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Abstract:
Although most contest games are modeled in such a way that the outcome depends only on the efforts exerted
by the contestants, what is arguably more important is the contestants’ effective efforts which may be influenced
also by their ability, human capital, strength, etc. In this paper, we investigate an extensive model including
such an effectiveness parameter and analyze the optimal investment behavior in a dynamic conflict framework.
At each period, two contestants compete for a common prize by choosing contest efforts and investment lev-
els. Each contestant’s investment accumulates as his/her human capital which depreciates through time. Who
wins the component contest at a particular period is determined by the contestants’ effective efforts, defined as
increasing functions of their efforts and human capitals. Following the analysis of subgame perfect Nash equi-
librium in a two-period model and of open-loop equilibrium in an infinite-horizon model, we provide intuitive
comparative static results.
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1 Introduction

Human capital is a measure of an individual’s knowledge, talent, or other intangible resources that can be used
to create economic value; and it is considered to be one of the key determinants of economic growth. Following
the seminal works by Mincer (1958), Schultz (1961), and Becker (1962), there has emerged a vast literature on
the theoretical and empirical investigation of human capital emergence, investment, and accumulation. This
literature mostly concentrates on the relationships between human capital and growth (see Mankiw, Romer &
Weil, 1992; Galor & Weil, 2000; Barro, 2001, among others), human capital and earnings (see Ben-Porath, 1967;
Mincer, 1997; Huggett, Ventura & Yaron, 2006, among others), human capital and productivity (see Black &
Lynch, 1996; Engelbrecht, 1997; Dearden, Reed & Van Reenen, 2006, among others), and other relevant issues.
In this paper, we also contribute to this literature by studying investment on human capital in a dynamic contest
model.

A contest game is a strategic interaction in which each participant exerts irreversible and costly efforts to
win a valuable prize. Perhaps the most common real-life examples are sports, warfare, firm competition, patent
races, etc.1 Although most of these interactions can be modeled as a static game, there is also a bulk of literature
concentrating on dynamic models (see Leininger & Yang, 1994; Gradstein, 1998; Gradstein & Konrad, 1999;
Yildirim, 2005; Grossmann & Dietl, 2009; Konrad & Kovenock, 2009, among others). Such dynamic contest
models allow for the analyses of several interesting concepts; such as the discouragement effect (see Konrad &
Kovenock, 2009; Doğan et al., 2018), the effect of learning (see Clark & Nilssen, 2013), optimal contest design
(see Gradstein, 1998; Gradstein & Konrad, 1999), adding to the previously exerted effort (see Yildirim, 2005),
comparisons between the equilibrium behavior in static and dynamic models (see Leininger & Yang, 1994;
Keskin & Sağlam, 2017), and investment decisions affecting future outcomes (see Fu & Lu, 2009; Grossmann &
Dietl, 2009).

In this paper, we are interested in a dynamic contest game where two participants [i] make costly investments
which accumulate as their human capital and [ii] exert costly efforts to win a component contest in each period.
For this model, we offer the following interpretation: Consider a dynamic competition between two individuals
working in the same firm. A period ends with the firm owner giving a premium to one of these individuals.
Each individual can invest in his/her education, which consequently improves his/her human capital in the
following period. They also exert costly efforts to receive the premium; and the winner in a given period is
determined by their effective efforts, defined as increasing functions of their contest efforts and human capitals.
Kerim Keskin is the corresponding author.
©2018 Walter de Gruyter GmbH, Berlin/Boston.
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For instance, suppose that each individual chooses how much time to allocate in work, education, and leisure.2
If an individual allocates more time in work this period, then his/her chance of winning the current contest
increases; but if an individual allocates more time in education this period, then his/her human capital in the
following period improves, which in turn increases the chances of winning the contests in periods to come.

For a more concrete real-life example, consider two countries engaged in a dynamic market competition in
a labor-intensive market (such as agriculture, tourism, etc.). A country’s aim is to help its firms increase their
market shares. The market share depends on the quality of the end-product, which is influenced by produc-
tivity. The amount of labor used in production and the product quality jointly determine a country’s success
in the component contest in a given period. Each country has an option to [i] invest in human capital (by im-
proving the education system) to increase future productivity and [ii] subsidize labor hiring to boost current
production. The trade-off between these two options is in the center of our analysis. As a matter of fact, it is
possible to motivate the productivity/effectiveness parameter in a different context other than human capital.
Consider two countries engaged in a dynamic warfare, such that the effectiveness parameter is now labeled as
military strength. Investment in military training and/or weapons technology improves the country’s military
strength; and in each period, the winner of the component contest is determined by the countries’ effective
efforts, defined as functions of their contest efforts and military strengths.3

We should mention that investment-type decisions are already incorporated in the dynamic contest liter-
ature; see Fu and Lu (2009) and Grossmann and Dietl (2009); Grossmann, Lang, and Dietl (2011); Bevia and
Corchón (2013) for some examples.4 Broadly speaking, in all of these papers, an increase in the strategy chosen
in period t positively affects the outcome of the component contest in the following period t + 1. In compari-
son to Bevia and Corchón (2013) and Fu and Lu (2009), we are interested in a different model which includes
effectiveness accumulating through time. This is an important difference, since “accumulation” implies that the
investment in period t also indirectly affects the outcomes of all the contests throughout. In that regard, our
model is much closer to the models studied by Grossmann and Dietl (2009) and Grossmann, Lang, and Dietl
(2011). However, we also differ from their models in the following sense. Rather than interpreting contest ef-
forts as indirect investments, we consider two separate choice variables: effort and investment. This way, we
distinguish between effort and investment decisions, thereby capturing a dynamic missing from the existing
models. To the best of our knowledge, we are the first to investigate a two-choice-variable dynamic contest game
with accumulating investments.

In the first part of the following section, we study a two-period version of this dynamic contest. We show in a
subgame perfect Nash equilibrium that players exert the same equilibrium efforts independent of the asymme-
try in their effectiveness levels in a given period. This implies that the ratio of winning probabilities is directly
proportional to the ratio of effectiveness levels. Moreover, we find that the equilibrium investments depend
on the asymmetry in the education efficiency. In the second part of the following section, we analyze open-
loop equilibrium in an infinite-horizon version of the contest. Our findings indicate that the steady state efforts
have similar characteristics with the equilibrium efforts in the two-period version. Interestingly, the steady
state investments turn out to be symmetric as well, independent of any asymmetry in the model, whereas the
asymmetry in the education efficiency significantly affects the steady state human capitals. All these results
highlight the importance of investment on human capital in dynamic conflict situations.5

The rest of the paper is organized as follows. In Section 2, we formulate the model structure and analyze
equilibrium behavior in both finite- and infinite-horizon versions of the model. Section 3 concludes.

2 The model

There are two players in a dynamic contest game. At each period t = 1, 2, …, they participate in a component
contest choosing a strategy (ei,t, si,t) where ei,t denotes the contest effort and si,t denotes the investment. Each
player i’s effective effort in period t is defined as an increasing function of ei,t and the effectiveness parameter hi,t
(also referred to as human capital parameter). These effective efforts determine the outcome of the component
contest in period t. The winner gets a common prize of V > 0, whereas the loser gets a normalized payoff of
0. Furthermore, player i’s investment in period t directly affects player i’s effectiveness in period t + 1, which
accumulates over time. Thus investment in period t indirectly affects his/her effectiveness in all of the following
periods t′ > t. As a result, investment in period t also indirectly affects player i’s probability of winning the battle
at any period t′ > t.

