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Abstract—Accurate localization of mobile devices based on
camera-acquired visual media information usually requires a
search over a very large GPS-referenced image database collected
from social sharing websites like Flickr or services such as
Google Street View (GSV). This paper proposes a new method
for reliable estimation of the actual query camera location
by optimally utilizing structure from motion (SFM) for 3D
camera position reconstruction, and introducing a new approach
for applying a linear transformation between two different 3D
Cartesian coordinate systems. Since the success of SFM hinges
on effectively selecting among the multiple retrieved images, we
propose an optimization framework to do this using the criterion
of the highest intra-class similarity among images returned from
retrieval pipeline to increase SFM convergence rate. The selected
images along with the query are then used to reconstruct a
3D scene and find the relative camera positions by employing
SFM. In the last processing step an effective camera coordinate
transformation algorithm is introduced to estimate the query’s
geo-tag. The influence of the number of images involved in SFM
on the ultimate position error is investigated by examining the
use of three and four dataset images with different solution for
calculating the query world coordinates. We have evaluated our
proposed method on query images with known accurate ground
truth. Experimental results are presented to demonstrate that our
method outperforms other reported methods in terms of average
error.

Index Terms—Image-based localization, BOF, Retrieval, GPS
uncertainty.

I. INTRODUCTION

Finding the accurate location of an image generated by a
mobile device is crucial in a variety of different applications
such as navigation, location-based services, and augmented
reality. It also improves the quality of travel experience for
online users who are searching for landmarks. Even though
traditional approaches that utilize the GPS data or distance
from cellular towers are useful for performing this task, the
adequacy of this approach depends mostly on satisfactory
access to the satellite signal. In practice, GPS information is
usually reliable when the device has a clear view of the sky
to get the signal from at least four satellites. However, it is
difficult to obtain accurate localization using a GPS-equipped
device carried by a pedestrian who is moving on a street
sidewalk in a dense urban area such as downtown Chicago. For
instance, consider the raw GPS track extracted from a smart
phone in the downtown area of Chicago shown in red and the
actual track shown in blue in Fig. 1. It is evident that the level
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of localization error may place the pedestrian on a completely
different street. It has been observed that, the GPS errors of
a mobile phone are usually no greater than 100 meters [1].
Such a large error may not be acceptable in many applications.
As a result, significant research effort has been directed at
finding solutions to the problem of improved localization.
This effort has sought to exploit other information from the
sensors available in mobile devices [2], [3]. A large part of this
effort has focused on using the camera-acquired visual media
information that is available in any smart phone or mobile
device. It relies on the notion of getting an accurate position
of a query image generated by the camera by searching over
a very large GPS-referenced image dataset collected from
social sharing websites like Flickr [4] or services such as
Google Street View (GSV) using image retrieval methods. The
search space can also be limited by extracting and leveraging
additional media information from other sensors available in
a device to improve the results.

Existing image retrieval approaches have turned out to be
successful in finding correct matches especially when images
have adequate textures. The key tools employed in these
methods are features such as SIFT [5], SURF [6], BRISK [7]
and FAST [8]. Although such features are powerful, the perfor-
mance degrades with increasing size of the database, reducing
the chances of finding a correct match. This can be improved
by having prior information about the approximate coordinates
which can be used to narrow the search space down. For
example, the database is split into overlapping regions for the
search in [9] or available sensor data such as GPS, Compass,
and Estimated Positional Error (EPFE), are utilized to narrow
down the search space [10], [11]. Finding the best match is not
the last step since it often returns multiple images along with
their GPS positions. In fact, we can use those positions as our
rough estimated position for the query that gives us a middle-
of-the-street level accuracy. The resulting position error can be
large if the query camera position is actually on the sidewalk.
To achieve higher accuracy alternate methods such as those
utilizing similarity matrix from two query-matching images
(trifocals tensor) can be applied as done in [12], [13], and
[14]. Those methods utilize Structure From Motion (SFM) to
estimate three camera positions: two matching-images camera
positions and the query camera position.

Our contribution in this work is as follows: We propose a
method to optimally select a subset of images from retrieved
candidates with the highest intra-class similarity and distinct
GPS tags to increase the convergence rate of SFM. In order
to consider query features, we introduced a special similarity
measure that takes into account those features common to



Fig. 1: Sample image with the pure GPS track extracted from
a smart phone in downtown Chicago is shown in red and the
actual track shown in blue

all pairs of selected images which are shared with the query
as well. Upon attaining convergence of SFM, the coordinate
information obtained is fed to a new method introduced to
find the transformation between camera-relative coordinate
system and GPS coordinate system by adapting a cost function
between two coordinate systems to control the transformation
error below an acceptable level. In this context we use SFM to
estimate relative camera positions for preferably four dataset
and the query images. Since four relevant images may not be
available for all samples, we have also examined using three
retrieved images for implementing SFM. Since coordinate
transformation is not possible for recovering three unknown
parameters for three corresponding coordinates of images, we
have reduced position vector to 2D using PCA as is used in
[15]. Later a heuristic is used to estimate the query’s z value of
the position vector. All scenarios are experimentally compared
in terms of accuracy showing significant improvement over
reference reported methods. We have shown our proposed
method can be employed to compensate localization error in
available mobile devices.

The rest of the paper is organized as follows. In the next
section related work on localization based on image retrieval
techniques is described. Then, in Section III the algorithm used
for the image retrieval pipeline is covered and the procedure
for both pure retrieval and in combination with consider-
ing maximum GPS position error are presented. Section IV
demonstrates our proposed method for query tag estimation
based on SFM and followed by a specific 3D coordinate
transformation. Sections V and VI show how our proposed
method improves the performance in terms of accuracy when
compared with other available methods.

