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Abstract—As shown in some prior studies, a significant per-
centage of data blocks accessed in parallel codes are private, and
not keeping track of those blocks can improve the effectiveness
of directory structures in CMPs. In this study, we have two
major contributions. First, we showed that compared to the
classification of cache blocks at page granularity, data block
classification at subpage level helps to detect considerably more
private data blocks. Based on this idea, we propose two different
approaches for enhancing the effectiveness of directory caches in
tiled CMPs. In the first approach, which is called Quasi-Dynamic
subpage level data Block Classification (QDBC), a data block
is assumed to be private from the beginning of the program
execution and stays private as long as the corresponding subpage
is accessed by only one core. Our second approach, which is
called Dynamic subpage level data Block Classification (DBC),
turns a data block into private again after all blocks within the
corresponding subpage are evicted from private cache hierarchy.

Memory block classification at subpage level, however, may
increase the frequency of the operating system involvement in
updating the maintenance bits in page table entries. To overcome
this, we propose, as a second contribution, a distributed table
called as on-chip page table, which stores recently accessed
page translations in the system. Our simulation results show
that, compared to page level data classification, QDBC and
DBC approaches relying on the on-chip page table can detect
significantly more private data blocks and considerably improve
system performance.

Index Terms—Cache coherence, directory cache, chip multi-
processor, address translation, TLB, page table.

I. INTRODUCTION

HIP multiprocessors (CMPs) require efficient and scal-
able cache coherence protocols to extract maximum per-
formance from shared memory applications and fast virtual-
to-physical address translation to efficiently manage the virtual
memory. Compared to snooping-based protocols, directory-
based cache coherence protocols are a better choice for CMPs
with many cores since they avoid broadcasting, reducing the
message traffic on on-chip networks. In these protocols, the
memory blocks in the last level private caches of the cores
are kept coherent by monitoring the status of data blocks in
centralized directory structures.
While directory-based cache coherence protocols are the
state-of-the-art approaches in many-core CMPs, area overhead,
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high energy consumption, and high associativity requirement
of the directory structures may not scale well with increas-
ingly higher number of cores in a chip. Different directory
organizations have been suggested to enable lower overhead
and higher scalability in coherence protocols relying on di-
rectories [22][28]. One way of reducing storage requirements
for directory caches is to keep track of only cached memory
blocks [9][25], instead of monitoring all the memory blocks
in the system. While this enables directory information to be
kept in small directory caches, it can cause frequent directory
cache evictions due to the lack of a full directory, which in turn
leads to invalidations of all the cached copies of the associated
blocks in private caches.

In modern CMPs, directory caches are implemented as dis-
tributed structures across cores in mainly two different ways.
One way is to implement them as separate structures, which
are called as duplicate-tag directories [4][21]. They are simple
to implement, but they require associativity proportional to
the number of cores, which make them energy inefficient
for systems with high core counts. By lowering associativity
and/or the number of entries, duplicate tag directories can be
turned into more flexible structures called as sparse directo-
ries [16]. Because of their limited sizes and/or associativities,
these directory structures can introduce huge directory miss
rates and consequently cause frequent data block invalida-
tions in private caches, deteriorating the system performance
significantly [18]. The second way is to take advantage of
the shared last level cache (LLC) and maintain the directory
information as part of the LLC’s entries. This kind of directory
organization is referred to as In-Cache directory [30]. Each
directory entry in this design includes a set of sharers to keep
track of cache blocks in the private caches, but requires no
tag. In-Cache directory organization enforces the inclusion
property between private and shared caches, i.e., the shared
cache must allocate an entry for each block in private caches,
which reduces the effective on-chip storage capacity. This is
why we consider sparse directories in this study and try to
increase the effectiveness of directory caches with available
scarce space and a restricted associativity.

Several prior studies suggest page granularity data clas-
sification mechanisms to decrease coherence management
overhead in directories [3][10]. However, we have observed
that performing data classification at finer granularity than
page granularity can bring additional benefits. Moreover, we
also believe that the benefits obtained by page level data
classification diminishes significantly especially when working
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with large page sizes.

In addition to an effective management of directory struc-
tures, fast virtual to physical address translation is also im-
portant for the system performance in CMPs. This is crucial
in our study since our data block classification at subpage
level can increase the frequency of operating system (OS)
involvement in classifying data blocks and applying the co-
herency recovery mechanism at runtime. To enable fast virtual
to physical address translation, recent studies have focused on
designing L2 (level 2) Translation Look-aside Buffers (TLBs)
for CMPs [6][24][32]. In our study, we tailor L2 TLBs in
CMPs to facilitate our data block classification and coherency
recovery mechanism. We refer to such a L2 TLB as on-chip
page table to differentiate it form regular L2 TLBs in CMPs.
Based on these discussions, this paper makes the following
contributions.

« First, we propose a data block classification mechanism
referred to as Quasi-Dynamic subpage level data Block
Classification (QDBC), which works at subpage level and
helps to detect considerably more private data blocks.
Consequently, it reduces the percentage of blocks re-
quired to be tracked in the directory significantly com-
pared to similar page level classification approaches.
This, in turn, enables smaller directory caches with a
lower associativity to be used in CMPs without hurting
performance, thereby helping the directory structure to
scale gracefully with the increasing number of cores.

e Second, in the QDBC approach, a data block is assumed
to be private from the beginning of program execution
and stays private as long as the corresponding subpage
is accessed by only one core. When another core tries
to access any block within that subpage, this data block
becomes shared and remains as shared until the program
terminates. To take advantage of dynamic behavior of
data blocks and hence to detect more data blocks at run-
time, we propose our second approach, which is called as
Dynamic subpage level data Block Classification (DBC).
The way private data blocks are turned into shared with
the DBC approach is similar to QDBC. However, unlike
QDBC, in this approach a data block becomes private
again after all blocks within the corresponding subpage
are evicted from all the private caches of cores.

o Third, we propose a small distributed table referred to as
on-chip page table, which stores the page table entries
for recently accessed pages in the system. This can be
implemented by as a portion of the directory controller by
customizing the L2 TLB. Upon a TLB miss, the OS gets
involved in address translation only when the requested
translation is not found in the on-chip page table. It also
helps to lower the performance degradation due to the
increase in the frequency of the OS involvement in our
subpage granularity block classification. This table is vital
especially for DBC in dynamic data block classification
and restoring the coherence status of transitioned data
blocks.

A preliminary version of this study appears in our previous
work [31]. Here, we extend this study with a new data block

classification approach, namely DBC, which is quite more
effective than the QDBC approach. More specifically, we show
why monitoring data block evictions from private L1 caches
is so important in successful data block classification by com-
paring the effectiveness of the DBC and QDBC approaches.
We also explain the hardware support requirements for the
DBC approach as well as the required modifications to the
coherence recovery mechanism in detail. Finally, we conduct
more experiments with varying subpage sizes to show that,
unlike QDBC, DBC can benefit from small subpages.

The rest of this paper is organized as follows. Section II
discusses the background, related work and motivation. We
present our approaches in Section III. We provide the details
of the evaluation methodology in Section IV. We give the per-
formance results in Section V. Finally, Section VI concludes
the paper.

