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Abstract We add a stage to Nash’s demand game by allowing the greedier player to
revise his demand if the demands are not jointly feasible. If he decides to stick to his
initial demand, then the game ends and no one receives anything. If he decides to revise
it down to 1 − x , where x is his initial demand, the revised demand is implemented
with certainty. The implementation probability changes linearly between these two
extreme cases. We derive a condition on the feasible set under which the two-stage
game has a unique subgame perfect equilibrium. In this equilibrium, there is first-
stage agreement on the egalitarian demands. We also study two n-player versions of
the game. In either version, if the underlying bargaining problem is “divide-the-dollar,”
then equal division is sustainable in a subgame perfect equilibrium if and only if the
number of players is at most four.

Keywords Nash demand game · Divide-the-dollar · Fair division

1 Introduction

Nash (1953) studied the following bargaining game, now known as the Nash Demand
Game (NDG): two players face a set of feasible utility allocations, S, and they simul-
taneously make utility-demands: player 1 demands x and player 2 demands y; if the
demands are jointly feasible, that is if (x, y) ∈ S, each player receives his demand;
otherwise, both receive null payoffs. The special case where S is the unit simplex is
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called theDivide-the-Dollar game (DD). Both DD andNDG suffer from the following
drawbacks: (a) every efficient demand pair is a Nash equilibrium outcome, and (b)
no matter how close (x, y) is to S, if it is outside of S then the entire available social
surplus is wasted.

These shortcomings led researchers to modify the game in various ways. This
dates back to Nash himself (1953), who proposed the following smoothing approach.
Denote by h(x, y) the probability that the demand-pair (x, y) is feasible. In the original
NDG, h is a step function that only assumes the values zero and one, depending on
whether (x, y) is outside or inside S. Nash proposed to replace h by a function whose
value is one on S and drops to zero in a continuous fashion outside of S, look at the
equilibrium of the resulting (perturbed) game, and take the limit of equilibria as the
perturbation function approaches the original step function. He argued that the utility-
productmaximizer of the original game is the only point that would necessarily emerge
from this procedure, if one restricted attention to “regular” perturbations (which he
did not define). Abreu and Pearce (2015) recently formalized Nash’s suggestion and
showed that it indeed holds for a large class of perturbations.1

Besides smoothing, a natural way to deal with the drawbacks of NDG/DD is to
add a second stage to the game, which is played in case the demands are not feasible.
That is, infeasibility does not immediately destroy the social surplus, but leads to
a continuation game in which the players have a chance to “correct their stage-one
mistake.” This route has been particularly prominent in the DD context. Here are a
couple of examples from this literature.

Brams and Taylor (1994) introduce a second stage where each player is given
two alternative actions: sticking to his original demand or usurping the other player’s
original demand. Then, the rules of DD are applied to these second stage demands.
They show that the resulting game induces dominance solvability, and consequently
the equal division (in the first stage) is the only outcome that survives. Cetemen and
Karagözoğlu (2014) introduce a second stage where the excess (i.e., x+ y−1, when it
is positive) can be eliminated in an ultimatum game. More precisely, their mechanism
grants the proposer role in the ultimatum game to the less greedy player in the first
stage (or to a randomly chosen player, if the first-stage demands are equal). This
player makes a proposal about how the excess should be shared between the two. If
this proposal is accepted, then the corresponding excess amounts are deducted from
the players’ first stage demands, and each player receives the amount remaining from
his first-stage demand after this deduction; if the proposal is rejected, then no one
receives anything. The authors show that the competition for the proposer role pulls
each player’s first-stage demand to 1

2 . Thus, the equal division is the only outcome
that is sustainable in subgame perfect equilibrium.2

1 An earlier result by Binmore (1987) shows that Nash’s suggestion is valid for a certain class of
parametrized perturbations. An alternative approach to smoothing is to apply perturbations not to the
feasible set, but to the players’ strategies. This possibility has been explored by Carlsson (1991), who added
a noise component to the players’ demands.
2 Anbarcı (2001), Ashlagi et al. (2012), and Rachmilevitch (2017) are some other papers, which modified
the “punishment clause” in DD to tackle the drawbacks mentioned above, and consequently obtained equal
division of the surplus in equilibrium. Multi-stage extensions of NDG have been studied by Howard (1992)
and by Anbarcı and Boyd III (2011).
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In this paper, we follow a similar route in that we modify the game by adding a
second stage in case the demands are not jointly feasible. Our framework, however, is
different from both the DD framework and the NDG framework. We focus on NDGs
which, in a specific sense (to be described shortly), are “sufficiently close” to DD.
Thus, in terms of generality, our model is in between DD and NDG.

