neural networks [27], [28], allow efficiently learning from varying-
length sequences as described above for facial AU recognition,
they require substantial amount of data when the given sequences
include long lags and heavy noise between informative intervals.
Unlike well-defined intervals of AUs and emotional expressions,
taste-elicited expressions are combinations of facial responses
which have not been fully discovered/defined yet. Thus, indicative
durations/frames of such facial responses cannot be explicitly
labeled to train temporal models. In order to overcome such
issues, this paper presents the first attempt to deep learn per-frame
dynamics of facial responses in an unsupervised manner so as to
reveal dependencies between location, speed, and acceleration of
dense facial landmarks. Furthermore, we propose to encode per-
frame dynamics of a given tasting video to a Fisher vector to model
their pattern of co-occurrence for different appreciation levels.
Since this paper aims to reveal the importance/informativeness of
inner-facial movement dynamics in the analysis of taste-elicited
expressions, appearance (facial texture) features are not employed
in the proposed method.

Fisher vector representation and stacked denoising autoen-
coders have been successfully employed for face analysis in recent
studies [29], [30], however, the use of these approaches conceptu-
ally differ in the current study. For instance, while [29] combines
spatio-temporal information obtained from different facial regions
through Fisher vector encoding, the current study uses Fisher
vector representation for temporal pooling of per-frame dynamics.
Similarly, while stacked denoising autoencoders are employed
to visually transform expressive face images to neutral ones in
[30] for more accurate face recognition, we use them to learn an
efficient spatio-temporal representation for each frame in a facial
video by modeling the non-linear relations of location, speed, and
acceleration parameters of facial landmarks.

3 METHOD

Our approach aims to automatically estimate taste liking through
facial expressions. In this section, details of the proposed method
are given. The flow of the system can be given as follows.
Initially, facial landmark points and head pose are tracked in
videos. The tracked points are pose and scale normalized. After
normalization, speed, and acceleration of the displacement of each
facial landmark are computed. Landmarks are grouped into four

Eyebrow & Forehead region
Eye region
Cheek region
Mouth region

Fig. 2. Tracked facial landmarks, and the defined regions.

different facial regions, namely: eyebrows/forehead, eyes, cheeks,
and mouth. For each region, location, speed, and acceleration
of the points at each frame of the videos are fed to a Stacked
Denoising Autoencoder (SDAE) in order to learn efficient re-
gional representations. The learned regional representations are
computed for each frame of the test video, and coded into a Fisher
vector. Concatenated regional Fisher vectors are used to train
Support Vector Machine (SVM) classifiers to distinguish between
three levels of taste liking, i.e. disliking, neutral, and liking.

3.1 Facial Landmark Tracking
For a detailed analysis of the inner facial dynamics, we track 3D
locations of 429 facial landmark points using a state-of-the-art
tracker recently proposed by Jeni et al. [31]. The tracked 429
facial fiducial points on the eyebrows, forehead, eyes, cheeks, and
mouth are shown in Figure 2. The tracker employs a combined 3D
supervised descent method [32], where the shape model is defined
by a 3D mesh and the 3D vertex locations of the mesh [31]. A
dense parameterized shape model is registered to an image such
that its landmarks correspond to consistent locations on the face.
The accuracy and robustness of the method for 3D registration
and reconstruction from 2D video was validated in a series of
experiments in [31].

Once the facial landmarks are tracked, similarity normalized
3D shape representation is used for further analysis. Similarity
normalized representation is the set of vertex locations after
removing the global rigid transformations such as translation,
rotation and scale. Since the normalized representation is frontal
with respect to the camera, we ignore the depth (Z) values of
the facial points. To leverage regional properties, tracked land-
marks are grouped into four facial regions, namely: eyebrows &
forehead, eyes, cheeks, and mouth as shown in Figure 2. The
time series of the location of the points in region j (where,
j ∈ {1, 2, 3, 4}) for a video is denoted as Lj , and denoised by
using the 4253H-twice smoothing method [33]. Facial movement
dynamics are discriminative for facial expression recognition as
shown in previous research [18], [19]. Therefore, speed V and
acceleration A sequences are computed as

V(t) = dL
dt

, (1)

A(t) = d2L
dt2

=
dV
dt

, (2)

and used together with the location sequence L of landmarks for
facial representation. Including speed and acceleration measures



1949-3045 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2018.2832044, IEEE
Transactions on Affective Computing

IEEE TRANSACTIONS OF AFFECTIVE COMPUTING, VOL. XX, NO. X, XXXX XXXX 4

in the per-frame analysis does not only allow capturing dynamic
patterns of facial responses but also provides temporal phase infor-
mation. For instance, while a lip corner puller (AU 12) displayed
in a video frame can be identified based on the landmark locations,
without using temporal information (displacement/speed) we can-
not determine whether the action unit just starts (onset) or it almost
ends (offset).

3.2 Learning Face Representation
The computation of location, speed, and acceleration measures
for the facial representation may be complex and redundant due
to tracking noise or correlated movements of the facial points.
Deep architectures can learn efficient feature representations and
are able to cope with high dimensionality and redundancy of data.
Since we do not have additional information (i.e. class label) to
learn per-frame facial representation, an unsupervised approach is
required. Deep learners can progressively reveal low-dimensional,
nonlinear structures in an unsupervised manner [34]. To this end,
we employ the Stacked Denoising Autoencoders (SDAE) [35] to
learn a transformation of raw features to an effective representation
that is able to capture discriminative facial cues for classifying
different levels of taste liking.