II. RELATED WORK AND MOTIVATION

Directory-based cache coherence protocols [1][16][26] are
the common approach for managing the coherence in the
systems with many cores in a single chip because of their
scalability in power consumption and area compared to tra-
ditional broadcast-based protocols. However, the latency and
power requirements of today’s many-core architectures with
their large last level caches (LLCs) brought new challenges.

A directory cache should provide an efficient way to keep
the copies of data blocks stored in different private caches
coherent since its structure can have momentous influence
on overall system performance [16]. Therefore, there are
numerous studies aiming at improving the performance of
directory caches. It is common to cache a subset of directory
entries due to high latency and power overheads with directory
accesses. Ros et al. [29] propose a direct cache coherence
protocol suited to many-core tiled CMPs, which stores up-to-
date sharing information about cache blocks into the cache
that must provide the block on a miss, i.e., the owner cache.
Therefore, cache miss services are handled more quickly by
sending the requests directly to the owner cache. This approach
is orthogonal to our proposals and they can be applied together.
Fensch et al. [15] propose a coherence protocol without
any hardware support, in which data blocks are mapped to
processors’ caches at the page granularity under OS control.
In this approach, data coherence is maintained by not allowing
multiple writable copies of pages on private caches. While this
technique uses page level data mapping, our proposal makes
use of subpage level data classification to detect considerably
more private data blocks.

A common scheme for organizing directories in CMPs
is duplicate-tag-based directories [4][27]. Compared to other
directory structures, these kinds of directory caches are more
flexible as they do not force any inclusion among the cache
levels. However, directories based on duplicate-tag come with
overheads. Storage cost for duplicate tags, and more notably,
high associativity requirement that grows with the number of
cores in the system, are two main overheads. For instance, in
a many-core processor with N cores, each of which has a K-
way-set associative last level private cache, the directory cache
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must be NxK-way associative to hold all private cache tags (to
avoid any invalidation). Therefore, this approach suffers from
high power consumption and high design complexity due to
high associative caches.

Like our study, there exist some prior studies in the literature
to classify data blocks as private or shared for different
purposes in CMPs, such as reducing coherence overhead or
the access latency to distributed caches. Hardavellas et al. [17]
and Li. et al. [23] try to categorize data blocks and keep
private data blocks in the non-uniform distributed shared cache
(NUCA) slice of the requesting core, where the access latency
depends on the physical distance between the core demanding
data and the L2 cache slice storing the data. The primary aim
of these two studies is to reduce NUCA access latency by
employing intelligent placement, migration, and replication
mechanisms. On the other hand, in our study we just focus
on bypassing coherence protocol for private data blocks,
considering neither block placement nor block replication.
Moreover, the private data detection mechanisms in our study
are quite different from ones used in these studies. While in
the study [17] cache access patterns are classified via the OS,
Li. et al. [23] try to detect private data offline with compiler
assistance. As mentioned in some previous studies [3][10], we
believe that compared to offline, we can detect more private
data blocks at runtime. In our study, we employ our own
runtime data classification techniques to increase the private
data detection rate. To categorize data blocks as accurately as
possible, our dynamic data classification techniques work at
subpage granularity and the technique used in DBC is able
to take advantage of dynamic behavior of data blocks and
reclassify a shared data block private again during runtime.

The prior research, which was done by Esteve et al. [13],
proposes a runtime classification mechanism to take both
thread migration and private data within application phases
into consideration. In this study, they make use of TLB
lookups to dynamically classify data. More specifically, upon
a TLB miss the core broadcasts a specific message to the
other cores’ TLBs to retrieve information about status of the
corresponding page. According to their data classification ap-
proach, a page is considered to be private if its page translation
resides in a single TLB. If the translation exists in two or more
cores’ TLBs, the page is assumed to be shared. While our data
classification approach in DBC and the classification approach
proposed in the work [13] both are dynamic, i.e., with both
of them a shared data block can be transitioned into private
again during program execution, there is a stark difference
between them. Their classification approach count a page as
private if its translation resides in a single core’s TLB. On
the other hand, our classification mechanism in DBC regards
a subpage as private if a single core’s L1 cache keeps the
data blocks within this particular subpage. The accuracy of
their data classification approach depends on how accurately
TLB entry evictions are predicted. They propose a TLB decay
technique based on 2-bit saturated counters in TLB entries to
make accurate predictions, which introduces area overheads.
Moreover, to keep the information about the private pages
in all the TLBs coherent, they introduce a kind of TLB
coherence protocol, which not only requires additional on-chip

area but also increases on-chip network message traffic. TLB-
to-TLB transfers in their study lead to replicated responses
from every cores after a TLB miss, which can increase on-
chip network bandwidth demand. Esteve et al. [14] propose
TokenTLB approach to reduce on-chip traffic caused by TLB-
to-TLB transfers in resolving address translation misses.

Davari et al. [11] propose a data classification technique
at cache line granularity based on generations of cache lines.
According to their technique, a generation for a cache line
starts when it is brought into an L1 cache. They use the
cache decay mechanism [19] to predict the termination of a
generation. A cache line is classified as private if it has only
one generation in the L1 cache hierarchy at that moment. In
another study [12], Davari et al. propose a directory scheme
called DIR;-SISD, which employs self-invalidation and self
downgrade as directory policy for shared data similar to
the study [11]. This directory scheme relies on data-race-
free (DRF) programming paradigm and can tolerate multiple-
readers and multiple-writers to co-exist at the same time
without broadcast messages. While their proposal brings area
optimization and complexity reduction in directories, it works
for only applications where the DRF semantics are enforced,
that is, during any parallel phase of the applications, different
cores can only modify different bytes/words in a cache line.

To our best knowledge, the closest study to ours was pre-
sented by Cuesta et al. [10]. However, there are at least three
main differences between this work and their study. First, the
data classification granularities are different. Their study works
on page level granularity to support private caches in systems
like Magny-Cours [9], where there exist multiple dies and each
die has its own processing cores and a die-wide large private
cache. On the other hand, our proposal is more suitable for
maintaining coherence across L1 private caches in single-die
CMPs. Second, since our data classification technique works
at subpage level, it can increase frequency of OS involvement
in coherence maintenance. This is why we employ the on-chip
page table for minimizing the OS involvement at runtime in
order to accelerate coherence maintenance. Third, unlike their
data classification approach, our classification technique used
in DBC takes advantage of data block status at runtime and
considers a data block as private again after all blocks within
the corresponding subpage are evicted from all the private
caches of cores, which enables significantly more data blocks
to be classified as private.

We believe that, by inspecting private data at finer granular-
ity than page granularity, chances of finding private data and
further improvements will be considerably higher. Figure 1
shows the amount of private accesses detected at subpage
granularity (4 subpages per page) compared to page granu-
larity for ten different multithreaded applications in systems
with a various number of cores. In this figure, there are three
groups of bars for each benchmark and they correspond to
4, 8, and 16 cores, respectively. While the first bar in each
group shows the amount of blocks detected as private at page
granularity, the second one indicates detected private blocks
at subpage granularity. The reason for such a big difference
in the amount of detected private blocks is that the existence
of a single shared block within a page is enough to change
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Fig. 1: Percentage of data blocks detected as private at page
granularity versus subpage granularity (with 4 subpages per
page) for various number of cores.
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the status of all the blocks within that page from private to
shared. Thus, if we divide a page into subpages, it is less likely
that shared blocks can adversely affect private blocks’ status
at subpage level.