II. REVIEW OF RELATED WORK

Recent computer vision advances have made it possible to
search for similar image in social sharing websites like Flickr
or user generated datasets with sufficient reliability and for
many applications [16], [17], [18]. A noteworthy application
of this capability is searching a massive number of Geo-tagged
images on the internet to find the location of a query image
[19], [20], [17], [21]. A variety of methods have been proposed

to do this. For instance, Reitmayr and Drummond [22] utilized
an edge-based method to get street facades based on a 3-
dimensional method.

The most efficient and accurate approach uses Content-Based
Image Retrieval (CBIR) techniques relying on features such
as SIFT and its variants. Some effective approaches fre-
quently used in CBIR systems are Bag of Features (BOF)
[23], [24], [25], Fisher Vector (FV) [26], [27] and vector of
locally aggregated descriptors(VLAD) [28]. In these methods
all feature descriptors are quantized to visual words with a
clustering algorithm like K-Means. An image is represented by
a histogram of a number of visual words and each image in a
database has its own histogram. For finding the best match, the
histogram of a query image is compared with all histograms
in database.

There are different measures for finding similarity such as
the inner product of two BOF vectors or specific distance
functions [29], but a widely used procedure is the inverted
file [30]. Some researchers have focused on clustering to find
an efficient quantization technique for assigning each feature
descriptor to a visual word. For example, Soft Assignment
(SA) instead of Hard Assignment (HA) has been proposed
to compensate for incorrect assignment of a sample feature
[31]. Others have tried to select more distinctive features [32],
[33], [34], [35] while others have evaluated how repetitive
structures influence the ultimate result [36], [37]. This is not
necessarily the last step in the retrieval. Most of the methods
select more than one candidate for a match in this step. An
additional step, called homography verification performed by
applying algorithm such as RANSAC [38] and its variants,
[39], [40] are used to re-rank candidates. In fact, this step
compensates for the weakness of image retrieval schemes
based on BOF where the geometric information of images
is ignored. Some other studies such as [2], [3] have proposed
a method of using inertial sensor information and BOF to get
more accurate results. Specifically in [3] prior knowledge of
the approximate location from the cell towers is used to limit
the search to the cellular area. In [10] and [11], uncertainty in
the GPS location estimate is extracted and used to limit the
search space. These approaches seek to exploit the available
information to narrow down the search space. As a result, the
accuracy and success rate of the retrieval is higher. This means
more relevant candidate images are going to be returned in the
retrieval step.

After a small set of best-matching images has been collected
for a given query image, the next task is to estimate the
query’s location. Multi-view Structure From Motion (SFM)
for the reconstruction of 3D camera poses from 2D-2D corre-
spondences, or from 3D-2D correspondences can be used in
this case [41]. Recent state-of-the-art approaches in this field
such as [12], [13], and [15], find a similarity matrix from
two query-matching images. These approaches utilize SFM to
estimate three camera positions: two positions of two cameras
corresponding to the two best-matching images and the query
camera position, yielding a triplet of reconstructed 3D camera
positions. Numerous triplets are typically generated (multiple
matches with the query) and are subsequently processed by a
least-squares fitting routine in order to compute the similarity



matrix and generate a unique estimate of the query’s location.
They also reduce the 3D position vectors to 2D position
vectors by dimensionality reduction techniques such as PCA.
Based on their results the ultimate error range is still high
which makes its use difficult in navigation. For example, we
noticed that for some queries in different intersections, the
estimated positions are found to be on the opposite side of
the street from the actual position which makes navigation
hard. A key limitation of currently used methods is using
multiple SFM processing on pair of images returned by the
retrieval pipeline along with the query which is computation-
ally expensive. Our focus is using a single SFM on a subset
of images from the retrieval with the highest similarity. So
we formulate the image selection as an optimization problem.
Then we proposed a method to directly find camera coordinate
transformation parameters between camera relative centers
from SFM to real world coordinates as described in the
following sections.

III. PROBLEM FORMULATION FOR OPTIMAL SELECTION
OF IMAGES FOR SFM

We now consider the framework for formulating the prob-
lem of optimally selecting a subset of retrieved images as input
to SFM process. We first briefly describe the method we use
for image retrieval to obtain N matching images from which
a trimmed subset of k images is optimally selected for SFM
implementation. Typically N may range between 10 to 50
whereas the choice of £ is either three or four.

A. Retrieval of N Images

We first obtain N images that best match a query im-
age. For this purpose several image retrieval methods may
be employed. The main component of most image retrieval
methods is the Bag Of Features (BOF) technique. In this
approach, each image is represented with a vector containing
the occurrence frequency of features (visual words). There are
a variety of features such as SIFT, SURF or a normalized
version of the SIFT called RootSIFT that have shown better
performance. The query vector should be compared with all
dataset vectors to find the most similar image. It is important to
mention that the goal of our research is primarily on finding
a better estimate of query position extracted from multiple
matches from the dataset, and, not on improving the image
retrieval engine itself. Any suitable method with good retrieval
performance can be used for this stage.

As mentioned earlier, images can be represented by visual
words, but the importance of the words varies. This importance
is captured in the assigned weights using the Term Frequency-
Inverse Document Frequency (TF-IDF). The weight of the
visual word « in image ¢ is

tOé7i = fai X log(%) (1)
where f,; is the frequency of term « in image i, Ny, is the
number of images in the dataset and N, is number of images
containing visual word «. For each visual word «, note that

the Inverse Document Frequency (I DF') is defined as
IDF(a) = log(Nap/Ny) 2)

The value of IDF' depends on multiple parameters such
as the number of images in the dataset, the number of
visual words, and the average number of features in images.
As can be inferred more distinctive visual words receive
higher weights. Let n be the number of visual words and
Fo=Uf1f5...f2] and Fa=[f{® fs...fd*] be the frequency of
visual words «y, g, ...,a, for query and a dataset image,
respectively. The jth, element F, or Fy, are the number of
times feature descriptors of the query and a dataset image
have been assigned to visual word o;. The similarity between
query and a given dataset image (vectors) can be computed
by Eq. 3.

a1 IDF(a) min(fd, f&")

(Xa—1 IDF(e) f&)(Xa—s IDF(a)f{ib)G)
The above similarity measure is different from the commonly
used Cosine similarity measure. It is experimentally observed
that it produces more robust results than the Cosine similarity
measure. Our procedure for implementation of the basic image
retrieval engine consists of the following steps:

1) Find the RootSIFT features for all images in a database.