A deep autoencoder can be described as a neural network with
multiple hidden layers. Such a network is trained to reconstruct its
inputs, where hidden layers learn efficient representations of the
inputs. In SDAE, each hidden layer is learned using a denoising
autoencoder [36], which maps a corrupted version x̃ of input x ∈
Rp to a latent representation y ∈ Rq , and then maps it back to the
original space to obtain the reconstructed input z ∈ Rp as follows:

z = g(y) = g
(
f(x̃i)

)
, (3)

where f and g denote the encoding and decoding functions,
respectively. Then, the parameters Q of the denoising autoencoder
is optimized by minimizing the average reconstruction error:

Q∗ = argmin
Q

1

N

N∑
i=1

`(xi, zi)

= argmin
Q

1

N

N∑
i=1

`
(

xi, g
(
f(x̃i)

))
,

(4)

where ` is a loss function, and in this study it is defined as the
squared error:

`(x, z) = ‖x− z‖2. (5)

xi is the ith training sample, and x̃i shows its corrupted version.N
indicates the total number of training samples. In this way, the first
hidden layer is trained to reconstruct the input data. Then each of
the hidden layers are trained to reconstruct the states of the layer
below, respectively. x̃ is obtained by randomly setting a fraction
w of input vector x to 0. Transformation weights are initialized
at random and then optimized by stochastic gradient descent.
Once the pre-training is completed, the entire deep autoencoder
is trained to fine-tune all the parameters together to obtain optimal
reconstruction, using backpropagation of error derivatives.

For each facial region, a separate 4-layer architecture is de-
signed. To ensure a compact final representation, the number of
units q at the 4th hidden layer of each network is set to dd6e,
where d denotes the feature dimensionality of the input data.
Let ηj be the number of landmarks of the facial region j, then
dd6e = ηj , because 2D measures of the location, speed, and

acceleration are used as raw representation of the face at each
frame. The number of units for the first three hidden layers, and
other hyperparameters of SDAE are determined by minimizing
the validation error (during the training of classification model; see
Section 3.3). The list of the hyperparameters, and other considered
values are given in Table 1.

TABLE 1
List of the hyperparameters, and considered values.

Hyperparameter Considered values

Number of hidden layers {2, 3, 4}
Number of units for the final hidden layer {d d

6
e}

Number of units for other hidden layers {d d
4
e, d d

2
e, d, d 3d

2
e, 2d}

Fixed learning rate {0.001, 0.01}
Number of epochs {30, 50}
Corruption noise level (w) {0.1, 0.2, 0.4}

To employ facial dynamics in the analysis, we use derivatives
of location coordinates (speed and acceleration) as features. How-
ever, they are sensitive to noise in location measures. Therefore,
the sequence of location coordinates are smoothed using the
4253H-twice method [33] before extracting speed and acceleration
features (as described in Section 3.1). For further noise removal,
each regional SDAE is trained to reconstruct these smoothed
measures (location, speed, acceleration), using their raw version.
Note that such a smoothing step is not applied to the hidden layers.

3.3 Video Representation and Classification

When the SDAEs are trained, regional feature vectors for each
frame are encoded to the learned dd6e dimensional representation.
By combining these frame based features, the tasting videos can
be described. However, since the duration of the videos differ,
a fixed-length feature vector is required for the representing
videos. Although time series can be classified by temporal models
without having a fixed-length representation, such models tend to
learn characteristics of the temporal flow. Yet, taste-induced facial
expressions display a complex behavior, and temporally ordered
facial responses cannot be expected during tasting. To this end,
an improved Fisher vector (IFV) coding is employed to describe
the videos [37]. The use of such a representation aims to reveal
pattern of co-occurrence of facial responses instead of capturing
their temporal order.

Using a Gaussian mixture model (GMM) with 64 Gaussian
distributions1, a 128dd6e dimensional IFV is computed for each
facial region per video. These Fisher vectors are normalized by
power normalization and l2-norm as described in [37]. Computed
regional (eyebrows & forehead, eyes, cheeks, and mouth) Fisher
vectors are then concatenated and modeled by linear Support
Vector Machines (SVMs). We opt to use linear kernel for SVM
since Fisher vectors can be effectively modeled by linear mod-
els [37], [38]. Regularization parameter of SVM is optimized by
minimizing the validation error.

1. The number of distributions in the Gaussian mixture model is empirically
set to 64 so as to keep the representation as compact as possible while
providing a decent validation accuracy.
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4 BEVERAGE TASTING DATABASE

In order to assess informativeness of facial responses for estimat-
ing person-independent taste liking, a large-scale video database of
beer tasting (i.e. drinking) has been collected. We opt for beers as
stimuli due to the complexity of the tastes incorporated (e.g. some
combination of wet, bitter, sweet, sour, carbonated, and malty) in
a single product [39].