While the page size is selected as 8KB in our example,
we believe that the difference would be more dramatic for
those architectures that use larger page sizes for performance
reasons. According to Figure 1, the chances of detecting
private accesses at subpage granularity is about two times more
than doing so at page granularity. We will discuss later in this
paper how we can perform the detection at the subpage level
with the assistance of page tables and TLB entries.

Recently, different techniques have been suggested to im-
prove TLB performance in CMPs. The technique presented in
the study [32] tries to increase sharing capabilities between
the cores by enabling cooperation between the private TLBs.
More specifically, it provides capacity sharing among private
TLBs by storing victim translations from other TLBs, which
allows some address translations to be found in private TLBs,
preventing some of relatively costly OS page table accesses.
However, this technique can introduce both design complexity
and higher network cost. Consequently, some studies [5][6]
suggest a shared last level TLB to improve sharing capacity
among the cores in the system.

In this study, we employ a distributed on-chip page table,
which stores the page table entries for recently accessed pages
in the system. To differentiate it from regular shared L2
TLBs and emphasize that its entries need some extra fields
required for maintaining shared/private status of data blocks,
we name it as on-chip page table. This on-chip page table
serves two purposes in the system. First, it serves as a shared
last level TLB like the study [6] to reduce system-wide address
translation misses. Second, it can reduce frequency of the OS
involvement in subpage level data classification and coherence
management. The details on how the on-chip page table works
will be explained later.

III. BYPASSING COHERENCE

In this section, we explain the details of our memory man-
agement scheme that employs a runtime subpage granularity
private data detection motivated by the observations mentioned
in Section II. The two main issues here are i) the mechanism
for detecting private memory blocks at subpage granularity

and ii) the approaches that enable us to exploit the results of
the data classification to improve the performance.

A. Private Block Detection

A common approach to differentiate between private and
shared data blocks is to utilize OS capabilities [3][10][17].
The prior work [10] extends TLB and page table entries
with some additional fields to distinguish between private and
shared pages. To do so, two new fields are introduced in TLB
entries: while the private bit (P) indicates whether the page
is private or shared, the locked bit (L) is employed to prevent
race conditions when a private page becomes shared and, in
turn, the coherence status of cache blocks that belong to this
particular page are restored. To distinguish between private
and shared pages, three new fields are also added to page
table entries: P marks whether the page is private or shared,
as in TLB entries; if P is set, the keeper field indicates the
identity of the unique core storing the page table entry in its
TLB; cached-in-TLB bit (C) shows whether the keeper field
is valid or not.

While we also try to detect private data blocks at runtime
and bypass the coherence protocol for accesses to those
private blocks, our intention is to detect private data at finer
granularity since the effectiveness of coherence deactivation
mainly depends on the amount of detected private data. To
accomplish this, we use most significant bits of page offset for
subpage ID and clone V (valid bit), P, C, L bits and keeper
fields in TLB and page table entries so that each subpage has
its own such fields, as depicted in Figure 2a. In this work,
we divide each page into a number of subpages. The size of
the keeper field grows according to the number of cores in
the system. In other words, the size of the keeper is log, (IV),
where N is the number of cores in the system. The storage
overhead in a page table entry for 4 subpages per page will
be 4 x (1 + 14 4) = 24 bits. If we assume that our system
has 16 cores with 48-bit virtual and 40-bit physical address
spaces and 8KB pages, the overhead will be around 37%.

Now, we list the three main operations that should be
performed to properly update the fields discussed earlier and
enable detection of private data at subpage level. To make it
more clear, we also show the operations in Figure 2b with
different colors.

« First (red): When a page is loaded into main memory for
the first time, the OS allocates a new page table entry
with the virtual to physical address translation. Besides
storing the virtual to physical address translation in the
page table entry, all the subpages are considered to be
private and thereby, the corresponding (P) bits are set.
All subpages’ (C) bits are also cleared, showing that no
entries have been cached in any TLB yet.

e Second (blue): Core 1 faces a miss in its TLB for an
address translation or there is a hit in the TLB but the
(V) bit of the subpage which was tried to be accessed is
cleared (which means we do not have information about
the status of the subppage to be accessed). In either case,
Core 1 will inquire the OS page table for the translation of
the subpage. It finds the (C) bit of the subpage cleared,
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(b) The subpage granularity private data detection mechanism.

Fig. 2: Private block detection scheme.

which means that the subpage is not accessed by any
other core yet. Thus, the (C) bit is set and the identity
of the requester core (Core 1) is recorded in the keeper
field.

o Third (brown): Core 2 experiences a miss in its TLB
for the same subpage like the previous operation. After
looking up the page table for that subpage, it turns out
both (C) and (P) bits of the subpage are set. Therefore,
the keeper field should be compared against the identity
of the requester core. If there is a match, it means that
the keeper core has already experienced a TLB miss and
the page table entry is brought into the requester core’s
TLB, considering the subpage as privately accessed only
by requester core. If the keeper field does not match with
the identity of the core requesting the page table entry
(like this example), it means that two different cores are
attempting to access the data within the same subpage
(Core 1 and Core 2 in this example). As a result, the
OS decides to turn the status of corresponding subpage
to shared by clearing the (P) bit. Moreover, the OS
triggers the coherence recovery mechanism by informing
the keeper core to restore the coherence status of cache
blocks within that subpage. We will explain the coherence
recovery mechanism with more detail in the following
section.

B. Coherence Recovery Mechanism

When a page is brought into the memory for the first time,
the OS marks its subpages as private in the page table. The
directory cache does not need to track private blocks. If at a

certain point, we realize that our assumption about the status
of a block is no longer valid, we need to recover from this
situation. Otherwise, the caches might not remain coherent. In
our study, the on-chip page table determines when a private
subpage becomes shared. So, rather than the OS as it is
the case in the study [10], the on-chip page table triggers
a coherence recovery, which is responsible for restoring the
coherence for all blocks within the subpage. We use a similar
recovery mechanism proposed in the literature [10]. In this
work, authors propose two strategies, namely, flushing-based
recovery and updating-based recovery mechanisms. Their re-
sults show that these two strategies are slightly different in
terms of performance. Similar to some earlier studies, our
recovery mechanism uses a flushing-based mechanism and
performs following operations in order to ensure safe recovery
from status change of a subpage from private to shared.

o First, on the arrival of recovery request, the keeper first
should prevent accesses to the blocks of that subpage by
setting the subpage’s (L) bit in the TLB entry.

o Second, the keeper should invalidate all the blocks cor-
responding to that subpage in its private cache.

o Third, the keeper also should take care of the pending
blocks in its Miss Status Holding Registers (MSHRs). If
there are any blocks within that subpage in MSHRs, they
should be evicted right after the operation completes.

Once these steps are over, the keeper sends back an ac-

knowledgement to announce the completion of the recovery.
At this point, the core which initiated the recovery changes
the status of that specific subpage to shared and continues its
operation.

C. Directory Cache Organization

High associativity requirement of duplicate tag directories
make them energy-inefficient. Sparse directories are viable
option for this problem. However, because of their limited
associativity, the number of evictions in sparse directories
caused by adding a new entry to the directory might increase
dramatically. Since any eviction in the directory requires
invalidation of all the copies of that block (in all the private
caches) in the system, performance of the system will be
jeopardized. To overcome this problem, sparse directories
should be managed intelligently.