2) Cluster features using the Approximate Nearest Neigh-

bor algorithm (ANN) into 7 clusters (visual words).

3) Find the closest visual word (cluster center) for each

feature in database images and represent each image by
a vector showing the frequency of each visual word.

4) Apply TF-IDF using Eq. 1 and normalize the vectors.

5) Find the best N matches based on the score obtained

for the dataset image using distance criteria.

6) Re-rank N closest images based on homography verifi-

cation by applying RANSAC.

In order to achieve higher recall we used the Adaptive
Assignment algorithm [37]. This algorithm, which assigns
different number of visual words to different features improves
recall. It is worth mentioning that any method could be used
for the image retrieval pipeline. We can further improve the
result by considering prior knowledge of the location from
GPS as described in III-B.

SIM (I, Ig) =

B. Considering Prior Knowledge Of Location From GPS

As mentioned in previous sections, the result of retrieval
should be fed to our proposed method for query geo-tag
estimation. One option to achieve a better result is taking
prior knowledge from the query position into account. Some
reported studies have used noisy location data. For example in
[9] coarse location data from cellular tower and triangulation
are used to limit the search region. Another option for nar-
rowing down the search space is considering maximum error
of the GPS which is denoted here as R, 4. Suppose the GPS
coordinates of two images [; and I, are given by (61, ¢1) and
(62, p2) where 0; and ¢; are the latitude and the longitude
for image ¢. The Geo-distance between locations of these two
images is computed by Eq. (4).

cos™ ! (sin(6;) sin(6y) + cos(6;)
cos(fz) cos(py — 1)) X R (4)

DGEO(Ilv 12) =



where R, is the radius of the earth that is approximately 6371
kilometers. The search space can be limited to those images
located in a circle with the radius of R,,,,. The procedure to
limit the search space for the query image I, is described in
Algorithm 1.

Algorithm 1 Image Candidate Selection Algorithm

db 7db db
{Il aIQ 7---7INdb}7

1: Input: Set of Ny images S =
Rmam’ Iq
2: Output: S which is the set of all images in the region
limited by Rpqx
for I €S do
if Dgeo(I,1,) < Rypa then
add I# to S
end if
end for
Output: find S as the set of image matching candidates
for the query image I,

® DN hEw

For the San Francisco dataset the maximum reported error
is 300 meters. Based on our experience in Chicago, the
error in the position estimated by a smart phone such as
iPhone 5, iPhone 6, Nexus 6, or Galaxy S6, is typically
less than 100 meters. This is because those phones benefit
from other sources of data such as cellular towers and inertial
measurement unit (IMU). The search space therefore turns out
to be smaller for real-world applications.

The final common step in most of image retrieval algorithms
is the application of geometry verification based on RANSAC
to re-rank the limited number of candidate based on the
number of inlier features. This step mitigates the weakness of
systems based on BOF which ignore the geometric information
of features. To go forward and estimate the actual position of
the query, more than one image is needed. This is because
estimating the camera position by using just a single image
and considering fundamental matrix between the query and
the best match, even when models for both cameras are
available, would not be accurate enough for our purpose.
For our proposed 3D coordinate transformation method at
least three candidates with distinct GPS tags are required. To
acquire candidates that are most similar to a query, criteria
such as the number of inliers between the query features and
the candidate features can be considered for the re-ranking
and removing irrelevant candidates. Along with this criterion,
another suitably devised step should be applied to ensure
return of the best candidate images with distinct GPS tags
and highest intra-class similarity. The procedure for optimally
selecting candidates is discussed in the next sub-section.

C. Optimum Selection among the Retrieved Images

Suppose NV images with location coordinates g;,7 = 1, ..., NV
are selected after re-ranking. We wish to select k& images out
of N, where k is preferably four. If that is infeasible, then &
equal to three images may be selected if possible. A simple
way to select k& images is to find images with distinct GPS tag
and select & images with the highest number of inliers. Such
a set of images is not necessarily the best choice for SFM

processing since the selection relies only on the number of
pairwise matches (inliers) between the query and all candidates
while the number of matched features between each pair of
candidate images is not taken into account.

It is important to note that a set of candidate images is
the best choice when each member of this set shares the
highest number of common features with the other members.
In our case, while multiple images per location exist, we seek
a method that optimally selects the set so that each member
of the set has the highest consensus on common features with
other members as well as with the query image. The solution
is facilitated by defining a pairwise dissimilarity measure,
w;j, between distinct image ¢ and j. An undirected graph
G = (V,E,w) with vertices V' = 1,2,..., N corresponding
to image I, Is, ..., Iy with location g1, go, ..., gn, the set E
of edges, and the set w of weights can then be created. By
this definition, the more similar images will have the lower
w; ;. Now the problem is to find a subset G* = (V*, E*, w*),
V*CV, E* C E, with k vertices, k < N, that minimize the
total weights:

VF* = argmin Wi 5)
k
VECY  jevr
9i79;
i#]

Here V' can be partitioned into clusters with distinct GPS-
tags. We now devise a solution to the problem of optimal
selection of k images using the framework just described.

