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Abstract We study the importance of considering different energy requirements for physical
capital and final good production in an overlapping generations (OLG) resource economy.
In contrast to the standard OLG framework, but consistently with the empirical evidence, we
assume that the accumulation of physical capital requires more energy than the production of
consumption goods. Focusing on exhaustible energy resources, we find that OLG equilibria
can exhibit “non-classical dynamics”: the economy generates complex dynamics where,
differing from the response predicted by the standard approach, resource prices may not
increase monotonically. This result illustrates that the technological assumptions behind the
energy inputs should be taken with caution, in particular on dynamic analyses involving
exhaustible energy resources.

Keywords Exhaustible energy resources · Economic dynamics · Overlapping generations

JEL Classification Q31 · Q43 · O44

1 Introduction

The accumulation of physical capital has been frequently considered as a crucial ingredient
to cope with the limitation to economic growth due to the usage of exhaustible energy
resources (this literature dates back to the seminal papers of Dasgupta and Heal 1974, 1979;
Solow 1974; Stiglitz 1974). However, the majority of this literature, assuming the same
production technology for both consumption and physical capital goods, is inconsistent with
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the empirical evidence that identifies significant heterogeneity in the energy requirements of
these two sectors. In this paper we investigate the implications of assuming different energy
technologies for physical capital and final good production. More specifically, our study
illustrates how the standard results regarding the dynamics of exhaustible resources, and
their corresponding prices, are modified. We point out in this respect the intergenerational
mechanisms behind the extraction of natural resources.

Analyzing the technological energy characteristics of the economy, data show significant
heterogeneity among sectors. In particular, by means of considering energy intensity ratios,
several recent studies (e.g., Ecorys 2009; Upadhyaya 2010; UNIDO 2011) find that the
sectors involved in the formation of physical capital, such as manufacturing sectors in the
construction of infrastructures and buildings, are highly energy-intensive. In contrast to this,
manufacturing sectors that are related to consumption goods are considered as moderate or
low energy-intensive. Moreover, from a panel analysis of 39 countries (OECD, Asia and
Latin America) between 1971 and 1996, Miketa (2001) concludes that the physical capital
formation has generally led to an increase of the energy intensity of the economy. Papers
such as Bullard and Herendeen (1975) and Costanza (1980) have already pointed out the
importance of explicitly considering a distinct energy technology to produce physical capital
goods. With regard to this issue, Costanza (1980) also suggests that energy resources could
seriously limit economic growth through the process of physical capital accumulation.

To the best of our knowledge, assuming different energy technologies in the production
of physical capital and consumption goods has been only studied in Pérez-Baharona (2011).
Considering a general equilibriummodel with infinite-horizon representative household, this
paper allows for a richer extraction dynamics of the exhaustible energy resource: if the phys-
ical capital technology requires relatively more energy than the production of consumption
goods, resource extraction decreases in time but not monotonically. However, due to the com-
plexity of his analysis (applying a method of Special functions), the underlying economic
mechanisms remain ambiguous. In our paper we consider the overlapping generations (OLG)
framework, which is a tractable alternative to the infinite-horizon representative agentmodels
(Acemoglu 2009). Moreover, numerous papers state that the OLG approach offers a clearer
explanatory capacity for natural resource problems, allowing us to understand the contribu-
tion of the intergenerational dimension.1 Pérez-Baharona (2011) additionally assumes that
the production technology of consumption goods is linear (i.e., an AK technology). From
this dimension, our paper also extends his framework to the case of non-linear production
function.

In the literature on natural resources and OLG models, the behaviour of the economy
over time typically exhibits (asymptotic) convergence to a single steady-state (or a bal-
anced growth path). Under linear (or without) regeneration of resources and with exogenous
(or no) technological progress, this long-run equilibrium is saddle-path stable and, conse-
quently, the equilibrium trajectory is unique. The standard results about economic growth and
the dynamics of exhaustible energy resources in OLG economies are mainly built upon the
frameworks of Mourmouras (1991) and Olson and Knapp (1997). They show that, without
technical progress and under standard assumptions about preferences and technology, the
path of resources extraction exhibits a monotonic behaviour, decreasing over time towards

1 This literature frequently refers to the following three main reasons to prefer OLG to infinitely-lived agent
models. First, resources are a store of value between generations (seeKoskela et al. 2002;Valente 2008;Bednar-
Friedl and Farmer 2013). Second, intergenerational aspects should be taken into account when analyzing
environmental issues and/or natural resource economies (Solow 1974; Padilla 2002; Agnani et al. 2005).
Finally, there exists empirical evidence showing that agents are not perfect altruistically linked (among others,
Altonji et al. 1992; Balestra 2007).
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the steady-state corresponding to natural resources exhaustibility. Olson and Knapp (1997)
notice though that, under non-standard assumptions (finite horizon quadratic utility), the con-
vergence to this steady-state does not need to bemonotone over time. Indeed the extraction can
transitory rise, with a subsequent short-run decrease of the resources prices. Moreover, cycle
extraction is shown to be numerically possible under infinite horizon, CESpreferences and for
a particular set of parameters. Our paper contributes to the literature by showing that the econ-
omy generates complex dynamics and, consequently, resources extraction and energy prices
can evolve non-monotonically over time. In contrast to those approaches, our conclusion does
not rely on non-standard preferences or any particular parameterizations of the exogenous
functions involved in the model. Furthermore, this dynamic result is fully analytical.

Our set-upmainly follows the OLG framework introduced byAgnani et al. (2005), aiming
at extending the model of Pérez-Baharona (2011). Focusing on exhaustible resources, we
describe the global dynamic properties of the economy with respect to the share of energy
inputs in the production of physical capital. As usual, the stock of exhaustible resources
monotonically decreases over time. However, in contrast toMourmouras (1991), the resource
extraction does not necessary decrease following amonotonic trajectory if the share of energy
in the production of physical capital is low enough. As a consequence, differing from the
“classical behavior” predicted by the standard approach built on Hotelling’s (1931) seminal
work, resource prices can decrease in the short-run.

Importantly, the empirical literature on non-renewable resources already identifies the dis-
crepancy between Hotelling’s prediction and the empirical evidence about resource prices,
including energy resources.2 For instance, mineral commodity prices show relative declines
and fluctuation around time trends rather than persistent increases (see figures 1–11 in
Krautkramer 1998). Considering a large data set of U.S. mineral prices, Barnett and Morse
(1963) were the first to systematically identify this pattern. Slade (1982) further reveals that a
U-shaped trajectory is more appropriate in fitting the observed prices of many non-renewable
resources over the period 1870–1978 (see Ferraro andPeretto 2014, for a recent study). Froma
theoretical perspective, known examples of channels that can generate non-monotonic trends
are backstop technologies (Heal 1976), informational asymmetries (Pindyck 1980), technical
change (Slade 1982), the role played by environmental constraints and natural resource abun-
dance (Ahrens and Sharma 1997), or the transitions between renewable and non-renewable
energy resources (Tahvonen and Salo 2001). Our paper identifies in this regard new ingre-
dients to understand the “non-classical dynamics” of natural resource prices, namely the
technological energy characteristics of the formation of physical capital and its interaction
with the intergenerational transmission of natural resources.

