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ABSTRACT Contrast enhancement is an important preprocessing step for the analysis of microscopy
images. The main aim of contrast enhancement techniques is to increase the visibility of the cell structures
and organelles by modifying the spatial characteristics of the image. In this paper, phase information-based
contrast enhancement framework is proposed to overcome the limitations of existing image enhancement
techniques. Inspired by the groundbreaking design of the phase contrast microscopy (PCM), the proposed
image enhancement framework transforms the changes in image phase into the variations of magnitude
to enhance the structural details of the image and to improve visibility. In addition, the concept of
selective variation (SV) technique is introduced and enhancement parameters are optimized using SV. The
experimental studies that were carried out onmicroscopy images show that the proposed scheme outperforms
the baseline enhancement frameworks. The contrast enhanced images produced by the proposedmethod have
comparable cellular texture structure as PCM images.

INDEX TERMS Microscopy images, contrast enhancement, image phase information, Fourier transform,
phase contrast microscopy.

I. INTRODUCTION
The process of contrast enhancement has been widely used
in various image processing, pattern recognition, and com-
puter vision applications [1]. The main aim of this process
is to increase the visibility of objects of interest in order
to assist user oriented or automated tasks including object
analysis, detection, segmentation, and recognition. In the
literature, most of the contrast enhancement techniques are
based on modifying the image histogram to improve the
contrast [1]. Early global Histogram Equalization (HE) tech-
niques directly modify the histogram without considering the
artifacts which may occur on the enhanced image. Moreover,
these techniques fail to enhance the local details in the image.
Numerous attempts have been made to modify the histogram
locally and adaptively in order to eliminate the artifacts on the
enhancement results [2]–[6]. Adaptive HE methods [5], [6]
divide the image into sub-blocks and perform HE within
these sub-blocks. However, when combining the sub-blocks,
a ‘‘checker-board’’ effect may occur on the boundaries of the
blocks due to local contrast changes. In order to eliminate

these grid-shaped artifacts, overlapping blocks can be used
at the expense of increasing computational complexity and
memory. An efficient implementation, called contrast limited
adaptive HE (CLAHE) [2], [3], was proposed to overcome the
limitations of HE approaches. The CLAHE technique limits
the contrast and eliminates the artifacts caused by the map-
ping of two close gray-scale values to significantly different
values. The CLAHE method is usually preferred in offline
applications due to its high computational cost. Therefore,
there have been several attempts which try to realize the
algorithm efficiently for real-time applications [7], [8].

The HE based techniques have been utilized in many
medical imaging applications including chest radiogra-
phy [9], [10], computer tomography (CT) [11], mammog-
raphy [12], and cell microscopy [13]–[15]. Researchers
have widely used HE based approaches as a powerful pre-
processing tool for improving visibility and balancing the
contrast of cell images [15]–[17].

Phase Contrast Microscopy (PCM) [18] is a well-
established optical technique to improve the contrast of the
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images of the transparent specimens. The method provides
a contrast enhancement for stained biological materials by
transforming the phase differences of light, which are caused
by differences in refractive index between cellular compo-
nents, into differences in amplitude of light, i.e., light and
dark areas, which can be observed [19]. In this way, PCM
enhances the image contrast by converting phase differences
into amplitude changes. Based on this fact, we introduce
an image enhancement framework inspired by the PCM in
order to enhance the visual details in images of transparent
specimens. To obtain transformations between phase and
amplitude differences in our image enhancement framework,
the Discrete Fourier Transform (DFT) of the image is com-
puted and image phase information is extracted. Then the fre-
quency components where the phase transitions are large are
amplified with large weights to transform the phase changes
into amplitude variations. In addition, a small amount of
phase shift is added to the high frequency components.
This process eliminates the artifacts on smooth background
regions. After the calculation of the inverse DFT, an enhanced
image is obtained.

The last step of the overall enhancement process is a
modified version of the well-known Total Variation (TV)
approach [20]. In denoising and deconvolution applications
TV is minimized [20], [21]. In this paper, the TV functional
around edges are maximized. Since microscopes have the
most expensive optical equipment, there is almost no noise
in microscopic images. As a result, edges in the image are
enhanced bymaximizing the TVwithin the above constraints.
We introduce the concept of Selective Variation (SV) method
which maximizes the variations in local regions of interest
to achieve sharp transitions around edges. To the best of our
knowledge, this is the first paper maximizing the `1-norm of
a cost functional within a region of interest.

In the literature, most image contrast enhancement meth-
ods are in the spatial domain [22]. Also, several attempts have
been made to utilize the contrast enhancement process in the
frequency domain [23], [24]. The proposed method which is
inspired by the PCM, aims to improve the image contrast and
enhance the visual details in the image by utilizing a Fourier
domain approach.