IV. IMPLEMENTING SOLUTION TO OPTIMAL IMAGE
SELECTION FOR SFM

The problem of finding an optimal subset from a set has
been studied extensively during last years [42], [43]. Since
there likely to be a chance of multiple images per location, the
algorithm should only select one image per location. We there-
fore employ the General Minimum Clique Problem (GMCP)
to select one image in each cluster containing images with
identical GPS-tags. In the following subsection we describe
how our problem is formulated and solved by GMCP.

A. Candidates Selection By GMCP

In order to formulate and solve our optimal selection
problem using GMCP, we start with N best retrieved images
with world coordinates (GPS-tag) g;, j € {1,...,N}, not
necessarily distinct. Let h be the total number of distinct
or unique location coordinates. The N candidates are then
grouped into clusters {Vi,...V;,},h < N with an identical
GPS tag. So an arbitrary cluster V., 1 < r < h contains
different number of images associated with world coordinate
gr. With this partition of images, some clusters may contain
only a single image meaning that the retrieval returned only
one image for that location. Also h is usually larger than &
(k is preferably 4) which exceeds our need of images for
the next step. One possible solution is to keep first £ = 4
clusters and find all images with the highest similarity. We
choose to keep more clusters and then select only k£ images
with the highest score from the result of GMCP. In order
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Fig. 2: Candidate selection by GMCP. Images with similar GPS-tags are placed to the same cluster. For cluster V7, the number
of inliers between each member and the query is shown in red. For each cluster only one image is returned by GMCP and is
shown with a green check mark (edge weights are not shown in this figure). Note that for the cluster V;, in our approach the
two images with higher number of inliers (54 and 51) were not selected unlike the scenario in which the maximum number
of inliers is the only criteria for image selection in each location

to solve our problem, for each member of all clusters, a
similarity measure between image ¢ € V, and j € V,, where
x # y should be calculated. The number of inliers between a
pair of images derived from geometry verification is a strong
indicator of similarity. In the last steps, we only found the
number of inliers between the query and limited number of
candidate images. Applying geometry verification between
each pair of candidates would be practically infeasible since
it would require an unacceptable amount of time. In order
to avoid this time complexity we propose the use of vectors
containing frequency of visual words of images as defined in
Section III. It is also important to incorporate the query visual
words in computing the similarity between two images. This
is because images selected in this stage along with the query
should be fed to the SFM pipeline. So a desirable similarity
measure should take into account those visual words that are
common to two images as well as to the query image. We
therefore introduce a query-contextualized image similarity
measure. Suppose the vector of visual words for image I is
represented by F; = {f{, f1, ..., ff]} In order to incorporate
query visual words in computing similarity, the indices of non-
zero visual words of the query are extracted and represented by
I?, = {uy,...,uq} where d is the number of non-zero visual
words. We define the similarity between any pair of images
and 7 by Eq. 6:

d d d
big =Y AFLIASLL) /O NFLNTPO A (N2
k=1 k=1 k=1
(6)
where, for x € R,
_J1 ifz#0
Alr) = {O otherwise @

Since A?(x) = A(x) the denominator in Eq. 6 can be reduced
to

O ALY A2 ®)

d
k=1 k=1

This measure calculates the similarity between two images
while taking into account the non-zero features of the query.
In the next step, all selected images along with the query image
should be fed to SFM step. The complexity of computing Eq.
6 is low since vectors are already available and summation is
applied for the non-zero features of the query. A convenient
measure of dissimilarity between image ¢ and j can be defined
by Eq. 9.
wi; =1 — ©))
The next step is to find the subgraph G* = (V*, E*, w*)
with nodes V* = {v],...,v5} C V where only one node is
selected from each cluster, for instance v{ from V; and v}
from V}, and subset of edges F* C FE that minimizes the
total dissimilarity that for a feasible solution is:

h h
TDissimilarity(V*) = Z Z Wy+(m)v*(1)

m=1l=m+1

(10)

Fig. 2 shows the process of clustering images with only
four clusters where the costs of edges are not shown. For the
members of cluster one, V7, the number of inliers between the
query and each member is shown in red. In this case, clusters
contain different numbers of images. The result of GMCP is
shown with green check marks. As shown in cluster Vi, an
image with 48 inliers with the query is selected as a best
candidate. Note that for the cluster Vj, the two images with
a higher number of inliers (54 and 51) were not selected by
our proposed method based on GMCP. This is different from
the scenario in which the maximum number of inliers is the
only criteria for image selection in each location. Without use
of GMCP, the candidate selected from the cluster V; is the
image with 54 inliers. We compare the SFM convergence rate
in Section VI for both methods.

B. Generalized Minimum Clique Problem (GMCP)
Generalized Minimum Clique Problem (GMCP) can be used
when the costs of edges are non-negative and graph is |K|-
partite complete. Unlike a minimum clique problem, GMCP
substitutes nodes with cluster of nodes. In this problem nodes



of a given graph are partitioned into disjoint clusters. The
goal is to find a subgraph with minimum cost while selecting
only one node from each cluster. Each cluster furnishes only
one of its nodes to the subgraph. This algorithm has been
used recently in Computer Vision for multi-object tracking
[44]. Suppose we are given a graph G = (V, E,w) with
nodes V' = {v1,...,un} and these N nodes are grouped
into h sets of nodes called clusters Vi, V5, ..., V. Note that
V=WUlWU..UV,and V,NV, =@ forall z,y € {1, ..., h}
where h € Z : 1 < h < N and & # y. As mentioned earlier,
a cost wy; is assigned to the edge between nodes i € V,, and
j €V, for x # y. Now the objective is to find a subgraph
G* = (V*, E*,w*) with nodes V* = {v},...,v}} C V which
is composed of only one node from each cluster together with
associated subset of edges E* C FE that is minimized the
total edge cost. For such a problem GMCP can find a feasible
solution with minimum cost which is in fact the total weights
of all edges in E*. So based on the formulation of our problem
in Section IV-A, GMCP can return the subset with highest
intra-cluster similarity which leads to a higher convergence
rate in the SFM step. In the next section we discus how
the selected candidate images are used to estimate the query
camera position.