The paper proceeds as follows. The general model is introduced in Sect. 2, together with
the definition of competitive equilibrium. Section 3 presents the corresponding equilibrium
dynamics and examines the stability properties of the economy, paying particular attention
to the case of exhaustible energy resources. Conclusions and possible extensions of the paper
are discussed in Sect. 4.

2 The Model

Weconsider a perfect foresight overlapping generations economy,without population growth,
in discrete time with infinite horizon. In contrast to the standard OLG approach, our model
assumes that physical capital accumulation and production of consumption goods have dif-

2 See Krautkramer (1998) for a discussion of this literature.
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ferent energy requirements. More precisely, we follow the empirical evidence supporting that
the physical capital sector is more energy-intensive than the consumption good sector. As
Pérez-Baharona (2011) and Le and Le Van (2016, 2017), we will focus on the example of
an economy where only the production of physical capital requires energy. Our framework
is a highly stylized model of the economy, which aims at illustrating the main mechanisms
behind sectoral differences on energy requirement. Neglecting for the endogenous allocation
of energy between sectors is not realistic. Nevertheless, the greater analytical tractability of
this rather extreme case will allows us to identify the key ingredients of the problem.

We assume an economy with three sectors: final good production, physical capital, and
extraction sectors. The final good, which can be either directly consumed or invested, is
obtained by combining labor and the current stock of physical capital. As usual, each house-
hold provides one unit of labor. The physical capital sector produces the capital of the
economy, where investment and energy are the corresponding technological inputs. Finally,
the extraction sector directly supplies the energy from the extraction of natural resources. We
consider that all agents have rational expectations and each generation consists of Nt > 0
identical households. Moreover, they are price-takers and all the markets are considered to
be competitive.

Since we will assume that the households own the natural resources, let us first specify the
extraction sector and the consumers’ problem.We then describe the firms and the competitive
equilibrium of the economy, setting the optimal behavior of final good and physical capital
sectors.

2.1 Extraction Sector

Following Agnani et al. (2005), natural resources are considered to be an asset (i.e., store of
value) and a technological input. In our model, the economy uses both energy and investment
inputs in order to produce the physical capital. As in their paper, we assume a grandfathering
regime, so that the initial old generation possesses the whole stock of natural resources.
Moreover, at the beginning of each period t the current old agents own the resource stock Et .
This is defined as Et ≡ et Nt , where et is the amount of resources per-worker. Nt represents
the number of workers (households) of generation t in the economy, which can grow at an
exogenous rate n ≥ 0, i.e., Nt+1 = (1 + n)Nt .

For simplicity, as in Mourmouras (1991) or Olson and Knapp (1997), we consider that the
old agents extract themselves the natural resources at zero cost (we specify the consumers’
problem in Sect. 2.2).3 They can directly sell those resources, as energy input, to the physical
capital sector. The extraction flow is denoted by Xt , and the remaining part of the natural
resource is sold to the young agents as a resource asset At (i.e., At = Et − Xt ). Following
the general formulation of Mourmouras (1991), the resource stock regenerates at a linear
rate � � 1 from period t to t + 1. The law of motion of the stock of energy resources, in
per-worker terms, can be formalized as follows:

et+1 = �(et − xt ) = �at , (1)

where xt ≡ Xt/Nt and at ≡ At/Nt . Notice that, for the shake of exposition, we also
consider that population is constant in our economy and, then, n = 0. As pointed out in the
introduction, wewill focus on the dynamic properties of non-renewable resources.We should
notice however that, for the generality of our approach, we present a model that allows for
both types of resources, namely renewable (� > 1) or exhaustible (� = 1).

3 Our model does not include a more detailed specification of this sector because issues such as the technical
progress in extraction or the effect of market power are beyond the scope of the paper.
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2.2 Households

Each consumer receives an income wt , which is equal to the real wage from supplying
her single unit of labor to the final good firm when young. She then allocates this income
among the current consumption ct , the savings st related to investment, and the purchase
of at ownership rights of natural resources. In her last period of life (when she is old at
period t + 1), the agent does not work and just consumes dt+1 out of her entire income, not
leaving any bequests. Her income in t+1 is generated from the return on savings made when
she was young Rt+1st , where Rt+1 ≡ 1 + rt+1 and rt+1 is the interest rate. Moreover, she
also gets income from extracting natural resources and offering them as energy input to the
physical capital sector Qt+1xt+1, and from selling the rest to the young households Pt+1at+1,
where Qt+1 and Pt+1 are the corresponding prices. Accordingly, the budget constraints that
a consumer of generation t faces are:

ct + st + Ptat = wt , (2)

dt+1 = Rt+1st + Qt+1xt+1 + Pt+1at+1. (3)

Generations derive utility from consumption, where their two-period intertemporal utility
function depends on the level of consumption when young ct and when old dt+1. We assume
an additively separable life-cycle utility function U (ct , dt+1) = u (ct ) + βu (dt+1) , where
β ∈ (0, 1) is the subjective discount factor. In particular, we adopt a logarithmic instantaneous
utility function u(·) since we are mainly concerned with the existence of the competitive
equilibrium and its qualitative properties.

Taking the prices of the energy resource and wages as given, the agent born at time t
maximizes her utility by choosing young and old period consumption, and the ownership
rights of natural resources. The corresponding optimization problem of the consumer is
formalized as follows:

max{ct ,dt+1,st ,et+1}
ln ct + β ln dt+1

subject to

ct + st + Ptat = wt ,

dt+1 = Rt+1st + Qt+1xt+1 + Pt+1at+1,

et+1 = �(et − xt )

ct ≥ 0, dt+1 ≥ 0, et+1 ≥ 0, E0 > 0 given.

We then obtain the following first-order conditions (FOC):

dt+1

ct
= βRt+1, (4)

Pt+1

Pt
= Rt+1

�
, (5)

Pt+1 = Qt+1. (6)

Equation (4) equalizes the discounted marginal utilities, where the marginal rate of sub-
stitution between current and future consumption is equal to their relative prices. Equation
(5) is the non-arbitrage condition between the different types of savings (one is related to
investment and the other to ownership rights). Finally Eq. (6) is an additional non-arbitrage
condition, which implies that in the equilibrium the prices of the asset and of the extracted
energy are the same. This last result is indeed consistent with Olson and Knapp (1997) and

123



B. A. Fazlıoğlu et al.

Valente (2008). Moreover, notice that Eqs. (5) and (6) are equivalent to the Hotelling rule
presented in Mourmouras (1991).