In our game, themore greedy player among the two (or a randomly chosen player, if
the first-stage demands are equal) receives a chance to revise his demand. The revised
demand cannot be greater than his original demand, and is also bounded from below
by 1 − x , where x is his original demand. The revised demand is implemented with
some probability, λ, and with the complementary probability the game terminates and
no one receives anything. The key point of our mechanism is that λ is endogenous
and, in particular, is decreasing in the revised demand. A more modest reviser has a
greater chance of having his second-stage offer implemented.

The paper is organized as follows. We describe our 2-player game in Sect. 2. In
Sect. 3, we present our results for this game. The main result is that, under a certain
condition on the feasible set, the game has a unique subgame perfect equilibrium; in it,
there is first-stage agreement on the egalitarian demands. The DD case does not satisfy
the aforementioned condition; however, it is a limit case of the family of bargaining
problems that do satisfy the condition. In this limit case, an additional equilibrium
“pops up,” in which each player demands the entire dollar in the first stage of the
game, and the randomly chosen player revises his demand to 1

2 in the second stage.
This “extreme demands equilibrium”, however, is inferior to the equilibriumwith egal-
itarian demands in several respects (for example, it is Pareto-dominated by the latter).
In Sect. 4, we consider two n-player versions of our game. Interestingly, in either ver-
sion, if the underlying bargaining problem is the (n-dimensional) unit simplex, then
equal division is sustainable in a subgame perfect equilibrium if and only if n ≤ 4. We
are not aware of any result in the bargaining literature that depends onwhether the num-
ber of players is greater than four or not.3 One of our n-player generalizations applies
to non-DD problems, but the other works only in the DD case. In Sect. 5, we conclude.

2 The 2-player game

Two players, player 1 and player 2, face a set of feasible utility allocations, S ⊂ R
2+.

This set—the bargaining problem—is compact, convex, contains the origin, and is
comprehensive. Comprehensiveness means that if (x, y) ∈ S then (x ′, y′) ∈ S, for
every (x ′, y′) ∈ R

2+ that satisfies z′ ≤ z for both z ∈ {x, y}. Additionally, max{x :
∃y s.t (x, y) ∈ S} = max{y : ∃x s.t (x, y) ∈ S} = 1.4 This means that the problem
is normalized, in the sense that the utility of either player is normalized to a 0 − 1
scale. The strong Pareto boundary of S is denoted ∂S. The egalitarian payoff in S—
the maximal x such that (x, x) ∈ S—is denoted e(S). Let ψ2

S(x) be the maximum

3 There is no shortage of results in the literature that show that it matters whether the number of players is
equal to or greater than 2. For example, Brams and Taylor (1994) show that in their version of DD that we
described above, the equal division is dominance inducible if and only if n = 2.
4 A player’s maximal payoff in a bargaining problem is called his ideal payoff.
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possible payoff for player 2 in S, given that player 1’s payoff is x . Similarly, let ψ1
S(y)

be the maximum possible payoff for player 1 in S, given that player 2’s payoff is y.
The players play the following game, G(S). They simultaneously announce

demands: player 1 demands a utility payoff x ∈ [0, 1] and player 2 demands a utility
payoff y ∈ [0, 1]. If (x, y) ∈ S, then each player receives his demand. If (x, y) /∈ S,
then play proceeds to a second stage, which is as follows: if x > y then player 1—the
more greedy player—gets a chance to revise his demand. Denote his revised demand
by z. This quantity is subject to the restriction z ∈ [1− x, x]. For every possible value
of z ∈ [1 − x, x], there is a unique λ ∈ [0, 1] such that

z = (1 − λ)x + λ(1 − x).