In this work, we focus on sparse directories and try to
utilize our private data detection mechanisms to address their
aforementioned limited associativity problem as follows. As
we discussed earlier, we do not need to keep track of the
private data. Thus, we can avoid polluting the directory cache
with private data. We simply hold the states for the shared data
blocks and not for the private ones. As we will show in the
evaluation section, we can dramatically decrease the directory
cache eviction rate and mitigate the inevitable performance
degradation due to high directory eviction counts. The inval-
idation of the blocks related to the evicted directory entries
is performed as normal. As will be shown later, our approach
can get acceptable performance results even for directories
with low associativity. Note that in the rest of this study, we
use directory and sparse directory interchangeably.
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D. On-Chip Page Table

Memory block classification at subpage level may increase
the frequency of OS involvement in updating the maintenance
bits belonging to subpages stored in OS page table entries,
nullifying some portion of performance benefits of subpage
level data classification. For this reason, as a contribution, we
show how we can negate the possible performance degradation
by introducing the on-chip page table. Moreover, the proposed
method also enables us to boost the performance of the virtual
memory management in many-core systems by exploiting
commonality in address translations across cores in CMPs.

Core0 Corel CoreN-1
D-TLB D-TLB D-TLB
/X { la e
Dir Ctrl \ Dir Ctrl Dir Ctrl
On-chip page On-chip page On-chip page
table [0] table [1] table [N-1]
LN
3.b /
) /
2b 2.a _
0s interleaving —
2b 32

Fig. 3: The structure of the on-chip page table in a CMP with
private per-core TLBs.

We propose our on-chip page table as follows. As discussed
before, recently L2 TLBs have been proposed for CMPs to
take advantage of the commonality in address translations
among the cores. With some modifications (additional storage
in L2 TLB entries to keep track of private/shared status of
subpages), we can turn L2 TLBs into an on-chip page table
and implement it as a part of directory cache controller. In
address translations and retrieving the status of data blocks, we
avoid snooping by distributing pages based on their addresses
into on-chip page table slices located in directory controllers.
Distribution is done by interleaving the page entries according
to the least significant bits (LSBs) of virtual page numbers (for
example, with 16 cores, we use 4 LSBs). In this way, for each
miss in the private TLBs, the core sends the request for the
page address translation only to one of the cores’ on-chip page
table. This makes our method more scalable compared to other
proposed cooperative TLBs based on snooping. Note that in
the rest of this paper, if it is not stated otherwise, when we
use TLB we mean L1 TLB.

Figure 3 depicts the structure of our on-chip page table and
outlines how a miss in one of the private TLBs can be resolved
by one of the on-chip page tables. After a TLB miss occurs in
Core 0 for an address translation of page ’a’, the request for
finding the page information for this page is sent directly to the
core which may have the requested entry (in this example core
N-1). Then, the translation is forwarded back to the requesting
core in case it is found in the on-chip page table (red line). In
the second example, the search for finding the translation for
page b’ was not successful in the corresponding on-chip page
table. Therefore, with OS involvement, the entry found in the
page table in memory will be written to one of the on-chip

page tables after interleaving (Core 1) and also the TLB of
the requesting core (Core 0).

The proposed approach does not force major hardware costs
nor operation overheads. For each TLB miss, there is an
address interleaving (which can easily be done by a shift
and AND operation) to find the location of the on-chip page
table that might have the corresponding physical address for a
virtual address. As on-chip page tables reside in the directory
caches, each access to an on-chip page table is equivalent to an
access to a directory cache. This implies that we can replace a
very costly page table walk with a very low cost cache access,
each time the access to the on-chip page table is a hit.

In our experiments, we show how much we can avoid
referring to OS, thanks to exploiting the on-chip page table. To
show increasing the capacity of TLB cannot solely decrease
TLB miss ratio, we also test our method for different TLB
sizes.

Until now, we try to explain the issues on how to implement
our QDBC approach. Next, we try to explain our DBC
approach and additional provisions required to support it.

E. Dynamic Block Classification (DBC)

The QDBC approach employs a data classification method-
ology to differentiate between private and shared data blocks
at subpage level and the coherence protocol is bypassed for
private data blocks. However, the QDBC approach has a major
shortcoming: when a data block becomes shared at a specific
moment during runtime, it is assumed to stay so. Therefore,
all accesses to this data block from that particular moment to
the end of program are managed by the coherence protocol.
However, it is possible to detect many more private data
blocks at runtime by more closely scrutinizing data blocks.
The overriding need here is how to decide shared blocks
becoming private again.

1) Monitoring Data Block Evictions: There may be differ-
ent techniques regarding how to transition status of data blocks
from shared to private over and over again. For example, we
can modify the cache decay technique, originally proposed
by Kaxiras et al. [19] to reduce leakage power dissipation in
cache memories, to monitor data blocks in private L1 caches
for collecting information that can be used in turning the
shared blocks into private. Because of hardware complexity
and accuracy concerns for determining when to turn a cache
line off, we do not employ this technique. Instead, in our
DBC approach, we adopt a technique where we monitor data
block evictions in L1 private caches to determine when data
blocks become private again. More specifically, when the last
data block of a subpage is evicted from the L1 private cache
hierarchy, the status of all the data blocks within that particular
subpage are transitioned to private again. To do so, for each
subpage we need to count the number of copies of data blocks
stored in private L1 caches, whose details are explained below.

To apply our modified data classification approach, first of
all, we extend TLB and page table entry formats as shown
shaded in Figure 4. TLB entries contain a new field called as
counter for each subpage, which is used to keep the number of
copies of data blocks within the corresponding subpage cached
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(a) TLB entry format. Each subpage portion of the entry has an extra
field called counter to hold the number of copies of data blocks that
belong to the corresponding subpage cached in the core’s L1 cache.
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(b) Page table entry format. Each subpage portion of the entry has an
extra field called bit-vector (BV), which includes one bit for each core
indicating whether there exists any data block within the corresponding
subpage cached in this particular core’s L1 cache.

Fig. 4: TLB and page table entry formats used in our DBC
approach. The new fields are shown shaded.

in the core’s private L1 cache, as shown in Figure 4a. When a
data block is brought into the L1 cache, the TLB searches the
entry of the corresponding page and increments the counter
of the subpage to whom the data block belongs by 1. On the
other hand, when a data block is evicted from or invalidated
in the L1 cache as a result of data coherence maintenance (for
example, its cached remote copy could be modified in another
private cache), the counter for the subpage is decremented by
1. Note that these actions take place inside individual tiles and
do not increase the on-chip message traffic.

We also introduce a new field for each subpage in page
table entries (as well as in on-chip page table entries), which
is called as bit-vector (BV) as indicated in Figure 4b. BV
includes one bit for each core in the CMP system to show
whether there exists any data block within the subpage cached
in the core’s L1 private data cache. If this bit is 1, it means
there is at least one data block that belongs to that subpage
cached in the private L1 cache. If it is O, this means that there
is no data block within the subpage cached in the core’s L1
cache.

