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Abstract—Histopathological examination is today’s gold stan-
dard for cancer diagnosis. However, this task is time con-
suming and prone to errors as it requires a detailed visual
inspection and interpretation of a pathologist. Digital pathology
aims at alleviating these problems by providing computerized
methods that quantitatively analyze digitized histopathological
tissue images. The performance of these methods mainly rely on
features that they use, and thus, their success strictly depends
on the ability of these features successfully quantifying the
histopathology domain. With this motivation, this paper presents
a new unsupervised feature extractor for effective representation
and classification of histopathological tissue images. This feature
extractor has three main contributions: First, it proposes to
identify salient subregions in an image, based on domain-specific
prior knowledge, and to quantify the image by employing only
the characteristics of these subregions instead of considering
the characteristics of all image locations. Second, it introduces
a new deep learning based technique that quantizes the salient
subregions by extracting a set of features directly learned on
image data and uses the distribution of these quantizations
for image representation and classification. To this end, the
proposed deep learning based technique constructs a deep belief
network of restricted Boltzmann machines (RBMs), defines the
activation values of the hidden unit nodes in the final RBM as
the features, and learns the quantizations by clustering these
features in an unsupervised way. Third, this extractor is the first
example of successfully using restricted Boltzmann machines in
the domain of histopathological image analysis. Our experiments
on microscopic colon tissue images reveal that the proposed
feature extractor is effective to obtain more accurate classification
results compared to its counterparts.

Index Terms—Deep learning, feature learning, histopatholog-
ical image representation, digital pathology, automated cancer
diagnosis, saliency, colon cancer, hematoxylin-eosin staining.

I. INTRODUCTION

IN recent years, deep learning has shown great promise
as an alternative to employing handcrafted features in

computer vision tasks [1]. Since deep learners are end-to-end
unsupervised feature extractors, they neither require nor use
domain-specific prior knowledge. Nevertheless, in order for
humans to accomplish certain tasks, an insight that could only
be gained through a specialized training in the related domain
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is typically required. Therefore, incorporating some amount
of domain-specific knowledge into the learning method may
prove useful in these tasks.

One such task is the diagnosis and grading of cancer via the
examination of histopathological tissues [2]. This procedure
normally requires a pathologist who has extensive medical
knowledge and training to visually inspect a tissue sample.
In this inspection, pathologists do not examine just randomly
selected subregions but salient ones located around the impor-
tant sections of a tissue. They first determine the characteristics
of these salient subregions and then properly categorize them
to decide whether the sample contains normal or abnormal
(cancerous) formations. For a trained pathologist, this cate-
gorization and decision process relies on human insight and
expert knowledge. However, most of these subregions lack
a clear and distinct definition that can directly be used in a
supervised classifier, and in the framework of learning, the
task of annotating these subregions incurs great cost.

In response to these issues, this paper proposes a novel semi-
supervised method for the classification of histopathological
tissue images. Our method introduces a new feature extractor
that uses prior domain knowledge for the identification of
salient subregions and devises an unsupervised method for
their characterization. A tissue is visually characterized by
the traits of its cytological components, which are determined
by the appearance of the components themselves and the
subregions in their close proximities. Thus, this new feature
extractor first proposes to define the salient subregions around
the approximated locations of cytological tissue components. It
then pretrains a deep belief network, consisting of consecutive
restricted Boltzmann machines (RBMs) [3], on these salient
subregions, allowing the system to extract high-level features
directly from image data. To do so, this unsupervised feature
extractor proposes to use the activation values of the hidden
unit nodes in the final RBM of the pretrained deep belief
network and to feed them into a clustering algorithm for
quantizing the salient subregions (their corresponding cytolog-
ical components) in an unsupervised way. Finally, our method
trains a supervised learner on the distribution of the quantized
subregions/components in a tissue, which is then used to
properly classify a tissue image.

Our proposed method differs from the existing studies in
the following aspects. The studies that use deep learning
for histopathological image analysis either train a learner on
entire images for their classification [4], [5] or crop small
patches out of these images, train a learner on the patches and
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then use the patch labels for entire image classification [6],
[7] but more typically for nucleus detection or entire image
segmentation [8], [9], [10], [11], [12], [13]. On the other hand,
as opposed to our proposed method, these studies either pick
random points in an image as the patch centers, or divide the
image into a grid, or use the sliding window approach. None
of them identify salient subregions/components and use them
to determine their patches. Furthermore, most of them use
convolutional neural networks (CNNs) trained in a supervised
manner, which requires the labels of all training patches. For
that, they label a patch with the type of the segmented region
covering this patch (e.g., with either nucleus or background la-
bel for nucleus detection) if focus is segmentation. Otherwise,
if it is classification, they label a patch with the class of the
entire image without paying attention to the local characteris-
tics of its subregions since the latter type of labeling is quite
difficult and extremely time-consuming. On the other hand,
considering the local characteristics of patches/subregions in a
classifier may improve the performance since a tissue contains
subregions showing different local characteristics and the
distribution of these subregions determines the characteristics
of the entire tissue. To the best of our knowledge, there exists
only one study that labeled its patches in an unsupervised way,
using stacked autoencoders. However, this study did pick its
patches randomly and did not consider the saliency in tissue
images at all [7]. As opposed to all these previous studies,
our method uses salient subregions/components in an image,
as determined by prior domain knowledge, and learns how to
characterize them in an entirely unsupervised manner without
the need for expensive and impractical labeling. These two
attributes of our proposed method lead to better results as our
experiments have demonstrated. Furthermore, to the best of
our knowledge, this study is the first example that successfully
uses a deep belief network of RBMs for the characterization
of histopathological tissue images.