2.3 Firms

2.3.1 Final Good Sector

The firms in this sector produce the final good be means of a Cobb–Douglas technology.
Equation (7) below specifies the production function at any date t , where Zt (Eq. 8) represents
the (exogenous) total factor productivity. With constant returns to scale, the number of firms
does not matter and the production is independent of the number of firms that use the same
technology. We are then concerned with the problem of a representative firm. Under this
perfectly competitive environment, taking the prices of inputs (PK

t and wt ) and the initial
levels of technology and capital stock as given, the representative firm maximizes at each
period t the profit by choosing the amount of labor and physical capital inputs:

max{Kt ,Nt }
Yt − PK

t Kt − wt Nt

subject to

Yt = Zt K
α
t N

1−α
t 0 < α < 1, (7)

Zt+1 = (1 + z)Zt z ≥ 0. (8)

At an interior solution of the firm’s optimization problem the following FOCs are satisfied.
Input prices equal the corresponding marginal benefits, where all variables are expressed in
per-worker terms (kt ≡ Kt/Nt and yt ≡ Yt/Nt ):

αyt = PK
t kt , (9)

(1 − α)yt = wt . (10)

Equation (11) below summarizes themarket clearing condition of the economy.As pointed
out before, the final good in t is consumed by young and old (generation t − 1) agents, Ct

and Dt respectively, or invested for the production of future capital stock as savings St :

Yt = Ct + Dt + St . (11)

2.3.2 Physical Capital Sector

This sector provides the physical capital to the economy. In our model physical capital is
considered to be an intermediate good. The standard OLG approach assumes that the capital
stock at time t + 1 is entirely determined by the savings made at time t , which is equal to
the investment. Notice that this literature frequently focuses on the case of full depreciation
since every period t represents a whole life stage of an individual, i.e., typically around
30 years (for instance, Acemoglu 2009). Thus Kt+1 = It . If energy were a production
factor of the economy, this expression together with (11) implies that the production of each
unit of physical capital or consumption goods would have the same energy requirements.
However, the empirical evidence shows that the physical capital production is relatively more
energy-intensive than consumption. As observed before, we illustrate this idea by means of
considering that only physical capital requires energy to be produced. Then the formation of
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physical capital will be determined not only by the investment but also by the energy that
this process requires.4

In contrast to previous OLG models, the physical capital at t + 1 is produced by means
of combining the extracted energy resources Xt+1 and the investment It . Assuming a Cobb–
Douglas technology,5

Kt+1 = Bθ
t+1X

θ
t+1 I

1−θ
t 0 < θ < 1, (12)

St = It , (13)

Bt+1 = (1 + b)Bt , b ≥ 0. (14)

Savings equals investment in our model (Eq. 13). The investment made in t is used to built
the capital in the next period t+1. But this time investment is considered as an input, together
with energy, to create new physical capital (Eq. 12). θ ∈ (0, 1) represents the importance
of natural resources for the physical capital formation. As in the standard OLG literature,
we assume full depreciation of physical capital since each period t represents a long time
span. The scale parameter B grows at a rate b, representing the exogenous technical progress
in the production of capital goods. We consider that the capital used in t + 1 is produced
with the available technology Bt+1 at the beginning of the period (Eq. 14). Consistently with
this assumption, the production of Kt+1 requires the extracted energy of resources Xt+1.
Notice finally that, in contrast to (8), the technical progress in this sector is energy-saving
and specific to the formation of physical capital.

The representative firm of this sector maximizes profits at each period t , choosing the
amount of energy resources that will be used in the formation of physical capital:

max{Xt }
PK
t Kt − Qt Xt

subject to

Kt = Bθ
t X

θ
t I

1−θ
t−1 ,

taking as given the prices of capital and energy, and the level of investment. At an interior
solution of the firm’s optimization problem the following FOC is satisfied:

Qt = θ PK
t Bθ

t X
θ−1
t I 1−θ

t−1 . (15)

Therefore, taking the technologies (7) and (12), and the price condition (9), Eq. (15) becomes:

Qt = θαYt X
−1
t . (16)

As in Agnani et al. (2005), under full depreciation of physical capital, the return of investing
in physical capital Rt St−1 at time t should be equal to the profit of producing new capital
(1 − θ)PK

t Kt to prevent arbitrage opportunities.6 We then obtain the following condition
since St−1 = It−1:

4 Ecorys (2009, p. 10) also points out that “most of the energy-intensive industries produce intermediate
goods”.
5 We take a Cobb–Douglas formulation in order to compare our results with the previous OLG literature,
in particular with Mourmouras (1991) and Olson and Knapp (1997) that specifically consider this type of
technology. Moreover, as Dasgupta and Heal (1979) observe, one can neglect the thermodynamic constraint
of a minimum energy requirement (i.e., Leontief production function). This is possible if we interpret energy
as an input service that already incorporates a basic level of energy (for an explicit modeling of this physical
constraint see, for instance, Pérez-Barahona and Zou 2006).
6 Choosing the optimal resource stock (15) and the technology (12), themaximumprofit that the representative
firm can obtain is given by

π∗
t = PK

t Kt − θ PK
t Bθ

t X
θ−1
t I 1−θ

t−1 Xt = (1 − θ)PK
t Kt .
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Rt = (1 − θ)PK
t B

θ
1−θ
t X

θ
1−θ
t K

θ
θ−1
t . (17)

2.4 The Competitive Equilibrium

The dynamic competitive equilibrium for our OLG natural resource economy is defined as a
sequence of prices

{
wt , Rt , PK

t , Pt , Qt
}∞
t=0 and feasible allocations

{ct , dt , st , et , at , xt , it , yt , kt+1}∞t=0, given the positive initial values for K0, E0, Z0, B0,
N0, and the law of motion of exogenous technological progresses (Zt and Bt ) and popu-
lation (Nt ), such that the consumers maximize their life-time utility, firms maximize their
profits, and all markets clear at every period t . Considering the results presented above, this
equilibrium is the solution of the system of Eqs. (1)–(17).7

3 Equilibrium Dynamics

The main focus of our paper is to study the dynamics of the economy around the steady-state
equilibrium. We therefore assume that there is no technological progress, i.e., b = z = 0
in (8) and (14). As in Mourmouras (1991), Farmer (2000) and Bednar-Friedl and Farmer
(2013), we will show that the intertemporal equilibrium dynamics can be reduced to a two-
dimensional system. One of the equations represents the law of motion of the stock of natural
resources Et , while the other describes the evolution of the extraction flow Xt . We provide
all computational details in “Appendix A”.