Second, we consider L1 caches to be virtually indexed
and physically tagged, which is the most prevalent form of
cache access due to lower latency and being free from aliasing
problems. When we use virtually indexed, physically tagged
L1 caches, apart from physical tags of blocks, the virtual tags
of page addresses are also required to be stored in cache
blocks. We need to know the virtual address of an evicted
or invalidated L1 cache block; because, as mentioned prior,
the counter for the corresponding subpage is decremented by
1 in the involved TLB entry, and TLBs work with virtual
addresses.

Third, we need to adapt the coherence recovery mechanism
used in our QDBC approach, which was originally presented
in the study [10], to deal with the block classification of
DBC. This is particularly necessary for reclassifying shared
blocks as private and preventing race conditions in accessing
the involved blocks. More details are explained below.

2) Modifications to the Coherence Recovery Mechanism:
We need to make some modifications to the coherence re-
covery mechanism in order to restore the coherence status of
the blocks whose status is transitioned from shared to private.

As explained prior, the counter field in TLB entries indicates
the number of data blocks within the subpage residing in the
private L1 cache of the core. Whenever a block is evicted or
invalidated from the L1 cache, the corresponding L1 cache
notifies the TLB (using the virtual tag of the page) to update
the counter for the respective subpage. When the counter
becomes 0, it means that there are no data blocks in the L1
cache, so the TLB performs two operations. First, it locks the
corresponding subpage portion of the TLB entry by setting
the (L) bit, which prevents the core from issuing new requests
for any data block within this subpage. Second, a message is
sent to the involved on-chip page table slice to inform that
there are no data blocks within the subpage cached in the
private L1 cache. Upon arrival of this message, the on-chip
page table first clears the corresponding bit in the BV field
of the subpage. After that, the on-chip page table do one of
two things depending on the content of BV. If there is at least
one bit set in the BV field, this means that some data blocks
within the subpage have not yet been evicted from the L1
private cache hierarchy. So, the on-chip page table sends a
specific acknowledgement message to the TLB in question to
unlock the corresponding subpage portion of the TLB entry to
allow the core to issue new data requests within the subpage.

On the other hand, if all the bits in BV are cleared, this
means that there does not exist any data block in the L1
cache hierarchy of the CMP system. So the on-chip page table
clears both the (P) and (C) bits of the subpage in the TLB
entry. Then, it issues a recovery request for the corresponding
subpage. Since the on-chip page table slice does not know
which TLBs hold the page address translation, the recovery
request is broadcasted to all TLBs in the system. Upon the
recovery request arrival, each TLB checks whether it has the
page translation. Those TLBs that have the address translation
clear the (V) bit of the subpage to force the first address
translation for data blocks within the subpage in the future
to go through the on-chip page table.

1V. EVALUATION METHODOLOGY
A. Simulation Infrastructure

We evaluate our proposal with gem5 full-system simula-
tor [8] running linux version 2.6. gem5 uses RUBY, which
implements a detailed model for the memory subsystem
and specifically cache coherence protocol. For modeling the
interconnection network, we use GARNET [2], a detailed
interconnection simulator also included in gem5. We apply
our ideas to MOESI_CMP_Directory, which is a directory-
based cache coherence protocol implemented in gem5. We
present results for a system consisting of 16 cores with level
one (L1) private data and instruction caches, and a shared level
two (L2) cache. Table I provides the details of our simulation
environment. In the rest of the paper, this configuration is
considered as the base setup and if not stated otherwise, this
setup will be used in our simulations.

In our study, we consider tiled CMP architectures. A tiled
CMP is made up of multiple identical or close-to-identical
tiles each with a core, L1 data cache (L1D), L1 instruction
cache (L1I), shared L2 slice, data TLB, instruction TLB,
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TABLE I: Default simulation parameters used in our experi-
ments.

Processor 16 Alpha cores, 2 GHz

Private LI Data 32KB (512 entries), 4-way associative, 2
Cache cycle hit latency, 64B cache-block size
Private L1 Instruction 32KB, 2-way associative, 2 cycle hit la-
Cache tency, 64B cache-block size

Shared L2 Cache 32MB (2MB per tile), 8-way associative, 14
cycle hit latency

64 entries, 4-way associative, 1 cycle hit
latency

256 entries, 4-way associative, 2 cycle hit
latency

512 entries, 16-way associative (base setup),
2 cycle hit latency

256 entries, 4-way associative (only in our
QDBC and DBC setups)

2D folded torus (4x4) , fixed Garnet inter-
connection model, 1 cycle link latency, 2
cycle one-hop latency
MOESI_CMP_Directory

[lladli
il

%f.
|E Pl
_ R TR I

Fig. 5: The structure of a typical tiled CMP architecture. Tiles
are interconnected into a two dimensional folded torus. Each
tile contains a core, shared-L2 slice, L1 instruction and data
caches, sparse directory (SD), on-chip page table (o-CPT), and
a router. Message exchanges among the tiles are performed
over routers.

Private L1 TLB

Shared L2 TLB (per
tile)

Directory cache (per
tile)

On-chip page table
(per tile)

Network

Cache coherence pro-
tocol

8KB

0-CPT

12$
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sparse directory (SD), on-chip page table (o-CPT in the figure),
and a router, as shown in Figure 5. Tiled architectures are
very appealing from economic, manufacturing, and physical
design points of view [17][35] since these architectures enable
developers to concentrate on the design of a single tile that
can be replicated across the die, resulting in CMP designs
with various number of computing cores. Tiles are connected
over a fast on-chip interconnection network. Specifically, in
our study, a two dimensional folded torus network is used.

In tiled CMP architectures, each tile has its own L2 slice
and L2 cache can be organized in two different ways: 1) each
L2 slice serves as a private cache for the corresponding tile’s
core, which is referred to as private L2 organization, or 2)
each distributed L2 slice is regarded as a portion of total
capacity of the system’s L2 cache, which is referred to as
shared L2 organization. Only one copy of data blocks is kept
in the shared L2 organization, which maximizes the effective
on-chip capacity and minimizes on-chip cache misses. In our
study, we adopted shared L2 cache organization.

We run our multithreaded applications on a 16-core tiled
CMP system. It has a two-level cache hierarchy: L1 private

TABLE II: Benchmarks and respective input files.

[ Benchmarks || Input |

Parsec 2.1
Blacksholes
Bodytrack
Canneal simsmall
Fluidaniate
Swaptions

Splash-2
Cholesky tk15.0
Raytrace Teapot environment
Waternsq 512 molecules, 3 time steps
Radix 1048576 keys
Ocean 258%*258 ocean

and L2 shared. Cache blocks are distributed across tiles in an
address interleaved fashion. The cache blocks on remote 1.2
slices are accessed through the interconnection. Our tiled CMP
architecture leads to varying access latencies for the LLC, i.e.,
non-uniform cache access (NUCA) design [20] in which the
load-to-use latency depends on the physical distance between
the location of the requesting core and where the requested
data resides. In our simulation platform, we assume a 2D-
folded-torus (4x4 tiles) on-chip interconnection based on fixed
Garnet network model [2] with 1 cycle link latency and 2 cycle
hop latency.

Since the shared L2 organization allows a fixed, unique
location for each data block in the aggregate L2 cache, the
coherence protocol requires to keep track of the status of only
the data blocks stored in the private L1 caches of cores. We
use a SD structure to store the coherence status of data blocks
in private L1 caches. Each tile contains a slice of directory
structure and the status of data blocks in L1 private caches are
distributed among these slices based on data blocks’ physical
addresses.