With probability λ the revised demand, z, is implemented: the reviser, player 1,
receives z, and player 2 receivesψ2

S(z); with probability 1−λ no one receives anything.
If y > x then the definition is analogous, and if y = x the reviser is selected at random,
with each player being equally likely to be selected.5

G(S) is a modified version of the Divide-the-Dollar (DD) game if S = �2 ≡
{u ∈ R

2+ : u1 + u2 ≤ 1}. We abuse terminology a bit and call G(�2) the DD game
(or simply DD), even though this term usually denotes the symmetric linear frontier
version of Nash’s demand game.

We focus on bargaining problems S that satisfy the following:

• (I) x > 2
3 ⇒ ψ2

S(x) <
x(2−x)
4(2x−1) ,

• (II) y > 2
3 ⇒ ψ1

S(y) <
y(2−y)
4(2y−1) .

The graphs corresponding to conditions (I) and (II) are illustrated in the following
figure.

5 Rubinstein et al. (1992) study a sequential bargaining game which is similar to NDG, in which the second
mover gets to chose a probability p that governs how play evolves from the third stage of the game onwards.
Our probability λ is similar to the aforementioned p, in the sense that it is determined by one of the players.
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In DD, ψ i
S(z) = 1− z for both i ∈ {1, 2}, and it is easy to check that (I) and (II) are

satisfied. The family of games that we focus on generalizes DD, in the sense that (I)
and (II) mean that the feasible set S is not “too far” from the simplex�2. In particular,
if S satisfies (I) and (II) then S′ also satisfies them, where S′ is any problem that is
“sandwiched” between S and�2; that is, S′ is any problem that satisfies�2 ⊂ S′ ⊂ S.

Note that the following are satisfied in G(S):

1. If the reviser insists on his original demand (i.e., z = x), then the game ends and
no one receives anything.

2. If G(S) is DD and the reviser chooses to “get into the other player’s shoes” in the
sense of accepting what he originally offered his opponent (i.e., z = 1 − x), then
the revised demand is implemented with certainty. That is, the reviser ends up with
1 − x and the other player ends up with x .

3. The probability of implementing the revised demand changes linearly in the revised
demand.

Finally, a word about our normalization assumption is in order. First, without this
normalization the rules of the game, as described above, are not well defined. Second,
the rationale behind our game is to select the more greedy player in case of first-stage
disagreement, where the more greedy player is the one whose demand is maximal.
If the utilities are not measured on the same scale, having a larger demand cannot be
interpreted as being more greedy. For example, had player 1’s utility been measured
in dollars and player 2’s utility been measured in cents, then the fact that player 2’s
demand is larger than player 1’s does not mean that player 2 is more greedy than player
1.

3 Results for the 2-player game

3.1 non-DD problems

Theorem 1 Suppose that S 	= �2 and that it satisfies (I) and (II). Then, G(S) has
a unique subgame perfect equilibrium. In equilibrium, the first-stage demands are
(e(S), e(S)).

To prove the theorem, we make use of the following lemmas. Wherever we write
“equilibrium,” we mean “subgame perfect equilibrium.”

Lemma 1 Let (x, y) be equilibrium demands that satisfy x 	= y. Then, (x, y) ∈ ∂S.

Proof Let (x, y) be equilibrium demands that satisfy x 	= y. Clearly, (x, y) ∈ S
implies (x, y) ∈ ∂S. Thus, it suffices to prove that (x, y) ∈ S. Assume by contradiction
that (x, y) /∈ S.

W.l.o.g, suppose that x > y. In this case, player 1 is called to revise his demand.
His revised demand takes the form z = (1−λ)x+λ(1− x), where λ is the probability
that the revised demand is implemented. Specifically,

λ = x − z

2x − 1
.
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Since player 1’s expected utility is λz, he maximizes ( x−z
2x−1 )z, which is equivalent

to maximizing the following function f over z ∈ [1 − x, x]:

f (z) = zx − z2.

f ′(z) = x−2z; therefore, f ′(x) = −x < 0 and f ′(1−x) = x−2(1−x) = 3x−2.
Therefore, if x > 2

3 the solution to the optimization, call it z∗, is interior—in which
case the FOC yields z∗ = x

2—and otherwise it is z∗ = 1 − x .
Let π(x) denote player 1’s payoff given that his initial demand, x , satisfies x > y

and (x, y) /∈ S, and given that the optimal z is selected at the revision stage. The
function π is given by:

π(x) =
{

x2
4(2x−1) if x > 2

3
1 − x otherwise

Note that π is strictly decreasing. This is clear on ( 12 ,
2
3 ),

6 and on ( 23 , 1] it satisfies
π(x) = x2

8x−4 hence π ′(x) = 8x(x−1)
(8x−4)2

≤ 0, and the inequality is strict for x < 1.
Therefore, player 1 has a profitable deviation: to decrease x . ��
Lemma 2 Let S satisfy (I) and (II), and let (x, y) be demands that satisfy x 	= y.
Then, (x, y) are not equilibrium demands.