In our earlier study [14], we also proposed to quantize tissue
components in an unsupervised manner through clustering and
use the distribution of the cluster labels for image classifica-
tion. However, completely different than this current work,
our earlier study used a set of handcrafted features and did
not use any deep learning technique at all. Our experiments
have revealed that the use of deep learning features directly
learned from image data improves the accuracy of using the
handcrafted features.

There are three main contributions of this paper: First, it
introduces a new deep learning based unsupervised feature
extractor to quantize a subregion of a tissue image. This feature
extractor feeds the subregion’s pixels to a deep belief network
of consecutive RBMs and defines the activation values of
the hidden units in the last RBM layer as the deep features
of this subregion. Then, it clusters these deep features to
learn the quantizations in an unsupervised way. Second, it
proposes to characterize the tissue image by first identifying
its salient subregions and then using only the quantizations of
these subregions. Last, it successfully uses RBMs for feature
extraction in the domain of histopathological image analysis.

II. RELATED WORK

Digital pathology systems are becoming important tools
as they enable fast and objective analysis of histopathology
slides. The digital pathology research has focused on two
main problems: classification, which is also the focus of this
paper, and segmentation. Up to recent studies, the developed
methods rely on defining and extracting handcrafted features
from a histopathological image and using these features in
the design of a classification or a segmentation algorithm.
Among those are textural features, which quantify the spa-
tial arrangement of pixel intensities, and structural features,
which quantify that of tissue components. Co-occurrence
matrices [15], wavelets [16], and local binary patterns [17]
are commonly used to define the textural features. For the
definition of the structural features, graphs are constructed
on nuclei [18] or multi-typed tissue components [19], [20]
and global graph features are extracted. Although they yield
promising results in numerous applications, defining expres-
sive handcrafted features may require significant insight on
the corresponding application. However, this is not always that
trivial and improper feature definitions may greatly lower the
algorithm’s performance.

In order to define more expressive and more robust features,
deep learning based studies have proposed to learn the features
directly on image data. For that, the majority of these studies
train a CNN classifier in a supervised manner and exploit its
output for classification or segmentation. Among these studies,
only a few feed an entire tissue image to the trained CNN and
use the class label it outputs to directly classify the image [4],
[5]. Others divide a tissue image into a grid of patches, feed
each patch to the CNN, which is also trained on the same-sized
patches, and then use either the class labels or the posteriors
generated by this CNN. In [6], the labels are voted to classify
the image out of which the patches are cropped. In [12], the
patch labels are directly used to segment the tissue image into
its epithelial and stromal regions. These patch labels are also
employed to extract structural features, which are then used for
whole slide classification [21] and gland segmentation [22].
Although they are not histopathological images, a similar
approach is followed to differentiate nuclear and background
regions in fluorescent microscopy images [23] and nuclear,
cytoplasmic, and background regions in cervical images [24].

The posteriors generated by the supervised CNN are com-
monly used to segment a tissue image into its regions of
interest (ROI). To this end, for the class corresponding to the
ROI (e.g., nucleus or gland class), a probability map is formed
using the patch posteriors. Then, the ROI is segmented by
either finding local maxima on this posterior map [8], [9],
[11], [25] or thresholding it [26]. This type of approach has
also been used to detect cell locations in different types of
microscopic images such as live cell [27], fluorescent [28], and
zebrafish [29] images. As an alternative, nuclei are located by
postprocessing the class labels with techniques such as mor-
phological operations [30] and region growing [31]. In [32],
after obtaining a nucleus label map, nuclei’s bounding boxes
are estimated by training another deep neural network.

There are only a few studies that make use of unsupervised
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Fig. 1. A schematic overview of the proposed method.

learning in their systems. In [33], a set of autoencoders are
first pretrained on small image patches and the weights of
each autoencoder are employed to define a filter for the first
convolution layer of a supervised CNN classifier, which is then
to be used to classify an entire tissue image. Similarly, in [34],
a stacked autoencoder is pretrained on image patches and the
outputs of its final layer are fed to a supervised classifier for
nucleus detection. As opposed to our proposed method, these
previous studies did not cluster the outputs of the autoencoders
to label the patches in an unsupervised way and did not use
the label distribution for image classification. The study in [7]
is similar to our method in the sense that it also clusters
the patches based on the outputs of a stacked autoencoder.
However, this study did select its patches randomly and did
not consider any saliency in a tissue image. On the contrary,
our work proposes to determine the salient subregions by prior
domain-knowledge, characterize them by an unsupervised
deep belief network consisting of consecutive RBMs, and use
the characteristics of only these salient subregions to classify
the entire tissue image. Our experiments have demonstrated
that the use of saliency together with this unsupervised char-
acterization improve the accuracy. Additionally, as opposed to
all these previous studies, which employ either a CNN or a
stacked autoencoder, our study uses a deep belief network of
restricted Boltzmann machines.

III. METHODOLOGY

Our proposed method relies on representing and classifying
a tissue image with a set of features extracted by a newly
proposed unsupervised feature extractor. This extractor
defines the features by quantifying only the characteristics
of the salient subregions in the image instead of considering
those of all image locations. To this end, it first proposes
to define the salient subregions around cytological tissue
components (Sec. III-A). Afterwards, to characterize the
subregions/components in an unsupervised way, it learns
their local features by a deep belief network consisting of

consecutive RBMs and quantizes them by clustering the local
features by the k-means algorithm (Sec. III-B). At the end, it
represents and classifies the image with the distribution of its
quantized subregions/components (Sec. III-C). A schematic
overview of the proposed method is given in Fig. 1 and the
details of its steps are explained in the following subsections.
The source codes of its implementation are available at
http://www.cs.bilkent.edu.tr/∼gunduz/downloads/DeepFeature.