Using the physical capital technology (12), the condition (13), the budget constraints and
the FOCs (2)–(5) of the households’ problem, and the FOC (10) of the firms’ maximization
problem, we obtain for kt+1

k
1

1−θ

t+1 = B
θ

1−θ

t+1 x
θ

1−θ

t+1

[
σ(1 − α) + θα

(
1 − et

xt

)]
yt , (18)

with σ ≡ β/(1+ β). In addition, taking (5), (6), (9), (15) and (17), the following difference
equation for kt+1 arises:

�k
1

1−θ

t+1 xt
yt xt+1

= α(1 − θ)B
θ

1−θ

t+1 x
θ

1−θ

t+1 . (19)

Substituting for kt+1 in those expressions yields equation (20) below, which describes the
dynamics of resource extraction. Since it also depends on the stock of resources et , we need
to recall the law of motion of the natural resources (1) in order to set the following dynamical
system:

Footnote 6 continued
Notice that the non-arbitrage condition Rt St−1 = (1− θ)PK

t Kt can be alternatively obtained as a FOC if we
assume that the firm also decides about its demand of investment input I dt−1. We would then include the new

term −(1 + rt )I dt−1 in the maximization problem above. Rt , which is defined as 1 + rt , will adjust in order

to ensure that It−1 = I dt−1.
7 It is customary to assume in this literature (e.g., de la Croix and Michel 2004) that, at the first period t = 0,
each old household N−1 is the owner of the same fraction s−1 of installed capital stock K0: s−1 = K0/N−1.
Considering (12) and (13), one can obtain an equivalent expression for our model where energy is required to
produce physical capital: s−1 = K0

1/θ /X0N−1.
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xt+1 = �

( β
(1+β)

(1 − α) + αθ

α(1 − θ)

)

xt − �θ

(1 − θ)
et , (20)

et+1 = �(et − xt ). (21)

The linear planar system (20)–(21) describes the dynamics of our economy, which can be
rewritten in matrix form. The next proposition summarize this outcome:

Proposition 1 The dynamic properties of our economy are described by the system of dif-
ference equations

[
xt+1

et+1

]
= �

[
xt
et

]
,

where we define the matrix � ≡
[

ψ1 ψ2

ψ3 ψ4

]
with

ψ1 ≡ �

(1 − θ)

β

(1 + β)

(1 − α)

α
+ �θ

(1 − θ)
,

ψ2 ≡ − �θ

(1 − θ)
,

ψ3 ≡ −�,

ψ4 ≡ �.

3.1 Steady-State Equilibria

Let us first identify the steady-state equilibria of our economy. In this respect, we provide
the necessary and sufficient conditions for existence of such equilibrium:

Proposition 2 The steady-state equilibria (x∗, e∗) of our economy are the solutions of the
following system of equations:

x∗ = ψ1x
∗ + ψ2e

∗, (22)

e∗ = ψ3x
∗ + ψ4e

∗. (23)

We can then conclude that there is a continuum of steady-states iff {ψ1 �= 1, ψ4 �= 1
and (1 − ψ4) = ψ2ψ3

(1−ψ1)
}, where x∗ = ψ2

1−ψ1
e∗. Otherwise, there is a unique steady-state

(x∗, e∗) = (0, 0).

Proof See “Appendix B”. �	
As it is clear from Proposition 2, the economy has either a unique steady-state (x∗, e∗) =

(0, 0) or a continuum of them. As ψ4 = 1 for non-renewable resources (i.e., � = 1). Then,
the only possible steady-state for this type of resources would (x∗, e∗) = (0, 0). This is the
usual result with non-renewable resources, implying their long-run exhaustibility. In the next
section, we will study how the economy converges (if that is the case) to the steady-state.

3.2 Stability and Exhaustible Resources

As observed in the introduction, our general objective is to highlight the role played by the
energy intensity assumptions of the different sectors of the economy. We will demonstrate
in this section that those assumptions have important dynamic implications and, therefore,
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they should be taken with caution. In particular, we will show that the different energy
requirement of the physical capital and consumption goods sectors turns out to be relevant to
understand economic dynamic phenomena such as the non-classical behavior of exhaustible
energy resources. We will use in this regard the general framework presented in Sect. 2,
paying attention to the case of non-renewable resources.

From now on, we will concentrate on non-renewable resources and the dynamics of
the economy around the corresponding unique steady-state (x∗, e∗) = (0, 0).8 We analyze
below the stability properties of the system and the subsequent possibility of non-monotone
convergence. The model will allow us to identify the fundamental role played by the share
of energy in the capital accumulation, together with its interaction with the discount rate and
the share of physical capital in the final good production. Notice as well that our conclusions
are of global dynamics since the system is linear and, therefore, we do not need to apply any
approximation around the steady-state.

3.2.1 Dynamics

We denote by λ1 and λ2 the eigenvalues of matrix � in Proposition 1. Let us define the com-
bination of parameters β̃ ≡ β

(1+β)
(1−α)

α
> 0. The following proposition entirely describes

the dynamics of our economy by means of studying the eigenvalues λ1 and λ2. In particular,
we identify cases where complex dynamics arise, allowing our model to reproduce the non-
classical response described in the introduction. These conditions prove to be related to the
assumption of considering that the physical capital sector is more energy intensive than the
final good production.

Proposition 3 For exhaustible resources and different parameter combinations, the stability
of the zero steady-state changes such that:

(i) For 0 < θ < 1
4 and β̃ + 1

β̃
< 2(1 − 2θ) the dynamics of the economy are complex:

(a) If θ < 1 − β̃ both eigenvalues (in absolute value) are smaller than one, so the
steady-state is stable and indeterminacy occurs.

(b) If θ > 1 − β̃ both eigenvalues (in absolute value) are greater than one, so the
steady-state is unstable.

(ii) Otherwise, the dynamics are non-complex. Moreover in this case the eigenvalues are
on the different side of one (λ1 > 1 and 0 < λ2 < 1) and, therefore, the steady-state is
saddle-path stable.

Proof See “Appendix C”. �	
Proposition 3 shows that the share of energy resource input in the formation of physical

capital (represented in the model by the parameter θ ) is key to understand the dynamics of the
economy. When the share of energy in the accumulation of physical capital is high enough
( 14 ≤ θ < 1) we get non-complex saddle-path dynamics. This implies, for non-renewable
resources, the usual monotonic asymptotic convergence to exhaustibility. However, for a
lower share (0 < θ < 1

4 ) the economy can reproduce situations of complex dynamics and,
in particular, of non-monotone convergence. This result is presented in the statement (i.a)
of the proposition. Since energy is assumed to be non-renewable in this economy, the stock

8 We provide a discussion about the case of renewable resources in the concluding remarks.
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of resources et cannot increase with time. However, differing from the situation of non-
complex dynamics, the extraction (flow) of resources xt does not necessary decrease all time
during the (asymptotic) convergence to the zero steady-state. This result is consistent with
the non-monotonic convergence result of Pérez-Baharona (2011), where the production of
consumption goods is assumed to be linear (AK technology). From this perspective, our
paper extends his conclusion to the case of non-linear technology and OLG framework.