II. CONTRAST ENHANCEMENT BASED ON
FOURIER PHASE INFORMATION
Inspired by the brilliant design of the PCM [18], we propose a
contrast enhancement technique by utilizing the image phase
information to increase the weight of frequencies where
phase variations occur. In general, most natural images are
low-pass by nature. In other words, spectral energy is very
dense at low frequencies compared to high frequencies in
natural images. Sharp transitions and highly structured tex-
tures contribute to the high frequency components of an
image. In order to emphasize the high frequency components
containing important hidden details, it is possible to amplify
the high frequency DFT coefficients in Fourier domain.
However, frequency-based modifications in Fourier domain

should be carried out carefully because improper spectrum
manipulations may degrade the natural harmony of the image
and cause undesired artifacts in the image domain. Moreover,
the modifications must not degrade the conjugate-symmetric
nature of the Fourier coefficients.

In the proposed image enhancement algorithm, the high
frequency components are emphasized by taking into consid-
eration the image phase. Let x [m, n] ∈ RM×N be theM ×N
dimensional image. Each computation step of the proposed
technique is summarized below:

The algorithm starts by calculating the two dimensional
M̂ × N̂ -point Discrete Fourier Transform (2D-DFT) X [u, v]
of the image x [m, n]. The DFT parameters should be selected
as M̂ = 2p > M , N̂ = 2q > N in order to take advantage of
the Fast Fourier Transform (FFT) algorithmwhere p and q are
positive integers. It is important to increase the FFT size by
selecting p and q as large as possible for reducing the spectral
noise in the enhancement process. Let X [u, v] be:

X [u, v] = |X [u, v]| ejφ[u,v]

u = 0, 1, . . . , M̂ − 1 & v = 0, 1, . . . , N̂ − 1 (1)

Inspired by the PCM framework, a small amount of phase
shift (θ ) is added to the high frequency components of the
image spectrum which are determined by a high-pass mask
H [u, v] with cut-off frequency indices uc and vc:

H [u, v] =



0, u 6 uC − 1 & v 6 vC − 1
0, u 6 uC − 1 &

N̂ − vC + 1 6 v 6 N̂ − 1
0, M̂ − uC + 1 6 u 6 M̂ − 1&

v 6 vC − 1
0, M̂ − uC + 1 6 u 6 M̂ − 1&

N̂ − vC + 1 6 v 6 N̂ − 1
1, otherwise

(2)

Since low frequency components correspond to the smooth
and constant regions of an image, adding phase shift to
these components may degrade the quality of the image by
resulting in undesired artifacts on smooth regions. However,
modifying the phase at high frequencies may reveal the sup-
pressed details in the spectrum. Therefore, the phase shift θ
is added only to the high frequencies which are determined
by the mask H [u, v], in order to preserve the conjugate-
symmetric nature of the spectrum. After the phase shift
operation, the spectrum of the image becomes as follows:

XP[u, v] = |X [u, v]| ej(φ[u,v]+H(u,v)θ sgn(φ[u,v])) (3)

where sgn is the sign operator, which is required to preserve
the conjugate symmetry property of DFT. In order to empha-
size the high frequencies, a weighting scheme is proposed
based on the transitions of image phase information between
neighboring frequency components. The phase transitions are
obtained by computing the phase gradient along horizontal
and vertical axes. The phase gradient ∂φ[u, v] is computed as
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follows:

∂φ[u, v] = |φ[u, v]− φ[u− 1, v]|

+ |φ[u, v]− φ[u, v− 1]| (4)

After computing the gradient of the image phase, neighbor-
ing frequency components which provide significant phase
transitions are determined. Let S be the set of spatial locations
of the frequency pairs at which the corresponding phase
transitions exceed the threshold τφ :

S =
{
(u, v)|∂φ[u, v] > τφ

}
(5)

The phase transition based weight matrix Wp(u, v) is
obtained by using the set S as follows:

Wp[u, v] =

{
α∂φ[u, v], for (u, v) ∈ S
1, otherwise

(6)

where α is a fixed scaling factor. The Wp[u, v] weight
matrix may have sharp transitions due to direct thresholding;
which may cause undesired artifacts in the reconstruction.
To eliminate sharp transitions in the weight matrix Wp[u, v],
a 2D-Gaussian function (g[u, v]) with parameters µ and σ is
utilized to smooth the discontinuities as follows:

Wf [u, v] = Wp[u, v] ∗ g[u, v] (7)

where ‘‘∗’’ is the convolution operator. Similar to the phase
addition step described in Equation 3, only high frequency
components are exposed to weighting in the spectrum by
using the high-pass maskH [u, v]. As a result, the final weight
matrixW is obtained as follows:

W [u, v] =

{
Wf [u, v], if H [u, v] = 1
1, otherwise

(8)

The weight matrix W [u, v] is used to amplify the high
frequency components in a clever manner in order to reveal
the suppressed details existing at the high frequency compo-
nents. An example of the final weightmatrixW [u, v] is shown
in Fig 1.
The weight matrix W [u, v] is applied to the spectrum

matrix XP[u, v] which has been exposed to phase shifts.
As a result, the spectrum of the input image is modified in
terms of both magnitude and phase after the computation of
XC [u, v] = W [u, v]XP[u, v].

Inverse DFT (IDFT) of XC [u, v] is calculated to obtain the
contrast-enhanced image. Here, the IDFT is realized using the
inverse FFT (IFFT) algorithm:

xC [m, n] = IDFT {XC (u, v)} (9)

where xC [m, n] is the contrast enhanced version of the origi-
nal image x[m, n].

The level of enhancement of the reconstructed image
xC [m, n] is affected by several parameters including the phase
filter cut-off frequency indices uc, vc, scaling coefficient α,
phase shift θ , phase gradient threshold τφ , and parameters of
the Gaussian smoothing functionµ, σ . Therefore, it is impor-
tant to select the parameters appropriately by maximizing the

FIGURE 1. M̂ × N̂ sample weight matrix obtained for α = 1.5,
uc = vc = 50, τφ = π , µ = 13, σ = 2, M̂ = 1024, N̂ = 1024.

image contrast. In this study, a Total Variation (TV) based
measure is used to maximize the image contrast in a grid
search framework. The TV of the original image x[m, n] can
be defined as follows [20], [21], [25], [26]:

TV (x) =
∑
m,n

|x[m+ 1, n]− x[m, n]|

+

∑
m,n

|x[m, n+ 1]− x[m, n]| (10)

Instead of maximizing the TV over the entire image,
we select ‘‘busy’’ regions of the image and carry out the opti-
mization process over selected regions. In other words, back-
ground pixels are not included in the optimization process.
Since only partial image information is used in the calcu-
lation of ‘‘variation’’, we define ‘‘Selective Variation’’ (SV)
as follows:

SV (xC ) = S[m, n] ·

(∑
m,n

|xC [m+ 1, n]− xC [m, n]|

+

∑
m,n

|xC [m, n+ 1]− xC [m, n]|

)
(11)

where the selected pixels are obtained as follows:

S[m, n] =



1, x[m, n] >
1
b2

m+ b
2∑

i=m− b
2 ,

n+ b
2∑

j=n− b
2 ,

x[i, j]+ β

1, x[m, n] <
1
b2

m+ b
2∑

i=m− b
2 ,

n+ b
2∑

j=n− b
2 ,

x[i, j]− β

0, otherwise
(12)

where b denotes the overlapping local window size andβ is an
additive constant which determines a deviation limit for each
pixel from the average values of their local blocks. In other
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words, the pixels which are greater than β plus the average
value of a block, are selected.

The final enhanced image x∗C [m, n] is obtained by maxi-
mizing the SV functional as follows:

x∗C [m, n] = arg max
uc,vc,θ,τφ ,α

SV (xC [m, n])

subject to uc <
M̂
2
, vc <

N̂
2

π

K1
6 θ 6

π

K2
,

c1π 6 τφ 6 c2π, and

a1 6 α 6 a2 (13)

where K1,K2 determines the phase interval added to the high
frequency components of the spectrum. The c1, c2 coeffi-
cients determine the interval of high phase transitions, and
a1, a2 values are used to limit the scaling coefficient α used
in the weighting stage.

The maximization of SV functional is carried out
to determine the aforementioned enhancement parame-
ters uc, vc, θ, τφ, α. The maximization process described in
Equation 13 is the modified version of the well-known
Total Variation (TV) approach [20]. In the literature, most
denoising and deconvolution applications are based on TV
minimization [20], [21]. In this paper, we use an alter-
native approach by maximizing the TV functional around
edges. Since microscopes use expensive optical equipment,
the microscopy images are almost noise-free. As a result,
edges in the image are highlighted by maximizing the TV
within the constraints described above. The parameter opti-
mization process can be performed only once for a certain
family of microscopic images. However, one can repeat the
optimization process for any individual image to obtain a
custom parameter set for that image.

III. EXPERIMENTAL STUDIES
The performance of the proposed algorithm is compared
with the performances of baseline image enhancement meth-
ods [3], [23], [24], [27], [28] on two microscopic image
sets.