The motivation behind this proposed method is the fol-
lowing: A tissue contains different types of cells that serve
different functions in the tissue. The visual appearance of a
cell and its surrounding may look differently depending on
the cell’s type and function. Furthermore, some types of cells
may form specialized structures in the tissue. The tissue is
visually characterized by the traits of all these cytological
components. Depending on its type, cancer causes changes
in the appearance and distribution of certain cytological tissue
components. For example, in colon, epithelial cells line up
around a lumen to form a gland structure and different types of
connective tissue cells in between the glands support epithelia.
In a normal tissue, the epithelial cells are arranged in a single
layer and since they are rich in mucin, their cytoplasms appear
in light color. With the development of colon adenocarcinoma,
this single layer structure is getting disappeared, which causes
the epithelial cells’ nuclei to be seen as nucleus clutters, and
their cytoplasms return to pink as they become poor in mucin.
With the further progression of this cancer, the epithelial
cells are dispersed in the connective tissue and the regular
structure of a gland gets totally lost (see Fig. 2). Some of
such visual observations are easy to express, but some others
may lack of a clear definition although they are in the eyes of
a pathologist. Furthermore, when there exists a clear definition
for an observation, its expression and quantification commonly
require exact component localization, which emerges a very
difficult segmentation problem even for a human eye, and its
use in a supervised classifier requires very laborious anno-
tation. Thus, our method approximately represents the tissue
components with a set of multi-typed circular objects, defines
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(a) (b) (c) (d) (e)

Fig. 2. Example images of tissues labeled with different classes: (a) Normal, (b) low grade cancerous--grade1, (c) low grade cancerous--at the boundary
between grade1 and grade2, (d) low grade cancerous--grade2, and (e) high grade cancerous. Note that the normal and high grade cancerous classes are the
same for our first and second datasets whereas the low grade cancerous class in the first dataset is further categorized into three in the second one.

(a) (b) (c) (d) (e)

Fig. 3. (a) Original images; top is normal and bottom is cancerous, (b) hematoxylin channels obtained by stain deconvolution, (c) binary images obtained
by thresholding, (d) circular objects located by the circle-fit algorithm [36], and (e) examples of salient subregions cropped around the three example located
objects. In (d), black and cyan circles represent nuclear and non-nuclear objects, respectively. In (c) and (d), the blue, red, and magenta squares indicate
example salient subregions cropped around three example objects, which are also shown in blue, red, and magenta in (c). As seen in the examples given in
(e), local properties of small subregions in an image of different types might be similar or different. On the other hand, the distribution of the local properties
is different for different types of images.

the local windows cropped around these objects as the salient
subregions, and characterizes them in an unsupervised way.
Note that this is just an approximate representation where one
object can correspond to multiple components or vice versa.
It is also worth to noting that the salient subregions cropped
around the objects are defined with the aim of approximately
representing the components, whose characterizations will
further be used in the entire image characterization.

A. Salient Subregion Identification

Salient subregions are defined around tissue components
whose locations are approximated by the algorithm that we
previously developed in our research group [20]. This approx-
imation and salient subregion identification are illustrated on
example images in Fig. 3 and the details are explained below.

The approximation algorithm uses nuclear and non-nuclear
types for object representation. For that, it first separates the
hematoxylin channel of an image I by applying color decon-
volution [35] and thresholds this channel to obtain the binary
image BW . In this thresholding, an average is calculated
on all pixel values and a pixel is labeled as nucleus if its
value is less than this threshold and non-nucleus otherwise.
Then, the circle-fit algorithm [36] is applied on the pixels of
each group in BW separately to locate a set of nuclear and
non-nuclear objects. The circle-fit algorithm iteratively locates
non-overlapping circles on the given pixels, starting from the
largest one as long as the radii of the circles are greater than
the threshold rmin. At the end, around each object ci, a salient

region Ωi is defined by cropping a window out of the binary
image BW where the object centroid determines the window
center and the parameter ωsize determines its size. Note that
although the located objects are labeled with a nuclear or a
non-nuclear type by the approximation algorithm, we just use
the object centroids to define the salient regions, without using
their types. Instead, we will re-type (re-characterize) these
objects with the local features that will be learned by a deep
belief network (Sec. III-B).

The substeps of this salient subregion identification are
herein referred to as IMAGEBINARIZATION, CIRCLEDECOM-
POSITION, and CROPWINDOW functions, respectively. We
will also use these functions in the implementation of the
succeeding steps. To improve the readability of this paper, we
provide a list of these functions and their uses in Table I. Note
that this table also includes other auxiliary functions, which
will be used in the implementation of the succeeding steps.

B. Salient Subregion Characterization via Deep Learning

This step involves two learning systems: The first one,
LEARNDBN, acts as an unsupervised feature extractor for
the salient subregions, and hence, for the objects that they
correspond to. It learns the weights of a deep belief network
of RBMs and uses the activation values of the hidden unit
nodes in the final RBM to define the local deep features of
the salient subregions. The second system, LEARNCLUSTER-
INGVECTORS, learns the clustering vectors on the local deep
features. This clustering will be used to quantize any salient
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TABLE I
AUXILARY FUNCTION DEFINITIONS.

