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On the Optimality of Likelihood Ratio Test for
Prospect Theory-Based Binary Hypothesis Testing
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Abstract—In this letter, the optimality of the likelihood ratio test
(LRT) is investigated for binary hypothesis testing problems in the
presence of a behavioral decision-maker. By utilizing prospect the-
ory, a behavioral decision-maker is modeled to cognitively distort
probabilities and costs based on some weight and value functions,
respectively. It is proved that the LRT may or may not be an optimal
decision rule for prospect theory-based binary hypothesis testing,
and conditions are derived to specify different scenarios. In addi-
tion, it is shown that when the LRT is an optimal decision rule,
it corresponds to a randomized decision rule in some cases; i.e.,
nonrandomized LRTs may not be optimal. This is unlike Bayesian
binary hypothesis testing, in which the optimal decision rule can
always be expressed in the form of a nonrandomized LRT. Finally,
it is proved that the optimal decision rule for prospect theory-based
binary hypothesis testing can always be represented by a decision
rule that randomizes at most two LRTs. Two examples are pre-
sented to corroborate the theoretical results.

Index Terms—Detection, hypothesis testing, likelihood ratio test,
prospect theory, randomization.

I. INTRODUCTION

IN HYPOTHESIS testing problems, a decision-maker aims
to design an optimal decision rule according to a certain

approach such as the Bayesian, minimax, or Neyman-Pearson
(NP) [1], [2]. In the presence of prior information, the Bayesian
approach is commonly employed, where the decision-maker
wishes to minimize the average cost of making decisions, i.e.,
the Bayes risk. The calculation of the Bayes risk requires the
knowledge of costs of possible decisions and probabilities of
possible events. However, in case of a human decision-maker,
such knowledge may not be perfectly available due to both lim-
ited availability of information and/or complex human behav-
iors such as emotions, loss-aversion, and endowment effect (see
[3] and references therein). The behavior of a human decision-
maker is effectively modeled via prospect theory, which utilizes
weight and value functions to capture the impact of human be-
havior on probabilities and costs [4]. In prospect theory based
hypothesis testing, the aim of a human decision-maker (also
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known as behavioral decision-maker) becomes the minimiza-
tion of the behavioral risk, which generalizes the Bayes risk by
transforming probabilities and costs according to the behavioral
parameters of the decision-maker.

Recently, optimal decision rules are investigated in [3] for
binary hypothesis testing problems when decision-makers are
modeled via prospect theory. Two special types of behavioral
decision-makers, namely optimists and pessimists, are consid-
ered, and a known (concave) relation is assumed between the
false alarm and detection probabilities of a decision-maker. It
is shown that the optimal decision rule can achieve different
false alarm and detection probabilities than those attained by
the Bayes decision rule in the presence of a behavioral decision-
maker. In a related work, a game theoretic problem is formulated
for strategic communications between a human transmitter and
a human receiver, which are modeled via prospect theory [5].
It is found that behavioral decision-makers employ the same
equilibrium strategies as those for non-behavioral (unbiased)
decision-makers in the Stackelberg sense.

The aim of this letter is to derive optimal decision rules for
generic behavioral decision-makers in binary hypothesis testing
problems. To that aim, the optimality of the likelihood ratio test
(LRT), which is known to be the optimal decision rule in the
Bayesian framework, is investigated for prospect theory based
binary hypothesis testing. It is proved that the LRT may or may
not be an optimal decision rule for behavioral decision-makers,
and conditions are provided to specify various scenarios. In
addition, it is shown that when the LRT is an optimal decision
rule, it corresponds to a randomized LRT in some cases. This
is different from the Bayesian approach in which the optimal
decision rule can always be stated as a nonrandomized LRT.
Finally, the generic solution of the prospect theory based binary
hypothesis testing problem is obtained; namely, it is proved that
the optimal solution can always be represented by randomization
of at most two LRTs. Two classical examples are used to support
the theoretical results.