502 respondents were recruited to evaluate six different beers.
Recruitment was according to the following criteria: all respon-
dents consumed beer or lager at least once a week. 78% of the
respondents were male, and 22% were female; 89% worked full-
time and 11% part-time; 28% were in socio-economic group2 AB,
68% in C1 and 4% in C2DE. Age of the respondents range from
21 to 60 (14% aged 21-24, 31% aged 25-34 and 55% aged 35-60).

Products were served at 5 ± 2◦C according to a randomized
design to minimize first sample bias. Samples were served one at a
time, 120ml per product, and respondents did not have to consume
all of the sample. For each sample, respondents were first asked to
follow the procedure summarized below:

• Before tasting a beer, ensure you have thoroughly cleansed
your pallet with a piece of cracker and some water. Be sure
you do not have any of the cracker left in your mouth.

• Sit up straight, facing forward and tuck your chair into the
booth.

• When you are ready to taste your sample hold up the
green piece of card in front of your face, have a neutral
expression on your face, and put the card back down.

• Pick up your glass, making sure the 3-digit code is facing
the camera and not obscured by your hand.

• Take a sip of your drink but do not swallow right away.
• Put the glass down, look into the camera and swallow the

beer.
• Remain looking at the camera for a few seconds.
• Take a further couple of sips before proceeding with the

questionnaire.
• Complete the questionnaire by selecting a response for

each question as instructed.

Facial expressions during the entire session were captured
using a Logitech C920 high definition webcams frontally posi-
tioned to the face. Videos were recorded with a resolution of
1280 × 1024 pixels at a rate of 15 frames per second under
controlled illumination conditions. Data were collected in many
booths in parallel, thus several computers (PCs) were required.
PCs provided by a third party were unable to acquire videos with
more than 15 frames per second. Each subject has a recording of
about one hour. The respondents were requested to show a green
card to the camera just before starting each of the beer tasting.
Green cards were automatically detected, and one video segment
for each beer was identified from the detection of green card
until click bursts, indicating the start of questionnaire responding
after the beer tasting. Afterwards, the frame just before the
initial sip in each video segment was manually annotated. Frames
before the initial sip were removed. Each beer was evaluated by
each participant by completing a questionnaire. The questionnaire
comprised of an overall liking score on a 9-point scale (“dislike

2. In terms socio-economic classification [40], group AB represents higher
and intermediate managerial, administrative, professional occupations; group
C1 indicates supervisory, clerical and junior managerial, administrative, profes-
sional occupations; group C2DE consists of skilled, semi-skilled and unskilled
manual occupations, unemployed and lowest grade occupations.
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Fig. 3. Distribution of the overall liking scores and the corresponding
liking classes in the beverage tasting database.

extremely” to “like extremely”), as well as other evaluations such
as 5-point scale purchase intent (“would definitely not buy” to
“would definitely buy”).

Visual data for 7 subjects were lost due to recording problems.
Data from 495 subjects are used in our experiments, yielding 2970
videos of beer tasting (495 subjects × 6 beers) composed of about
700K frames. Overall liking scores were linearly mapped from
9-point scale to 3-point scale (indicating disliking, neutral state,
and liking), and used as class labels for distinguishing between
different levels of taste liking. Resulting database is composed of
743 disliking, 1327 neutral, and 900 liking videos. Distribution
of the overall liking scores and the corresponding liking classes
are shown in Figure 3. Since we don’t have the consent of the
participants, we are unable to share the database.

5 EXPERIMENTS & RESULTS

To evaluate the proposed approach and assess the discriminative
power of facial expression dynamics for taste liking, we use our
newly collected beer tasting database of 495 subjects. The reg-
ularization parameter of SVMs, and hyperparameters of stacked
denoising autoencoders (see Table 1) are optimized on a seperate
validation set. To this end, a two level cross-validation scheme is
used. While 10-fold cross-validation is used for testing, remaining
nine folds (at each iteration) are three-fold cross-validated to
optimize the parameters. There is no subject overlap between
folds in the database. In the experiments, performance of three-
class classification (disliking, neutral, liking) is evaluated for the
estimation of taste-liking level. At each fold of cross-validation,
the number of training samples for each class is equalized by
randomly choosing n samples per class, where n is the number
of training samples of the class with minimum sample-size. Folds
and the randomly selected training samples are kept same for all
experiments.

5.1 Facial Regions

In this paper, we propose an approach that distinguishes between
different taste liking levels based on the dynamic movement
characteristics of facial regions. To assess the informativeness
of the facial regions, we evaluate the accuracy of the proposed
approach using eyebrow & forehead, eye, cheek, and mouth
regions, individually. We then compare these results with the
combined use of regional representations, and with the use of a
global (holistic) face representation. The global face representation
is learned by the same approach by encoding all facial features
together.
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TABLE 2
Correct classification rates for individual and combined use of regional

descriptors, and using global face representation. Best results are
boldfaced.

Region Disliking Neutral Liking Total

Eyebrow & Forehead 0.7227 0.5373 0.6422 0.6155

Eye 0.6635 0.5569 0.6178 0.6020

Cheek 0.6366 0.5102 0.5833 0.5640

Mouth 0.6393 0.5026 0.5733 0.5582

Combined 0.7927 0.6413 0.7222 0.7037
Global Face 0.7658 0.6240 0.6733 0.6744

As shown in Table 2, eyebrow & forehead region performs
best with a classification accuracy of 61.55%, and followed by
the eye region (60.20%). This finding shows the importance of
upper facial movements for detecting taste preferences. The lowest
correct classification rates are provided by cheek, and mouth
regions, respectively. The use of mouth region performs with an
accuracy of 55.82% which is 5.73% (absolute) less than that of
eyebrow & forehead region. These results may be explained by
the fact that movements of mouth and cheek regions are highly
affected by drinking and swallowing.