In our base setup, we assume that, in each tile, the number
of SD entries is equal to the number of data blocks in a
private L1 cache (i.e., 512). All setups use a two-level TLB
hierarchy. In QDBC and DBC approaches, we tailored the L2
TLB for shared data block classification and, to differentiate
it from regular shared L2 TLBs used in the base setup, we
call it as on-chip page table. The number of L2 TLB entries
in the base setup is equal to the number of on-chip page
table entries in the setups using QDBC and DBC approaches,
which is 256. As discussed before, compared to L2 TLB
entries in the base setup, on-chip page table entries need some
extra fields required for maintaining shared/private status of
data blocks. In order to make fair comparisons between base
setup and our QDBC and DBC approaches, we try to fix the
total area devoted to L2 TLB and SD structures as much as
possible. Therefore, we make sure that when QDBC and DBC
approaches are used, the number of SD entries is equal to
half of the number of SD entries in the base setup (i.e., the
half of 512, which is 256). Also, we assume that while the
associativity of the SD structure in the base setup is 16, our
QDBC and DBC approaches employ 4-way SD structures.

B. Benchmarks

We evaluate our approaches with 10 different multithreaded
workloads from two commonly used suites (SPLASH-2 [34]
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and PARSEC 2.1 [7]). As we execute a large set of simulations
to provide a comprehensive sensitivity analysis, where each
simulation takes a considerable amount of time to run in our
full-system simulator, we simulated the applications mostly
for small size data-sets, as indicated in Table II. For our
experimental results, we only consider the parallel phase of
benchmarks or Region of Interest (ROI); and the number of
threads used by each application is set based on the number
of cores in the system, which is 16 by default.

C. Setups Taken Into Consideration

For each benchmark listed in Table II, we performed ex-
periments by using three different experimental setups. The
details of these setups are explained below.

o Base: This reflects the default case where no data block
classification is employed and every data access is man-
aged by the coherence protocol. In this setup, we assume
that the system includes a SD structure across the tiled
CMP system and each tile includes a slice of the total
directory. Each data block is mapped to a home tile based
on logy n LSBs of its physical address, where n is the
number of tiles/cores in the system, and a home tile is
responsible for keeping coherence information for those
blocks mapped to it. The system includes a two level
TLB hierarchy. We assume that each tile contains a slice
of SD with 512 entries, which is twice as many as entries
in the SDs employed in DBC and QDBC approaches.
Although a 64-way duplicate tag directory is required in
order to avoid any invalidation in private L1 caches due
to evictions in the directories — our L1 caches are 4-
way set associative and we consider a tiled CMP with 16
cores — we use a sparse directory with 16-ways in this
setup for some practical reasons, such as excessive power
consumption and design complexity concerns.

o QDBC: This is the setup where our QDBC approach is
employed. A data block classification at subpage level is
used to differentiate private data from shared data, and
the coherence protocol for the shared data are deacti-
vated. A data block is considered to be private when
it is referred to for the first time and it stays private
as long as their corresponding subpage is accessed by
only one core. During that particular period of time,
the coherence protocol is deactivated for all accesses to
the data block and no coherence information for that
particular page is kept in the duplicate tag directory.
When another core tries to access any block within the
corresponding subpage, which is detected either by the
directory controller’s check in the on-chip page table
(if the corresponding page information exists in the on-
chip page table structure) or by the OS intervention, the
coherence recovery mechanism is called upon to restore
the coherence status of all the blocks within this particular
subpage and the coherence protocol starts to keep track
of those blocks. In QDBC approach, when a data block
becomes shared it stays so until the end of program
execution, so dynamic block behavior is not exploited
sufficiently. We assume that this setup includes an on-
chip page table and the number of entries of the on-chip

page table and SD structures per tile is equal to 256,
which is half of the entries in the SD structure employed
in the base setup. The SD is assumed to be 4-way set
associative (compared to 16-way set associative SD used
in the base setup).

o DBC: It is the setup where our DBC approach is used.
This setup is similar to the setup with the QDBC approach
regarding the employed hardware components and their
sizes, i.e., both employ the on-chip page table and SD
hardware structures and these structures are made up of
256 entries. The only difference between these two setups
is the data classification approach employed. While they
both classify data blocks at subpage level, unlike QDBC,
the DBC approach takes advantage of runtime behavior
of data blocks and can reclassify data blocks accordingly.
More specifically, the DBC approach monitors the data
blocks within a subpage and whenever all of them are
evicted from the private L1 caches, these data blocks
become private again, allowing more accurate data block
classification.

Note that in the next section besides these three setups, we
also provide some experimental results of a page-granularity
block classification, which uses the same hardware compo-
nents that are employed in the QDBC and DBC setups.
For this page-granularity block classification we adopted the
technique proposed by Cuesta et al. [10]. Although they
proposed their approach for private caches in systems like
Magny-Cours [9], where there exist multiple dies and each
die has its own processing cores and a die-wide large private
cache, we tailored it to L1 private caches in single-die CMPs.
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Fig. 6: The percentage of data blocks detected as private when
the QDBC and DBC approaches are applied to tiled CMPs
with various number of cores.

V. PERFORMANCE EVALUATION
A. Private Blocks

The amount of data blocks detected as private with our
QDBC and DBC mechanism is depicted in Figure 6 for 10
different benchmarks tested. We have tested these benchmarks
for CMPs with various number of cores ranging from 4 to 8§,
to 16. Here, pages are assumed to be composed of 4 subpages.
All values are reported as normalized with respect to the base
setup. Each benchmark has two groups of bars and each one
contains three bars. These three bars are for CMP systems with
4, 8, and 16 cores, respectively. From Figure 6, it is very clear
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that exploiting dynamic behavior of data blocks at runtime is
crucial. Hence, we make the following observations.

First, compared to the QDBC approach, the DBC approach
is able to detect a considerably larger portion of data accesses
as private. The average percentages of blocks detected as
private with the QDBC approach are approximately 60%,
50%, and 45% for CMP systems with 4, 8, and 16 cores,
respectively. On the other hand, the DBC approach can classify
data block accesses as private, on average, with 87%, 83%, and
78% for 4, 8, and 16-core CMP systems, respectively. Second,
when we use the QDBC approach in a CMP with higher
number of cores, the effectiveness of the data classification
drops considerably, from 60% for 4 cores to 45% for 16 cores
(an average of 25% degradation). The corresponding values for
the DBC approach change just from 87% to 78%, a deviation
of 10%. This means that the DBC approach is more resilient to
many-core CMPs. Third, some benchmarks which can hardly
benefit from the QDBC can indeed enjoy relatively huge
benefits from the DBC approach. For example, the QDBC
approach can categorize only 13% and 8% of accessed data
blocks as private for Radix and Ocean benchmarks for a
16-core CMP while 69% and 52% of data blocks in those
benchmarks are classified as private with the DBC approach.

B. Directory Cache Eviction

As we showed earlier, a considerable amount of accessed
memory blocks are private; and we do not keep track of
those blocks in directory caches. By not polluting the directory
cache with status of private blocks that do not need coherence
maintenance, we would have less eviction in directory cache
even for caches with lower associativity. Figure 7 shows
directory cache eviction rate of our approaches normalized
with respect to the base setup.