Given a list of actions

(𝑒𝑗,𝑡, 𝑠𝑗,𝑡)𝑡=1, 2,…

for player j and for all periods t = 1, 2, …, we say that player i maximizes
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∑
𝑡=1, 2,…

𝛽𝑡−1[ �𝑝𝑖(𝑒1,𝑡, ℎ1,𝑡, 𝑒2,𝑡, ℎ2,𝑡)𝑉 − 𝑐𝑖(𝑒𝑖,𝑡, 𝑠𝑖,𝑡)] �

subject to

ℎ𝑖,𝑡+1 = (1 − 𝛿)ℎ𝑖,𝑡 + 𝜑𝑖(𝑠𝑖,𝑡)

given h1,1, h2,1 > 0.
In this context, β ∈ (0, 1) is the common discount factor; δ ∈ (0, 1) is the common depreciation rate for

effectiveness; and V > 0 is the common prize a player receives after winning a component contest. Moreover,
for each player i ∈ {1, 2}, pi(e1,t, h1,t, e2,t, h2,t) denotes the respective winning probability, ci(ei,t, si,t) denotes the
respective total cost of effort and investment, and φi(si,t) denotes the respective influence of investment on the
player’s effectiveness level in period t + 1. We further assume that all functions are differentiable and for each
player i ∈ {1, 2}:

• the contest success function pi is increasing in ei,t and hi,t, but decreasing in ej,t and hj,t;

• the cost function ci is increasing and convex in both arguments; and

• the effectiveness transformation function φi is increasing and concave in its argument, and it satisfies
lim𝑠𝑖,𝑡→∞ 𝜑′

𝑖(𝑠𝑖,𝑡) → 0.

In the following subsections, we study equilibrium behavior in both finite- and infinite-horizon versions of this
contest.

2.1 Finite-horizon

We consider a two-period model and analyze pure-strategy subgame perfect Nash equilibrium. For that we
perform backward induction. In the second period, there will be no investment in the equilibrium: 𝑠∗

1,2 = 𝑠∗
2,2 =

0. Therefore, each player only determines his/her effort level in period 2. Given ej,2 > 0, the optimal solution
satisfies the following first order condition for player i ∈ {1, 2}:

𝜕𝑝𝑖(𝑒1,2, ℎ1,2, 𝑒2,2, ℎ2,2)
𝜕𝑒𝑖,2

𝑉 −
𝜕𝑐𝑖(𝑒𝑖,2, 0)

𝜕𝑒𝑖,2
= 0. (1)

Whenever they exist, the equilibrium efforts (𝑒∗
1,2, 𝑒∗

2,2) are implicitly characterized by this system of equations.
Knowing these equilibrium efforts in the second period, we can proceed to period 1.

Given ej,1 and sj,1, the first order condition with respect to ei,1 for player i ∈ {1, 2}:

𝜕𝑝𝑖(𝑒1,1, ℎ1,1, 𝑒2,1, ℎ2,1)
𝜕𝑒𝑖,1

𝑉 −
𝜕𝑐𝑖(𝑒𝑖,1, 𝑠𝑖,1)

𝜕𝑒𝑖,1
= 0. (2)

Given ej,1 and sj,1, the first order condition with respect to si,1 for player i ∈ {1, 2}:

𝜕𝜑𝑖(𝑠𝑖,1)
𝜕𝑠𝑖,1

(𝜕𝑝𝑖(𝑒∗
1,2,ℎ1,2,𝑒∗

2,2,ℎ2,2)
𝜕𝑒∗

𝑖,2

𝜕𝑒∗
𝑖,2

𝜕ℎ𝑖,2
𝑉 + 𝜕𝑝𝑖(𝑒∗

1,2,ℎ1,2,𝑒∗
2,2,ℎ2,2)

𝜕ℎ𝑖,2
𝑉 �

�+𝜕𝑝𝑖(𝑒∗
1,2,ℎ1,2,𝑒∗

2,2,ℎ2,2)
𝜕𝑒∗

𝑗,2

𝜕𝑒∗
𝑗,2

𝜕ℎ𝑖,2
𝑉 − 𝜕𝑐𝑖(𝑒∗

𝑖,2,0)
𝜕𝑒∗

𝑖,2

𝜕𝑒∗
𝑖,2

𝜕ℎ𝑖,2
) = 1

𝛽
𝜕𝑐𝑖(𝑒𝑖,1,𝑠𝑖,1)

𝜕𝑠𝑖,1
.

(3)

Whenever they exist, the equilibrium efforts (𝑒∗
1,1, 𝑒∗

2,1) and investments (𝑠∗
1,1, 𝑠∗

2,1) for both players are implicitly
characterized by this system of equations: (2)–(3). For concreteness, suppose that the cost function is additively
separable. Then for any player i ∈ {1, 2}, the first order condition (2) becomes independent of si,1, so that the
equilibrium efforts (𝑒∗

1,1, 𝑒∗
2,1) can directly be derived using only these first order conditions. And given the

equilibrium efforts in both periods, the equilibrium investments (𝑠∗
1,1, 𝑠∗

2,1) are those that solve the first order
conditions with respect to si,1. On the other hand, if the cost function is not additively separable, then all of
these four first order conditions should be solved simultaneously.
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Now, in order to have more concrete ideas about the subgame perfect Nash equilibrium of this model, we
utilize specific functional forms for pi, φi, and ci. In particular, we consider the following Tullock-type contest
success function pi:6

𝑝𝑖(𝑒1,𝑡, ℎ1,𝑡, 𝑒2,𝑡, ℎ2,𝑡) =
ℎ𝑖,𝑡𝑒𝑖,𝑡

ℎ1,𝑡𝑒1,𝑡 + ℎ2,𝑡𝑒2,𝑡
(4)

and the following effectiveness transformation function φi:

𝜑𝑖(𝑠𝑖,𝑡) = 𝛾𝑖𝑠𝑖,𝑡
𝛼 (5)

where α ∈ (0, 1) represents the curvature and captures diminishing marginal returns of investment, and γi ≥
1 regulates the asymmetric rate of increase indicating the efficiency of the education system. We also consider
an additively separable, linear cost function ci:

𝑐𝑖(𝑒𝑖,𝑡, 𝑠𝑖,𝑡) = 𝑒𝑖,𝑡 + 𝑠𝑖,𝑡. (6)

The equilibrium strategies are summarized in the following proposition.

Proposition 1
In the two-period dynamic contest game above, the equilibrium investments in period 2 are 𝑠∗

1,2 = 𝑠∗
2,2 = 0. The

equilibrium efforts are given by

𝑒∗
1,1 = 𝑒∗

2,1 =
ℎ1,1ℎ2,1𝑉

(ℎ1,1 + ℎ2,1)2
and 𝑒∗

1,2 = 𝑒∗
2,2 =

ℎ1,2ℎ2,2𝑉
(ℎ1,2 + ℎ2,2)2

.

Moreover, for player i ∈ {1, 2}, the equilibrium investment level in period 1 is implicitly characterized by

𝑠∗
𝑖,1

1−𝛼 = 2𝛼𝛽𝛾𝑖𝑉
[ �(1 − 𝛿)ℎ𝑖,1 + 𝛾𝑖𝑠∗

𝑖,1
𝛼] � ⋅ [ �(1 − 𝛿)ℎ𝑗,1 + 𝛾𝑗 (𝛾𝑗

𝛾𝑖 )
𝛼

1−𝛼 𝑠∗
𝑖,1

𝛼] �

[�(1 − 𝛿)(ℎ𝑖,1 + ℎ𝑗,1) + 𝛾𝑖𝑠∗
𝑖,1

𝛼 + 𝛾𝑗 (𝛾𝑗
𝛾𝑖 )

𝛼
1−𝛼 𝑠∗

𝑖,1
𝛼] �3

for 𝑗 ≠ 𝑖.