When we fuse regional descriptors, classification accuracy
is increased to 70.37%, which is significantly (8.82% higher,
t = −7.16, df = 5938, p < 0.001) higher than that of best
performing facial region. Global face representation achieves an
accuracy of 67.44%, outperforming individual use of regional
descriptors. Yet, the accuracy of the global approach is signif-
icantly (t = 2.44, df = 5938, p = 0.015) lower than that
of the combined use of regional descriptors. This finding can be
explained by two reasons. First, a four-layer SDAE is employed
to learn both global and regional face representations using the
same number of data samples. While the global approach may
learn relations between regional dynamics, it has to deal with
much higher complexity in comparison to the regional approach.
Second, both regional and global descriptors are modeled using
64 Gaussian distributions during Fisher vector computation. As a
result, based on the higher complexity of global features, regional
video descriptors can better represent dynamic characteristics.

5.2 Facial Dynamics

One of the main contributions of this paper is the exploitation of
per-frame dynamics of facial responses to capture subtle temporal
cues. In order to evaluate whether facial dynamics provide useful
information for classifying taste-liking levels, we implement a
modified version of the proposed method by discarding speed
and acceleration measures. Resulting method solely uses the facial
landmark locations to deep learn face representation. We compare
the accuracy of the modified method to that of the proposed
approach. Both individual facial regions and their combined use
are evaluated for comparison.

As shown in Figure 4, discarding per-frame dynamics (i.e.
speed and acceleration) significantly decreases (t = 3.29,
df = 5938, p < 0.001) the accuracy for all facial regions
and for their combined use. While the proposed method achieves
a classification accuracy of 70.37%, only 63% of the samples
are correctly classified by the sole use of landmark locations. In
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Fig. 4. Influence of facial dynamics on correct classification rates.

TABLE 3
Correct classification rates for location- and dynamics-based analysis

with the use of 2D and 3D face normalization. Best results are
boldfaced.

Method Disliking Neutral Liking Total

2D + Landmark Locations 0.6934 0.5702 0.6036 0.6111

3D + Landmark Locations 0.7121 0.5832 0.6313 0.6300

2D + Facial Dynamics 0.7532 0.6108 0.6710 0.6646

3D + Facial Dynamics 0.7927 0.6413 0.7222 0.7037

other words, combining speed and acceleration information with
landmark locations provides a relative accuracy improvement of
10%. For the individual regions, using facial dynamics achieves a
9% (relative) improvement on average.

One of the reasons behind these results is the fact that Fisher
vector encoding cannot capture temporal information based on
the displacement of points while modeling the distribution of
landmark locations (in a video) unless speed and acceleration
measures are used as additional inputs. Furthermore, the signif-
icant accuracy decrease due to discarding speed and acceleration
measures validates the importance of including dynamic/temporal
information in frame-based representations.

Since the proposed method solely relies on displacement
measurements of the fiducial points, accurate shape normalization
of faces is vital for a reliable analysis of facial dynamics. Note
that even small/moderate variations in 3D head pose may cause
significant amount of noise in the displacement measurements
because the computation of change in point locations requires
exact alignment of consecutive face images. Therefore, as de-
scribed in Section 3.1, 3D facial tracking is employed for more
accurate alignment through 3D shape normalization. To assess the
effectiveness of using 3D tracking/normalization, we compare the
accuracy of our method with that of its modified version, where 2D
coordinates (of the same landmarks) are used for facial alignment,
discarding the normalization of yaw and pitch rotations.

As shown in Table 3, when we solely employ facial land-
mark locations for the analysis, accuracy with the use of 3D
shape normalization is only 1.89% higher than that of using
2D normalization. Note that this is not a statistically significant
(t = −1.50, df = 5938, p > 0.05) improvement. Yet, once
we employ facial dynamics (including speed and acceleration) for
the classification, the use of 3D shape normalization significantly
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Fig. 5. Correct classification rates for different number of hidden layers.

outperforms (t = −3.24, df = 5938, p = 0.001) its 2D
competitor with an accuracy improvement of 3.91%. This finding
can be explained by the fact that displacement measures and their
derivatives are more sensitive to noise compared to the point
locations. As a result, even subtle misalignments between faces in
consecutive frames significantly affects the reliability of the speed
and acceleration measures, causing a accuracy decrease when 2D
normalization is used.

5.3 Hidden Layers
The proposed method uses four-layer stacked denoising autoen-
coders to learn regional descriptors. However, in order to evaluate
the effect of number of hidden layers, we evaluate the use of
two, three, and four hidden layers in the network architecture,
and compare the resulting correct classification rates. The same
hyperparameters are considered (see Table 1) for the optimization
of each network. Figure 5 shows the obtained correct classification
rates using different number of hidden layers.