There are two main factors that enable our approaches to
improve the directory cache eviction rate. First one is the
ability to detect more private data blocks and, the second one
is the shared block access pattern. Arguably, if we can detect
more private data, we can avoid more evictions in the directory
caches. For instance, with QDBC the number of directory
evictions has been reduced for Waternsq more than Cholesky,
since we were able to detect higher number of private data
blocks for Waternsq compared to Cholesky (70% for Waternsq
and 17% for Cholesky as can be seen in Figure 6). However,
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Fig. 8: Normalized L1 cache miss rate. All values are normal-
ized with respect to the values of the base setup.

this is not the only factor which affects reduction in the
directory eviction. The sharing pattern of an application can
also play an important role in the number of evictions that
happen in the directory. For instance, for Canneal, we were
able to detect a high percentage of private data blocks (86%)
compared to Bodytrack (34%). But because of the difference in
sharing pattern for these two applications, we observe rather
same normalized eviction rates. This is due to the temporal
communication behavior of these two applications. In Canneal,
the communication between the cores take place throughout
the execution of the application, whereas, in Bodytrack, for the
majority of the parallel phase, there is limited communication
between cores [33]. Therefore, in Canneal, the chance for
a possible conflict will be higher than Bodytrack. Another
observation from Figure 7 is the dramatic improvement in
directory eviction ratio for Waternsq application. Based on the
results reported in the study [33], in Waternsq and Waterspa
(is not used in this work!) all cores are actively involved
in a producer-consumer pattern. Furthermore, based on this
observation, they conclude that a broadcast-based technique is
likely to benefit for Waternsq and Waterspa. We also observe
that, Waternsq benefits the most, considering the eviction rate
aggregation for all the directory caches in the system. The last
observation is that, compared to QDBC, the DBC approach
can dramatically reduce the directory cache eviction rate. As
can be seen, with QDBC and DBC, on average, we have 58%
and 73%, respectively, less evictions in the directory cache
compared to the base setup without any data classification.

C. Private Cache Misses

One of the primary advantages of reducing directory cache
eviction is the reduced invalidations at the last level private
caches (in our system, the L1 cache). This is due to the fact that
any eviction of a block in directory cache implies invalidation
of all the blocks in any of the L1 caches that correspond to
that block. Figure 8 shows the L1 cache miss ratio for 10
different multi-threaded applications normalized with respect
to the base setup. There are two bars for each benchmark.
While the first bar shows the cache miss ratio for QDBC, the
second bar presents the cache miss ratio for the DBC approach.
Through the QDBC and DBC approaches, we have about 15%
and 20% average reductions, respectively, in private L1 cache
miss ratio. In general, we have better normalized cache miss
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values, for those applications with fewer misclassified blocks.
In other words, most of the time the higher the number of
private blocks detected out of all actual private data blocks
exist, the higher the reduction is in the number of cache misses.
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Fig. 9: Normalized network traffic message count and total
message volume for different data classification approaches.
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Fig. 10: Normalized L1 cache miss latency. The DBC ap-
proach allows faster miss resolution than QDBC.

D. On-Chip Network Traffic

The number of messages as well as total amount of message
volume exchanged in the system are also reduced by our
approaches. This is because evictions in directory caches and
processor cache misses impact both the message count and
message volume communicated through the on-chip network.
For instance, for resolving a miss in the first level private
cache, different controllers in the system need to exchange
request, forward, and response control/data messages with one
another. In Figure 9, we present the message counts and the
total message volume normalized with respect to the base
setup. There are three groups of bars for each benchmark
in the figure: the bars in the first, second and third groups
correspond to the values for the page-granularity, QDBC, and
DBC data classification approaches, respectively. Moreover, in
each group the first bar shows the on-chip network traffic in
terms of message counts while the second bar presents the
network traffic in terms of total message volume.

Our QDBC approach reduces the total number of messages
between approximately 8% and 20%, with an average of 11%.
It can also decrease the total message volume communicated
over the on-chip network between around 9% and 25%, with
an average of 15%. According to the figure, when we employ
our DBC approach, the number of on-chip messages and the
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Fig. 11: Normalized miss rate of finding page translation on-
chip with the QDBC approach.

total message volume can be reduced by, on average, 13% and
16%, respectively. With the page-level data classification, the
reductions in the number of on-chip messages and the total
message volume are, on average, around 6%, which are quite
smaller than the network message traffic savings obtained with
the QDBC and DBC approaches. Since we have observed quite
similar results for different subpage sizes, here we provide the
values only for a system with 4 subpages per page.

An important observation from Figure 9 is that the effects of
our two approaches on message traffic over on-chip network
is quite similar. Compared to the QDBC approach, the DBC
approach classifies more data blocks as private which in
turn enables the coherence protocol to be deactivated more
frequently, resulting in more reduction in the amount of on-
chip message traffic. On the other hand, the more data blocks
are detected as private, the more frequently the coherence
recovery mechanism is called to restore the coherence status
of data blocks transitioned, which increases the amount of on-
chip message traffic. These two opposite factors can roughly
balance out, causing the amount of on-chip network traffic to
stay more or less the same.

E. Cache Miss Latency

With our approaches, we are also able to reduce the average
latency for resolving cache misses. More specifically, we avoid
referring to the directory cache for those requests associated
with the private blocks. Therefore, some portion of the requests
experience less latency when a cache miss occurs, lowering
the overall average latency of a cache miss. Figure 10 depicts
the average cache miss latency normalized with respect to the
base setup for our applications. As can be seen, on average,
we resolve the cache misses 8% and 12% faster than the base
system when we employ the QDBC and DBC approaches.

F. Performance of On-Chip Table

In this part we show the improvements of virtual memory
management by introducing the on-chip page table. To this
end, we have conducted some experiments with special con-
figurations (an on-chip page table with 64 entries). Figure 11
shows the percentage of TLB misses that also experience a
miss in the on-chip page table. In other words, it shows how
much we can avoid accessing the costly OS page table by
finding the required page translation in the distributed on-chip
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Fig. 12: The performance values are given when a subpage
level data classification is applied without using an on-chip
page table (o-CPT). With our DBC approach, applying sub-
page data classification without employing an on-chip page
table severely affects the performance.

page table. As an example, for Canneal benchmark, only 8%
of page translations which cause a miss in a private TLB
cannot be found in the on-chip page table. Therefore, the
remaining 92% of accesses find the right translation in the
on-chip page table after they experienced a miss in private
TLBs. On average, our approach prevents 84% of accesses to
OS by introducing the on-chip page table.

We also compared the effectiveness of our on-chip page
table with a modified version of the base setup, where one-
level TLB hierarchy is employed and the TLB is double the
original size (each core employ a private L1 TLB with 128
entries). As can be seen from Figure 11, by doubling the
TLB size, we can only eliminate 39% of the accesses to
the OS page table. So we can conclude that increasing the
cache capacity for page translation can not solely improve
the performance. Moreover, exploiting an effective technique
which enables sharing page translation between the cores is
also crucial for providing a fast virtual page translation.