The equilibrium analysis is provided below. Once again, we already know that 𝑠∗
1,2 = 𝑠∗

2,2 = 0. Consider
player 1’s effort decision in period 2. The respective first order condition (1) becomes

ℎ1,2ℎ2,2𝑒2,2
(ℎ1,2𝑒1,2 + ℎ2,2𝑒2,2)2

𝑉 − 1 = 0. (7)

Considering the symmetric first order condition for player 2, we have the following best response functions:

𝑒∗
1,2 =

√ℎ1,2ℎ2,2𝑒∗
2,2𝑉 − ℎ2,2𝑒∗

2,2

ℎ1,2
and 𝑒∗

2,2 =
√ℎ1,2ℎ2,2𝑒∗

1,2𝑉 − ℎ1,2𝑒∗
1,2

ℎ2,2
. (8)

This yields the following equilibrium effort strategies for players 1 and 2:

𝑒∗
1,2 = 𝑒∗

2,2 =
ℎ1,2ℎ2,2𝑉

(ℎ1,2 + ℎ2,2)2
. (9)

We now proceed to period 1. In a similar manner, the first order condition with respect to e1,1 becomes

ℎ1,1ℎ2,1𝑒2,1
(ℎ1,1𝑒1,1 + ℎ2,1𝑒2,1)2

𝑉 − 1 = 0. (10)

Considering the symmetric first order condition for player 2, we find the equilibrium effort strategies for players
1 and 2 to be
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𝑒∗
1,1 = 𝑒∗

2,1 =
ℎ1,1ℎ2,1𝑉

(ℎ1,1 + ℎ2,1)2
. (11)

In both periods, both players’ equilibrium efforts increase in the winning prize V. Moreover, for any t ∈ {1, 2},
if hi,t > hj,t, then both 𝑒∗

𝑖,𝑡 and 𝑒∗
𝑗,𝑡 decrease in hi,t and increase in hj,t. This implies that as the distance between the

effectiveness parameters increases/decreases, the component contest becomes less/more competitive, so that
the equilibrium efforts decrease/increase. In case hi,t = hj,t for some t ∈ {1, 2}, the equilibrium efforts 𝑒∗

𝑖,𝑡 and 𝑒∗
𝑗,𝑡

become independent of the effectiveness parameters.
We further observe that 𝑒∗

1,1 = 𝑒∗
2,1 and 𝑒∗

1,2 = 𝑒∗
2,2. This means that the ratio of equilibrium efforts do not

depend on the ratio of effectiveness parameters. More precisely, even when hi,t > hj,t for i ≠ j, both players exert
the same amount of effort in period t. Accordingly, the one with a higher effectiveness parameter would always
have a higher probability of winning at the equilibrium. Hence, not so surprisingly, being more effective turns
out to be extremely important, which further highlights the importance of investment decisions.

Finally, the first order condition with respect to s1,1 becomes

𝛼𝛾1𝑠1,1𝛼−1 (
ℎ1,2ℎ2,2(𝑒∗

2,2 − 𝑒∗
1,2)

(ℎ1,2𝑒∗
1,2 + ℎ2,2𝑒∗

2,2)2
ℎ2,2(ℎ2,2 − ℎ1,2)
(ℎ1,2 + ℎ2,2)3

𝑉2 � �+
ℎ2,2𝑒∗

1,2𝑒∗
2,2

(ℎ1,2𝑒∗
1,2 + ℎ2,2𝑒∗

2,2)2
𝑉 −

ℎ2,2(ℎ2,2 − ℎ1,2)
(ℎ1,2 + ℎ2,2)3

𝑉) = 1
𝛽. (12)

Writing 𝑒∗
1,2, and 𝑒∗

2,2 explicitly, we have

𝑠1,1𝛼−1 2ℎ1,2ℎ2,2𝑉
(ℎ1,2 + ℎ2,2)3

= 1
𝛼𝛽𝛾1

. (13)

Considering the symmetric first order condition with respect to s2,1 and dividing them side-by-side:

𝑠∗
1,1

𝑠∗
2,1

= (𝛾1
𝛾2

)
1

1−𝛼
. (14)

Therefore, the ratio of equilibrium investments depends only on α and γi’s. To be more precise, no matter what
h1,1 and h2,1 are, the player with a higher γ invests more in the equilibrium. On top of that, the difference between
γi’s becomes more important as α increases.

Using equation (14) in equation (13), we obtain

𝑠∗
1,1

1−𝛼 = 2𝛼𝛽𝛾1𝑉
[ �(1 − 𝛿)ℎ1,1 + 𝛾1𝑠∗

1,1
𝛼] � ⋅ [ �(1 − 𝛿)ℎ2,1 + 𝛾2 (𝛾2

𝛾1
)

𝛼
1−𝛼 𝑠∗

1,1
𝛼] �

[ �(1 − 𝛿)(ℎ1,1 + ℎ2,1) + 𝛾1𝑠∗
1,1

𝛼 + 𝛾2 (𝛾2
𝛾1

)
𝛼

1−𝛼 𝑠∗
1,1

𝛼]�3
. (15)

This equation implicitly characterizes the equilibrium investment level for player 1.7 And player 2’s equilibrium
investment is characterized by a symmetric equation. Unfortunately, these equations are too complicated to be
solved further. Accordingly, we analyze the extreme case δ = 1 in order to have some understanding of the
equilibrium strategies in closed form. Then we return to the general case, consider some numerical values for
model parameters, and provide the best response graphs using equation (13) and its symmetric version.

For now, let δ = 1. Then equation (15) and its symmetric version yield

𝑠∗
1,1 = 2𝛼𝛽𝛾

2
1−𝛼
1 𝛾

1
1−𝛼
2 𝑉

(𝛾
1

1−𝛼
1 + 𝛾

1
1−𝛼
2 )

3 and 𝑠∗
2,1 = 2𝛼𝛽𝛾

1
1−𝛼
1 𝛾

2
1−𝛼
2 𝑉

(𝛾
1

1−𝛼
1 + 𝛾

1
1−𝛼
2 )

3 . (16)

In this extreme case, both equilibrium investments increase in β and V, which seem to have straightforward
intuitions. Moreover, when γ1 ≠ γ2, 𝑠∗

𝑖,1 is increasing in γi and decreasing in γj if and only if 𝛾𝑖/𝛾𝑗 < 21−𝛼. This
inequality is surely satisfied when γj > γi; however, when γi > γj, it is satisfied only for sufficiently small values
of α and γi. In case γ1 = γ2, however, 𝑠∗

1,1 = 𝑠∗
2,1 turns out to be independent of γi’s.

For the case in which δ < 1, we provide a numerical analysis below. Assume that δ = 0.25, α = 0.5, β = 0.95,
and V = 4. We further fix h2,1 = 2 and γ2 = 2, and we consider h1,1 ∈ {2, 4} and γ1 ∈ {1, 2} to investigate several
asymmetric cases.
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Keskin and Sağlam DE GRUYTER

As seen in Figure 1, under symmetry, i.e. when h1,1 = 2 and γ1 = 2, the best response functions are sym-
metric, which leads to symmetric equilibrium investments: 0.1677. When h1,1 increases to 4, the best response
functions cease to be symmetric; but since γ1 = γ2, the equilibrium investments are still symmetric: 0.0953. For
this particular example, we observe a decrease in the equilibrium investments as h1,1 becomes greater than h2,1.
The interpretation provided for the equilibrium efforts also applies here: when the distance between the initial
effectiveness parameters increases, the component contest becomes less competitive, so that the equilibrium
investments decrease. Moreover, given that γ1 = γ2 and that players make the same amount of investments at
the equilibrium, we see that h1,2 > h2,2 in the second period. Following this observation, we can conjecture that
for any T-period game in which γ1 = γ2, the initially disadvantaged player can never catch up with the initially
advantaged player.