Proof W.l.o.g, suppose that x > y. Assume by contradiction that (x, y) are equilib-
rium demands. By Lemma 1, (x, y) ∈ ∂S. We argue that player 2 has a profitable
deviation.

Case 1: x > 2
3 . Consider a deviation by player 2 to y′, where y < y′ < x . Thus,

(x, y′) /∈ S. In this case player 1 is called to revise his demand, and (as we saw in

the proof of Lemma 1) he chooses z∗ = x
2 . Thus, with probability

x
2

2x−1 player 2 will
obtain ψ2

S(
x
2 ); with the remaining probability, he will receive zero. Thus, by deviating

to y′, player 2 can guarantee the expected utility
x
2

2x−1ψ
2
S(

x
2 ), which is weakly greater

than x(2−x)
4(2x−1) .

7 Since y = ψ2
S(x) <

x(2−x)
4(2x−1) , this deviation is profitable.

Case 2: x ≤ 2
3 . Consider the deviation of player 2 to y′, where y < y′ < x . Then,

player 1 revises his demand to z∗ = 1− x , which is implemented with certainty. The
resulting payoff for player 2 is ψ2

S(1− x); since ψ2
S(1− x) ≥ x > y, the deviation is

profitable. ��
Lemma 3 Let x ∈ (e(S), 1). Then, (x, x) is not an equilibrium demand vector.

Proof If x ∈ ( 23 , 1), then the player who is selected at random to revise his demand
revises his demand to x

2 , and this revised demand is implemented with probability
λ = x

2(2x−1) . A player’s expected utility in this case is, therefore, 1
2λ

x
2 + 1

2λψ i
S(

x
2 ).

6 π ’s domain is ( 12 , 1]: note that the combination of x ≤ 1
2 and y < x implies that (x, y) ∈ �2 ⊂ S.

7 Note that ψ2
S ( x2 ) ≥ 1 − x

2 .
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By deviating to x − ε for a small ε > 0, a player obtains the payoff λψ i
S(

x
2 ). The

deviation is profitable, since λψ i
S(

x
2 ) > 1

2λ
x
2 + 1

2λψ i
S(

x
2 ).8

If x ≤ 2
3 , then the player who is selected at random to revise his demand revises his

demand to 1 − x , and this revised demand is implemented with certainty. Thus, any
profile of the form (x, x) where x ∈ (e(S), 2

3 ] gives each player the expected utility
1
2 (1 − x) + 1

2ψ
i
S(1 − x). If, say, player 1 deviates to x − ε, for a small ε > 0, then

player 2 will revise his demand to 1−x , which will be implemented with certainty, and
player 1’s payoff would be ψ1

S(1− x). The profitability of this deviation is equivalent
to ψ1

S(1 − x) > 1
2 (1 − x) + 1

2ψ
1
S(1 − x), or ψ1

S(1 − x) > (1 − x); this is true, since
x > e(S) ≥ 1

2 . ��
The following lemma speaks of the function π that we derived in the proof of

Lemma 1.

Lemma 4 π(x) ≤ 1
2 for all x ∈ ( 12 , 1].

Proof For x ∈ ( 12 ,
2
3 ] this is clear, since in this case π(x) = 1 − x < 1

2 . Consider

then x > 2
3 . Here, the claim is x2

4(2x−1) ≤ 1
2 , or 2x

2 ≤ 8x − 4. This inequality holds

at x = 2
3 and the derivative of its LHS is 4x , which is smaller than that of the RHS, 8.

Hence, the result follows. ��
Lemma 5 (e(S), e(S)) is an equilibrium demand vector.

Proof Clearly, checking only deviations upward suffices. If a player increases his
demand to x > e(S), his payoff will be π(x), and by Lemma 4 we know that π(x) ≤
1
2 ≤ e(S). ��
Lemma 6 If S 	= �2, then (1, 1) is not an equilibrium demand vector.