Function Definition
BW ← IMAGEBINARIZATION(I) Binarizes the image I with respect to its hematoxylin channel (see Sec. III-A).
C ← CIRCLEDECOMPOSITION(BW , rmin) Locates a set C of circular objects on nuclear and non-nuclear pixels of the binary image BW with

a minimum radius of rmin (see Sec. III-A).
Ωi ← CROPWINDOW(BW , ci, ωsize) Defines a salient subregion Ωi by cropping a wsize × wsize window out of the binary image BW

around an object ci.
[W,B]← CONTRASTIVEDIVERGENCE(Ddbn, P ) Pretrains a deep belief network on the dataset Ddbn of the salient subregions, by applying the

contrastive divergence algorithm to each of its RBMs. The architecture of the deep belief network
is denoted by the input parameter P . Returns the weight matrices W and the bias vectors B of the
pretrained deep belief network.

V ← KMEANSCLUSTERING(Dkmeans,K) Clusters the dataset Dkmeans of the local deep features of the salient subregions into K using the
k-means algorithm and returns the clustering vectors V .

li ← ASSIGNTOCLOSESTCLUSTER(φi, V ) Labels the salient subregion Ωi with li, which is the id of the closest clustering vector in V , according
to the local deep features φi of this salient subregion.

Algorithm 1 EXTRACTLOCALFEATURES

Input: salient subregion Ωi, number H of RBMs in the
pretrained deep belief network, weight matrices W and bias
vectors B of the pretrained deep belief network
Output: local feature set φi of the salient subregion Ωi

1: Π0 = Ωi

2: for j = 1 to H do
3: Πj = sigmoid(Πj−1 Wj + Bj)
4: end for
5: φi = ΠH

subregion, which corresponds to re-typing the object for which
this salient subregion is defined. The details of these learning
systems are given below.

1) Deep Network Learning: The LEARNDBN algorithm
pretrains a deep belief network, which consists of consecutive
RBMs. An RBM is an undirected graphical model consisting
of a visible and a hidden layer and the symmetric weights in
between them. The output of an RBM (the units in its hidden
layer) can be considered as a higher representation of its
input (the units of its visible layer). To get the representations
at different abstraction levels, a set of RBMs are stacked
consecutively by linking one RBM’s output to the next RBM’s
input. In this work, the input of the first RBM is fed by
the pixels of a salient subregion Ωi, which is cropped out
of the binary image BW , and the output of the last RBM is
used as the local feature set φi of this salient subregion; see
Algorithm 1. In this algorithm, Wj and Bj are the weight
matrix and the bias vector of the j-th RBM, respectively.

The LEARNDBN function learns the weights and biases of
the deep belief network by pretraining it layer by layer using
the contrastive divergence algorithm [37]. For this purpose,
it constructs a dataset Ddbn from randomly selected salient
subregions of randomly selected training images. Algorithm 2
gives its pseudocode; see Table I for explanations of the
auxiliary functions. Note that LEARNDBN should also input
the parameters that specify the architecture of the network,
including the number of hidden layers (the number of RBMs)
and the number of hidden units in each hidden layer.

2) Cluster Learning: After learning the weights and biases
of the deep belief network, the EXTRACTLOCALFEATURES

Algorithm 2 LEARNDBN
Input: training set D of original images, size ωsize of a
salient subregion, minimum circle radius rmin, architecture
P of the deep belief network
Output: weight matrices W and bias vectors B of the
pretrained deep belief network

1: Ddbn = ∅
2: for each randomly selected I ∈ D do
3: BW ← IMAGEBINARIZATION(I)
4: C ← CIRCLEDECOMPOSITION(BW , rmin)
5: for each randomly selected ci ∈ C do
6: Ωi ← CROPWINDOW(BW , ci, ωsize)
7: Ddbn = Ddbn ∪ Ωi

8: end for
9: end for

10: [W,B]← CONTRASTIVEDIVERGENCE(Ddbn, P )

function is used to define the local deep features of a given
salient subregion. This work proposes to quantify the entire
tissue image with the labels (characteristics) of its salient
subregions. Thus, these continuous features are quantized into
discrete labels. As discussed before, annotating each salient
subregion is quite difficult, if not impossible, and hence, it is
very hard to learn these labels in a supervised manner. There-
fore, this work proposes to follow an unsupervised approach
to learn this labeling process. To this end, it uses k-means
clustering on the local deep features of the salient subregions.
Note that the k-means algorithm learns the clustering vectors
V on the training set Dkmeans that is formed up of the
local deep features of randomly selected salient subregions
of randomly selected training images. The pseudocode of
LEARNCLUSTERINGVECTORS is given in Algorithm 3. This
algorithm outputs a set V of K clustering vectors. In the next
step, an arbitrary salient subregion is labeled with the id of its
closest clustering vector.

C. Image Representation and Classification

In the last step, a set of global features are extracted to repre-
sent an arbitrary image I. To this end, all salient subregions are
identified within this image and their local deep features are
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Algorithm 3 LEARNCLUSTERINGVECTORS

Input: training set D of original images, size ωsize of a
salient subregion, minimum circle radius rmin, number H
of RBMs, weight matrices W and bias vectors B of the
pretrained deep belief network, cluster number K
Output: clustering vectors V

1: Dkmeans = ∅
2: for each randomly selected I ∈ D do
3: BW ← IMAGEBINARIZATION(I)
4: C ← CIRCLEDECOMPOSITION(BW , rmin)
5: for each randomly selected ci ∈ C do
6: Ωi ← CROPWINDOW(BW , ci, ωsize)
7: φi ← EXTRACTLOCALFEATURES(Ωi, H,W,B)
8: Dkmeans = Dkmeans ∪ φi
9: end for

10: end for
11: V ← KMEANSCLUSTERING(Dkmeans,K)

extracted. Each salient subregion Ωi is labeled with the id li of
its closest clustering vector according to its deep features φi
by the ASSIGNTOCLOSESTCLUSTER auxiliary function (see
Table I). Then, to represent the image I, global features are
extracted by calculating a histogram on the labels of all salient
subregions in I (i.e., the characteristics of the components that
these subregions correspond to). At the end, the image I is
classified by a support vector machine (SVM) with a linear
kernel based on its global features. Note that, this study uses
the SVM implementation of [38], which employs the one-
against-one strategy for multiclass classifications.