Figure 1: Best response functions and the corresponding equilibrium investment levels in Period 1 under the given values
of model parameters. (A) h1,1 = 2, γ1 = 1, (B) h1,1 = 2, γ1 = 2, (C) h1,1 = 4, γ1 = 1, (D) h1,1 = 4, γ1 = 2.

In the remaining numerical examples, we consider two cases in which γ1 = 1. We observe that Player 2 invests
more at the equilibrium than player 1 does. More precisely, the equilibrium investments are given by (0.1216,
0.4864) when h1,1 = 2 and by (0.0294, 0.1175) when h1,1 = 4. Once again, we observe a substantial decrease in the
equilibrium investments for both players once there is an increase in the initial human capital h1,1. We further see
that if γ1 decreases while h1,1 is kept constant, then the equilibrium investment for player 1 decreases, whereas
the same for player 2 increases. Finally, in case h1,1 = 2 and γ1 = 1, we have h1,2 < h2,2, meaning that player 2 gains
an advantage over player 1 in the second period as he/she becomes more effective than player 1; however, when
h1,1 = 4 and γ1 = 1, although player 2 is able to decrease the gap between their effectiveness parameters, player
1 remains to be the advantaged player in the second period. At this point, we can present another conjecture:
If the contest has sufficiently many number of periods, then the initially disadvantaged player can eventually
catch up with the initially advantaged player, if there exists asymmetry in γi’s in favor of the former.
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2.2 Infinite-horizon

We consider an infinite-horizon model. Assuming that a player’s effort and investment decisions are not observ-
able to his/her competitor, we resort to open-loop strategies and analyze pure-strategy open-loop equilibrium.
Accordingly, each player chooses an action path in the first period and commits to these strategies through-
out the game. Taking a pre-committed action path (e𝑗, s𝑗) = (𝑒𝑗,𝑡, 𝑠𝑗,𝑡)∞

𝑡=1 for player j as given, player i ∈ {1, 2}
determines his/her best responses aiming to maximize his/her expected utility in the whole game.8

To analyze open-loop equilibrium, we first define a value function for each player i ∈ {1, 2}:

𝒱 ( �ℎ𝑖,1∣ �{ℎ𝑗,1, (e𝑗, s𝑗)})� = maxe𝑖,s𝑖

∞
∑
𝑡=1

𝛽𝑡−1[ �𝑝𝑖(𝑒1,𝑡, ℎ1,𝑡, 𝑒2,𝑡, ℎ2,𝑡)𝑉 − 𝑐𝑖(𝑒𝑖,𝑡, 𝑠𝑖,𝑡)] � (17)

where i ≠ j. The bounds on discounting and the limit condition on the effectiveness transformation function
guarantee a finite value function. Under our assumptions, it can also be shown that the value function 𝒱 is
non-negative and continuous (see Stokey & Lucas, 1989; Le Van & Dana, 2003, among others). Given these
observations, the associated Bellman equation for each player i ∈ {1, 2} can be written as:

𝒱 (ℎ𝑖,𝑡) = max𝑒𝑖,𝑡,𝑠𝑖,𝑡
{�𝑝𝑖(𝑒1,𝑡, ℎ1,𝑡, 𝑒2,𝑡, ℎ2,𝑡)𝑉 − 𝑐𝑖(𝑒𝑖,𝑡, 𝑠𝑖,𝑡) + 𝛽 ⋅ 𝒱 (ℎ𝑖,𝑡+1)} �

subject to ℎ𝑖,𝑡+1 = (1 − 𝛿)ℎ𝑖,𝑡 + 𝜑𝑖(𝑠𝑖,𝑡)
(18)

given hi,1, hj,1 > 0 and (𝑒𝑗,𝑡, 𝑠𝑗,𝑡)∞
𝑡=1 where i ≠ j. This gives the following Lagrangian function for player i ∈ {1, 2}:

ℒ𝑖 = 𝒱 (ℎ𝑖,𝑡) + 𝜆𝑡 ⋅ [ �(1 − 𝛿)ℎ𝑖,𝑡 + 𝜑𝑖(𝑠𝑖,𝑡) − ℎ𝑖,𝑡+1]� (19)

which is to be maximized with respect to ei,t, si,t, hi,t+1, and λt.
The respective first order conditions for optimality are

𝜕𝑝𝑖(𝑒1,𝑡, ℎ1,𝑡, 𝑒2,𝑡, ℎ2,𝑡)
𝜕𝑒𝑖,𝑡

𝑉 =
𝜕𝑐𝑖(𝑒𝑖,𝑡, 𝑠𝑖,𝑡)

𝜕𝑒𝑖,𝑡
; (20)

𝜆𝑡
𝜕𝜑𝑖(𝑠𝑖,𝑡)

𝜕𝑠𝑖,𝑡
=

𝜕𝑐𝑖(𝑒𝑖,𝑡, 𝑠𝑖,𝑡)
𝜕𝑠𝑖,𝑡

; (21)

𝛽 ⋅ 𝒱 ′(ℎ𝑖,𝑡+1) = 𝜆𝑡; (22)

and

ℎ𝑖,𝑡+1 = (1 − 𝛿)ℎ𝑖,𝑡 + 𝜑𝑖(𝑠𝑖,𝑡). (23)

Notice that the first order condition (20) is similar to the first order conditions (1) and (2) in the two-period
version. This indicates that the equilibrium efforts are similar in nature for both finite- and infinite-horizon
versions of the game. By contrast, the first order conditions (21) and (22) are different than their two-period
version counterpart. In that regard, it would not be unreasonable to expect some differences in the equilibrium
investment levels.

The envelope condition can be written as

𝒱 ′(ℎ𝑖,𝑡) =
𝜕𝑝𝑖(𝑒1,𝑡, ℎ1,𝑡, 𝑒2,𝑡, ℎ2,𝑡)

𝜕ℎ𝑖,𝑡
𝑉 + (1 − 𝛿)𝜆𝑡. (24)

From equations (22) and (24), we obtain

𝛽 (
𝜕𝑝𝑖(𝑒1,𝑡+1, ℎ1,𝑡+1, 𝑒2,𝑡+1, ℎ2,𝑡+1)

𝜕ℎ𝑖,𝑡+1
𝑉 + (1 − 𝛿)𝜆𝑡+1) = 𝜆𝑡; (25)
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which is used in the derivation of the following Euler equation:

𝜕𝑝𝑖(𝑒1,𝑡+1, ℎ1,𝑡+1, 𝑒2,𝑡+1, ℎ2,𝑡+1)
𝜕ℎ𝑖,𝑡+1

𝛽𝑉 =
𝜕𝑐𝑖(𝑒𝑖,𝑡,𝑠𝑖,𝑡)

𝜕𝑠𝑖,𝑡
𝜕𝜑𝑖(𝑠𝑖,𝑡)

𝜕𝑠𝑖,𝑡

− 𝛽(1 − 𝛿)
𝜕𝑐𝑖(𝑒𝑖,𝑡+1,𝑠𝑖,𝑡+1)

𝜕𝑠𝑖,𝑡+1
𝜕𝜑𝑖(𝑠𝑖,𝑡+1)

𝜕𝑠𝑖,𝑡+1

. (26)

Whenever they exist, the equilibrium efforts and investments for player i ∈ {1, 2} are implicitly characterized
by equations (20), (23), and (26).