Classification accuracy is improved at each additional layer
for all regions as well as for their combined use. Increasing
the number of hidden layers from two to three improves the
classification accuracy of regional representations by 10% on
average. The fourth layer can only provide an improvement of 4%
over the third layer. For the combined use of regional descriptors,
the accuracy increase by the third and fourth layers, are 7%,
and 5%, respectively. Obtained accuracy improvements confirm
that SDAE can gradually reveal nonlinear structure in the facial
data, and consequently learn a better representation for regional
dynamics.

Next, we analyze the number of units for each hidden layer.
Although the number of units are determined for each of the 10
folds, separately, in most cases the same set of values are chosen in
our experiments. These configurations of hidden units for different
regions, and layers are given in Table 4. Note that the number of
units in the highest hidden layer is set to one sixth of the input
dimensionality (see Section 3.2) for a compact representation.

5.4 Comparison to Other Methods
To the best of our knowledge, this is the first study proposing an
algorithm to automatically classify the level of taste liking from
facial videos. Therefore, we implement seven different baselines
using related methods to compare with the proposed approach.

The first baseline is a modified version of the proposed
approach, where the stacked denoising autoencoders are replaced

by principle component analysis (PCA). For each region, one sixth
of the original dimensionality is obtained using PCA. In the second
method, a Fisher kernel is derived by modeling location, speed,
and acceleration features using a hidden Markov model (HMM)
as described in [41]. The number of hidden units in HMM is
determined by minimizing the validation error. 2, 5, and 10 hidden
units are used as candidate configurations.

As the third baseline, we use the improved trajectories method
[42] that achieves state-of-the-art results for action recognition.
Trajectories are computed for every 15 frames. Extracted trajec-
tory features, histograms of oriented gradient (HOG), histograms
of optical flow (HOF), and motion boundary histograms (MBH)
are combined, and fed to PCA to reduce the feature dimension-
ality to half. Obtained principle components are then encoded to
improved Fisher vector representation (IFV) using 128 Gaussian
distributions.

In the fourth baseline, facial appearance in each frame is
described by HOG features. Initially, faces are normalized with
respect to roll rotation, resized, and cropped as to obtain a
128 × 128 pixels resolution. HOG features are extracted from
2 × 2 cells in 8 × 8 equally sized blocks, and 9 bins are used to
compute histograms. For a fair comparison, dimensionality of the
HOG features is reduced to 210, yielding a similar feature dimen-
sionality with the proposed approach. Videos are then represented
by IFV using 128 Gaussian distributions.

The fifth baseline method analyzes each frame of the videos
to detect 11 facial action units (AU) that are shown to signal
taste-related cues [1], [8]: AU1 (inner brow raiser), AU2 (outer
brow raiser), AU4 (brow lowerer), AU6 (cheek raiser), AU9 (nose
wrinkler), AU12 (lip corner puller), AU15 (lip corner depressor),
AU18 (lip puckerer), AU20 (lip stretcher), AU23 (lip tightener),
and AU26 (jaw drop). Then, the estimated AU probabilities are
encoded to improved Fisher vector representation (IFV) using 128
Gaussian distributions. To detect the AUs, we use the method
proposed in [43]. In this method, facial surface is divided into 27
regions using facial landmarks. Then, local binary patterns (LBP)
and local phase quantization (LPQ) features are extracted from
each region, and used together to train SVMs as regional AU
detectors. The computed posterior probabilities for each region
are fused using weighted SUM rule. To estimate these posterior
probabilities, sigmoids of SVM output distances are used. Weights
are determined by the validation performance of the classifiers. To
train detectors for the indicated 11 AUs, we combine subsets of
the DISFA [44], Bosphorus [45], extended Cohn-Kanade [4], and
Affectiva-MIT [46] databases.

For the sixth and seventh baselines, we modify the CNN-
LSTM architecture proposed in [47]. In the sixth baseline, CNN
layers of [47] are removed and the sequences of facial dynamics
are fed to the 3 stacks of LSTMs. Since we do not have per-
frame annotations for taste liking in our database, a single softmax
classifier is placed on top of the last time step of the stacked
LSTMs. In the seventh baseline, while the CNN and LSTM
architectures of [47] are kept intact, fusion of the outputs of CNNs
and LSTMs are disabled and one softmax classifier is connected
to the last time step of the stacked LSTMs. Normalized face
images are used as inputs to CNNs. The outputs of the CNNs
are connected to LSTMs so as to allow an end-to-end learning.
For a fair comparison sixth and seventh baselines are trained from
scratch using our database. The same hyperparameters/settings
with [47] are used in these baselines.

All baseline methods are trained to distinguish between three
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TABLE 4
Determined number of units at each hidden layer of 2-, 3-, 4-layer architectures. Values from left to right show the number of hidden units from

initial layer to higher layers. Note that d denotes the dimensionality of input features.

Region 2-layer 3-layer 4-layer

Eyebrow & Forehead d 3d
2
e → d d

6
e d→ 2d→ d d

6
e d 3d

2
e → d 3d

2
e → 2d→ d d

6
e

Eye d d
2
e → d d

6
e d→ d 3d

2
e → d d

6
e d→ 2d→ 2d→ d d

6
e

Cheek d→ d d
6
e d d

2
e → d d

4
e → d d

6
e d→ d→ d 3d

2
e → d d

6
e

Mouth d→ d d
6
e d d

2
e → d d

2
e → d d

6
e d d

2
e → d→ d→ d d

6
e

TABLE 5
Description of the compared methods, and achieved correct classification rates. Note that the “Facial Dynamics” denotes the use of speed, and

acceleration measures together with landmark locations. Best results are boldfaced.