To understand how important the on-chip page table is for
the dynamic data classification approach, we have created a
specific setup whose experimental results are presented in
Figure 12. This setup is similar to the setup with the DBC
approach, but the only difference is that, in this particular
setup, we employ a subpage level data classification without
an on-chip page table component, which means that the data
classification process and restoring the coherence status of
data blocks in the coherence recovery mechanism are real-
ized through OS page table. All the experimental results are
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Fig. 13: Relative execution time for different subpage sizes
with the QDBC approach. We test our approach for 4, 8, and
16 subpages.

reported as normalized values with respect to the values of
a setup in which a page level data classification is applied.
We consider a tiled CMP with 16 cores in both setups, and

. the number of subpages is assumed to be 4. The overheads in

terms of the number of OS page table accesses are given in
Figure 12a. Note that, here we only take page table accesses
related to data classification and coherence maintenance into
account, not considering page table accesses related to page
address translations. As can be seen form Figure 12a, applying
subpage data block classification without employing an on-
chip page table severely increases the number of OS page
table accesses. These increases can vary from 3.8x for the
Radix benchmark to 6.4x for Swaptions.

Such large increases in costly OS page table accesses may
result in serious degradations on the overall system perfor-
mance, which are depicted in Figure 12b. From this figure,
we can see that, for all benchmarks except Radix and Ocean,
the page level data classification outperforms the subpage level
page classification not employing an on-chip page table. These
performance values show how important using an on-chip page
table is for the dynamic data classification approach.

G. Execution Time

First, we explore how much we can increase the granularity
of private data detection to improve performance with the
QDBC approach. For doing so, we run a set of simulations
for different subpage sizes. Figure 13 shows relative execution
times for three different number of subpages per page (4,
8, and 16). As can be seen, in all the benchmarks except
Bodytrack and Canneal, a system with 8 subpages shows
better performance compared to a system with 4 subpages.
The other observation is that a system with 16 subpages
shows the best performance for all the benchmarks except
Swaptions. Moreover, subpage sizes 8 and 16 show almost
similar performance in most of the applications tested. The
most important conclusion on subpages is that when we
use quasi-dynamic data block classification, increasing the
granularity does translate into performance improvement up to
a certain point. In our experiments, we observe that dividing
pages into more than 16 subpages do not bring additional
benefits.

Second, to understand the effects of size of subpages on
execution cycle when we employ our DBC approach, we have
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Fig. 14: Execution cycles for the DBC approach. All perfor-
mance values are reported as normalized with respect to the

base setup.

conducted some experiments with 4, 8, 16, 32, and 64 sub-
pages per page. Note that we assume the size of pages is 8KB,
so the involved subpage sizes are 2KB, 1KB, 512B, 256B, and
128B, respectively. The results of our sensitivity analysis are
presented in Figure 14. Our major findings from this analysis
are as follows. Firstly, the average performance improvements
of dynamically classifying data blocks as private are quite
significant: 5%, 11%, 15%, 17%, and 18% for 2K, 1KB, 512B,
256B, and 128B subpage sizes, respectively. Secondly, as can
be easily seen from the figure, for smaller subpage sizes (larger
number of subpages per page) we have better performance
improvements. This can be ascribed to the fact that the
possibility of evicting a subpage as a whole from private
caches is higher for smaller subpage sizes, which increases the
amount of data blocks reclassified as private. Thirdly, beyond
128B subpage size we do not get any additional benefits, so
we do not provide results for smaller subpage sizes.

It can be noticed easily performance gains with DBC is
quite larger than QDBC. For example, for 16-core systems
with pages composed of 4 subpages, the average perfor-
mance improvement is 4% with QDBC while the average
performance improvement with DBC is 5%. This argument
is valid for pages with larger number of subpages per page.
We believe that there are two main reasons for this. First,
the DBC approach is able to classify data blocks more
accurately, so it can detect many more data blocks as private.
Second, the location of private blocks is very important from
the performance point of view. The coherence overhead for
accessing data blocks in DRAM can be largely hidden due
to high DRAM access latency, so deactivating coherence
protocol for the private blocks accessed in DRAM usually
brings no performance gains. To investigate this, we have
conducted some experiments to find out location of accessed
private blocks. Due to space restriction, we here provide only
a summary of our findings. According to our experimental
results, with the QDBC approach, the private blocks are found
in DRAM, L2 cache, and L1 cache, on average, 42%, 5%, and
53%, respectively. On the other hand, when we use the DBC
approach, the corresponding average values are 9%, 13%, and
78% for DRAM, L2 cache, and L1 cache, respectively. These
values indicate that, unlike QDBC, with the DBC approach
most of the private data block accesses happen in L1 data
caches, which has more benefit on the system performance.
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Fig. 15: Comparison of execution cycles of page-granularity
block classification, the QDBC approach and the DBC ap-
proach. All performance values are normalized with respect
to the performance values of the base setup.

Third, in Figure 15, we present the performance values of
page-granularity block classification, the QDBC approach and
the DBC approach. We choose 16 and 64 suppages per page
for the QDBC and DBC approaches, respectively since they
perform best with them as shown before. As can be seen from
the figure, the QDBC and DBC approaches outperform the
page-granularity block classification significantly for most of
the benchmarks since our approaches are able to detect many
more private data blocks at runtime. While the QDBC and
DBC approaches can improve the overall system performance,
on average, 13% and 18%, respectively, the page-granularity
block classification can bring an average of 5% performance
improvement. We believe that the main reason for these huge
performance gaps is that page size like 8 KB are too large
for the page-granularity block classification approach to detect
enough amount of data blocks as private in private L1 caches.

H. Area Overhead

Compared to QDBC, the DBC approach requires larger page
table entries because extra space is needed to keep BVs. The
extra storage requirement of the DBC approach in a page table
entry is S X (1 + 1 + logy(N) + N)) bits, where N is the
number of cores and S is the number of subpages (Figure 4b).
For a system with 16 cores, 4 subpages, 48-bit virtual and
40-bit physical address spaces, 4 maintenance bits (such as
valid bit), and 8KB pages, the overhead will be around 133%.
Because of this huge overhead, the DBC approach may seem
impracticable. However, the DBC approach can work with
very small SD structures without hurting performance. In prior
experiments involving the DBC approach, we consider a SD
structure with 256 entries, which is the half of SD entries
in the base setup. We have made some experiments to find
out its resilience to various SD sizes (with 128, 64, and 32
entries). Because of space restriction, here we only summarize
our major findings. Our experimental results show that our
DBC approach can employ a SD structure with as few as 64
entries and can still perform as well as when it uses an SD
with 256 entries. This means that the area overhead caused
by larger page table requirement in the DBC approach can
be simply compensated by using an SD structure in much
smaller size, thanks to its ability of classifying a considerable
percentage of data blocks as private.
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VI. CONCLUSION

Our study shows that, compared to subpage level data classi-
fication, QDBC and DBC can classify many more data blocks
as private and can enhance the overall system performance
accordingly. The extensive experimental results indicate that
while the QDBC approach can enjoy data classification up to
a subpage size of 512B, DBC can get the maximum benefit
with 128B subpages. With QDBC it is possible to classify
45% of accessed data blocks as private even for 2K subpages
in a 16-core CMP. The corresponding private block detection
percentage when DBC is used is 78%, which emphasizes the
importance of monitoring evictions of data blocks from the
private L1 hierarchy. QDBC and DBC approaches can reduce
the total message volume communicated over the on-chip
network by, on average, 14% and 16%, respectively, for 2KB
subpages. Moreover, the DBC approach outperforms the QBC
approach significantly, and can improve the overall system
performance by 18% on average for 128B subpages.
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