In order to have more concrete ideas about the open-loop equilibrium of this model, we utilize the same
functional forms used in the finite-horizon model. Doing that, we also intend to compare our findings for finite-
and infinite-horizon versions. In particular, we consider the following Tullock-type contest success function pi:

𝑝𝑖(𝑒1,𝑡, ℎ1,𝑡, 𝑒2,𝑡, ℎ2,𝑡) =
ℎ𝑖,𝑡𝑒𝑖,𝑡

ℎ1,𝑡𝑒1,𝑡 + ℎ2,𝑡𝑒2,𝑡
(27)

and the following effectiveness transformation function φi:

𝜑𝑖(𝑠𝑖,𝑡) = 𝛾𝑖𝑠𝑖,𝑡
𝛼 (28)

where α ∈ (0, 1) and γi ≥ 1. We also consider the following cost function ci:

𝑐𝑖(𝑒𝑖,𝑡, 𝑠𝑖,𝑡) = 𝑒𝑖,𝑡 + 𝑠𝑖,𝑡. (29)

The steady state values are summarized in the following proposition.

Proposition 2
In the infinite-horizon dynamic contest game above, the unique steady state is characterized by

𝑒1 = 𝑒2 = 𝛾𝑖𝛾𝑗𝑉
(𝛾𝑖+𝛾𝑗)2

; 𝑠1 = 𝑠2 = 𝛼𝛽𝛿𝛾1𝛾2𝑉
(𝛾1+𝛾2)2(1−𝛽(1−𝛿)) ;

𝑎𝑛𝑑 ℎ𝑖 = 𝛾𝑖
𝛿 𝑠𝛼 𝑓 𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖 ∈ {1, 2}.

The equilibrium analysis is provided below. For each player i ∈ {1, 2}, directly incorporating the specified
functions (27), (28), and (29) into the first order conditions (20), (23) and the Euler equation (26), we have

ℎ1,𝑡ℎ2,𝑡𝑒𝑗,𝑡
(ℎ1,𝑡𝑒1,𝑡 + ℎ2,𝑡𝑒2,𝑡)2

𝑉 = 1 for 𝑗 ≠ 𝑖; (30)

ℎ𝑖,𝑡+1 = (1 − 𝛿)ℎ𝑖,𝑡 + 𝛾𝑖𝑠𝑖,𝑡
𝛼; (31)

and

𝑒1,𝑡+1ℎ𝑗,𝑡+1𝑒2,𝑡+1

(ℎ1,𝑡+1𝑒1,𝑡+1 + ℎ2,𝑡+1𝑒2,𝑡+1)2
𝛽𝑉 =

𝑠𝑖,𝑡
1−𝛼 − 𝛽(1 − 𝛿)𝑠𝑖,𝑡+1

1−𝛼

𝛼𝛾𝑖
for 𝑗 ≠ 𝑖. (32)

Using equation (30) and its symmetric version for player j, we can see that

∀𝑡 ∶ 𝑒𝑖,𝑡 = 𝑒𝑗,𝑡 = 𝑒𝑡.

Then we proceed to the steady state analysis. Denoting the steady state values by dropping t from the corre-
sponding variables, we can write that the steady state value for effort is

𝑒𝑖 = 𝑒𝑗 = 𝑒 =
ℎ𝑖ℎ𝑗𝑉

(ℎ𝑖 + ℎ𝑗)2
. (33)

8
Brought to you by | Bilkent University

Authenticated | csaglam@bilkent.edu.tr author's copy
Download Date | 7/23/18 2:22 PM

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Keskin and Sağlam

This finding is consistent with our aforementioned observation that the equilibrium efforts in finite- and
infinite-horizon models are similar in nature. The steady state value for effort increases in the winning prize V.
Moreover, given that hi > hj, the steady state value decreases in hi, but increases in hj. This implies that as the
distance between the steady state values for effectiveness increases/decreases, the component contest becomes
less/more competitive, so that the steady state efforts decrease/increase. Moreover, when hi = hj, the steady
state e turns out to be independent of γi. These findings are exactly the same with those for the equilibrium
efforts in the two-period model.

The steady state values also satisfy

𝛿ℎ𝑖 = 𝛾𝑖𝑠𝑖
𝛼 (34)

and

ℎ𝑗
(ℎ1 + ℎ2)2

𝛽𝑉 = (1 − 𝛽(1 − 𝛿))𝑠𝑖
1−𝛼

𝛼𝛾𝑖
for 𝑗 ≠ 𝑖 (35)

for every i ∈ {1, 2}. Using equation (34) and its symmetric version for player j, we obtain

ℎ𝑖
ℎ𝑗

= 𝛾𝑖
𝛾𝑗

⎛⎜
⎝

𝑠𝑖
𝑠𝑗

⎞⎟
⎠

𝛼
.

Using equation (35) and its symmetric version for player j, we further obtain

ℎ𝑖
ℎ𝑗

= 𝛾𝑖
𝛾𝑗

(
𝑠𝑗
𝑠𝑖

)
1−𝛼

.

These equations jointly imply that

𝑠𝑖 = 𝑠𝑗 = 𝑠 and
ℎ𝑖
ℎ𝑗

= 𝛾𝑖
𝛾𝑗

.

This finding is in stark contrast to our results in the two-period model. Previously, independent of the initial
effectiveness parameters, the equilibrium investments were equal to each other only when γ1 = γ2. On the other
hand, at the steady state of the infinite-horizon model, it turns out that players always make the same steady
state investments. Instead, the ratio of γi’s governs the relationship between the steady state values for human
capital. Independent of the initial effectiveness parameters, the player with a higher return to education ends
up being more advantaged at the steady state.

Then using equation (34) once again, for every i ∈ {1, 2}:

ℎ𝑖 = 𝛾𝑖
𝛿 𝑠𝛼; (36)

and substituting this into equation (35):

𝑠 = 𝛼𝛽𝛿𝛾1𝛾2𝑉
(𝛾1 + 𝛾2)2(1 − 𝛽(1 − 𝛿)) . (37)

Finally, we can further write that the steady state effort is

𝑒 =
𝛾𝑖𝛾𝑗𝑉

(𝛾𝑖 + 𝛾𝑗)2
. (38)

Our equilibrium analysis reveals that the steady state exists and is unique. The stability analysis is relegated
to the Appendix. There we prove that the steady state cannot be a “source”; so that, it is either “saddle-path
stable” or a “sink” depending on the values of model parameters. For instance, there exists a critical value for
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the winning prize above which a multiplicity of equilibrium paths emerges. The dynamics of the system around
the unique steady state exhibits local indeterminacy if V < VC where

𝑉𝐶 = (𝛾1 + 𝛾2)2
𝛾1𝛾2

(1 − 𝛽(1 − 𝛿))
𝛼𝛽𝛿 ((1 − 𝛼)𝛽(1 − 𝛿)

1 − 𝛼𝛽 (1 − 𝛿) )
1−𝛼
𝛼2

.