Method Description Disliking Neutral Liking Total

Proposed Facial Dynamics + SDAE + IFV (64-GMM) 0.7927 0.6413 0.7222 0.7037
Baseline 1 Facial Dynamics + PCA + IFV (64-GMM) 0.6501 0.4748 0.5867 0.5525

Baseline 2 Facial Dynamics + Fisher Kernel 0.5464 0.3753 0.3589 0.4131

Baseline 3 Improved Trajectories + PCA + IFV (128-GMM) 0.6258 0.5667 0.5956 0.5902

Baseline 4 HOG Features + PCA + IFV (128-GMM) 0.6514 0.6127 0.5922 0.6162

Baseline 5 Facial AU Levels + IFV (128-GMM) 0.5303 0.7038 0.5944 0.6273

Baseline 6 Facial Dynamics + LSTM 0.6322 0.5616 0.5846 0.5862

Baseline 7 Face Images + CNN-LSTM 0.6301 0.6282 0.5760 0.6129

Number of samples 743 1327 900 2970

levels of taste liking: disliking, neutral, and liking. While sixth
and seventh baselines employ softmax classifier, other baselines
use linear SVM. As shown in Table 5, the proposed approach
significantly c outperforms all the baseline methods with a correct
classification rate of 70.37%. AU-based method (baseline 5)
follows the proposed approach with an accuracy of 62.73%.
Although the AU-based method provides the second best perfor-
mance, the accuracy of taste liking classification may drastically
drop in case of inaccurate estimation of AU probabilities.

Fusing facial appearance (HOG descriptors) in each frame of
a video through IFV encoding (baseline 4) provides an accuracy
of 61.62%. While appearance features can capture subtle changes
in a better way compared to shape features (e.g. facial landmark
locations), both our proposed approach and its modified version
(see Section 5.2) that discards speed and acceleration measures,
outperform baseline 4. Based on this finding, we can confirm the
informativeness of deep-learned representations.

End-to-end modeling of facial image sequences using a
CNN-LSTM architecture (baseline 7) can correctly classify only
61.29% of the videos. LSTM modeling of facial dynamics (base-
line 6) performs even worse with an accuracy of 58.62%. These
results may suggest that taste-liking levels are correlated with
pattern of co-occurrence of specific facial responses rather than
temporal flow of the responses. Another reason may be the large
data requirement of recurrent architectures for modeling sequences
with long lags and heavy noise between informative intervals.

The correct classification rate achieved by the improved dense
trajectories method (baseline 3) is only 59.02%. This result can be
explained by the fact that improved trajectories do not leverage the
knowledge of facial morphology in comparison to facial tracking

methods. Consequently, it performs 11.35% (absolute) worse than
the proposed method.

When the stacked denoising autoencoders are replaced with
PCA (baseline 1) in the proposed approach, a 15.12% accuracy
decrease is observed. This finding shows that SDAEs can learn
very efficient and informative descriptors for this task by revealing
non-linear relations between facial movements and their dynamics.

Fisher kernel representation (baseline 2) computed from lo-
cation, speed, and acceleration measures of landmarks, performs
worst in our experiment with an accuracy of 46.84%. This is an
expected result since the dynamic characteristics of taste-induced
facial behavior is complex, and taste-induced responses do not
follow a specific temporal pattern.

When we analyze per-class accuracies, it is seen that all
methods except AU-based baseline provide higher accuracy for
disliking condition. This result is in line with the findings of [9]
and [10] indicating that unpleasant tastes evoke more facial re-
sponses with higher intensities, which can be better differentiated
than pleasant tastes since liking is associated with more subtle and
neutral facial expressions.

5.5 Influence of Gender
In order to explore the gender-based differences in taste-elicited
facial dynamics, the correct classification rates are obtained for
each gender. While the accuracy is 73.08% for females, a correct
classification rate of 69.58% is obtained for male participants.
Consequently, there is no significant (t = 1.7181, df = 2968,
p = 0.0859) accuracy difference between male and female
subjects. Next, for each taste-liking level, we compute the amount
of features (in the final video representation) that significantly
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TABLE 6
Confusion matrices for human prediction and the proposed method. Correct classification rates for each class are boldfaced.

Human Prediction Proposed Method

Actual \ Predicted Disliking Neutral Liking Disliking Neutral Liking

Disliking 0.6400 0.2178 0.1422 0.7333 0.1733 0.0933

Neutral 0.2844 0.3689 0.3467 0.1600 0.5600 0.2800

Liking 0.1200 0.3333 0.5467 0.0800 0.2533 0.6667

Total Accuracy: 0.5185 Total Accuracy: 0.6533

Weighted Cohen’s κ: 0.366 Weighted Cohen’s κ: 0.546

(p < 0.05) differ between male an female subjects. Our re-
sults show that gender significantly affect 34.48%, 28.88%,
and 22.67% of the features during disliking, neutral, and liking
conditions, respectively.