IV. EXPERIMENTS

A. Datasets

We test our proposed method on two datasets that contain
microscopic images of colon tissues stained with the routinely
used hematoxylin-and-eosin technique. The images of these
tissues were taken using a Nikon Coolscope Digital Micro-
scope with a 20× objective lens and the image resolution was
480 × 640. The first dataset is the one that we also used in
our previous studies. In this dataset, each image is labeled
with one of the three classes: normal, low-grade cancerous,
and high-grade cancerous. It comprises 3236 images taken
from 258 patients, which were randomly divided into two to
form the training and test sets. The training set includes 1644
images (510 normal, 859 low-grade cancerous, and 275 high-
grade cancerous) of the 129 patients. The test set includes
1592 images (491 normal, 844 low-grade cancerous, and 257
high-grade cancerous) of the remaining patients. Note that the
training and test sets are independent at the patient level; i.e.,
the images taken from a slide(s) of a particular patient are
used either in the training or the test set.

The second dataset includes a subset of the first one
with the low-grade cancerous tissue images being further
subcategorized. Here only a subset was selected since sub-
categorization was difficult for some images. Note that we
also excluded some images from the normal and high-grade

cancerous classes to obtain more balanced datasets. As a result,
in this second dataset, each image is labeled with one of the
five classes: normal, low-grade cancerous (grade1), low-grade
cancerous (grade2), low-grade cancerous (at the boundary
between grade1 and grade2), and high-grade cancerous. The
training set includes 182 normal, 188 grade1 cancerous, 121
grade1-2 cancerous, 123 grade2 cancerous, and 177 high-grade
cancerous tissue images. The test set includes 178 normal, 179
grade1 cancerous, 117 grade1-2 cancerous, 124 grade2 can-
cerous, and 185 high-grade cancerous tissue images. Example
images from these datasets are given in Fig. 2.

B. Parameter Setting

The proposed method has the following model parameters
that should be externally set: minimum circle radius rmin,
size of a salient subregion ωsize, and cluster number K.
The parameters rmin and ωsize are in pixels. Addition-
ally, the support vector machine classifier has the parame-
ter C. In our experiments, the values of these parameters
are selected using cross-validation on the training images
of the first dataset without using any of its test samples.
Moreover, this selection does not consider any performance
metric obtained on the second dataset. By considering any
combinations of the following values rmin = {3, 4, 5},
ωsize = {19, 29, 39}, K = {500, 1000, 1500}, and C =
{1, 5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 10000}, the
parameters are set to rmin = 4, ωsize = 29, K = 1500,
and C = 500. In Sec. IV-D, we will discuss the effects of this
parameter selection to the method’s performance in detail.

In addition to these parameters, one should select the
architecture of the deep belief network. In this work, we
fix this architecture. In general, the number of hidden layers
determines the abstraction levels represented in the network.
We set this number to four. We then select the number of
hidden units as 2000, 1000, 500, and 100 from bottom to
top layers, having the following considerations. For our work,
the hidden unit number in the first layer should be selected
large enough to effectively represent the pixels in a local
subregion. On the other hand, the number in the last layer
should be selected small enough to effectively quantize the
subregions. The hidden unit numbers in between should be
selected consistent to the selected hidden unit numbers in
the first and last layers. The investigation of using different
network architectures is considered as future work.

C. Results

Tables II and III report the test set accuracies obtained by
our proposed DeepFeature method for the first and second
datasets, respectively. These tables provide the class-based
accuracies in their first three/five columns and the average
class-based accuracies in the last two. These tables report the
average class-based accuracies instead of the overall test set
accuracy since especially the first dataset has an unbalanced
class distribution. Here we provide the arithmetic mean of the
class-based accuracies as well as their harmonic mean since
the arithmetic mean can sometimes be misleading when values
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TABLE II
TEST SET ACCURACIES OF THE PROPOSED DeepFeature METHOD AND THE

COMPARISON ALGORITHMS FOR THE FIRST DATASET.

Arith. Harm.
Norm. Low High mean mean

DeepFeature 98.37 91.59 98.44 96.13 96.02
Handcrafted features

CooccurrenceMatrix 87.58 84.12 85.60 85.77 85.74
GaborFilter 91.24 82.23 78.60 84.02 83.70
LocalObjectPattern [14] 95.32 92.54 90.27 92.71 92.66
TwoTier [41] 99.18 93.83 93.77 95.59 95.53
Deep learning for supervised classification

AlexNet 99.39 97.39 75.88 90.89 89.53
GoogLeNet 99.59 97.04 80.16 92.26 91.40
Inception-v3 99.59 93.01 89.11 93.90 93.71
Deep learning for feature extraction (salient points)

SalientStackedAE 97.35 90.17 93.00 93.50 93.41
SalientConvolutionalAE 96.54 93.96 76.26 88.92 87.94
Deep learning for feature extraction (random points)

RandomRBM 95.93 87.91 96.89 93.58 93.40
RandomStackedAE [7] 97.96 90.05 90.27 92.76 92.62
RandomConvolutionalAE 95.32 88.63 79.38 87.77 87.28

to be averaged differ greatly. These results show that the pro-
posed method leads to high test set accuracies, especially for
the first dataset. The accuracy for the sub-low-grade cancerous
classes decreases, as expected, since this subcategorization is a
difficult task even for human observers. The receiver operating
characteristic (ROC) curves of these classifications together
with their area under the curve (AUC) metrics are reported in
the supplementary material [39].