Proof Consider (1,1). The randomly selected playerwill revise his demand to 1
2 , which

will be implemented with probability 1
2 . Therefore, each player’s expected utility in

this case is 1
8 + 1

4ψ
i
S(

1
2 ). However, if a player deviates to y < 1 such that the resulting

demands are still not feasible, his payoff from this deviation is 1
2ψ

i
S(

1
2 ). Thus, it is

enough to prove that 1
2ψ

i
S(

1
2 ) > 1

8 + 1
4ψ

i
S(

1
2 ), which is equivalent to ψ i

S(
1
2 ) > 1

2 . This
is equivalent to S 	= �2. ��

Equipped with the lemmas, we can turn to prove Theorem 1.

Proof of Theorem 1 By Lemma 5, (e(S), e(S)) are equilibrium demands. Assume
by contradiction that there exists another equilibrium. Let (x, y) be the equilibrium
demands. By Lemma 2, x = y. Clearly, x ≥ e(S). By Lemma 3, x ∈ {e(S), 1} and
by Lemma 6 x < 1. This contradicts the assumption that the equilibrium in question
is not the one with the egalitarian demands. ��

8 The above inequality is equivalent to ψ i
S( x2 ) > x

2 ; the latter holds, since ψ i
S( x2 ) ≥ 1− x

2 and x ∈ (0, 1).
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For problems S that do not satisfy (I) and (II), it may be possible to construct equi-
libria of G(S) different from the one described in Theorem 1. To see an example,
take m ∈ [ 12 , 1] and consider the bargaining problem S which is the convex hull of
{(0, 0), (0, 1), (m, 1), (1, 0)}. The demands (m, 1) constitute an equilibrium of G(S).
To see this, note first that player 2 receives his ideal payoff so he obviously does not
have a profitable deviation. As for player 1, if he deviates to some x ∈ (m, 1) his
payoff would be 1

2ψ
1
S(

1
2 ) ≤ 1

2 ≤ m; if he deviates to x = 1 and is called to be the
reviser, then his payoff would be π(1) = 1

4 .

3.2 Divide-the-dollar

For non-DD problems, part of the incentive to be the less greedy player stems from
the fact that the residual share after the revision,ψ i

S(z), is strictly greater than 1− z. In
DD, this is not the case. That the incentive to be the less greedy player is less powerful
in DD translates to the emergence of an additional equilibrium, one in which both
players are maximally (and equally) greedy.

Proposition 1 G(�2) has precisely two subgame perfect equilibria. In one equilib-
rium, the (first-stage) demands are ( 12 ,

1
2 ) and in the other the (first-stage) demands

are (1, 1). In the latter, the randomly chosen player revises his original demand (i.e.,
1) to 1

2 in the second stage.

Proof It is easy to verify that Lemmas 1–5 apply to S = �2. It only remains to show
that (1, 1) is an equilibrium demand vector. Note that under these demands one player
will be selected at random (with probability half), and he will revise his demand to 1

2 ,
in which case the payoff vector ( 12 ,

1
2 ) is implementedwith probability half. In short, in

this case each player’s expected utility is 1
4 . To see that there is no profitable deviation,

consider, w.l.o.g, player 2. Suppose that he deviates to some y < 1. If (1, y) /∈ S, then
player 1 will be the reviser and player 2’s expected utility from the revision will be
without a change, 1

4 . If (1, y) ∈ S, then y = 0, which is clearly not profitable. ��
The equilibrium whose demands are ( 12 ,

1
2 ) Pareto-dominates the one whose demands

are (1, 1). There is an additional sense in which the former is superior to the latter.
Suppose that all that a player knows is that his opponent will demand a quantity
which is consistent with some equilibrium, though he is not sure according to which
equilibrium the opponent is going to play. This is described in the following table:

Player 1 \ Player 2 1
2 1

1
2

1
2 , 1

2
1
4 , 1

4

1 1
4 , 1

4
1
4 , 1

4

In this strategic-form game, there are precisely two Nash equilibria: ( 12 ,
1
2 ) and

(1, 1). The former is in weakly dominant strategies, the later is in dominated strategies.
Moreover, of these two equilibria, the former is proper (Myerson 1978), the latter is
not.
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Another support for the ( 12 ,
1
2 ) equilibrium is based on the following continuity

argument. Take any S 	= �2, which satisfies (I) and (II), and consider �ε
2 ≡ (1 −

ε)�2 + εS. Note that G(�ε
2) has a unique equilibrium for all ε > 0; requiring the

equilibrium correspondence to be continuous implies that the equilibrium of the limit
game, G(�2), is the ( 12 ,

1
2 ) equilibrium. This argument for equilibrium selection can

be viewed as combining the two approaches that have been studied in the literature:
it combines limit taking—analogous to Nash’s smoothing—and addition of a second
stage to the game.