Since the proposed video-level representation is not directly
interpretable in terms of facial dynamics, we extract the point
displacements for each region, and compute their first principle
components (through PCA). Using the first principle component
sequences of displacement, regional mean displacements over
each video are calculated. Notice that mean displacement is
equivalent to mean speed since each video has been sampled
at the same frame rate. Our analysis of gender effects on these
regional measures show that mean expressiveness of eye and cheek
regions are significantly (p < 0.01) higher for females during
disliking. Yet, eyebrow & forehead region of males is significantly
(p < 0.01) more expressive than that of females during disliking.

5.6 Influence of Age
To assess the influence of age on taste-elicited facial expression
dynamics, we parse our results and analyze the correct classifi-
cation rates for different age groups. To this end, we split the
subjects into two groups based on their age as young (21-34 years)
and mid-aged (35-60 years), representing 45% and 55% of the
participants, respectively. Obtained results show that taste-liking
levels of 69.13% of the young group is correctly classified, while
the accuracy for mid-aged group is 71.38%. Yet, the accuracy
difference between the age groups is not statistically significant
(t = 1.3371, df = 2968, p > 0.1813). Furthermore, we
calculate the amount of features (in the final video representation)
that significantly (p < 0.05) differ between young and mid-aged
subjects, for each taste-liking level. As a result, we find that age
significantly affect 75.63%, 87.06%, and 92.51% of the features
during disliking, neutral, and liking conditions, respectively.

To explore the effects of age on taste-elicited facial expres-
sions, we analyze the regional mean displacement measures as
in Section 5.5. Our results indicate that during liking, mouth
(p < 0.005) and eyebrow & forehead (p < 0.02) regions of young
subjects are significantly more expressive than that of mid-aged
group, while eye region of young subjects displays significantly
(p < 0.01) lower expressiveness.

5.7 Comparison to Human Accuracy
To comprehend general human knowledge and ability to judge and
classify taste appreciation of other individuals from their facial
expressions, we gathered human predictions of taste-liking levels

for a subset of beer tasting videos in the collected database. To this
end, we randomly selected 75 videos for each of disliking, neutral,
and liking classes in a way that each level of overall liking (9-point
scale) had 25 samples. In total, 225 videos were used from 146
male and 42 female (gender distribution is similar that of whole
database), mainly Caucasian.

For the experiment, we recruited forty-five participants, 23
male and 22 female. Each participant was shown 15 videos, and
asked to rate the perceived taste-liking level for each video as
liking, neutral, or disliking. None of the participants were experts
on face analysis or took a special training in facial expressions.
The participants ranged in age from 23 to 56 years (mean: 30.2)
and were of 14 different nationalities, i.e. British, Chinese, Costa
Rican, Dutch, German, Greek, Hungarian, Indian, Indonesian,
Iranian, Portuguese, Romanian, Serbian, and Turkish. Taste-liking
level for each video was predicted by three different participants.
A different set of videos were shown to each participant. In
order to compare the reliability of human prediction to that of
the proposed method, we have tested our method on the same
subset of 225 videos. We assess and compare the performance
of humans and our method based on confusion matrices, total
accuracy, and linear weighted Cohen’s κ that is the proportion
of ordinal agreement above what would be expected to occur by
chance [48].

As shown in Table 6, our method performs better than hu-
mans for each of the three liking classes. Total accuracy of the
proposed method reaches to 65.33% which is significantly higher
than human accuracy (13.48% higher, t = −3.50, df = 898,
p < 0.001). Yet, confusion patterns of human and computer pre-
dictions are similar. For instance, most confusion occurs between
neutral and liking classes, which is followed by the confusion of
neutral and disliking classes. While 34% of human predictions
for neutral and liking samples are confused with each other, this
rate is 26.67% for the proposed method. As expected, the lowest
confusion rate is observed between liking and disliking classes
(i.e. 13.11% and 8.67% for human and computer predictions,
respectively). Consequently, the most accurate classification is
achieved for disliking class by both of human and computer
predictions.

Based on weighted Cohen’s κ, the predictions by different
participants have been found to be fairly consistent (0.20 < κ ≤
0.40). Weighted κ for automatic predictions (by our method),
on the other hand, is 49.18% higher (relative) and represents a
moderate level of agreement (0.40 < κ ≤ 0.60). These findings
suggest that humans are less accurate and less reliable for esti-
mating taste appreciation from facial expressions in comparison
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Fig. 6. Automatically extracted frames which correspond to the highest scores computed by SVMs for disliking (top row), neutral (middle row), and
liking classes (bottom row).

to the proposed method. It is important to note that these results
are based on knowledge and ability of a non-expert population. In
other words, participants had no expertise in facial expressions at
the time of the experiment.

5.8 Visual Analysis

Our proposed approach uses deep learning to compute frame-
based descriptors, and Fisher vector encoding for video represen-
tation. Since these methods perform in an unsupervised manner,
no labels are required for the per-frame liking levels. If such
labels are provided, a better understanding of taste-elicited facial
expressions could be obtained. And these labels could allow the
implementation of single image based approaches. To this end,
we explore the most discriminative frames (single images) for
distinguishing between different liking levels.