We also compare our method with four groups of other
tissue classification algorithms; the comparison results are also
provided in Tables II and III. The first group includes four
methods, namely CooccurrenceMatrix, GaborFilter, LocalOb-
jectPattern, and TwoTier, that use handcrafted features for
image representation. We use them in our comparisons to
investigate the effects of learning features directly on image
data instead of manual feature definition. The Cooccurrence-
Matrix and GaborFilter methods employ pixel-level textures.
The CooccurrenceMatrix method first calculates a gray-level
co-occurrence matrix and then extracts Haralick descriptors
from this matrix. The GaborFilter method first convolves an
image with log-Gabor filters in six orientations and four scales.
Then, for each scale, it calculates average, standard deviation,
minimum-to-maximum ratio, and mode descriptors on the
response map averaged over those of all orientations [40]. Both
methods use an SVM with a linear kernel for the final image
classification. For both datasets, the proposed DeepFeature
method leads to test set accuracies much better than these
two methods, which employ pixel-level handcrafted features.

The LocalObjectPattern [14] and TwoTier [41] methods,
which we previously developed in our research group, use
component-level handcrafted features. The first one defines a
descriptor with the purpose of encoding spatial arrangements
of the components within the specified local neighborhoods.
It is similar to this currently proposed method in the sense
that it also represents the components with circular objects,
labels them in an unsupervised way, and uses the labels’

distribution for image classification. On the other hand, it uses
handcrafted features whereas the currently proposed method
uses deep learning to learn the features directly from image
data. The comparison results show the effectiveness of the
latter approach. The TwoTier method decomposes an image
into irregular-shaped components, uses Schmid filters [42]
to quantify their textures and employs the dominant blob
scale metric to quantify their shapes and sizes. At the end,
it uses the spatial distribution of these components to classify
the image. Although this method gives good results for the
first dataset, it is not that successful to further subcategorize
low-grade cancerous tissue images (Table III). The proposed
DeepFeature method also gives the best results for this sub-
categorization. All these comparisons indicate the benefit of
using deep learning for feature extraction.

The second group contains the methods that use CNN
classifiers for entire image classification [13], [43], [44], [45].
These methods transfer their CNN architectures (except the
last softmax layer since the number of classes is differ-
ent) and their corresponding weights from the AlexNet [46],
GoogLeNet [47], and Inception-v3 [47] models, respectively,
and fine-tune the model weights on our training images. Since
these network models are designed for images with 227×227,
224 × 224, and 299 × 299 resolutions, respectively, we first
resize our images before using the models. The experimental
results given in Tables II and III show that the proposed
DeepFeature method, which relies on characterizing the local
salient subregions by deep learning, gives more accurate
results than all these CNN classifiers, which are constructed
for entire images without considering the saliency.

In the third group of methods (SalientStackedAE and
SalientConvolutionalAE), we extract features from the salient
subregions using two other deep learning techniques. Re-
call that our proposed method trains a deep belief network
containing four layers of RBMs and uses the outputs of
the RBM in the final layer as the features. We implement
these comparison methods to investigate the effectiveness of
using an RBM-based feature extractor for this application.
The SalientStackedAE method trains a four-layer stacked au-
toencoder, whose architecture is the same with our network,
and uses the outputs of the final autoencoder as its features.
The SalientConvolutionalAE method trains a convolutional
autoencoder and uses the encoded representation, which is
the output of its encoding network, as the features. This
convolutional autoencoder network has an encoder with three
convolution-pooling layers (with 128, 64, and 32 feature
maps, respectively) and a decoder with three deconvolution-
upsampling layers (with 32, 64, and 128 feature maps, re-
spectively). Its convolution/deconvolution layers use 3 × 3
filters and its pooling/upsampling layers use 2 × 2 filters.
Both methods take the RGB values of a subregion as their
inputs. Except using a different feature extractor for the salient
subregions, the other steps of the methods remain the same.
The test set accuracies obtained by these methods are reported
in Tables II and III. When it is compared with SalientConvo-
lutionalAE, the proposed DeepFeature method leads to more
accurate results. The reason might be the following: We use
the feature extractor to characterize small local subregions,
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TABLE III
TEST SET ACCURACIES OF THE PROPOSED DeepFeature METHOD AND THE COMPARISON ALGORITHMS FOR THE SECOND DATASET.

Low Low Low Arith. Harm.
Norm. (grade1) (grade1-2) (grade2) High mean mean

DeepFeature 96.63 88.83 67.52 62.90 80.54 79.28 77.24
Handcrafted features
CooccurrenceMatrix 87.64 71.51 50.43 39.52 78.38 65.50 60.03
GaborFilter 85.96 70.95 22.22 58.06 76.22 62.68 49.47
LocalObjectPattern [14] 92.70 89.39 48.72 58.87 77.30 73.40 69.04
TwoTier [41] 98.88 80.45 53.85 62.90 79.46 75.11 71.84
Deep learning for supervised classification
AlexNet 97.19 96.09 35.90 52.42 87.03 73.73 63.20
GoogLeNet 97.75 81.56 76.92 63.71 61.62 76.31 74.17
Inception-v3 98.88 89.94 38.46 66.94 86.49 76.14 67.81
Deep learning for feature extraction (salient points)
SalientStackedAE 98.31 87.71 55.56 58.87 83.24 76.74 72.92
SalientConvolutionalAE 98.88 80.45 45.30 51.61 70.27 69.30 63.92
Deep learning for feature extraction (random points)
RandomRBM 87.08 82.12 56.41 58.87 82.16 73.33 70.88
RandomStackedAE [7] 97.19 82.12 47.01 57.26 82.70 73.26 68.22
RandomConvolutionalAE 96.07 72.63 45.30 44.35 59.46 63.56 58.40