A. IMAGE DATASET
To evaluate the performance of the proposed algo-
rithm, microscopic images of human hepatocellular car-
cinoma cells (HCC) are captured. HCC cells (Huh7 and
Mahlavu) were maintained in Dulbecco’s Modified Eagle’s
Medium (DMEM) (Invitrogen GIBCO), supplemented with
10% fetal bovine serum (FBS) (Invitrogen GIBCO), 2 mM
L-glutamine, 0.1mMnonessential amino acids, 100 units/mL
penicillin and 100 g/mL streptomycin at 37 ◦C in a humidified
incubator under 5% CO2. Before capturing the microscopy
images, cells were seeded on 100 mm culture plates and
grown until they reached 50-60% confluency. Microscopy
images of Mahlavu cells were captured by using Euromex

Oxion Inverso OX.2003-PL inverted light microscope
(Figure 3 (a) and Figure 5(a)). For Hematoxylin and Eosin
staining, Huh7 cells were inoculated onto coverslips in six
well plates. Cells were fixed with 100% ice cold methanol
once they reached 50-60% confluency. After washing cells
with cold 1x PBS, hematoxylin was added onto cells to
be incubated for two minutes and washed with tap water.
Then, cells were incubated in 1% acid alcohol (1 unit HCl
in 100 units of ETOH) for thirty seconds and washing step
was repeated. Next, cells were incubated with 1% ammonia
solution for thirty seconds and washed. Finally eosin staining
was carried out for one minute and washed. Cells were
mounted onto slides using glycerol and visualized under
Nikon Eclipse 50i upright microscope (Figure 8 (a)) and
Nikon Eclipse Ti-S inverted microscope (Figure 8 (b)) using
NIS-Elements software. When capturing images using the
microscope, two levels of optical zooming were performed.
20x optical zoom provides a wide angle view of the HCC
cells. 40x optical zoom enables a narrower field of view and
detailed visualization of the organelles of the cells. Totally,
15 images of size 1360 × 1024 were captured using the
inverted light microscope.

To increase the number and variability of the dataset,
an additional image set is used [29]. This image set contains
the microscopy images of native urine sediments. Before cap-
turing the microscopy images, the urine sediments were cen-
trifuged in 2000 rpm and the supernatant was removed and the
sediment resuspended to create a tenfold concentrated sample
solution [29]. 14 sample microscopy images of native urine
sediments were collected from a publicly available report [29]
and the images in the document are of size 1213 × 910.
Forming an image dataset from microscopy images captured
using different imaging devices, environments and purposes
enables us to test the proposed algorithm’s generalization
capability.

The grid search algorithm maximizing Equation 13 stops
after covering the whole parameter space defined by the user.
At the end, the image providing the maximum SV (x∗C [m, n])
is determined as the output of the proposed enhancement
framework. The following parameter space is covered by our
scheme:

uc ∈

[
1,
M̂
2

]
, vc ∈

[
1,
N̂
2

]
, θ ∈

( π
210

,
π

23

)
,

α ∈ (1, 3), τφ ∈ (0.5π, 2.5π) (14)

The algorithm covers the above parameter space to search
for the image that provides the largest SV measure. The pro-
posed framework is implemented in MATLAB environment
on a computer containing Intel(R) Core(TM) i5 3.40 GHz
processor, 8 GBRAM running onMicrosoftWindows 7 oper-
ating system. The enhancement of a single image of size
1024×1024 takes approximately 1.68 seconds. Experimental
results show that the proposed algorithm obtains satisfactory
enhancement results in microscopic images, if the parameters
are selected as uc = vc = 15, θ = π/32, α = 2, τφ = π .
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B. OBJECTIVE PERFORMANCE MEASURES
In order to obtain a fair and quantitative performance analysis,
objective performance measures are utilized to measure the
performance of the algorithms for image enhancement. In this
work, ‘‘Color Enhancement Factor (CEF)’’ [30], Universal
Image Quality Index (UIQI) [31], adaptive edge map (AEM),
Histogram Flatness (HF) & Histogram Spread (HS) [32],
and Logarithmic Michelson Contrast Measure by Entropy
(AMEE) [33] objective measures are used in the performance
comparisons.