II. PROBLEM FORMULATION AND THEORETICAL RESULTS

Consider a binary hypothesis testing problem in the pres-
ence of a behavioral decision-maker [3]. The hypotheses are
denoted by H0 and H1 , and the prior probabilities are given by
π0 = P(H0) and π1 = P(H1). The observation of the decision-
maker is r ∈ Γ, where Γ represents the observation space. Ob-
servation r has conditional distributions p0(r) and p1(r) under
H0 and H1 , respectively. The behavioral decision-maker em-
ploys a decision rule φ(r) to determine the true hypothesis,
where φ(r) corresponds to the probability of selecting H1 ; that
is, φ : Γ → [0, 1].

As in [3], the rationality of the decision-maker is modeled
via prospect theory [4], [6] in this work. In prospect theory, loss
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aversion, risk-seeking and risk-aversion behaviors of humans
are characterized, where a behavioral decision-maker cogni-
tively distorts the probabilities and costs based on some known
weight function w(·) and value function v(·), respectively [4],
[6], [7]. Then, the classical Bayes risk for binary hypothesis test-
ing becomes the following behavioral risk for prospect theory
based binary hypothesis testing [3]:

f(φ) =
1∑

i=0

1∑

j=0

w
(
P(Hi selected &Hj true)

)
v(cij ) (1)

where cij is the cost of deciding in favor of Hi when the true
hypothesis is Hj [1]. It is noted that the behavioral risk in (1)
reduces to the Bayes risk for w(p) = p and v(c) = c.

The aim of the decision-maker is to find the optimal decision
rule φ∗ that minimizes the behavioral risk in (1); that is; to solve
the following optimization problem:

φ∗(r) = arg min
φ

f(φ) (2)

To that aim, the following relation can be utilized first,
P(Hi selected &Hj true) = πj P(Hi selected |Hj true), and
(1) can be written as

f(φ) = g(x) + h(y) (3)

g(x) = w(π0(1 − x))v(c00) + w(π0x)v(c10) (4)

h(y) = w(π1(1 − y))v(c01) + w(π1y)v(c11) (5)

where x =
∫

Γ φ(r)p0(r)dr and y =
∫

Γ φ(r)p1(r)dr are the
false alarm and detection probabilities, respectively [3]. Then,
the following proposition states the (non-)optimality of the LRT
under various conditions.

Proposition 1: Suppose that the weight function w(·) is
monotone increasing.

Case (a): If v(c10)v(c00) < 0 or v(c11)v(c01) < 0, then the
LRT is a solution of (2).

Case (b): If v(c10)v(c00) ≥ 0 and v(c11)v(c01) ≥ 0, then the
LRT may or may not be a solution of (2).

Proof: Case (a): Consider the scenario in which v(c10) > 0
and v(c00) < 0. Let φ′ denote an arbitrary decision rule, which
achieves false-alarm probability x′ and detection probability y′.
Then, define φ∗

1 as an LRT given by

φ∗
1(r) =

⎧
⎨

⎩
0 , if p1(r) < η p0(r)
γ , if p1(r) = η p0(r)
1 , if p1(r) > η p0(r)

(6)

where η ≥ 0 and γ ∈ [0, 1] are chosen such that the detection
probability of φ∗

1 is equal to y′. Then, similar to the proof of the
Neyman-Pearson lemma [1, p. 24], the following relation can
be derived based on (6):∫

Γ

(
p1(r) − η p0(r)

)
(φ∗

1(r) − φ′(r)) dr ≥ 0 . (7)

From (7), η(x∗ − x′) ≤ y∗ − y′ is obtained, where x∗ and y∗
represent the false-alarm and detection probabilities of φ∗

1 , re-
spectively. Since the detection probability of φ∗

1 is set to y′ and
η ≥ 0, it is concluded that x∗ ≤ x′. Hence, for any decision rule
φ′, the LRT in (6) achieves an equal or lower false alarm prob-
ability for the same level of detection probability. This means
that the use of the LRT can reduce g(x) in (4) (as v(c10) > 0,
v(c00) < 0, and w(·) is monotone increasing) without changing
the value of h(y) in (5). Therefore, it is deduced that no other
test can achieve a lower behavioral risk (see (3)) than the LRT
in (6).1

1The existence of (6) can be proved similarly to the proof of the Neyman-
Pearson lemma [1, pp. 24–25].