whose characterizations will later be used to characterize the
entire tissue image. The RBM-based feature extractor, each
layer of which provides a fully connected network with a
global weight matrix, may be sufficient to quantify a small
subregion and learning the weights for such a small-sized input
may not be that difficult for this application. On the other
hand, a standard convolutional autoencoder network, each con-
volution/deconvolution layer of which uses local and shared
connections, may not be that effective for such small local
subregions and it may be necessary to customize its layers.
The design of customized architectures for this application
is considered as future work. The SalientStackedAE method,
which also uses a fully connected network in each of its layers,
improves the results of SalientConvolutionalAE, but it still
gives lower accuracies compared to our proposed method.

The last group contains three methods that we implement
to understand the effectiveness of considering the saliency
in learning the deep features. The RandomRBM method is
a variant of our algorithm. In this method, subregions are
randomly cropped out of each image (instead of using the
locations of tissue components) and everything else remains
the same. Likewise, the RandomStackedAE and RandomCon-
volutionalAE methods are variants of SalientStackedAE and
SalientConvolutionalAE, respectively. They also use randomly
selected subregions instead of considering only the salient
ones. Note that RandomStackedAE uses stacked auto-encoders
to define and extract the features, as proposed in [7]. The
experimental results are reported in Tables II and III. The
results of all these variants reveal that extracting features
from the salient subregions, which are determined by prior
knowledge, improves the classification accuracies of their
counterparts, especially for the second dataset. All these
comparisons indicate the effectiveness of using the proposed
RBM-based feature extractor together with the salient points.

(a) (b)

(c) (d)

Fig. 4. For the first dataset, test set accuracies as a function of the model
parameters: (a) minimum circle radius rmin, (b) size of a salient subregion
ωsize, (c) cluster number K, and (d) SVM parameter C. The parameter
analysis for the second dataset are given as supplementary material [39].

D. Parameter Analysis

The DeepFeature method has four external parameters:
minimum circle radius rmin, size of a salient subregion
ωsize, cluster number K, and SVM parameter C. This section
analyzes the effects of the parameter selection on the method’s
performance. To this end, for each parameter, it fixes the
values of the other three parameters and measures the test set
accuracies as a function of the parameter of interest. These
analyses are depicted in Fig. 4 and discussed below for the
first dataset. The analyses for the second dataset are parallel
to those of the first one. The reader is referred to the technical
report [39] for the latter analyses.

The minimum circle radius rmin determines the size of
the smallest circular object (tissue component) located by the
CIRCLEDECOMPOSITION algorithm. Its larger values cause
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not to locate smaller objects, which may correspond to impor-
tant small tissue components such as nuclei, and not to define
salient subregions around them. This may cause an inadequate
representation of the tissue, which decreases the accuracy as
shown in Fig. 4(a). On the other hand, using smaller values
leads to defining noisy objects and the use of the salient
subregions around them slightly decreases the accuracy.

The parameter ωsize is the size of a salient subregion
cropped for each component by the CROPWINDOW algorithm.
This parameter determines the locality of the deep features.
When ωsize is too small, it is not sufficient to accurately char-
acterize the subregion, and thus, the component it corresponds
to. This significantly decreases the accuracy. After a certain
point, it does not affect the accuracy too much, but of course,
increases the complexity of the required deep neural network.
This analysis is depicted in Fig. 4(b).

The cluster number K determines the number of labels used
for quantizing the salient subregions (components). Its smaller
values may result in defining the same label for components of
different types. This may lead to an ineffective representation,
decreasing the accuracy. Using larger values only slightly
affects the performance (Fig. 4(c)).

The SVM parameter C controls the trade-off between the
training error and the margin width of the SVM model.
Using values smaller and larger than necessary may cause
underfitting and overfitting, respectively. Unfortunately, similar
to many hyperparameters in machine learning, there is no
foolproof method for its selection and its value must be
determined empirically. As shown in Fig. 4(d), our application
necessitates the use of C in the range between 250 and 1000.

E. Discussion

This work introduces a new feature extractor for histopatho-
logical image representation and presents a system that uses
this representation for their classification. This system classi-
fies an image with one of the predefined classes, assuming that
it is homogeneous. This section discusses how this system can
be used in a digital pathology setup, in which typically lower
magnifications are used to scan a slide. Thus, the acquired
images usually have a larger field of view and may be homo-
geneous or heterogeneous. To this end, this section presents a
simple algorithm that detects the regions belonging to one of
the predefined classes in such a large image. Developing more
sophisticated algorithms for the same purpose or for different
applications could be considered as future research work.

Our detection algorithm first slides a window with a size
that the classification system uses (in our case, the size of
480 × 640) over the entire large image and then extracts the
features of each window and classifies it by the proposed
DeepFeature method. Since these windows may not be homo-
geneous, it does not directly output the estimated class labels,
but instead, it uses the class labels of all windows together with
their posteriors in a seed-controlled region growing algorithm.
In particular, this detection algorithm has three main steps:
posterior estimation, seed identification, and seed growing. All
these steps run on circular objects, which we previously define
to approximate the tissue components and to represent the

salient subregions, instead of image pixels, since the latter is
much more computationally expensive. Thus, before starting
these steps, the circular objects are located on the large image
and the connectivity between them are defined by constructing
a Delaunay triangulation on their centroids.