The first performance measure used in the tests is the CEF
measure. The CEF is based on the ratio between the color-
fulness measures of the reference and enhanced images. The
colorfulness is generally defined as the attribute of chromi-
nance information perceived by a human observer. The image
statistics based colorfulness measure was first proposed by
Hasler and Süsstrunk [34]. The colorfulness measure is then
modified by defining opponent color spaces [30]. Let R, G,
and B be the red, green, and blue image channels, respec-
tively. Based on the RGB color space, the opponent color
spaces are defined as follows:

α = R− G, β =
R+ G

2
− B (15)

Based on the opponent color spaces, the colorfulness measure
C is computed by using the first and second order statistics
of α and β as follows:

C =
√
σ 2
α + σ

2
β + 0.3

√
µ2
α + µ

2
β (16)

where µα , µβ , and σα , σβ are the mean values and standard
deviations of the opponent components α and β, respectively.
Finally, CEF is obtained by computing the ratio between
the colorfulness measures of the reference and the enhanced
images as follows:

CEF =
Cenh
Cref

(17)

The second performance measure used in the experiments
is the UIQI [31]. As a full reference image quality mea-
sure, the UIQI measure is composed of three main compo-
nents which evaluate the total quality as the combination of
‘‘loss of correlation’’, ‘‘luminance distortion’’ and ‘‘contrast
distortion’’ as follows:

UIQI =
σxy

σxσy
·

2µxµy
µ2
x + µ

2
y
·

2σxσy
σ 2
x + σ

2
y

(18)

whereµx ,µy, σx , and σy are themean values and the standard
deviations of the images x and y, respectively. Subsequently,
these components are multiplicatively combined in order to
generate a final quality score. The UIQI measure takes values
in the interval [−1, 1] and higher values of the measure are
the indicator of better image enhancement.

The AEM measure is proposed to quantify the efficiency
of algorithms in edge preservation on foreground pixels.
The AEM measure can be defined as the ratio between
the number of foreground edge pixels preserved in the

enhanced image and the total number of foreground pixels
on the reference image. In order to extract foreground pixels
from the reference image, an adaptive local threshold based
approach is utilized. The thresholding technique determines
a threshold for each pixel by computing the mean around the
k-neighborhood of each pixel. In this way, different regions
of the image can be thresholded with different values which
are calculated by an adaptive approach. Let I (x, y) be the
M ×N reference image. The foreground pixels T (x, y) of the
reference image are determined as follows:

T (x, y) =

{
1, I (x, y) > µ(x, y)+ η
0, I (x, y) < µ(x, y)+ η

µ(x, y) =
1
k2

x+k∑
i=x−k

y+k∑
j=y−k

I (i, j)

x = 1, . . . ,M y = 1, . . . ,N (19)

where η is an additive constant which determines the min-
imum level of deviation from the mean to be considered
as foreground pixel. In the tests, η is selected as 5. The
matrix of foreground pixels T (x, y) is used as a reference to
quantify the edge preservation in the enhanced image. The
edges of the enhanced image are extracted by using the Sobel
operator. Also, in order to eliminate the weak transitions,
basic thresholding is utilized. At the end, the binary Sobel
edge image ISobel,bin(x, y) is obtained. The AEM measure,
which quantifies the edge preservation rate, is computed as
follows:

AEM =

M∑
i=1

N∑
j=1

ISobel,bin(i, j) · T (i, j)

M∑
i=1

N∑
j=1

T (i, j)

(20)

By its definition, the AEM measure takes values in the inter-
val [0, 1]. Higher values of AEM measure correspond to
better preservation accuracies.

Additionally, two objective performance measures based
on image histogram [32] are used in the tests. One of the
histogram based measures is the HF. HF measure tries to
quantify the level of contrast by calculating the ratio between
the geometric mean and arithmetic mean of the histogram
counts for each histogram bin. Let hi be the histogram count
for the ith histogram bin. Using the hi’s HF is computed as
follows:

HF =

(
n∏
i=1

hi

)1/n

1
n

n∑
i=1

hi

(21)

Since the geometric mean of a vector is less than or equal
to its arithmetic mean, HF measure takes values between the
interval [0, 1].
The other histogram based objective performance mea-

sure is HS [32]. The HS measure can be defined as the
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FIGURE 2. Illustration of quartiles Qt1 and Qt3.

ratio between the quartile distance and the total range of
the histogram. The quartile distance is defined as the dif-
ference between the 3rd (Qt3) and 1st (Qt1) quartiles. The
Qt1 and Qt3 correspond to the histogram bins at which the
Cumulative Distribution Function (CDF) of the histogram has
25% and 75% of the total histogram counts. The Qt1 and Qt3
of an image histogram are illustrated in Figure 2.