We should also observe that the dynamics described above can somehow give support
to the Environmental Kuznet Curve (EKC).9 If one associates increasing extraction with
environmental degradation, equation (18) and the complex dynamics of extraction show
the possibility of a non-monotonic correlation between extraction and income per capita.
If extraction (xt+1) increases, income per capital (yt+1 = Zkα

t+1) raises too. It is however
possible that, after some periods, income per capital increases even if extraction reduces: this
can happen if the effect of a lower extraction xt+1 is compensated by a greater yt and, thus,
a higher investment and creation of physical capital.

Let us finally relate the evolution of the energy prices with the dynamics of the extraction.
This can be done by replacing Yt in (16) by the technology (7), and then Kt by (12). Hence,
we can state the following:

Proposition 4 Provided that α, β ∈ (0, 1), there is a negative relationship between extrac-
tion and energy prices Qt .

Considering the extraction dynamics, Proposition 4 allows us to conclude that energy
prices can transitory decrease. This evolution of extraction and resource prices corresponds
to the non-classical response of exhaustible energy resources, which was empirically veri-
fied by previous studies. From a theoretical point of view, the possibility of non-monotonic
convergence is an important property of our framework since it provides an alternative expla-
nation to this empirical fact. It underlines the influence of the energy intensity assumptions
on the dynamic predictions of the model. Moreover, we should notice that this non-classical
dynamics is likely to happen for small values of θ (lower than 1/4 in our model), which
corresponds to economies with a relatively low share of energy inputs in the production of
physical capital. This situation is in line with the improvement of energy efficiency that was
empirically identified in the industrial sector of many developed countries (among others,
Miketa 2001; Ecorys 2009; UNIDO 2011).

3.2.2 Economic Mechanisms

Proposition 3 provides necessary and sufficient conditions for complex/non-complex dynam-
ics. However, regarding to specific non-monotonic dynamics such as the EKC, the U-shaped
evolution of energy prices (Slade 1982), or cycles (e.g., Kim and Lounging 1992; Olson
and Knapp 1997; Lutz 2008), one should identify further particular conditions. Nevertheless,
even if from this perspective our conditions are only necessary, they already allow us to
identify key economic mechanisms to understand those types of non-classical dynamics.

As pointed out before, θ is an important parameter for the dynamics of the economy. It
is closely related to the importance that each generation gives to the energy resources as an
input for the formation of physical capital. This will affect in turn the value of the ownership
rights of natural resources (at ), which are sold from one generation to the next. In economies
where θ is small (0 < θ < 1/4) energy resources are relatively unimportant with respect

9 The EKC hypothesis postulates that environmental quality deteriorates at early stages of development and
subsequently improves afterwards (for instance, Kijima et al. 2010).
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to the other inputs in the physical capital technology. Therefore, the future generations give
little value to the ownership rights of resources. The market would then not have incentives
to leave many resources to the next generation, increasing thus the extraction made by the
old generation.10 This will continue until energy becomes scarce enough. At this moment
the value of the ownership rights raises, creating new incentives to reduce extraction and,
consequently, increasing the amount of resources left to the next generation.

Notice too that the occurrence of non-classical dynamics depends as well, through the
coefficient β̃ defined before, on the share of physical capital in the technology of final good
(α) and on the discount rate (β). Statement (i) in Proposition 3 identifies boundaries for β̃.
On the one hand, the condition in (a) can be rewritten as β̃ < 1 − θ , providing an upper
limit.11 This implies that β̃ < 2(1 − 2θ) since (1 − θ) < 2(1 − 2θ) for 0 < θ < 1/4. On
the other hand, the second condition β̃ + 1/β̃ < 2(1 − 2θ) states then that β̃ cannot be too
small either because of the term 1/β̃.

In order to study the effect of these boundaries and, then, the role played by α and β,
let us consider a reference economy where the values for these parameters are such that the
conditions of statement (i.a) hold. For a higher discount rate the parameter β̃ will increase
and, therefore, the upper limit may not be respected anymore. However, this effect can be
counterbalanced if the economyhas a higher share of physical capital in the technologyoffinal
goods.12 The economic interpretation is the following. A higher discount rate implies greater
concern of consumers for their old age and, consequently, for the amount of resources they
are going to extract or leave (sell) to the next generation. Since energy is not very important
in this economy (0 < θ < 1/4), the next generation will not value much the ownership
rights. Therefore, as in the mechanism identified before, the current generation may increase
the resource extraction for some periods. Nevertheless, a larger share of capital in final good
technologywould increase the value that future generations attach to the energy resources and
the corresponding ownership rights, ensuring then that the extraction eventually decreases.

Let us finally observe that the economic mechanisms identified here are in agreement with
papers such as Brookes (2000), Greening et al. (2000) and Sen (2016). These papers identify
the possibility of having an increasing energy extraction (supply) that is compatible with
situations where the technological energy requirements have been reduced (a small θ in the
context of our paper). Brookes (2000) and Greening et al. (2000) provide an example within
the context of the implementation of energy efficiency policies, while Sen (2016) takes
the international trade perspective. With respect to this literature, our paper shows a new
channel that is based on the interaction between two important elements: the energy intensity
differences among sectors and the intergenerational transmission of energy resources.

4 Concluding Remarks

Using an OLG natural resources framework, we examine the dynamic implications of assum-
ing different energy technologies for physical capital and final good production. We take
advantage of the analytical tractability of our highly stylized model, where only the forma-
tion of physical capital requires energy. We find that the introduction of energy-intensity

10 Since consumers are non-altruistic and live for two periods, the existence of ownership rights prevent the
old generation from extracting all resources.
11 Under condition (b) the zero steady-state is unstable. However, due to the non-negativity condition of the
stock of resources and extraction, the economy exhausts all natural resources. In contrast to (a), this would
happen in finite time instead of asymptotically.
12 From the definition of β̃, it is easy to see that ∂β̃/∂β > 0 and ∂β̃/∂α < 0.

123



Energy and Physical Capital: A Case of Non-classical Dynamics

differentiation among sectors has important implications for the standard results in the area.
Richer dynamics other than saddle arise. Focusing on exhaustible resources, our economy
can reproduce non-classical dynamics. Energy extraction and prices do not necessary follow a
monotonic trend over time, which is an outcome consistent with previous empirical findings.
The model allows us to identify new ingredients that can improve our understanding of this
puzzling issue, namely the interaction of the technological energy characteristics of the for-
mation of physical capital with the intergenerational transmission of natural resources. The
general message of the paper is that the technological assumptions about the energy-intensity
differences among sectors should be taken with caution. This is particularly important in
dynamic models involving exhaustible energy resources.