4 n-player generalizations

Anatural question is how to extend ourmodel to n > 2 players. Consider the following
generalization, which is played with respect to some n-player bargaining problem,
S.9 First, each player i announces an entire vector of shares, xi = (xi1, · · · , xin)
(
∑

j x
i
j = 1). If

∑
xii ≤ 1, then each player receives his own demand, xii . In case of

demand incompatibility, the most (or a most) greedy player is selected to revise his
demand. As opposed to the first-stage strategy, in the second stage the reviser only
announces a number (own demand), not an entire vector. Assume that k is selected, and

denote his revised demand by zk . This revised demand zk must satisfy zk ∈ [ 1−xkk
n−1 , xkk ].

Let λ solve the following equation:

zk = (1 − λ)xkk + λ

(
1 − xkk
n − 1

)
.

With probability λ player k receives zk and any other player receives 1−zk
n−1 ; with

the complementary probability, no one receives anything. We denote this game by
GAv

n (S). The superscript stands for “average,” reflecting the restriction on the lower
bound on the revised demand, namely that it is the average offer to the other players.
Note that G(S) = GAv

2 (S).
A comprehensive analysis of GAv

n (S) is beyond the scope of this paper. We confine
our attention to the possibility of sustaining the vector of egalitarian demands as a
(first-stage) equilibrium outcome in this game.

Theorem 2 The game GAv
n (S) has a subgame perfect equilibrium in which each

player’s first-stage own demand is xii = e(S) if and only if e(S) ≥ 1
4 .

Proof W.l.o.g, consider a deviation upwards of player 1 from a profile such that xii =
e(S) for all i . Similarly to the derivation from the proof of Theorem 1, one can show
that the probability λ is given by λ = (x−z)(n−1)

nx−1 , where z is the revised demand. Upon
deviating, player 1 maximizes f (z) = zx − z2, where x is his own demand in the first
stage of the deviation. The solution to this maximization can be interior or at the left

9 The definition of a bargaining problem in the n-player case is a straightforward analog of the 2-player
definition. Hence, for brevity, we do not repeat the details.
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corner. The former case obtains if x > 2
n+1 and the latter obtains if x ≤ 2

n+1 . The

optimal revised demand in these two cases is z∗ = x
2 and z∗ = 1−x

n−1 , respectively.
Consider first the possibility of an interior solution, namely when the demand at the

first stage of the deviation, x , satisfies x > 2
n+1 . In this case, player 1’s payoff is given

by π(x) = (n−1)x2

4(nx−1) . The FOC π ′(x) = 0 is obtained at x = 2
n , but this point is a local

minimum; thus, the maximum is obtained at one of the corners: x = max{e(S), 2
n+1 }

or x = 1.
Consider the left corner, max{e(S), 2

n+1 }.
Case 1: max{e(S), 2

n+1 } = e(S). In this case, the supremum payoff that the devi-
ation can yield is π(e(S)). We argue that this number is smaller than e(S), namely
(n−1)e(S)2

4(ne(S)−1) ≤ e(S). This inequality simplifies to e(S) ≥ 4
3n+1 . To see that the last

inequality holds, it is enough to show that 2
n+1 ≥ 4

3n+1 , since e(S) ≥ 2
n+1 by assump-

tion. Since 2
n+1 ≥ 4

3n+1 is equivalent to n ≥ 1, the deviation is not profitable.

Case 2: max{e(S), 2
n+1 } = 2

n+1 . Substituting x = 2
n+1 in the payoff function gives

π( 2
n+1 ) = 1

n+1 < 1
n ≤ e(S), so the deviation is not profitable.