Now suppose that v(c10) < 0 and v(c00) > 0, and again let
φ′ denote an arbitrary decision rule, which achieves false-alarm
probability x′ and detection probability y′. In this scenario, de-
fine φ∗

2 as an LRT that is stated as

φ∗
2(r) =

⎧
⎨

⎩
0 , if p1(r) > β p0(r)
κ , if p1(r) = β p0(r)
1 , if p1(r) < β p0(r)

(8)

where β ≥ 0 and κ ∈ [0, 1] are chosen such that the detection
probability of φ∗

2 is equal to y′. Then, it can be shown that∫

Γ

(
β p0(r) − p1(r)

)
(φ∗

2(r) − φ′(r)) dr ≥ 0 (9)

which leads to β(x∗ − x′) ≥ y∗ − y′. Therefore, x∗ ≥ x′ is ob-
tained as y∗ = y′ and β ≥ 0. Hence, for any decision rule φ′, the
LRT in (8) achieves an equal or higher false alarm probability
for the same level of detection probability. This implies that no
other test can achieve a lower behavioral risk than the LRT in (8)
since v(c10) < 0, v(c00) > 0, and w(·) is monotone increasing
(see (3)–(5)).

For v(c11) < 0 and v(c01) > 0, similar arguments can be
employed to show that for any arbitrary decision rule φ′ with
false-alarm probability x′ and detection probability y′, an LRT
in the form of (6) can be designed to achieve the same false-
alarm probability but an equal or higher detection probability.
Since v(c11) < 0 and v(c01) > 0 in this scenario, h(y) can be
reduced without affecting g(x). Therefore, no other test can
achieve a lower behavioral risk than the LRT.

For v(c11) > 0 and v(c01) < 0, it can be shown that for an
arbitrary decision rule φ′ with false-alarm probability x′ and
detection probability y′, an LRT in the form of (8) can be de-
signed to achieve the same false-alarm probability but an equal
or lower detection probability. Since v(c11) > 0 and v(c01) < 0,
h(y) can be reduced without affecting g(x). Hence, no other test
can achieve a lower behavioral risk than the LRT.

Case (b): It suffices to provide examples in which the LRT is
and is not a solution of (2). First, consider a scenario in which
the weight function is given by w(p) = p for p ∈ [0, 1]. Then,
the behavioral risk becomes the classical Bayes risk (by defining
v(cij )’s as new costs). Hence, the optimal decision rule is given
by the LRT [1, pp. 6–7], which is in the form of (6) or (8). Next,
for an example in which the LRT is not a solution of (2), please
see Section III-A. �

Proposition 1 reveals that when the probabilities are dis-
torted by a behavioral decision-maker, the LRT may lose
its optimality property for binary hypothesis testing when
both v(c10)v(c00) ≥ 0 and v(c11)v(c01) ≥ 0 are satisfied. It
is also noted that having at least one of v(c10)v(c00) < 0 or
v(c11)v(c01) < 0 is a sufficient condition for the optimality of
the LRT.

The signs of the v(cij ) terms are determined depending on
whether the behavioral decision-maker perceives the cost of
choices as detrimental or profitable. In particular, if selecting
Hi when Hj is true is perceived as detrimental (profitable),
then v(cij ) ≥ 0 (v(cij ) ≤ 0) [3]. Therefore, perceptions of a
decision-maker can affect the optimality of the LRT in prospect
theory based binary hypothesis testing. (For example, in
strategic information transmission, various cost perceptions can
be observed depending on utilities of decision-makers [8].)

Remark 1: In most experimental studies, the weight function
is observed to behave in a monotone increasing manner [9], [10];
hence, the assumption in the proposition holds commonly.

It is well-known that the optimal decision rule can always
be expressed in the form of a nonrandomized LRT for Bayesian
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hypothesis testing [1]. In other words, according to the Bayesian
criterion (which aims to minimize (1) for w(p) = p and v(c) =
c), the optimal decision rule is to compare the likelihood ratio
against a threshold and to choose H0 or H1 arbitrarily whenever
the likelihood ratio is equal to the threshold (i.e., randomization
is not necessary). However, for prospect theory based hypothesis
testing, randomization can be required to obtain the optimal
solution (i.e., the solution of (2)) in some scenarios. This is
stated in the following.