V. QUERY CAMERA POSITION ESTIMATION
A. Estimate Query Location By Four Dataset Images

The image retrieval process selects multiple matching im-
ages for a specific query. Each of the matching images has
a known GPS tag which is used in our novel procedure for
estimating the query camera’s location. The proposed method
is illustrated in Fig. 3. A key concept in our approach for query
GPS tag estimation is the selection of a subset of images with
the highest inter-class similarity using GMCP as described in
IV-A and then obtaining a 3D — 3D coordinate transformation
from one 3D coordinate system (eg. camera centers in camera
3D space as reconstructed from multi-view SFM) to another
3D coordinate system (eg. GPS tags in absolute world 3D
Cartesian space for the same cameras). Fig. 4 illustrates the
concept with four cameras (images), with centers C1, Cs, Cs,
and Cy, using four images obtained in the previous step, with
the query camera as the fifth camera with center at C5. C}
to C5 represent camera 3D center coordinates which have
been reconstructed by multi-view SFM. We use the VisualSFM
package [45] for this task and extract the coordinates C7 to Cf
based on four matching images (dataset images) for the given
query image. The details of camera center localization with
SFM are as follows. Assume that for a given query image I,
a set of h images, T = {I,x, Iz, ..., I,s } h >= 4 is returned
by the GMCP. Here [,; is image corresponding to node v7.
The corresponding GPS tags for those h images are denoted
with the set of locations L = {Pu; s Pug, ooy Pox }

The set {l,:, s, L, Iz, 1,} should then be processed
with VisualSFM. Upon convergence to five camera center
locations, C1, ..., Cs, the quintuplet C' = {C4,..,C5} is used
to obtain absolute world coordinate locations. If fewer than five
relative camera centers are returned, SFM does not converge.
It is worth mentioning that there would be a possibility to

re-run the process using three best candidates as described in
Section V-B.

In the following, without loss of generality, we have adopted
the convention that C5 in C' corresponds to the camera center
location for query image I,. Locations (4, ..., Cy correspond
to the cameras for the matching dataset images. Each camera
center location in C'is specified with 3D Cartesian coordinates
in camera referenced space. Before computing the transfor-
mation the GPS tag of dataset images should be converted
to Cartesian coordinates. The conversion equations are as
follows. Assuming the GPS tag contains latitude and longitude
pair (0, ¢), the coordinates x,y, z are computed by:

2z = Re cos(0) cos(¢)
y = R, cos(0) sin(¢)
2 = R sin(6) (11)
where R, is the radius of Earth. Suppose the GPS tags
for the four dataset images used in SFM are represented
as Py, ..., P, in Cartesian coordinates. Algorithm 2 is used
for deriving the transformation from camera-referenced to
absolute reference coordinates. It uses the values for the
matching dataset images, P; to P, , and their relative locations
C1 to C4 derived from SFM.

Algorithm 2 Camera Referenced Coordinate System to World
Coordinate System Transformation

1: Input: Camera center coordinates C1, ..., Cy from quintu-
plet C' and their corresponding GPS tags in 3D spherical
coordinates

2: Convert GPS tags PU; to Pv; for dataset images Ivl* to
IUZ to 3D Cartesian coordinates P, to Py by Eq. 11

3: Use C7 to Cy4 and P; to Py as inputs in computing the
rotation matrix R, translation vector ¢y, and scaler s.

4: Compute the residual error evaluated for the current values
of R, tg, and s. If the error is less than a desired threshold,
the localization error is acceptable.

5: Output: Matrix R, column vectors ¢y and s, defining the
linear transformation from the camera referenced coordi-
nate system to the world coordinate system.

Two final steps are applied after Algorithm 2:

1) compute query’s location P; (GPS tag in Cartesian
coordinates) as Ps = tg + sRCSs.

and

2) convert P5 back to GPS latitude/longitude gy, .

In step 3 of algorithm 2, points C; to C4 can be considered
as points in the left coordinate system. This is a 3D Cartesian
coordinate system for all reconstructed camera centers with
origin at C';. We label these as y; ; with ¢ = 1 to 4. Locations
P; to P, can be considered as points in the right coordinate
system. This is a 3D Cartesian coordinate system representing
the GPS tags for the same cameras. We label these as y,.; with
1 =1 to 4. The transformation we seek, from the left to right
coordinate systems, is given by:

yr = sRy; +to (12)
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Fig. 3: Proposed pipeline for image-based localization (using four matching images from dataset)
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Fig. 4: Transformation from camera-referenced 3D coordinate
system based on SFM to real world-referenced 3D Cartesian
location using four dataset images

where s € R is a scale factor, t; € R3 is the translational
offset, and R € R3*3 is a rotation matrix applied to 3 x 1
column vector y;.

Because of measurement errors, we are unlikely to find a
scale factor, a translation vector, and a rotation matrix such

that the transformation equation above is satisfied for each
point exactly. Instead there will be a residual error given by:

13)

For general coordinate transformation problem and two sets
of k points in left and right, the problem can be formulated as a
Least Squares problem. The objective is to find a match matrix
or correspondences m which represents the corresponding
points in the left and right coordinates and transformation
parameters R, s,{; which minimize mapping error from one
set of points y; onto another set of points ;..