Therefore, if there exists a profitable deviation such that the first stage of the devi-
ation satisfies x > 2

n+1 , then x = 1. Consider then x = 1. Substituting x = 1 in the

payoff function gives the payoff 1
4 , which means that this deviation is profitable if and

only if e(S) < 1
4 .

Finally, consider the corner solution z∗ = 1−x
n−1 (which corresponds to the case

x ≤ 2
n+1 ). Player 1’s payoff is z = 1−x

n−1 , which is strictly decreasing in x ; the optimum

is obtained at x = e(S), which gives the utility 1−e(S)
n−1 . Since 1−e(S)

n−1 ≤ e(S), such a
deviation is not profitable. ��

Let �n ≡ {u ∈ R
n+ : ∑n

j=1 u j ≤ 1}. The following is an immediate consequence
of Theorem 2.

Corollary 1 The game GAv
n (�n) has a subgame perfect equilibrium in which each

player’s first-stage own demand is xii = 1
n if and only if n ∈ {2, 3, 4}.

The game GAv
n is not the only natural n-player generalization of our model. Consider

the following generalization, which is identical to GAv
n , except that the lower bound

on the revised demand is min j xkj , not
1−xkk
n−1 . That is, the lower bound on the revised

demand is the minimum amount which is offered to any of the other players, not the
average of what is offered to them. In this case, the probability λ is defined by the
following equation:

zk = (1 − λ)xkk + λmin j x
k
j .

The rules of the game are as in GAv
n : demand incompatibility leads to a second

stage, in which, with probability λ, the reviser, call him player k, receives zk and any

other player receives 1−zk
n−1 , and with the complementary probability no one receives

anything. We denote this game by GMin
n . The superscript refers to the fact that the

lower bound on the revised demand is the minimum offer to the other players.
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Our result for GMin
n is less general than our aforementioned result for GAv

n : it
only covers the case where the underlying bargaining problem is �n .10 Note that
GMin

2 (�2) = GAv
2 (�2) = G(�2).

Theorem 3 The game GMin
n (�n) has a subgame perfect equilibrium in which each

player’s first-stage own demand is xii = 1
n if and only if n ∈ {2, 3, 4}.

Theorem 3 is the parallel of Corollary 1, when the game is GMin
n rather than

GAv
n . The intuition behind these results is as follows. Consider the equal split vector,

( 1n , · · · , 1
n ).When every player announces this vector, each player’s payoff is 1

n , which
is decreasing in n. However, upon deviating upwards and obtaining the position of the
reviser, a player’s payoff is independent of n.11 Hence, such a deviation is necessarily
profitable if n is sufficiently large. The remarkable feature of these results is that the
cutoff on the number of players is n = 4. As far as we know, there is no other result
in the bargaining literature that depends on such a cutoff.12

Proof of Theorem 3 By Theorem 1, we know that the equal split is sustainable in
equilibrium for n = 2. Let then n > 2. Consider a profile of first-stage vectors such
that xii = 1

n for all i . We consider the following cases.

Case 1: n > 4. If player 1, say, deviates to (1, 0, · · · , 0), he becomes the most greedy
player is therefore called to revise his demand. Let z ∈ [0, 1] denote his revised
demand. The expected utility corresponding to z is (1− z)z, hence player 1’s optimal
z is z∗ = 1

2 , and the utility it brings about is
1
4 . Clearly, the deviation is profitable (had

player 1 not deviated, his utility would have been 1
n < 1

4 ).

Case 2: n = 4. We show that, w.l.o.g, player 1 does not have a profitable deviation.
Assume by contradiction that he has one. Clearly, the deviation is such that it makes
him the most greedy player, and besides his own demand it only matters what is
the minimum that he offers the other players. Let α denote his own demand and β

denote this minimum. Then α > 1
4 > β. Player 1’s revised demand, z, satisfies

z = (1−λ)α +λβ, so λ = α−z
α−β

and the expected utility is λz = ( α−z
α−β

)z. The solution
to the maximization over z must be interior, since z = β gives the utility β, which
makes the deviation not profitable. Therefore, the deviation is such that z∗ = α

2 and

the expected utility from the deviation is α2

4(α−β)
. The profitability of the deviation

implies:

α2

4(α − β)
>

1

4
.