Moreover, when V > VC, the unique steady state turns out to be saddle-path stable. To provide a further un-
derstanding of our model, we carry out a similar analysis using another bifurcation parameter. More precisely,
rather than V, we choose γ1 as the bifurcation parameter, after normalizing γ2 = 1. There exist two critical values
𝛾−
1 and 𝛾+

1 such that the unique steady state is saddle-path stable when 𝛾−
1 < 𝛾1 < 𝛾+

1 . Otherwise, we observe
local indeterminacy. These critical values are given by

𝛾+
1 =

1+ √1−
4(1+𝛽(1−𝛿))( (1−𝛼)𝛽(1−𝛿)

1−𝛼𝛽(1−𝛿) )
1−𝛼
𝛼2

𝛼𝛽𝛿𝑉

1− √1−
4(1+𝛽(1−𝛿))( (1−𝛼)𝛽(1−𝛿)

1−𝛼𝛽(1−𝛿) )
1−𝛼
𝛼2

𝛼𝛽𝛿𝑉

and 𝛾−
1 =

1− √1−
4(1+𝛽(1−𝛿))( (1−𝛼)𝛽(1−𝛿)

1−𝛼𝛽(1−𝛿) )
1−𝛼
𝛼2

𝛼𝛽𝛿𝑉

1+ √1−
4(1+𝛽(1−𝛿))( (1−𝛼)𝛽(1−𝛿)

1−𝛼𝛽(1−𝛿) )
1−𝛼
𝛼2

𝛼𝛽𝛿𝑉

.

Notice that 𝛾+
1 = 1/𝛾−

1 . This further implies that the unique steady state turns out to be saddle-path stable if
the asymmetry between players’ effectiveness parameters is sufficiently low. However, when one of the players
is too dominant in terms of effectiveness, the unique steady state exhibits local indeterminacy.

For the stable steady state, the following comparative static results apply. Noting that the comparative statics
for the steady state efforts is already provided above, we now concentrate on the comparative statics for s and
hi’s. The steady state value for investment s increases in β and V, which seem to have straightforward intuitions.
It is also increasing in α and δ. Intuitively, an increase in α enhances the effect of the effectiveness transformation
function so that players are more motivated to invest; and an increase in δ decreases the amount of human
capital after depreciation so that players need to invest more to cover for that loss. When γi > γj, the investment
s decreases in γi, but increases in γj. This implies that as the distance between γi’s increases/decreases, the steady
state investment decreases/increases. Moreover, if γi = γj, then s turns out to be independent of γi. Recalling
our findings on the equilibrium investments in the two-period model, we see that both models have similar
interpretations.9

The steady state value for effectiveness hi is an increasing and concave function of the steady state investment
s. The direct implication is that hi preserves the same comparative statics results and interpretations with s for
the parameters α, β, γj, and V. On top of that, hi is decreasing in δ and increasing in γi. The former shows that as
the depreciation rate for human capital increases, the economy ends up at a lower level of human capital; and
the latter indicates that as investment has a higher return, the economy stabilizes at a higher level of human
capital.

3 Conclusion

In this paper we have studied a bilateral dynamic conflict in which both individuals make two choices at each
period: effort and investment. Investment in period t improves effectiveness (i.e. human capital) in the next
period, which also accumulates through time; and contest effort and human capital in period t jointly determine
the individual’s probability of winning the component contest in period t. This way, we distinguish between
effort and investment decisions, thereby capturing an important dynamic missing from the earlier models in
the relevant literature.

First, we have analyzed subgame perfect Nash equilibrium in a two-period version of the contest. We have
shown that players exert the same equilibrium efforts independent of the asymmetry in their effectiveness levels
in a given period. The equilibrium investments depend on the asymmetry in the education efficiency. Second,
we have analyzed open-loop equilibrium in an infinite-horizon version of the contest. The steady state efforts
have similar characteristics with the equilibrium efforts in the two-period version. Interestingly, the steady
state investments turn out to be symmetric as well, independent of any asymmetry in the model, whereas the
asymmetry in the education efficiency significantly affects the steady state human capitals. Our results highlight
the importance of investment on human capital in dynamic conflict situations.
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Appendix

In this Appendix we provide the stability analysis. For each i ∈ {1, 2}, the human capital constraint is

ℎ𝑖,𝑡+1 = (1 − 𝛿)ℎ𝑖,𝑡 + 𝛾𝑖𝑠𝑖,𝑡
𝛼

and our Euler equation can be re-written as

𝑠𝑖,𝑡+1 = ⎛⎜
⎝

1
𝛽(1 − 𝛿)𝑠𝑖,𝑡

1−𝛼 − 𝛼𝛾𝑖𝑉
1 − 𝛿

(1 − 𝛿)ℎ𝑗,𝑡 + 𝛾𝑗𝑠𝑗,𝑡
𝛼

[(1 − 𝛿)(ℎ1,𝑡 + ℎ2,𝑡) + 𝛾1𝑠1,𝑡𝛼 + 𝛾2𝑠2,𝑡𝛼]2
⎞⎟
⎠

1
1−𝛼

.

Taking the derivatives with respect to si,t, sj,t, hi,t, and hj,t yields

𝜕𝑠𝑖,𝑡+1
𝜕𝑠𝑖,𝑡

= 1
1−𝛼 𝑠𝑖,𝑡+1

𝛼
1−𝛼 ( 1−𝛼

𝛽(1−𝛿) 𝑠𝑖,𝑡
−𝛼 + 2𝛼2𝛾2

𝑖 𝑉
1−𝛿 𝑠𝑖,𝑡

𝛼−1 (1−𝛿)ℎ𝑗,𝑡+𝛾𝑗𝑠𝑗,𝑡
𝛼

[(1−𝛿)(ℎ1,𝑡+ℎ2,𝑡)+𝛾1𝑠1,𝑡𝛼+𝛾2𝑠2,𝑡𝛼]3 )

𝜕𝑠𝑖,𝑡+1
𝜕𝑠𝑗,𝑡

= 1
1 − 𝛼𝑠𝑖,𝑡+1

𝛼
1−𝛼 ⎛⎜

⎝

𝛼2𝛾𝑖𝛾𝑗𝑉
1 − 𝛿 𝑠𝑗,𝑡

𝛼−1
(1 − 𝛿)(ℎ𝑗,𝑡 − ℎ𝑖,𝑡) + 𝛾𝑗𝑠𝑗,𝑡

𝛼 − 𝛾𝑖𝑠𝑖,𝑡
𝛼

[(1 − 𝛿)(ℎ1,𝑡 + ℎ2,𝑡) + 𝛾1𝑠1,𝑡𝛼 + 𝛾2𝑠2,𝑡𝛼]3
⎞⎟
⎠

𝜕𝑠𝑖,𝑡+1
𝜕ℎ𝑖,𝑡

= 1
1 − 𝛼𝑠𝑖,𝑡+1

𝛼
1−𝛼 ⎛⎜

⎝
2𝛼𝛾𝑖𝑉

(1 − 𝛿)ℎ𝑗,𝑡 + 𝛾𝑗𝑠𝑗,𝑡
𝛼

[(1 − 𝛿)(ℎ1,𝑡 + ℎ2,𝑡) + 𝛾1𝑠1,𝑡𝛼 + 𝛾2𝑠2,𝑡𝛼]3
⎞⎟
⎠

and

𝜕𝑠𝑖,𝑡+1
𝜕ℎ𝑗,𝑡

= 1
1 − 𝛼𝑠𝑖,𝑡+1

𝛼
1−𝛼 ⎛⎜

⎝
𝛼𝛾𝑖𝑉

(1 − 𝛿)(ℎ𝑗,𝑡 − ℎ𝑖,𝑡) + 𝛾𝑗𝑠𝑗,𝑡
𝛼 − 𝛾𝑖𝑠𝑖,𝑡

𝛼

[(1 − 𝛿)(ℎ1,𝑡 + ℎ2,𝑡) + 𝛾1𝑠1,𝑡𝛼 + 𝛾2𝑠2,𝑡𝛼]3
⎞⎟
⎠

.