Remark 2: Suppose that the solution of (2) is in the form
of an LRT; that is, (6) or (8). Then, in some cases, the optimal
decision rule may need to be randomized with the randomization
constant being in the open interval (0, 1).

To justify Remark 2, consider w(p) = p and v(c) = c in
(1); that is, the Bayesian framework. Then, a nonrandomized
LRT (i.e., (6) with γ ∈ {0, 1} or (8) with κ ∈ {0, 1}) is always
an optimal solution of (2) [1]. Next, consider the example in
Section III-B, where the optimal solution is in the form of (6)
with γ ∈ (0, 1) (see (15)); hence, no nonrandomized decision
rules can be a solution of (2) in certain scenarios.

Finally, the optimal decision rule is specified for prospect
theory based binary hypothesis testing in the general case. To
that aim, the problem in (2) is stated, based on (3)–(5), as

(x∗, y∗) = arg min
(x,y )∈S

g(x) + h(y) (10)

where S denotes the set of achievable false alarm and detection
probabilities for the given problem, and x∗ and y∗ represent,
respectively, the false alarm and detection probabilities attained
by the optimal decision rule in (2). Once the problem in (10)
is solved, any decision rule with false alarm probability x∗ and
detection probability y∗ becomes an optimal solution. The fol-
lowing proposition states that the optimal solution can always
be represented by a decision rule that performs randomization
between at most two LRTs.

Proposition 2: The solution of (2) can be expressed as a
randomized decision rule which employs φ∗

1 in (6) with prob-
ability (y∗ − y∗

2)/(y∗
1 − y∗

2) and φ∗
2 in (8) with probability

(y∗
1 − y∗)/(y∗

1 − y∗
2), where y∗

1 (y∗
2) is the detection probabil-

ity of φ∗
1 (φ∗

2) when its false alarm probability is set to x∗, and
x∗ and y∗ are given by (10).

Proof: Consider the optimization problem in (10), the solu-
tion of which is denoted by (x∗, y∗). It is known that S is a
convex set in [0, 1] × [0, 1] [2, p. 33].2 Since φ∗

1 in (6) attains the
maximum detection probability for any given false alarm prob-
ability (as discussed in the proof of Proposition 1), the upper
boundary of S is achieved by φ∗

1 . Similarly, the lower boundary
of S is achieved by φ∗

2 in (8) as it provides the minimum detec-
tion probability for any given false alarm probability. Design the
parameters of φ∗

1 in (6) and φ∗
2 in (8) such that their false alarm

probabilities become equal to x∗, and let y∗
1 and y∗

2 represent their
corresponding detection probabilities. Due to the previous argu-
ments, y∗

1 ≥ y∗ ≥ y∗
2 holds. Choose ν = (y∗ − y∗

2)/(y∗
1 − y∗

2)
and randomize φ∗

1 and φ∗
2 with probabilities ν and 1 − ν, re-

spectively. Then, the resulting randomized decision rule attains
a detection probability of y∗ and a false alarm probability of x∗.
Therefore, it becomes the solution of (10); hence, the optimal
decision rule according to (2). �

Proposition 2 implies that the optimal decision rule for
prospect theory based binary hypothesis testing can be expressed
in terms of the LRT in (6) (if y∗ = y∗

1), the LRT in (8) (if

2Therefore, (10) becomes a convex optimization problem if g(x) is a convex
function of x and h(y) is a convex function of y.

y∗ = y∗
2), or their randomization (if y∗ ∈ (y∗

1 , y
∗
2)). It should be

noted that the randomization of two LRTs is not in the form
of an LRT in general. Hence, the LRT may or may not be an
optimal decision rule, as stated in Proposition 1.

By deriving the optimal decision rules for prospect theory
based hypothesis testing, we provide theoretical performance
bounds for behavioral (human) decision-makers. As humans
may not implement these optimal rules exactly in practice, we
can evaluate how close to optimal they perform.

Remark 3: Randomized decision rules generalize determin-
istic decision rules and can outperform them in certain scenarios
(e.g., [1, pp. 27–29], [11], [12]).