10 The reason for this can be seen in footnote 13.
11 More precisely: if there is a profitable deviation, then the deviation to the vector where the player asks
the maximal payoff for himself and offers zero to any other player is profitable deviation; conditional on
this deviation, the deviator’s payoff is independent of n.
12 It is easy to check that, as opposed to equal division, the first-stage demands where each player demands
the entire dollar for himself are consistent with a subgame perfect equilibrium of either GMin

n (�n) or
GAv
n (�n), for any n.
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This inequality implies that either α <
1−√

1−4β
2 or α >

1+√
1−4β
2 . We will treat

these two cases separately, showing that neither of them is possible.

Consider first α <
1−√

1−4β
2 . Note that z∗ = α

2 ≥ β, hence α ≥ 2β. Therefore, we
obtain 1 − √

1 − 4β > 4β. Rearranging this gives
√
1 − 4β > 1—a contradiction.

Nowconsiderα >
1+√

1−4β
2 . Suppose that the amountβ is offered to player 2. Then,

the sum of offers to players 3 and 4 is at least 2β (because β is the minimal offer). On

the other hand, the sum of offers to players 3 and 4 is 1−α−β < 1−(
1+√

1−4β
2 )−β.13

Therefore:

1 −
(
1 + √

1 − 4β

2

)
− β > 2β,

which implies 1−√
1−4β
2 > 3β, or equivalently 1 − 6β >

√
1 − 4β. Since the LHS

must be positive,β < 1
6 . On the other hand, rearranging this inequality givesβ > 2

9—a
contradiction.

Therefore, equal division is sustainable in equilibrium in the 4-player case.

Case 3: n = 3. Similarly to the 4-player case, consider a deviation of player 1 where
he asks α > 1

3 for himself, and offers β to player 2, where β < 1 − α − β (i.e., β is
the minimum he offers to any other player). If there exists a profitable deviation, then
there is a deviation as above that satisfies:

α2

4(α − β)
>

1

3
.

This inequality implies that either α <
2−2

√
1−3β
3 or α >

2+2
√
1−3β
3 .

Consider first α <
2−2

√
1−3β
3 . Since z∗ = α

2 ≥ β, hence α ≥ 2β. Therefore we
obtain 2 − 2

√
1 − 3β > 6β. Rearranging this yields

√
1 − 3β > 1—a contradiction.

Now consider α >
2+2

√
1−3β
3 . Player 3 is offered 1−α−β < 1−(

2+2
√
1−3β
3 )−β,

which is more than that offered to player 2. Hence

1 −
(
2 + 2

√
1 − 3β

3

)
− β > β,

or

1 − 6β > 2
√
1 − 3β.

Since the LHS is positive, β < 1
6 . On the other hand, rearranging this inequality

gives β >

√
1
12—a contradiction.

Therefore, equal division is sustainable in equilibrium in the 3-player case. ��

13 This argument relies on the specific DD structure.
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5 Conclusion

In line with other papers in the DD/NDG literature, we have presented a two-stage
mechanism, in which a second stage is played in case of demand incompatibility at the
first-stage NDG. Under a certain condition on the feasible set, our game has a unique
subgame perfect equlibrium; in this equilibrium, there is immediate agreement on the
egalitarian payoffs. On the other hand, in the DD version of our game, an additional
equilibrium exists: one in which each player demands the entire dollar in the first stage
and the randomly chosen player revises his demand to 1

2 .
We have also studied two n-player generalizations of our game. In either general-

ization, when the underlying bargaining problem is the unit simplex, sustaining the
egalitarian outcome in a subgame perfect equilibrium can be achieved if and only if
the number of players is at most four. The general theme behind these results is as
follows. Consider two-stage games with the following properties: (a) the first stage
can end with “success” or “failure,” (b) the second stage is played only after “failure,”
(c) if the second stage is reached, the game’s outcome is determined by a subset of
players, (d) the players are symmetric, and (e) a player can trigger “failure” and make
sure that he gets to be one of the influencing players at the second stage. In such
games, the group of players who determine the outcome in the second stage has to be
sufficiently large relative to the grand set of players; alternatively, the influence of each
individual player who participates at the second stage must be bounded. Otherwise,
an equilibrium with first-round “success” would be impossible: any individual player
will have an incentive to upset it and trigger the second stage, in which he will be
over-proportionally influential. Alternatively, the payoffs from “success” need to be
sufficiently large in order to make such deviations non-profitable.
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