In our model we have considered a number of simplifications for the sake of analytical
tractability. We focused on a rather extreme case of sectoral energy-intensity differences.
One could extend our set-up by including the energy input as well in the technology of
consumption goods, thus allowing for the possibility of endogenous allocation of energy
among sectors. This would result in more sophisticated cases of complex dynamics, adding to
the problem the importance of the share of energy inputs in the production consumptiongoods.
Notwithstanding, even if the model would be more realistic, from a general perspective the
essence of the paper remains the same. Another simplification was to focused on exhaustible
resources, which are known to impose serious limitations to economic growth. However, our
framework can be also applied to study the case of renewables by setting� > 0 in the general
model. This would create richer dynamics, where the convergence to steady-states without
exhaustibility (see Proposition 2) may be possible since resources can naturally reproduce.

Other extensions are also worth pursuing. It would be interesting to further investigate the
role played by the property rights. Considering the definition of resources assets in (1), it is
easy to see that the initial (endogenous) extraction x0 determines the initial allocation a0 for
an initial endowment of natural resources E0. Therefore, Proposition 3 additionally shows
that the initial allocation of resources property rights can be crucial to ensure that resources
depletion does not occur in finite time (i.e., “tragedy of the commons” in the context of our
model). From the perspective of the social welfare, one could widen our approach to study
to what extend the (re)allocation of property rights would eliminate the intergenerational
externalities and, thus, implement the social optimum. Finally, another line to explore is the
characterization of specific “non-classical” evolution paths of extraction and energyprices.As
observed before, Proposition 3 provides necessary conditions for this prospect. The analysis
of the explicit (complex) solutions of the system presented in Proposition 1 would transform
our conditions into necessary and sufficient. Additional economic mechanisms may arise
behind those particular dynamics.
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Appendix A: Dynamical System

In this appendix we present the details to derive the system (20)–(21) from the equations
(1)–(17). Let us first describe the steps to obtain Eq. (18) in Sect. 3. Using the law of motion
of the stock of energy resources (1), one can rewrite the budget constraint of the young as
follows:
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ct + st + Ptet+1

�
= wt . (A.1)

Similarly, considering the non-arbitrage condition (6) aboutx the prices of the asset and
extracted energy, we can rewrite the budget constraint of the old as follows:

et+1 = dt+1

Pt+1
− Rt+1st

Pt+1
. (A.2)

Taking (A.2) into the new formulation of the budget constraint of the young (A.1), we obtain:

ct + st + Ptdt+1

Pt+1�
− Rt+1Pt st

�Pt+1
= wt . (A.3)

Using the FOC (5) of the households’ utility maximization, the above equation reduces to

ct + dt+1

Rt+1
= wt . (A.4)

Moreover, taking (4), this expression becomes

ct = wt

(1 + β)
. (A.5)

From the budget constraint of the old (A.2), we can obtain the following equation for the
savings:

st = dt+1

Rt+1
− Pt+1et+1

Rt+1
. (A.6)

In addition, considering the equality of savings and investment and provided that there is no
population growth, Eq. (12) can be rewritten to obtain the savings:

st = B
−θ
1−θ

t+1 x
−θ
1−θ

t+1 k
1

1−θ

t+1 . (A.7)

Equating (A.6) and (A.7) and considering the lawofmotionof the stockof energy resources
(1), we establish the following equation:

k
1

1−θ

t+1 B
−θ
1−θ

t+1 x
−θ
1−θ

t+1 = dt+1

Rt+1
− Pt+1�(et − xt )

Rt+1
. (A.8)

Taking (A.4) and (A.5) above and using (5), (A.8) becomes:

k
1

1−θ

t+1 B
−θ
1−θ

t+1 x
−θ
1−θ

t+1 = βwt

(1 + β)
+ Pt (xt − et ). (A.9)

From the FOC (10) of the firms’ maximization problem in the final good sector, together
with the energy price equation (16) and the condition (6), Eq. (A.9) can be reformulated as:

k
1

1−θ

t+1 B
−θ
1−θ

t+1 x
−θ
1−θ

t+1 = β(1 − α)yt
(1 + β)

+ θαyt − θα
yt et
xt

. (A.10)

Defining σ ≡ β/(1 + β) we obtain the equation (18) of the paper:

k
1

1−θ

t+1 = B
θ

1−θ

t+1 x
θ

1−θ

t+1

[
σ(1 − α) + θα

(
1 − et

xt

)]
yt . (A.11)

Let us specify the steps to compute Eq. (19). From (5) and (6) of the households’ opti-
mization problem and the energy price equation (16), we can set the interest rate:

Rt = �
yt+1

yt

xt
xt+1

(A.12)
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By inserting in this expression the FOC (9) of firms’ maximization problem and the condition
(17), we derive Eq. (19):

�k
1

1−θ

t+1 xt
yt xt+1

= α(1 − θ)B
θ

1−θ

t+1 x
θ

1−θ

t+1 . (A.13)

Finally, we will show how substituting for kt+1 in (18) and (19) yields the Eq. (20).
Plugging the left hand side of (19) into (18), we get the following condition:

xt+1

xt

α(1 − θ)

�
=

[
σ(1 − α) + θα(1 − et

xt
)

]
. (A.14)

Then, explicitly writing σ ≡ β/(1 + β), we obtain Eq. (20) in the model:

xt+1 = �

( β
(1+β)

(1 − α) + αθ

α(1 − θ)

)

xt − �θ

(1 − θ)
et . (A.15)

Equation (20) governs the evolution the extraction flowwhile the law of motion of the natural
resources is described by et+1 = �(et − xt ) from condition (1) .

Appendix B: Proof of Proposition 2

A steady-state (x∗, e∗) of the economy is a fixed point of the system stated in Proposition
1, where xt+1 = xt = x∗ and et+1 = et = e∗. We then obtain the Eqs. (22) and (23).
Since � ≥ 1, ψ1 and ψ4 > 0, and ψ2 and ψ3 < 0, we can identify from the system of
this proposition the following two sets of parameters, together with the characteristics of the
corresponding steady-states:

(i) If {ψ1 = 1} or {ψ1 �= 1 and ψ4 = 1} or {ψ1 �= 1, ψ4 �= 1 and (1 − ψ4) �= ψ2ψ3
(1−ψ1)

} there
is a unique steady-state (x∗, e∗) = (0, 0) .

(ii) If {ψ1 �= 1, ψ4 �= 1 and (1 − ψ4) = ψ2ψ3
(1−ψ1)

} there is a continuum of steady-states such

that x∗ = ψ2
1−ψ1

e∗.
Notice that sets (i) and (ii) comprise all possible parameter combinations.