Fisher vector encoding provides a fixed-length representation
for varying-duration videos. As an extreme case, we can even
compute a Fisher vector for a single frame, and evaluate it using
the models learned on the videos. In this way, we can detect the
frames that correspond to the highest scores computed by SVMs
for disliking, neutral, and liking classes.

Since the respondents in the collected database did not allow
us to publish their images, we have collected an additional small-
scale database for visualization purposes. To this end, we recorded
six respondents’ (three female, three male) facial responses during
the tasting of four different beers. Tasting durations for each
beer are segmented in the same way as described in Section 4.
Consequently, we have obtained four videos for each of the six
subjects. For each frame in this database, a Fisher vector is
computed, and fed to the three-class (disliking, neutral, and liking)

SVM classifier. Note that the stacked denoising autoencoders,
Fisher vector encoders, and SVM models are all trained on the
database of 495-subjects. Then, for each subject, three frames are
extracted which correspond to the highest scores for disliking,
neutral, and liking classes, as show in Figure 6.

Extracted frames show interesting facial expression patterns.
Disliking-related frames mostly display lowered eyebrows, low-
ered eyelids, and stretched lips, as well as having raised upper
lips. Almost all liking-related frames show lip sucking, and some
of them have raised eyebrows. Finally, frames corresponding
to the highest score for the neutral class, show perfect neutral
faces. These facial expression responses are similar to the taste-
related facial actions reported by previous studies [1], [8]. Please
note that, the deep-learned descriptors also include speed and
acceleration information, but they are not visualized here.

5.9 Application to Smile Classification

To assess the generalization of the proposed method to other face
analysis tasks, we evaluate the method for spontaneous versus
posed smile classification and compare its accuracy to that of
the state-of-the-art smile classification systems proposed in the
literature [19], [23], [25], [49], [50], [51]. Task of spontaneous
versus posed smile classification is chosen for this experiment
since effective modeling of dynamics and/or spatio-temporal char-
acteristics of smiles are crucial in order to provide a reliable
and accurate spontaneity analysis. In our experiment, we employ
the UvA-NEMO smile database [50] that has 1240 smile videos
(597 spontaneous, 643 posed) from 400 subjects (185 female, 215
male). Videos were recorded with a resolution of 1920 × 1080
pixels at a rate of 50 frames per second.
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TABLE 7
Classification accuracy of different methods for spontaneous versus

posed smile classification on the UvA-NEMO smile database, and the
features employed by these methods. Highest correct classification rate

is boldfaced.

Method Feature Accuracy

Proposed Method Deep-learned Facial Dynamics 0.9177
Dibeklioğlu et al. (2015) [19] Facial Dynamics + Age 0.9056

Wu et al. (2014) [49] Spatio-temporal Appearance 0.9140

Dibeklioğlu et al. (2012) [50] Facial Dynamics 0.8702

Pfister et al. (2011) [23] Spatio-temporal Appearance 0.7306

Dibeklioğlu et al. (2010) [25] Eyelid Dynamics 0.7105

Cohn and Schmidt (2004) [51] Lip Corner Dynamics 0.7726

As shown in Table 7, the proposed method provides an
accuracy of 91.77% and improves the state of the art. Although the
accuracy improvement over the work of Wu et al. [49] (91.40%)
is marginal, it is important to note that the methods proposed
by Wu et al. [49] and Pfister et al. [23] exploit spatio-temporal
appearance of face (by extracting completed Local Binary Patterns
from three orthogonal planes descriptor [23] and its discriminative
variant [49] from a given smile video) instead of the sole use
of displacement dynamics of facial landmarks. Yet, such spatio-
temporal approaches could not perform better than the proposed
method. This finding suggests the importance of deep-learned
displacement dynamics for face analysis tasks.

6 CONCLUSIONS

In this paper, we have proposed the first approach for automatic
estimation of taste liking from facial expression videos. Instead
of using handcrafted features, the proposed approach deep learns
regional facial dynamics per frame, and encodes them to a Fisher
vector per region to describe videos. Regional Fisher vectors are
then concatenated and classified by linear SVM classifiers.

We have presented the first large-scale beverage tasting
database (2970 videos of 495 subjects) in the literature for
detailed and precise analysis of taste-elicited spontaneous facial
expressions. On the collected database, the proposed approach has
achieved an accuracy of 70.37% for distinguishing between three
levels of taste-liking (liking, being neutral, and disliking), outper-
forming all other methods by more than 8.65% (absolute). The
results have indicated that the combined use of regional dynamics
are more discriminative than the global face representation for
this task. Relying on SVM scores, the most discriminative facial
responses of six young adults for taste-liking estimation have been
obtained, and shown to be similar to those reported in previous
studies.

Our experiments for distinguishing between spontaneous and
posed enjoyment smiles have confirmed the generalization power
of the proposed method, suggesting that deep learning can in-
deed provide efficient representations of regional facial dynamics.
Recruiting 45 participants, we have evaluated the ability and reli-
ability of humans for estimating taste appreciation of others’ from
their facial expressions. Our findings have shown that humans
are significantly less reliable for this task in comparison to the
proposed method.
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[21] H. Dibeklioğlu, A. Ali Salah, and T. Gevers, “Like father, like son: Facial
expression dynamics for kinship verification,” in IEEE International
Conference on Computer Vision, 2013, pp. 1497–1504.
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