III. EXAMPLES AND CONCLUSIONS

In this section, two classical problems in binary hypothesis
testing are investigated from a prospect theory based perspec-
tive. For the weight function, the following commonly used
model in prospect theory is employed [6], [9], [10]:

w(p) =
pα

(pα + (1 − p)α )1/α
, p ∈ [0, 1] and α > 0 (11)

where α is a probability distortion parameter of the decision-
maker. The model in (11) is supported via various experiments
and it can capture risk-seeking and risk-aversion attitudes of
human decision-makers in different scenarios [6], [9], [10].

A. Example 1: Location Testing With Gaussian Error

Suppose observation r is a scalar random variable dis-
tributed as N (μi, σ

2) under hypothesis Hi for i ∈ {0, 1}, where
N (μi, σ

2) denotes a Gaussian random variable with mean μi

and variance σ2 . For this hypothesis testing problem, the LRTs
in (6) and (8) can be stated as follows:

φ∗
1(r) =

{
0 , if r < τ
1 , if r ≥ τ

, φ∗
2(r) =

{
1 , if r < τ̃
0 , if r ≥ τ̃

. (12)

The corresponding false alarm and detection probabilities can
be obtained, respectively, as x = Q

(
τ−μ0

σ

)
and y = Q

(
τ−μ1

σ

)

for the first LRT in (12) and as x = Q
(

μ0 −τ̃
σ

)
and y = Q

(
μ1 −τ̃

σ

)

for the second LRT in (12).
It is well-known that the LRT is the optimal decision rule

according to the Bayesian criterion [1, pp. 11-12]. To show
that it may not always be optimal in the prospect theory based
framework, consider the optimal decision rule that is specified,
based on Proposition 2, as follows:

φ∗(r) = ν φ∗
1(r) + (1 − ν)φ∗

2(r) (13)
where ν = (y∗ − y∗

2)/(y∗
1 − y∗

2) ∈ [0, 1] is the randomization
parameter. It is noted that φ∗ in (13) covers the decision rules in
(12) (i.e., the LRTs) as special cases for ν = 0 or ν = 1.

Let μ0 = 0, σ = 1, α = 2 in (11), and π0 = π1 = 0.5 (i.e.,
equal priors). In addition, consider the following perceived
costs: v(c00) = 0.5, v(c10) = 1.2, v(c01) = 1, and v(c11) =
0.8. Then, according to Proposition 1-Case (b), the LRT may or
may not be an optimal solution in this scenario. To observe this
fact, consider the minimization problem of the behavioral risk
over the LRTs in (12) and denote the corresponding minimum
behavioral risk as f ∗

LRT (i.e., the solution of (2) over the deci-
sion rules in (12)). Similarly, let f ∗

opt represent the minimum
behavioral risk achieved by (13), which actually corresponds to
the global solution of (2) due to Proposition 2. In Fig. 1, f ∗

LRT
and f ∗

opt are plotted versus μ1 .3 The figure reveals that the LRT

3In the considered example, f ∗
LRT corresponds to the minimum behavioral

risk achieved by the first rule in (12) since the second rule yields higher minimum
behavioral risks for all values of μ1 .



1848 IEEE SIGNAL PROCESSING LETTERS, VOL. 25, NO. 12, DECEMBER 2018

Fig. 1. Minimum behavioral risk versus μ1 for the LRT in (12) and the optimal
decision rule in (13) in the Gaussian location testing example.

is not an optimal solution in this example for large values of
μ1 as the optimal decision rule in (13) achieves strictly lower
behavioral risks in that region. For example, for μ1 = 1.5, the
minimum behavioral risks achieved by the LRT and the optimal
decision rule are 0.2864 and 0.2545, respectively, which are
obtained by the following decision rules:

φ∗
LRT(r) =

{
0 , if r < 1.164
1 , if r ≥ 1.164

φ∗(r) = 0.627
{

0 , if r < 0.4461
1 , if r ≥ 0.4461

+ 0.373
{

1 , if r < −0.4461
0 , if r ≥ −0.4461

Since φ∗(r) above cannot be expressed in the form of an LRT
(cf. (12)), the LRT is not optimal for μ1 = 1.5. On the other
hand, for μ1 < 0.55, the LRT becomes an optimal solution,
as observed from Fig. 1. Hence, it is concluded that the LRT
need not always be an optimal solution to the Gaussian location
testing problem in the prospect theory based framework, which
is in compliance with Proposition 1-Case (b).