Appendix C: Proof of Proposition 3

Let us first consider a set of intermediate outcomes. With these results in hand, we can then
complete the proof of Proposition 3.

Appendix C.1: Intermediate Results

Claim 1 For non-renewable resources the discriminant� ≡ (1+ψ1)
2−4(ψ1+ψ2) cannot

be zero. In fact,

� > (<)0 ⇔ 2 (1 − 2θ) − β̃ < (>)
1

β̃
. (C.1)

Moreover, for real eigenvalues, λ1 > λ2.

Proof Let us prove that � �= 0. By contradiction, we assume that � = 0. Therefore (1 +
ψ1)

2 = 4(ψ1+ψ2). Sinceψ1 = β̃+θ
1−θ

andψ2 = − θ
(1−θ)

, the previous condition is equivalent
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to
(
1+β̃
1−θ

)2 = 4β̃
1−θ

. This is possible iff β̃ = (1 − 2θ)±
√

(1 − 2θ)2 − 1.Since (1 − 2θ)2 < 1,

β̃ would be a complex number. This conclusion however contradicts our definition of β̃, which
is a real number.We can indeed state that� > (<)0 iff 2 (1 − 2θ)−β̃ < (>) 1

β̃
. Finally, from

the expression of the real eigenvalues, we can directly observe that λ1 > λ2 since ψ1 > 0
and � �= 0 �	
Claim 2 Whether the dynamics are complex or not depends on the following parameter
combinations:

1. For 1
2 ≤ θ < 1 or {0 < θ < 1

2 and β̃ � 2(1 − 2θ)} the dynamics are non-complex.
2. For 1

4 ≤ θ < 1
2 and β̃ < 2(1 − 2θ) the dynamics are non-complex.

3. For 0 < θ < 1
4 and β̃ + 1

β̃
> 2(1 − 2θ) the dynamics are non-complex.

4. For 0 < θ < 1
4 and β̃ + 1

β̃
< 2(1 − 2θ) the dynamics are complex.

Proof The dynamics are (non-)complex iff �(>) < 0.

1. For 1
2 ≤ θ < 1 or {0 < θ < 1

2 and β̃ � 2(1 − 2θ)}, it is easy to verify that, since β̃ > 0,
2 (1 − 2θ) − β̃ < 1

β̃
. Therefore, from Claim 1, � > 0.

2. By contradiction. Let us assume, for 1
4 ≤ θ < 1

2 and β̃ < 2(1 − 2θ), that � < 0.
Claim 1 would then imply that 2 (1 − 2θ) > 1

β̃
+ β̃. Therefore, since all terms are non-

negative, we conclude that 2 (1 − 2θ) > 1
β̃
and 2 (1 − 2θ) > β̃. This can be rewritten

as 2 (1 − 2θ) > β̃ > 1
2(1−2θ)

. The condition holds iff 4 (1 − 2θ)2 > 1. This reduces

to 2 (1 − 2θ) > 1 since (1 − 2θ) > 0. Hence θ < 1
4 , which contradicts our initial

assumption on θ .
3. It follows from Eq. (C.1).
4. It follows from Eq. (C.1).

Finally notice that the case β̃ + 1
β̃

= 2(1− 2θ) is not possible since � �= 0 (see Claim 1) �	

Claim 3 Considering the definition of � in Claim 1, we can establish the following results:

1. If 1
2 ≤ θ < 1 then 1 −

√
�
2 < 0.

2. For non-complex dynamics, 1 +
√

�
2 >

(1+ψ1)
2 .

3. If 1
2 ≤ θ < 1 then (1+ψ1)

2 > 1 −
√

�
2 .

4. If 0 < θ < 1
2 and β̃ � 2(1 − 2θ) then (1+ψ1)

2 > 1 −
√

�
2 .

5. If 1
4 ≤ θ < 1

2 and β̃ < 2(1 − 2θ) then 1 −
√

�
2 > 0.

6. If 1
4 ≤ θ < 1

2 and β̃ < 2(1 − 2θ) then (1+ψ1)
2 > 1 −

√
�
2 .

Proof

1. Let us first show that 1 −
√

�
2 �= 0. Suppose the contrary, i.e., 1 =

√
�
2 . Then β̃ =

(1 − 2θ) ± 2
√
2θ2 − 3θ + 1. For θ = 1/2, the coefficient β̃ = 0 and so we find a

contradiction because β̃ > 0. Let us study 1/2 < θ < 1. It can be verified that in this
case 2θ2 − 3θ + 1 �= 0: 2θ2 − 3θ + 1 = 0 for θ = 0 or θ = 1/2. We can actually
proof that 2θ2 − 3θ + 1 < 0: assuming that 2θ2 − 3θ + 1 > 0, 3 < 1

θ
+ 2θ ; however,

for 1/2 < θ < 1, it is easy to check that 3 > 1
θ

+ 2θ . This result implies that β̃ is
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complex, which is a contradiction and, consequently, 1−
√

�
2 �= 0. We can show in fact

that 1 −
√

�
2 < 0. Let us assume the contrary, 1 −

√
�
2 > 0. This would imply that

4(1 − θ)2 − 1 > β̃
[
β̃ − 2(1 − 2θ)

]
. However, for 1

2 ≤ θ < 1, the RHS> 0 while

LHS< 0. We then get a contradiction.

2. By contradiction. Let us assume 1 +
√

�
2 ≤ (1+ψ1)

2 . This is equivalent to (ψ1 − 1)2 ≥
�(> 0). Since � = (1 + ψ1)

2 − 4(ψ1 + ψ2), the previous condition would imply that
0 ≥ −4ψ2. But this is impossible because ψ2 < 0.

3. From statement 1 of this claim, we already know that 1 −
√

�
2 < 0 if 1

2 ≤ θ < 1. Our
result is then verified since ψ1 > 0.

4. By contradiction. Let us consider that (1+ψ1)
2 ≤ 1−

√
�
2 . This would imply thatψ1−1 ≤

−√
�.We know thatψ1−1 = β̃−(1−2θ)

1−θ
, which is strictly positive since β̃ ≥ 2(1−2θ) >

(1 − 2θ) > 0. We then get a contradiction since −√
� < 0.