€ = Yri — SRy — o

n n
(t5, 8™, R*,m*) = argminZZminym — sRy;j — tol|?
to,s,R,m i=1 j—1

(14)

In our application we know the GPS-tags of all images (for
example four images) in dataset which are fed to SFM. Upon
convergence of SFM, the camera centers corresponding to
those four images but in camera referenced coordinate system
can be extracted. Therefore correspondences are known from
left to right systems which obviates the need to keep match
matrix in Eq. 14. So we have:

n
(t5, s, R*) = argminz lyri — sRyii — tol?
to,s,R i—1
In our method we ideally use four (or three if four is infeasible)
corresponding points. Each point has three variables. There-
fore more than eight equations are available which makes it
feasible to find the transformation parameters with a closed
form method described in [46] in O(n) time. So we directly
calculate R, s,tp as shown below. The first step according to
[46] is computing the centriod of ¥; and y,.

1 — 1 —
n= o z;ylz Yr = ﬁ;ym
1= i=

(15)

(16)



Then points should be shifted with respect to the centroids:

Yii=UYi— U Yri = Yri — Ur (17)

Now by using y;; and y,; in the error e; we have:
€ = Yri — SRy — to (18)
to = to — gr + SRy (19)

The square of error in Eq. 15 can be minimized when ¢ is
equal to zero. This yields

to = yr — sRy; (20)

Now for finding the translation, ty, s and R should be
computed. From [46] s can be computed as follows:

n n
s= | D llyrall2/Y llyial
i=1

i=1

2 1)

Now R can be calculated using the steps below. First compute
M

M= yla(ii)T (22)
i=1

which is a 3 x 3 matrix. Then compute B = (MTM) and

find the eigenvalues A1, A2, A3 and eigenvectors v, vo, U3 and

express B using eigen-decomposition as follows:

1 1 1
R = M(—=01%T + —=ty + ——=13737)
VA1 VA2 VA3
By substituting s and R from Eq. 21 and Eq. 24 into Eq.
20, the translation vector, ty can be computed. Now each
point from left coordinate including the query point can be
transformed to right side by:

(24)

yr = sRy, +to (25)

The total residual error (FErotq;) resulting from the
transformation is equal to

n
ETotal = Z ||ez||2
=1

We describe the result and the related error range for some
samples in Section VI. Notice that [15] and [13] utilized
multiple estimates of the query position derived from multiple
running of SFM. Then an optimization approach (Random
Walk) is employed to estimate query location. In order to
avoid time complexity of multiple SFM, our proposed method
runs SFM only once to compute the coordinate transformation
parameters as mentioned above. Since four relevant images
with distinct GPS-tags may not always be available for all
queries, we have also examined the use of only three matching
images. In order to adapt algorithm 2 to three dataset images,
two methods have been proposed as described below.

(26)

B. Estimate Query Location Using Three Dataset Images

Four relevant images may not be found in every case.
We therefore seek to recover the query GPS-tag using a
smaller number of images. Until now we considered the
use of four images since three unknown coordinate variables
should be determined. In general for computing transformation
parameters between m-dimensional vectors using the method
described above, m + 1 corresponding points are required. So
if three images are used, only two unknown coordinates such
as x and y can be recovered. The advantage of this approach
is that it can be applied to more query images since some of
them do not have four relevant candidates with distinct GPS-
tags. Although finding the transformation between the camera
coordinate system and the real-world system in Cartesian
coordinate is almost the same for four or three images, transfer
from Cartesian coordinates to GPS tag (Lat, Long) is not
possible without having corresponding 3D position vectors.
To address that, we propose two different methods described
below.

1) Finding Third Component By Averaging z: Since z
values would be close for the query and dataset images,
we seek to only recover z and y by computing coordinate
transformation. We use x and y in left and right coordinates
(camera-referenced coordinates and real-world coordinates)
for three images to compute the transformation parameters,
R, s, tg. Then the transformation should be applied to the
query location in left system to obtain the query location in
real-world coordinate (only x and y). By having x and y ,
only calculating longitude is possible since z is required for
calculating latitude. In order to have a reasonable estimate, an
average of z, as shown in Eq. 27 below

Zq ~ Z?:l Zav,
3

for those three candidates is computed. This is because we
assume that there would not be an abrupt change in the z
coordinate values among the selected images and the query.
All three components of the location vector of the query,
[z,y,2], can be used for computing query’s latitude and
longitude.

2) Position Vector Reduction: Another method employed
is dimension reduction. We applied Principal Component
Analysis (PCA) to the 3D position vectors for transfer to 2D
space. A coordinate transformation is then applied between
those 2D vectors and their associated GPS tags. The query
GPS tag can then be calculated directly. To examine how the
whole process affects the ultimate accuracy, the same query
images as used with the four images approach in Section V
have been used for evaluation. Also, the experimental results
for those queries which were not evaluated due to the lack of
four relevant images are covered in the Section VI.

27)

VI. PERFORMANCE EVALUATION

In this research, we evaluated the performance of our
method using the publicly available San Francisco dataset from
[47] containing more than one million images.