Recall that at the steady state

𝑠𝑖 = 𝑠𝑗 = 𝑠

and

ℎ𝑖 = 𝛾𝑖
𝛿 𝑠𝛼 and ℎ𝑗 =

𝛾𝑗
𝛿 𝑠𝛼.

Thus we have

(1 − 𝛿)(ℎ𝑖 + ℎ𝑗) + 𝛾𝑖𝑠𝑖
𝛼 + 𝛾𝑗𝑠𝑗

𝛼 =
𝛾𝑖 + 𝛾𝑗

𝛿 𝑠𝛼

(1 − 𝛿)(ℎ𝑖 − ℎ𝑗) + 𝛾𝑖𝑠𝑖
𝛼 − 𝛾𝑗𝑠𝑗

𝛼 =
𝛾𝑖 − 𝛾𝑗

𝛿 𝑠𝛼.

Recall also that

𝑠 = 𝛼𝛽𝛿𝛾1𝛾2𝑉
(𝛾1 + 𝛾2)2(1 − 𝛽(1 − 𝛿)) .

We then obtain

�𝜕𝑠𝑖,𝑡+1
𝜕𝑠𝑖,𝑡

∣
𝑆𝑆

= (1 − 𝛼)(𝛾1 + 𝛾2) + 2𝛼𝛿𝛾𝑖(1 − 𝛽(1 − 𝛿))
𝛽(1 − 𝛿)(1 − 𝛼)(𝛾1 + 𝛾2)

( 𝛼𝛽𝛿𝛾1𝛾2𝑉
(𝛾1 + 𝛾2)2(1 − 𝛽(1 − 𝛿)))

𝛼2
1−𝛼
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�𝜕𝑠𝑖,𝑡+1
𝜕𝑠𝑗,𝑡

∣∣∣∣𝑆𝑆
=

𝛼𝛿(𝛾𝑗 − 𝛾𝑖)(1 − 𝛽(1 − 𝛿))
𝛽(1 − 𝛿)(1 − 𝛼)(𝛾1 + 𝛾2)

( 𝛼𝛽𝛿𝛾1𝛾2𝑉
(𝛾1 + 𝛾2)2(1 − 𝛽(1 − 𝛿)))

𝛼2
1−𝛼

�𝜕𝑠𝑖,𝑡+1
𝜕ℎ𝑖,𝑡

∣
𝑆𝑆

=
2𝛼𝛿2𝛾𝑖𝛾𝑗𝑉

(1 − 𝛼)(𝛾1 + 𝛾2)3
( 𝛼𝛽𝛿𝛾1𝛾2𝑉

(𝛾1 + 𝛾2)2(1 − 𝛽(1 − 𝛿)))
2𝛼2−𝛼
1−𝛼

and

�𝜕𝑠𝑖,𝑡+1
𝜕ℎ𝑗,𝑡

∣∣∣∣𝑆𝑆
=

𝛼𝛿2𝛾𝑖(𝛾𝑗 − 𝛾𝑖)𝑉
(1 − 𝛼)(𝛾1 + 𝛾2)3

( 𝛼𝛽𝛿𝛾1𝛾2𝑉
(𝛾1 + 𝛾2)2(1 − 𝛽(1 − 𝛿)))

2𝛼2−𝛼
1−𝛼

.

The respective Jacobian matrix is

⎡
⎢
⎢
⎢
⎢
⎢
⎣

� 𝜕𝑠𝑖,𝑡+1
𝜕𝑠𝑖,𝑡

∣
𝑆𝑆

� 𝜕𝑠𝑖,𝑡+1
𝜕𝑠𝑗,𝑡

∣
𝑆𝑆

� 𝜕𝑠𝑖,𝑡+1
𝜕ℎ𝑖,𝑡

∣
𝑆𝑆

� 𝜕𝑠𝑖,𝑡+1
𝜕ℎ𝑗,𝑡

∣
𝑆𝑆

� 𝜕𝑠𝑗,𝑡+1
𝜕𝑠𝑖,𝑡

∣
𝑆𝑆

� 𝜕𝑠𝑗,𝑡+1
𝜕𝑠𝑗,𝑡

∣
𝑆𝑆

� 𝜕𝑠𝑗,𝑡+1
𝜕ℎ𝑖,𝑡

∣
𝑆𝑆

� 𝜕𝑠𝑗,𝑡+1
𝜕ℎ𝑗,𝑡

∣
𝑆𝑆

𝛾𝑖𝛼𝑠𝛼−1 0 1 − 𝛿 0
0 𝛾𝑗𝛼𝑠𝛼−1 0 1 − 𝛿

⎤
⎥
⎥
⎥
⎥
⎥
⎦

where the first row consists of the equations above; the second row consists of the symmetrics of those equa-
tions; and the third and fourth row consist of the derivatives of hi,t+1 and hj,t+1 with respect to the corresponding
parameters, respectively.

Then, we need to find the eigenvalues of this matrix in order to complete our stability analysis. Letting

𝑥 = 1 − 𝛼(1 − 𝛿)(1 + 𝛽𝛿)
(1 − 𝛼)(1 − 𝛿) ,

𝑦 = 1
𝛽 ( 𝛼𝛽𝛿𝛾1𝛾2𝑉

(𝛾1 + 𝛾2)2(1 − 𝛽(1 − 𝛿)))
𝛼2
1−𝛼

, and

𝑧 =
1 − 𝛿 + 𝑥𝑦

2
,

we can write the eigenvalues as follows:

𝜇1 = 𝜇2 = 𝑧 − √𝑧2 − 𝑦, (39)

𝜇3 = 𝜇4 = 𝑧 + √𝑧2 − 𝑦. (40)

Here we see that x > 1 + δ and y > 0, so that z > 0. As a result, the roots can not be repeated complex conjugates
since

𝑧2 − 𝑦 =
(𝑥𝑦)2 + (2 (1 − 𝛿) 𝑥 − 4) 𝑦 + (1 − 𝛿)2

4
≥ 0.

This stems from the fact that the roots of the quadratic equation

(𝑥𝑦)2 + (2 (1 − 𝛿) 𝑥 − 4) 𝑦 + (1 − 𝛿)2 = 0

are complex conjugates, since its discriminant is negative:

(2 (1 − 𝛿) 𝑥 − 4)2 − 4 (𝑥 (1 − 𝛿))2 = 16 (1 − (1 − 𝛿) 𝑥)
= − 16(1−𝛽(1−𝛿))𝛼𝛿

1−𝛼 < 0.
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By equations (39) and (40), we have

𝜇𝑖 + 𝜇𝑗 = 2𝑧 > 0,
𝜇𝑖 ⋅ 𝜇𝑗 = 𝑦 > 0,

for every i ∈ {1, 2} and j ∈ {3, 4}. This leads to monotonic convergence as

𝜇1 = 𝜇2 > 0
𝜇3 = 𝜇4 > 0.