The first step slides a window over the objects and estimates
posteriors for all sliding windows by DeepFeature. Then,
for each object, it accumulates the posteriors of all sliding
windows that cover this object. Since our system classifies a
window with a predefined class and since these classes may
not cover all tissue formations (e.g., lymphoid or connective
tissue), this step defines a reject action and assigns it a
probability. It uses a very simple probability assignment; the
reject probability is 1 if the maximum accumulated posterior
is greater than 0.5, and 0 otherwise. The objects are then
relabeled by also considering the reject probabilities. As future
work, one may define the reject probability as a function of
the class posteriors. As an alternative, one may also consider
to define classes for additional tissue formations and retrain
the classifier. The second step identifies the seeds using the
object labels and posteriors. For that, it finds the connected
components of the objects that are assigned to the same class
with at least Tseed probability. It identifies the components
containing more than Tno objects as the seeds. In our exper-
iments, we set Tseed = 0.90 and Tno = 500. The last step
grows the seeds on the objects with respect to their posteriors.
At the end, the seeds of objects are mapped to image pixels
by assigning each pixel the class of its closest seed object, and
the seed boundaries are smoothed by majority filtering.

We test this detection algorithm on a preliminary dataset of
30 large images. These images were taken with a 5× objective
lens and the image resolution is 1920 × 2560. Most of the
images are heterogeneous; only five of them are homogeneous
to test the algorithm also on large homogeneous images. In
our tests, we will directly use the classifier trained for our
first dataset without any modification or additional training.
Hence, the aim will be to detect low-grade and high-grade
colon adenocarcinomatous regions on these large images as
well as those containing normal colon glands. Thus, we only
annotate those regions on the large images. Example images
together with their annotations are given in Fig. 5; more can
be found in [39]. The visual results of the algorithm are
also given for these examples. For quantitative evaluation,
the recall, precision, and F-score metrics are calculated for
each class separately. For class C, the standard definitions are
as follows: Precision is the percentage of correctly classified
C pixels that actually belong to C. Recall is the percentage
of actual C pixels that are correctly classified as C by the
algorithm. F-score is the harmonic mean of these two metrics.
The results for these metrics are reported in Table IV. This
table also reports the results obtained by relaxing the precision
and recall definitions with respect to our application, in which
the aim is colon adenocarcinoma detection. Since this cancer
type mainly affects epithelial cells, non-epithelial regions are
left as unannotated in our datasets. Indeed, one may include
these regions to any class without changing the application’s
aim. Thus, for class C, we relax the definitions as follows:
Precision is the percentage of correctly classified C pixels that
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Fig. 5. Examples of large heterogeneous images together with their visual
results obtained by the colon adenocarcinoma detection algorithm. The
boundaries of the annotated/estimated normal, low-grade cancerous, and high-
grade cancerous regions are shown with red, blue, and green, respectively.
More examples can be found in [39].

TABLE IV
RESULTS OF THE COLON ADENOCARCINOMA DETECTION ALGORITHM ON

A PRELIMINARY DATASET OF LARGE IMAGES.

Standard Definitions Relaxed Definitions
Precis. Recall F-score Precis. Recall F-score

Normal 92.96 79.71 85.83 99.48 88.37 93.60
Low-grade 83.01 91.30 86.96 91.03 93.32 92.16
High-grade 70.82 98.61 82.44 87.00 99.93 93.02

actually belong to C or a non-epithelial region. Recall is the
percentage of actual C pixels that are correctly classified as
C or with the reject class by the algorithm.

The visual and quantitative evaluations reveal that the
detection algorithm, which uses the proposed classification
system, leads to promising results. Thus, it has the potential
to be used with a whole slide scanner. To do that, a whole
slide should be scanned with a low magnification of the
scanner, and the acquired image, which has a larger field of
view, can be analyzed by this detection algorithm. Although
it yields successful results for many large images, it may
also give misclassifications for some of them, especially for
those containing relatively large non-epithelial regions; an
illustrative example is given in [39]. When non-epithelial
regions are small, incorrect classifications can be compensated
by correct classifications of nearby regions and the reject
action. However, when they are large, such compensation may
not be possible and the system gives incorrect results since
there is no separate class for such regions. Defining an extra
class(es) will definitely improve the accuracy on these regions.
This is left as future research work.

V. CONCLUSION

This paper presents a semi-supervised classification method
for histopathological tissue images. As its first contribution,
this method proposes to determine salient subregions in an
image and to use only the quantizations (characterizations)
of these salient subregions for image representation and clas-
sification. As the second contribution, it introduces a new

unsupervised technique to learn the subregion quantizations.
For that, it proposes to construct a deep belief network of
consecutive RBMs whose first layer takes the pixels of a
salient subregion and to define the activation values of the
hidden unit nodes in the final RBM as its deep features. It then
feeds these deep features to a clustering algorithm for learning
the quantizations of the salient subregions in an unsupervised
way. As its last contribution, this study is a successful demon-
stration of using restricted Boltzmann machines in the domain
of histopathological image analysis. We tested our method
on two datasets of microscopic histopathological images of
colon tissues. Our experiments revealed that characterizing the
salient subregions by the proposed local deep features and
using the distribution of these characterized subregions for
tissue image representation lead to more accurate classification
results compared to the existing algorithms.

In this work, we use the histogram of quantized salient
subregions for defining a global feature set for the entire
image. One future research direction is to investigate the other
ways of defining this global feature set, such as defining
texture measures on the quantized subregions. Another re-
search direction is to explore the use of different network
architectures. For example, one may consider combining the
activation values in different hidden layers to define a new
set of deep features. On an example application, we have
discussed how the proposed system can be used in a digital
pathology setup. The design of sophisticated algorithms for
this purpose is another future research direction of this study.
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