The reason for using this dataset is that the location error
for its queries is high since the images are captured mostly



TABLE I: Query Images and Corresponding Four Matches for sparse 3D camera pose reconstruction

Query ID PCL_ sp (best-matching) image ID Query image Transform: R, tg, s Erotal = 21— lle]l?(km?)
14 9276 9277 9279 9275 14
-0.892 -0.573 -0.137
0.316227 1.024494 2.418441 -0.391183 1.148572 0.403 -0.881 -0.655
3D cam positions | -0.010382 | -0.011895 -0.000215 -0.000558 -0.000714 -0.194 0.852 -0.747 1.7399 e-06
1.740068 1.0341255 | -0.439624 2.459574 -1.207395 to=[ -2.697 -4.250 3.904] e+03
s = 0.0078
26 4535 4534 4533 19128 26
0.602 -0.006 -0.678
-0.615103 -1.189003 -1.737672 | 0.3774560 -1.085159 0.297 0.056 0.681
3D cam positions | -0.000913 -0.001757 -0.001110 .040469 -0.000942 0.740 0.044 0.274 1.8707 e-07
2.005482 2.662914 3.313662 1.761960 -0.231594 to=[ -2.697 -4.250 3.904] e+03
s = 0.0046
320 13255 13256 13257 4819 320
-0.27 0.01 -0.86
0.003372 0.733618 1.396704 1.332279 0.410683 0.73 0.01 0.09
3D cam positions | -0.005780 | -0.035297 -0.045083 -0.063366 0.349956 0.61 0.03 -0.49 4.1369 e-07
0.200270 0.6269572 | -1.526042 -1.287443 -3.633897 to=[ -2.697 -4.250 3.904] e+03
s = 0.0035
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Fig. 5: Recall versus the number of top candidates for San
Francisco dataset for different scenarios. Limiting the search
area using Algorithm 1 improves recall

in downtown San Francisco. Also, it contains more images
per area which is necessary in our research which is based
on atleast three images with distinct GPS-tag in SFM process.
We have used only perspective central images, PCIs, from the
dataset since they are less likely to cause distortions during
the VisualSFM 3D reconstruction. The San Francisco dataset
provides a set of 803 query images, usually taken from a
pedestrian’s perspective at street level. Each query image is
also annotated with a ground truth GPS tag which is noisy.
Since accurate ground truth is required for evaluating the final
results, we have used ground truth from [12] and compared
our result with the results provided in this article. We also
used Adaptive Assignment [37] while n = 200k for the image
retrieval engine. To assess the performance, recall as used in
[47], [48], and described in Eq. 28 has been used. To further
improve recall rate, rough position and maximum GPS error
are used for narrowing down the search space. For the San
Francisco dataset R,,,, = 300 is reported. By considering
Ry q, in Algorithm 1, recall has improved as shown in Fig. 5.
This figure also covers the recall curves after re-ranking. Note

that we have used San Francisco 2011 ground truth which
does not cover all the query images. As a result perfect recall
is not attainable, where

# of relevant retreived images

recall = (28)

# of retreived images

We found that relevant images typically have more than
20 inliers. So candidate images with fewer than 20 inliers
have been filtered out directly. From 803 original queries,
our retrieval pipeline finds candidates which have at least
20 inliers for 453 queries . For 398 queries, more than four
images are found. Although retrieval curves for N = 50 are
shown, we have selected 15 images for the GMCP (N = 15).
The reason is that the recall is almost flat for the N > 15.
Subset of four images is then selected with two different
approaches discussed in Section III-C. For queries for which
the number of retrieved candidates is less than 15, all retrieved
images proceed in the next step. Fig. 6 shows a query with
multiple candidates returned from the retrieval pipeline and
four images opted by two approaches. Although images appear
to be similar in both sets, the set returned by GMCP converged
in SFM processing while the other did not. Fig. 7 represents
a sample which did not converge for both methods while
they contain different images. In Fig. 7, G represents images
selected by GMCP and U by distinct GPS tag. Images which
are not selected are shown by NS.

For the 277 queries from 398, both approaches, returned
identical subsets. Among those sets, 141 of them converge
and produce 3D coordinates. For the reminding 121 queries
we got different subsets with 42 convergences for the method
based on finding distinct GPS tag and 61 convergences for
the GMCP based approach. It is worth mentioning that GMCP
based selection converged for all samples which distinct based
method converged. We also found that localization error is low
and acceptable for our application when the SFM converges
with five images including the query. This is because the
amount of error introduced by the approach we have used for
coordinate transformation is low. Therefore the total location
error is acceptable upon convergence of the SFM. Although
some queries could find more than three candidates, the num-
ber of candidates with distinct tag is less than four. We have
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Fig. 6: a) Sample set of images returned by retrieval pipeline for query image shown in b. c) Images selected by proposed
method based on GMCP. d) Images selected by finding images with highest number of inliers with query and distinct GPS-tag.
Although images in two sets (c) and (d) look similar, only the set returned by GMCP let to convergence in the SFM pipeline

query

GU NS 18] GU NS G

NS NS

Fig. 7: Sample set of images returned by retrieval pipeline in a case where neither GMCP nor distinct GPS-tag led to
convergence. Images selected by GMCP and/or distinct (unique) GPS-tag are denoted as G and U, respectively, while images

that were not selected are denoted as NS

evaluated our method based on three candidates as discussed
in V-B and found success in 47 more cases.

Table. I illustrates several query images from the San Fran-
cisco dataset, the corresponding four matching images for 3D
camera pose reconstruction, and the residual error >, ||e;|?
in squre kilometers. The reconstructed best-matching camera
center positions from SFM are listed for each query. Note
that we rely on VisualSFM [45] for convergence i.e. estimate
camera locations for cameras including the query camera.
When convergence is not achieved with four images, the
same approaches with three images can be applied. For each
query, the amount of residual error obtained from closed-
form formula for the transformation is listed in the rightmost
column. Those values of errors which are introduced by
coordinate transformation are acceptable for all quintuplets
considered in testing. This error is sum of errors for coordinate
transformation of four images from camera coordinates to real
world coordinates system through the computed R, s, and %,
and is acceptable for our application specially when we know
the precision of the ground truth is in the range of a meter.
The specific parameters of the corresponding transformation,
scale factor s, translational offset ¢,, and rotation matrix R
are listed in the adjacent column. Details are presented in the
Section VI.