As the dynamics are governed by the placement of the two sets of repeated roots on the real line, the parameter
combinations which qualitatively change the stability properties of the dynamic system should be analyzed in
more detail. To do so, we need to focus on the parameter values under which unit eigenvalues are obtained.
The following table summarizes the possible cases:

(𝑖) (𝑖𝑖) (𝑖𝑖𝑖)
𝑧2 = 𝑦 𝑧2 > 𝑦 𝑧2 > 𝑦
𝑦 = 1 𝑦 = 2𝑧 − 1 𝑦 = 2𝑧 − 1
𝑧 = 1 𝑧 > 1 𝑧 < 1

𝜇1,2 = 1 𝜇1,2 = 1 𝜇1,2 < 1
𝜇3,4 = 1 𝜇3,4 > 1 𝜇3,4 = 1

Case (i) requires that z2 = y = 1; but this would imply that x = 1 + δ which contradicts with x > 1 + δ. Thus, case (i)
cannot occur.
Note that if y = 2z − 1, then we have either μ1,2 = 1 or μ3,4 = 1 depending on whether z > 1 or z < 1, respectively.
We have y = 2z − 1 if and only if

𝑉 = 𝑉𝐶 ≡ (𝛾1 + 𝛾2)2
𝛾1𝛾2

(1 − 𝛽(1 − 𝛿))
𝛼𝛽𝛿 ((1 − 𝛼)𝛽(1 − 𝛿)

1 − 𝛼𝛽 (1 − 𝛿) )
1−𝛼
𝛼2

.

Furthermore, z = 1 if and only if

𝑉 = 𝑉𝑍 ≡ (𝛾1 + 𝛾2)2
𝛾1𝛾2

(1 − 𝛽(1 − 𝛿))
𝛼𝛽𝛿 ( (1 − 𝛼)𝛽(1 − 𝛿2)

1 − 𝛼 (1 − 𝛿) (1 + 𝛽𝛿))
1−𝛼
𝛼2

.

Note that VC < VZ since the parameters α, β, and δ are less than 1.

Case (ii) cannot occur as V = VC implies that V < VZ, i.e. z < 1.

Case (iii) is the only possibility that remains.

These reveal that the steady state cannot be a “source”. The steady state is either “saddle-path stable” or a “sink”
depending on the value of the winning prize V. Indeed, there exists a critical value for the winning prize above
which a multiplicity of equilibrium paths emerges. The dynamics of the system around the unique steady state
exhibits local indeterminacy (i.e. μ1,2 < μ3,4 < 1) if V < VC. Moreover, as soon as V > VC, the unique steady state
turns out to be saddle-path stable (i.e. μ1,2 < 1 < μ3,4). Figure 2 summarizes these dynamics for the following
parameter values: β = 0.95, δ = 0.25, α = 0.5, and γ1 = γ2 = 2.
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Figure 2: Eigenvalues under the given values of model parameters (V is the bifurcation parameter).

The analysis above takes V into consideration as the bifurcation parameter. To provide a further under-
standing of our model, in the following we normalize γ2 = 1 and concentrate on γ1 as the bifurcation parameter.
Once again, among the three cases specified above, only Case (iii) occurs. Then there exist two critical values
𝛾−
1 and 𝛾+

1 such that the unique steady state is saddle-path stable when 𝛾−
1 < 𝛾1 < 𝛾+

1 . Otherwise, we observe
local indeterminacy. These critical values solve μ3,4 = 1 by definition, and they are given by

𝛾+
1 =

1+ √1−
4(1+𝛽(1−𝛿))( (1−𝛼)𝛽(1−𝛿)

1−𝛼𝛽(1−𝛿) )
1−𝛼
𝛼2

𝛼𝛽𝛿𝑉

1− √1−
4(1+𝛽(1−𝛿))( (1−𝛼)𝛽(1−𝛿)

1−𝛼𝛽(1−𝛿) )
1−𝛼
𝛼2

𝛼𝛽𝛿𝑉

and 𝛾−
1 =

1− √1−
4(1+𝛽(1−𝛿))( (1−𝛼)𝛽(1−𝛿)

1−𝛼𝛽(1−𝛿) )
1−𝛼
𝛼2

𝛼𝛽𝛿𝑉

1+ √1−
4(1+𝛽(1−𝛿))( (1−𝛼)𝛽(1−𝛿)

1−𝛼𝛽(1−𝛿) )
1−𝛼
𝛼2

𝛼𝛽𝛿𝑉

.

Notice that 𝛾+
1 = 1/𝛾−

1 . This further implies that the unique steady state turns out to be saddle-path stable if
the asymmetry between players’ effectiveness parameters is sufficiently low. However, when one of the play-
ers is too dominant in terms of effectiveness, the unique steady state exhibits local indeterminacy. Figure 3
summarizes these dynamics for the following parameter values: β = 0.95, δ = 0.25, α = 0.5, and V = 8.

Figure 3: Eigenvalues under the given values of model parameters (γ1 is the bifurcation parameter).

We should also note that for given values of α, β, and δ, there exists a critical value for the winning prize
below which a solution for μ3,4 = 1 does not exist. In such cases, we always have local indeterminacy.

Finally, as for the speed of convergence, we can note that the properties of the dynamics depend on the
stable eigenvalue μs ≡ μ1,2 ∈ (0, 1) such that a higher value of μs would imply a slower convergence to the
steady state. Accordingly, in contrast to Grossmann, Dietl, and Lang (2010)’s results that linear costs imply
immediate convergence of the asset stocks to the steady state and the convexity of cost functions influence the
speed of convergence, we find that even with linear cost functions, non-immediate convergence is possible.
Obviously, the speed of convergence depends on multiple model parameters. For concrete examples, given the
parameter values used in Figure 2, the speed of convergence decreases as V increases; and given the parameter
values used in Figure 3, the speed of convergence first decreases but then increases as γ1 increases.

Notes
1 For detailed investigations of the works in the contest literature, see Corchón (2007), Konrad (2009), and Dechenaux, Kovenock, and
Sheremeta (2015) among others.
2 As a matter of fact, leisure choice is not explicitly modeled here, but it is captured in the cost of allocating time in work or education.
3 Given this alternative interpretation, our work can also be seen as a theoretical contribution to the literature on military expenditures
(see Rothschild, 1973; Deger & Smith, 1983; Kollias, 1996; Pieroni, 2009; Alptekin & Levine, 2012, among others). This literature mostly
focuses on the amount of military investments and its effects on a country’s economy (e.g. international trade, economic growth, etc.). To
our knowledge, earlier works have not considered a dynamic game-theoretic model to investigate the strategic interaction that incentivizes
the contending parties to invest in their military. Our model can fill this gap, since it provides a strategic framework to understand how
countries can utilize their military expenditures against their rivals through time.
4 There are other studies having a similar flavor, but they are quite different than the model studied here as they capture the effect of
investment by a decrease in the cost of effort (see Münster, 2007; Clark & Nilssen, 2013). Furthermore, in a rather different investment-
contest game, Amegashie (2011) shows that an asset owner might overinvest when property rights are incomplete.
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5 Grossmann, Dietl, and Lang (2010) show that linear costs imply immediate convergence of the asset stocks to the steady state. Later,
Grossmann, Lang, and Dietl (2011) show that if the cost function is convex, then the speed of convergence significantly depends on the
elasticity of the cost function. In contrast to these results, we find that even with linear cost functions, non-immediate convergence is possible
such that the speed of convergence depends on multiple model parameters.
6 Clark and Riis (1998) argue that this contest success function becomes particularly useful when winning probabilities depend on personal
characteristics of the contestants. In the current context, the effectiveness parameter hi,t represents a personal characteristic. The interested
reader is referred to Clark and Riis (1998) for an axiomatization.
7 Calculating the limit values of both sides, one can verify that a positive solution exists.
8 A technical reason of analyzing open-loop equilibrium is tractability. Recently, in two related studies, Grossmann, Dietl, and Lang (2010)
and Grossmann, Lang, and Dietl (2011) also resort to open-loop strategies, suffering from similar technical difficulties.
9 The only difference is that in the two-period model, there is an additional condition regulating the comparative statics on γi’s.
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