By using the 1st and 3rd quartiles, HS measure is evaluated
as follows:

HS =
Qt3 − Qt1
2d − 1

(22)

where d is the image bit depth. The images used in the tests
are 8-bit images (d = 8). Since the quartiles lie between
the interval [0, 2d ], HS measure takes values between the
interval [0, 1].
In the experiments, an additional performance mea-

sure, which is based on the ratio between the maximum
and minimum values of local image regions, is used.
Therefore, the image is divided into non-overlapping sub-
blocks. Let Bk,l be the (k th, l th) image sub-block. Also, let
Imax;k,l and Imin;k,l be the maximum and minimum intensity
values of the sub-block Bk,l . Using the local maximum and
minimum values, the Michelson contrast measure CM , which
is the basis element of the AMEE measure, is defined as
follows:

CM;k,l =
Imax;k,l − Imin;k,l
Imax;k,l + Imin;k,l

(23)

where CM;k,l is the Michelson contrast measure of the
k th, l th image sub-block. Using the definition of block-wise
Michelson contrast measure CM;k,l , the AMEE measures is
computed as follows:

AMEE = −
1
RC

C∑
k=1

R∑
l=1

α
(
CM;k,l

)α ln (CM;k,l)
= −

1
RC

C∑
k=1

R∑
l=1

Entropy(CαM;k,l) (24)

Objective performance measures presented in this section
provide quantitative evaluations for the enhancement level of
the images. However, the enhancement quality of the images
are determined by utilizing a ‘‘global’’ approach. With this
approach, the enhancement quality is evaluated by a sin-
gle score for the whole image. In addition to the evalua-
tion of the enhancement performance by a global approach,
a more comprehensive performance evaluation methodology
is proposed. In this approach, the input image is divided
into N × N non-overlapping sub-blocks. Then, the objective
performance measures are calculated for each sub-block.
Using the performance scores obtained for each sub-block,
the ‘‘performance rate plot’’ of each method is evaluated. The
performance rate plots are similar to the success rate plots
used in visual object tracking applications [35]. In order to
generate performance plots, a performance threshold vector
τPi is determined to control the level of enhancement quality.
Then, the number of sub-blocks which provide quality scores
larger than τPi is counted. This process is repeated for each
τPi varying between the range of the corresponding perfor-
mance measure. At the end, the performance rate is com-
puted as the ratio of sub-blocks which provide quality scores
larger than the τPi . The performance rate plots enable a more
efficient performance comparison scheme for the contrast
enhancement problem. In the experiments, each image is
divided into 64 × 64 sub-blocks. Finally, the performance
plots are obtained over 6888 sub-blocks. As an additional
performance evaluation criterion, Area Under Curve (AUC)
measure is also utilized. The AUC of the performance plot
is an indicator to quantify the overall enhancement perfor-
mance. The AUC measure of each enhancement technique is
obtained by computing the area under the performance rate
plots.

C. BASELINE ENHANCEMENT ALGORITHMS
In order to test the effectiveness of the proposed phase-based
contrast enhancement framework, a comparative perfor-
mance analysis is carried out by comparing the performance
of the proposed technique with the performances of base-
line enhancement methodologies. The proposed phase-based
contrast enhancement framework is compared with several
CLAHE techniques, frequency domain methods, and model
based approaches. Three CLAHE frameworks [3], which
model the results with different distributions (Rayleigh, uni-
form, exponential) are used. In addition, a balanced CLAHE
approach (BCLAHE) [27], which integrates the process of
dynamic range compression and local contrast enhance-
ment, is employed in the comparison. A frequency domain
approach based on homomorphic filtering [36] is also used
in the comparative analysis. Homomorphic filtering is a
well-known technique to enhance images containing illumi-
nation variations [36]. A Fourier domain high-pass filter-
ing based approach is also utilized in the comparison. The
high-pass (HP) filter used in the tests is the flat version
of the weighting scheme presented in Figure 1. The high-
pass filter is designed with parameters uc = vc = 15
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FIGURE 3. The enhancement results of a 40x HHC microscopy image obtained by the proposed and baseline enhancement algorithms.
(a) Input image, (b) BCLAHE Image [27], (c) CLAHE Rayleigh [3], (d) CLAHE Uniform [3], (e) CLAHE Exponential [3], (f) Homomorphic
Filtering [23], (g) HP Filtering, (h) MEAM [24], (i) Retinex [28], (j) Proposed.

FIGURE 4. The enhancement results of a microscopy image of native urine sediment by the proposed and baseline enhancement algorithms.
(a) Input image, (b) BCLAHE Image [27], (c) CLAHE Rayleigh [3], (d) CLAHE Uniform [3], (e) CLAHE Exponential [3], (f) Homomorphic Filtering [23],
(g) HP Filtering, (h) MEAM [24], (i) Retinex [28], (j) Proposed.

and a = 4 to increase the weight of high frequency
components while the low frequency components remain
unchanged. Another frequency domain method proposed by
Aare Mällo (MEAM) [24] is also studied for comparison
purposes. The MEAM method separates an input image into
high and low spatial frequency components. By operating
separately on the two components, a higher degree of control
over the dynamic range compression and contrast enhance-
ment can be realized [24]. The last enhancement method
used is the comparison is the Retinex based-enhancement
framework [28]. The Retinex is a neuro-physiological model
which is defined as the perceived lightness and color by
the human vision system. This model is based on the

receptive fields which exist in the human visual system.
By using a dedicated spatial filter called ‘‘surround’’, the lat-
eral opponent operation of the human visual system could be
realized [28].