B. Example 2: Binary Channel

Suppose bit 0 or bit 1 is sent over a channel, which flips bit
i with probability λi for i ∈ {0, 1}. Therefore, when bit i is
sent (i.e., under Hi), observation r is equal to i with probability
1 − λi and equal to 1 − i with probability λi , where i ∈ {0, 1}.
For this problem, the likelihood ratio, L(r) = p1(r)/p0(r), be-
comes equal to λ1/(1 − λ0) for r = 0 and (1 − λ1)/λ0 for
r = 1. Then, the LRT compares L(r) against a threshold η
to make a decision as in (6).4 Assuming that λ0 + λ1 < 1, the
nonrandomized LRT (i.e., deterministic LRT) can be expressed
as follows depending on the value of η:

If η < λ1/(1 − λ0) : φdet
LRT(r) = 1 , r ∈ {0, 1}

If η > (1 − λ1)/λ0 : φdet
LRT(r) = 0 , r ∈ {0, 1}

If λ1/(1 − λ0) ≤ η ≤ (1 − λ1)/λ0 : φdet
LRT(r) =

{
1 , r = 1
0 , r = 0

The possible set of false alarm probability (x) and detection
probability (y) pairs that can be achieved via φdet

LRT consists of
(x = 1, y = 1), (x = 0, y = 0), and (x = λ0 , y = 1 − λ1). On

4The LRT in the form of (8) is also considered; however, it is not discussed
in the text for brevity as it is not optimal for the parameter setting employed in
the example.

Fig. 2. Behavioral risk versus false alarm probability, x, for randomized LRT
and nonrandomized LRT in the binary channel example.

the other hand, the randomized LRT is obtained as
If η < λ1/(1 − λ0) : φrnd

LRT(r) = 1 , r ∈ {0, 1}
If η > (1 − λ1)/λ0 : φrnd

LRT(r) = 0 , r ∈ {0, 1}

If λ1/(1 − λ0) < η < (1 − λ1)/λ0 : φrnd
LRT(r) =

{
1 , r = 1
0 , r = 0

If η = λ1/(1 − λ0) : φrnd
LRT(r) =

{
1 , r = 1
γ , r = 0

If η = (1 − λ1)/λ0 : φrnd
LRT(r) =

{
γ , r = 1
0 , r = 0

where γ ∈ [0, 1] is the randomization constant. The possible
set of false alarm probability and detection probability pairs
achieved via φrnd

LRT can be characterized by the following func-
tion (ROC curve) [1]:

y =
{

1−λ1
λ0

x , if 0 ≤ x ≤ λ0
(1 − λ1) + λ1

1−λ0
(x − λ0) , if λ0 < x ≤ 1 . (14)

Let λ0 = 0.25, λ1 = 0.1, π0 = π1 = 0.5 (i.e., equal priors),
and α = 0.7 in (11). In addition, consider the following per-
ceived costs: v(c00) = −3, v(c10) = 1.5, v(c01) = −0.2, and
v(c11) = −1.5. Then, based on Proposition 1-Case (a), the LRT
is an optimal solution in this scenario. However, in this exam-
ple, the LRT must employ randomization to achieve the solution
of (2), as stated in Remark 2. To illustrate this, Fig. 2 presents
the behavioral risks (see (3)–(5)) achieved by φdet

LRT and φrnd
LRT

with respect to the false alarm probability, x. It is observed that
the nonrandomized LRT yields the three points marked with
circles in the figure, the minimum of which corresponds to a
behavioral risk of −1.504. On the other hand, the randomized
LRT achieves the minimum possible behavioral risk of −1.542
(corresponding to the solution of (2)) by employing the follow-
ing decision rule:

φrnd,∗
LRT (r) =

{
0.3632 , r = 1
0 , r = 0

(15)

The false alarm and detection probabilities of φrnd,∗
LRT are given

by 0.0908 and 0.3269, respectively, which are not achievable
without randomization. Therefore, it is deduced that the solution
of (2) may be in the form of a randomized LRT, which has strictly
lower behavioral risk than the optimal nonrandomized LRT, as
claimed in Remark 2.

An interesting direction for future work is to specify con-
ditions under which randomization is necessary for LRTs, as
mentioned in Remark 2.
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