5. Let us first show that 1 −
√

�
2 �= 0. Suppose the contrary, i.e., 1 =

√
�
2 . Then β̃ =

(1 − 2θ) ± 2
√
2θ2 − 3θ + 1. For 1

4 ≤ θ < 1
2 one can verify that 2θ2 − 3θ + 1 > 0

and (1 − 2θ) > 0. We can show that β̃ = (1 − 2θ) + 2
√
2θ2 − 3θ + 1 is impossible:

let us rewrite β̃ = (1 − 2θ) + √
(1 − 2θ)2 + [4(1 − θ)2 − 1]; it is easy to check that

0 < β̃ < 2(1−2θ) < (1−2θ)+√
(1 − 2θ)2 + a for a > 0; recalling a = 4(1−θ)2−1,

since 4(1 − θ)2 − 1 > 0 for 0 < θ < 1/2, the previous expression provides the
contradiction β̃ < β̃. Similarly, β̃ = (1 − 2θ) − 2

√
2θ2 − 3θ + 1 cannot hold either:

since β̃ > 0, this would imply that (1−2θ) >
√

(1 − 2θ)2 + [4(1 − θ)2 − 1]; however,
(1 − 2θ) <

√
(1 − 2θ)2 + a for a > 0; as above, recalling a = 4(1 − θ)2 − 1(> 0)

gives us a contradiction.

We know now that 1 −
√

�
2 �= 0. In order to show that 1 −

√
�
2 > 0, let us assume

1 −
√

�
2 < 0. This would imply that β̃[β̃ − 2(1 − 2θ)] > 4(1 − θ)2 − 1. But this is not

possible since the LHS< 0 and the RHS> 0.

6. By contradiction. We assume (1+ψ1)
2 ≤ 1−

√
�
2 , which would imply (ψ1 − 1) ≤ −√

�.
On the one hand, −√

� < 0 because we are in a situation of non-complex dynamics. On

the other hand, (ψ1−1) = β̃−(1−2θ)
1−θ

, where we can identify two cases for β̃ < 2(1−2θ):

(i) (1 − 2θ) ≤ β̃ < 2(1 − 2θ) and (ii) β̃ < (1 − 2θ) < 2(1 − 2θ). Case (i) yields a
contradiction since (ψ1 − 1) > 0. Case (ii) would imply (ψ1 − 1)2 ≥ �, which is
impossible for non-complex dynamics (see proof of Claim 3, statement 2).

�	
Appendix C.2: Proof of Proposition 3

Proof For exhaustible resources � = 1. If (1 + ψ1)
2 ≥ 4(ψ1 + ψ2) the two eigenvalues of

� are real and given by λ1,2 = (1+ψ1)
2 ± 1

2

√
(1 + ψ1)2 − 4(ψ1 + ψ2). Moreover, λ1,2 > 0

since the det(�) > 0 and Tr(�) > 1.13 This implies that non-monotonic dynamics is only
possible if the eigenvalues are complex: if (1 + ψ1)

2 < 4(ψ1 + ψ2), λ1,2 = (1+ψ1)
2 ±

i 12
√
4(ψ1 + ψ2) − (1 + ψ1)2. Let us first study the case of non-complex dynamics. We

distinguish four different sets of parametrization: 1
2 ≤ θ < 1 (set 1); 0 < θ < 1

2 and

13 Notice that λ1λ2 = det(�) = ψ1 + ψ2 > 0. Since det(�) > 0, λ1,2 �= 0 and their sign coincide.
Moreover, λ1 + λ2 = Tr(�) = 1+ ψ1 > 1. We can then conclude that both eigenvalues are strictly positive.
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β̃ ≥ 2(1 − 2θ) (set 2); 1
4 ≤ θ < 1

2 and β̃ < 2(1 − 2θ) (set 3); and 0 < θ < 1
4 and

β̃ < 2(1 − 2θ) (set 4). Let us study each of these sets.

Set 1: For 1
2 ≤ θ < 1, the dynamics are non-complex as the discriminant � ≡

(1 + ψ1)
2 − 4(ψ1 + ψ2) > 0 (see Claim 2 in Appendix). Since λ1,2 > 0, com-

paring λ1 and λ2 with 1, one should observe that the dynamics are stable iff both

eigenvalues are smaller than one. This is equivalent to (1+ψ1)
2 < 1 −

√
�
2 . However

this is impossible because (1+ψ1)
2 > 1 −

√
�
2 (see Claim 3 in Appendix). Therefore,

stability cannot occur.
Let us consider the possibility of saddle equilibrium and (monotone) unstable dynam-
ics. The steady-state is saddle-path stable iff the two eigenvalues are on the different
side of one. As λ1,2 > 0, this condition is equivalent to λ1 > 1 and λ2 < 1 (notice
that, from Claim 1, λ1 > λ2). Taking the expression of λ1,2, the condition reduces

to 1 −
√

�
2 <

(1+ψ1)
2 < 1 +

√
�
2 . In contrast to that, the equilibrium dynamics are

unstable iff λ1 > 1 and λ2 ≥ 1. This is equivalent to check that (1+ψ1)
2 ≥ 1 +

√
�
2 .

Since the dynamics are non-complex for 1
2 ≤ θ < 1, we can conclude from Claim

3 that (1+ψ1)
2 < 1 +

√
�
2 . We have also proved in Claim 3 that (1+ψ1)

2 > 1 −
√

�
2 .

Therefore, 1 −
√

�
2 <

(1+ψ1)
2 < 1 +

√
�
2 and, consequently, the steady-state is a

saddle.
Set 2: For 0 < θ < 1

2 and β̃ ≥ 2(1 − 2θ) the dynamics are non-complex (Claim 2).

Therefore, from Claim 3, (1+ψ1)
2 < 1 +

√
�
2 . From the same claim we also know

that, if 0 < θ < 1
2 and β̃ ≥ 2(1− 2θ), (1+ψ1)

2 > 1−
√

�
2 . We can then conclude that

1 −
√

�
2 <

(1+ψ1)
2 < 1 +

√
�
2 , thus the steady-state is a saddle.

Set 3: We know from Claim 3 that, if 1
4 ≤ θ < 1

2 and β̃ < 2(1 − 2θ), 1 −
√

�
2 <

(1+ψ1)
2 .

Moreover (1+ψ1)
2 < 1+

√
�
2 because we are in a case on non-complex dynamics (see

Claim 3). Therefore, as above, the steady-state is a saddle.
Set 4: It is easy to verify that the statements 5 and 6 in Claim 3 are also valid for 0 < θ < 1

4
and β̃ < 2(1 − 2θ) if the dynamics are non-complex. Following Claim 2, we are in

a case of non-complex dynamics. We can then conclude that 1 −
√

�
2 <

(1+ψ1)
2 <

1 +
√

�
2 , thus the steady-state is a saddle.

Let us finish the proof with the case of complex dynamics. From Claim 2 we know that
(i) in the proposition corresponds to complex dynamics. Taking the formulas for λ1,2 above,

one can verify that |λ1| = |λ2| =
√

β̃
(1−θ)

. Comparing |λ1| = |λ2| with 1, we can directly
conclude that the dynamics are stable iff the modulus of both eigenvalues is smaller than one.
This condition is in fact equivalent to β̃ < (1 − θ). Similarly, the dynamics are unstable iff
the modulus of both eigenvalues is larger than one, which corresponds to β̃ > (1 − θ). �	
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