D. EXPERIMENTAL RESULTS
Each image is processed by using the enhancement algo-
rithms described in Section III-C. In the first experiment,
the proposed algorithm is compared with the baseline
enhancement techniques using 15 microscopy images of
human hepatocellular carcinoma cells. The enhancement out-
puts of the proposed and baseline algorithms for a sample
HHC cell image are presented in Figure 3.
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FIGURE 5. The enhancement results of a monochromatic 40x HHC microscopy image obtained by the proposed and baseline enhancement
algorithms. (a) Input image, (b) BCLAHE Image [27], (c) CLAHE Rayleigh [3], (d) CLAHE Uniform [3], (e) CLAHE Exponential [3], (f) Homomorphic
Filtering [23], (g) HP Filtering, (h) MEAM [24], (i) Retinex [28], (j) Proposed.

FIGURE 6. The enhancement results of a monochromatic microscopy image of native urine sediment by the proposed and baseline enhancement
algorithms. (a) Input image, (b) BCLAHE Image [27], (c) CLAHE Rayleigh [3], (d) CLAHE Uniform [3], (e) CLAHE Exponential [3], (f) Homomorphic
Filtering [23], (g) HP Filtering, (h) MEAM [24], (i) Retinex [28], (j) Proposed.

In the second experiment, the proposed and the baseline
techniques are utilized for the enhancement of 14 microscopy
images of native urine sediments. The enhancement results
of a sample microscopy image of native urine sediment are
presented in Figure 4.

In the article, monochromatic images are also studied.
The performance analysis carried out on color images are
repeated for monochromatic images. To obtain monochro-
matic images, RGB images are converted to the CIE XYZ
color space [37]. The luminance component Y of the CIE
XYZ space is used for the monochromatic images. The
enhancement results for monochromatic microscopy image
samples of native urine sediment and HHC cells are presented
in Figure 5 and Figure 6.

By examining the enhancement results presented in
Figure 3 - Figure 6, CLAHE exponential method, the Retinex
algorithm, and the proposed phase-based enhancement
framework provide noticeable improvements on image con-
trast. However, it can be easily observed that the proposed
scheme suppresses the background better than the base-
line techniques while providing higher contrast. Addition-
ally, the proposed methodology preserves and even enhances
the color content of the images. The Retinex approach
also provides satisfactory performance on contrast enhance-
ment while suppressing the background efficiently. However,
the Retinex algorithm fails to preserve the color information
in the enhancement results. Undesired effects on the image
such as local shading and darkening can be eliminated more
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FIGURE 7. Performance rate plots for objective performance measures. AUC measures for each enhancement framework are presented in the
legend of the figure.

TABLE 1. Average performance of the enhancement techniques on both RGB and monochromatic images.

effectively by the proposed scheme. The proposed algorithm
also provides more detailed and more significant cell struc-
tures which may increase the perceptual awareness of the
operator/user.

As discussed in Section III-B, objective performance
metrics have been utilized to quantify the enhancement per-
formance. In the objective evaluations, the performance of
the proposed scheme is compared with the performances
of the baseline techniques using the CEF [30], UIQI [31],
AEM, HF&HS [32], and AMEE [33] measures over 29 col-
ored and monochromatic microscopy images. Since the CEF
measure quantifies the color enhancement quality, it is not
applicable for the tests carried out formonochromatic images.
The average performance of each enhancement frame-
work corresponding to each objective measure is presented
in Table 1.

In Table 1, the highest two scores obtained for each objec-
tive performance measure are written in bold font. By looking
at the results presented in Table 1, one can conclude that
the proposed technique outperforms the baseline methods
in most of the objective quality measures. The Retinex and
CLAHE exponential frameworks also provide satisfactory
performance on several performance measures. The results
presented in Table 1 also show that the enhancement tech-
niques obtain similar results for color and monochromatic
images. As stated in Section III-B, the global approach, which
is the enhancement evaluation of the whole image with a sin-
gle score, is not an efficient method to quantify the enhance-
ment quality. Although the results presented in Table 1, which
are obtained by the global approach, give an idea about the
enhancement performance, a more comprehensive evalua-
tion approach is utilized by constructing performance rate

VOLUME 6, 2018 3847



S. Cakir et al.: Contrast Enhancement of Microscopy Images Using Image Phase Information

FIGURE 8. The comparison of the proposed technique’s outputs with PCM images of
hepatocellular carcinoma cells. (a) Images captured by Nikon Eclipse 50i upright
microscope (40x). (b) Images obtained by Nikon Eclipse Ti-S inverted PCM microscope
(40x). (c) Enhanced versions of the images in (a) using the proposed enhancement
framework.

plots for each objective measure. The performance rate plots
corresponding to each objective performance measure and
enhancement algorithm are presented in Figure 7.