TABLE II: Geo Distance Error between ground truth and
Estimated GPS tags from five images

Geo Distance Error Query Number

14 26 52 115 189 | 233 | 524

meters 1.81 | 737 | 5.1 | 1.29 | 097 | 22 1.89

Table. II depicts an illustrative random subset of query
images and the distance error in meters between the estimated
GPS tag and the ground truth tag for each query when four
dataset images are used. When VisualSFM does not converge
using four candidate images, we considered the result for that
query to be unsuccessful. It is however possible to consider
using three candidates for that query.

The coordinate transformation pipeline was found to con-
verge with acceptable error for all successful cases of con-
vergence in SFM. According to the Table. I, the maximum
residual error for transferring four points from left to right
coordinate system was about three meters in the worst case.

It is worth mentioning that for all of the samples we got
less than this level of error for residual error and it was an
order of magnitude times smaller for most of the cases. The
resulting estimation error of each query camera’s GPS tag is
shown in the Fig. 8.

As can be seen, the best result is obtained using the method
with four dataset images. Moreover, the plot shows that 59.4%
of the query estimated locations have an error of less than 5
meters and 32.6% have an error between 5 and 10 meters.
For that scenario and for some samples shown in Table. II,
the ultimate localization error for most of the samples is less
than three meters. This level of accuracy is not achievable for
other two methods based on three dataset images. In fact for
three images, PCA-based method is slightly better while it is
inferior in a scenario with four images. Also, these results
represent a marked improvement over the errors reported in
[12], [2]. In [12] only errors less than 20 meters are reported
while no statistics for errors less than five meters or between
five and 10 meters is presented. In [2] only 15% of the errors
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Fig. 8: Distribution of estimation error in meters of query
camera’s GPS tag using our proposed method for the cases of
four original images (blue), three images without PCA (dark
gray), three images with PCA (light gray). Localization error
for about 59% of query images is less than 5m using four
images (blue).
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Fig. 9: Overall average of estimation error (in meters) of query
camera’s GPS tag using our proposed method for the cases of
4 original images (blue), 3 images with PCA (dark gray), 3
images without PCA (light gray).

are less than five meters compared to 59.4% achieved with
our approach. Achieving an error in the range of 20 meters
was not our goal since this level of error can be obtained by
just considering the location of the best match from retrieval
for most of the queries. The average of estimation error of the
query camera’s GPS tag using our proposed method is shown
in Fig. 9 for the cases of four original images (blue), three
images with PCA (light gray) and three images without PCA
(dark gray). It is important to note that we do not incur any
increase in computational burden in our method with four or
three images. This is because the time required for retrieving
and re-ranking images for an arbitrary query is almost the same
for all approaches. Also, image selection based on GMCP
with only N = 15 nodes does not require a large amount of
computation and adds up less than 10% to the time required for
a single SFM. Moreover, the computational cost for coordinate
transformation based on the proposed closed-form approach
is even less than 1% of required time for a single SFM. So,

(d) match 3 (e) match 4

Fig. 10: Sample image set 1 of query and 4 best matching
images considered in the position estimation shown in Fig.
11.

the total running time is dependent mainly on the number
of times SFM is executing. Unlike other mentioned research,
we run SFM only once that leads to significantly reduced
running time. It is worth mentioning that considering four
images instead of three images for the visualSFM process
has a negligible effect on the processing time as discussed
in [45] but reduces the mean squared reprojection error of the
estimated five camera coordinates.

In order to show how our proposed method improved the
localization, two samples are provided with more details. The
two sample image sets considered here are shown in Fig. 10
and Fig. 12, and the positions of the retrieved images (more
than four), are shown, respectively, in Fig. 11 and 13 with
red icons. Also Fig. 10 and Fig. 12 show four images that
are used in SFM for each query. To evaluate the performance
of our proposed method, the noisy query position is shown
in blue while the actual and estimated positions are shown in
green and yellow, respectively. As can be seen, the actual and
estimated positions are close, especially in Fig. 13 where the
distance between the two is less than two meters.

Although we have considered prior knowledge of the po-
sition along with maximum GPS error for the San Francisco
dataset, the localization errors for new cellphones are usually
within 100 meters even in the worst case in cities such as San
Francisco or Chicago. So the retrieval engine can search in
an even smaller region specified by the range of GPS error.
By applying our proposed method this level of error would be
reduced to a range of a couple of meters.

VII. CONCLUSION

In this paper, we first proposed a method to optimally
select the best subset of images selected with the highest
similarity to be used in reconstructing a 3D scene by using
SFM. In order to compute the query location, we introduced a
coordinate transformation between dataset images location in
camera referenced coordinate system and their corresponding
real-world locations. The advantage of this method is that the
transformation parameters and consequently query location



Fig. 11: Sample localization result for query image in set 1
in Fig. 10: Noisy query position from GPS (blue), Position of
best matches (red), actual (green) and estimated positions by
proposed method (yellow)

(d) match 3 (e) match 4

Fig. 12: Sample image set 2 of query and 4 best matching
images considered in the position estimation shown in Fig. 13

caprTaL
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Fig. 13: Sample localization result for query image in set 2
in Fig. 12: Noisy query position from GPS (blue), Position of
best matches (red), actual (green) and estimated positions by
proposed method (yellow)

can be computed directly from the results obtained with
only a single execution of SFM. Although four images from
retrieval are employed, for most of the samples we showed
that transformation parameters can also be computed with

three images. Experimental results show that our approach
is able to reduce the error in the estimates of query’s GPS
tag from more than 20 meters (distance between actual query
position and best match) to less than five meters in a high
percentage of the considered test cases which is suitable for
localization application of interest to us. Also we observed that
our proposed method will produce an improved performance
(SFM convergence for a larger set of query images) if the
original database has more images per location and a higher
degree of overlap between images from similar locations. In
future we will explore how a Convolutional Neural Network
(CNN) can be employed as a core of image retrieval pipeline
to improve the retrieval results.
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