The performance rate plots for the CEF measure
(Figure 7(a)) show that the proposed enhancement framework

outperforms the baseline techniques on color enhancement.
Also, the CLAHE exponential and Retinex methods obtain
promising results on color enhancement. Since the AUCmea-
sure of the CLAHE exponential technique is slightly higher
than theAUCmeasure of the Retinex framework, the CLAHE
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exponential technique can be stated as the contender to the
proposed framework for the CEF performance measure. The
UIQI performance plots in Figure 7(b) show that the proposed
phase-based enhancement technique provides the highest
UIQI scores together with the HP filtering technique. The
CLAHE uniform method is a strong contender to the pro-
posed algorithm and the HP filtering technique on the UIQI
measure. Surprisingly, the Retinex technique which obtains
promising results throughout the test, performs poorly on the
UIQI measure. This may be caused by the loss of chromi-
nance information in the enhancement results of the Retinex
method. The performance rate plots for the AEM measure
(Figure 7(c)) show that the Retinex technique provides the
best results for the AEMmeasure. The proposed phase-based
scheme obtains comparable results with the Retinex method
on the AEM measure. The AEM measure tries to quantify
the capability of edge preservation. The Retinex technique
and the proposed scheme obtain acceptable level of edge
preservation performances in the tests. By looking at the
histogram based performance plots (HF&HS) presented
in Figure 7(d) and Figure 7(e), one can conclude that the
proposed phase-based scheme outperforms the baseline tech-
niques on histogram based performance measures. Although
CLAHE based enhancement methods operate directly on
the image histogram, the proposed algorithm provides better
histogram flatness and histogram spread performances with-
out using any histogram information. The results show the
efficiency of the proposed algorithm in balancing the his-
togram by nature for better enhancement performance. The
AMEE performance plots presented in Figure 7(f) show that
the proposed enhancement framework achieves the highest
performance on entropy-based AMEEmeasure. The CLAHE
exponential and the Retinex techniques obtain comparable
results with the proposed framework.

As an additional experiment, the images enhanced by the
proposed technique are compared with the PCM images.
Therefore, an additional image dataset is gathered by captur-
ing images of hepatocellular carcinoma cells using two differ-
ent light microscopes. The light microscopy images of cells
were captured by Nikon Eclipse 50i upright microscope and
Nikon Eclipse Ti-S inverted microscope using NIS-Elements
software. The images that were captured byNikon Eclipse 50i
upright microscope are fed in to the proposed enhancement
scheme. The images which were captured by Nikon Eclipse
Ti-S inverted microscope are used for the comparison of the
proposed enhancement scheme’s outputs with PCM images.

By examining the images presented in Figure 8, we con-
clude that the proposed framework provides promising results
in contrast enhancement. Most of the cell structures and
organelles in the enhanced image become more significant
than the ones captured by regular microscopy. Even, the pro-
posed phased based enhancement algorithm introduces some
‘‘halo effects’’ near the dark object boundaries. In this way,
the proposed method introduces an additional contrast differ-
ence between the foreground and background regions which
may be useful for visual cell analysis.

IV. CONCLUSION
In this article, an image enhancement framework inspired
by the PCM framework is proposed to improve the struc-
tural details in microscopy images. The proposed scheme
translates phase variations into amplitude changes in order to
reveal the suppressed details at high frequency components.
In this way, the highly structured regions of cell images
become more significant than the background. The perfor-
mance of the proposed technique is evaluated on two different
types of cell microscopy images. Experimental results show
that the proposed framework provides satisfactory enhance-
ment performance on color and monochromatic microscopy
images of both hepatocellular carcinoma cells and native
urine sediments.Moreover, the proposed scheme outperforms
the baseline contrast enhancement techniques on objec-
tive performance evaluations. The proposed method can be
incorporated into microscopic imaging systems of inverted
microscopes. The experiment using the H&E stained cells
visualized under upright bright field demonstrates that the
contrast enhanced images produced by the proposed method
have comparable cellular texture structures as PCM images.
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