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Abstract— We propose an online algorithm for sequential
learning in the contextual multiarmed bandit setting. Our
approach is to partition the context space and, then, optimally
combine all of the possible mappings between the partition
regions and the set of bandit arms in a data-driven manner.
We show that in our approach, the best mapping is able
to approximate the best arm selection policy to any desired
degree under mild Lipschitz conditions. Therefore, we design our
algorithm based on the optimal adaptive combination and asymp-
totically achieve the performance of the best mapping as well as
the best arm selection policy. This optimality is also guaranteed
to hold even in adversarial environments since we do not rely
on any statistical assumptions regarding the contexts or the loss
of the bandit arms. Moreover, we design an efficient implemen-
tation for our algorithm using various hierarchical partitioning
structures, such as lexicographical or arbitrary position splitting
and binary trees (BTs) (and several other partitioning examples).
For instance, in the case of BT partitioning, the computational
complexity is only log-linear in the number of regions in the
finest partition. In conclusion, we provide significant performance
improvements by introducing upper bounds (with respect to the
best arm selection policy) that are mathematically proven to van-
ish in the average loss per round sense at a faster rate compared
to the state of the art. Our experimental work extensively covers
various scenarios ranging from bandit settings to multiclass
classification with real and synthetic data. In these experiments,
we show that our algorithm is highly superior to the state-of-the-
art techniques while maintaining the introduced mathematical
guarantees and a computationally decent scalability.

Index Terms— Adversarial, big data, contextual bandits,
multiclass classification, online learning, universal.

I. INTRODUCTION

WE STUDY online learning [1], [2] in the contextual
multiarmed bandit setting [3]–[8]. In the classical

formulation of the multiarmed bandit problem, one of the
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available M bandit arms (or actions) is chosen at each round
to obtain a reward (or loss), and the reward (or loss) of all of
the other unchosen M − 1 arms stays oblivious. The objective
is to maximize the cumulative reward of the selected arms in
a series of rounds. Since the reward we would obtain from
the other arms remains hidden, this setting can be consid-
ered as a limited feedback version of prediction with expert
advice [9]–[14]. In addition, the well-known fundamental
tradeoff between exploration and exploitation [15], [16] natu-
rally appears in the multiarmed bandits. One should balance
the exploitation of actions that gave the highest payoffs in
the past and the exploration of actions that might give higher
payoffs in the future.

The multiarmed bandit problem has attracted significant
attention due to the applicability of the bandit setting in a
wide range of applications from online advertisement [17]
and recommender systems [18]–[20] to clinical trials [21]
and cognitive radio [22], [23]. For example, in the online
advertisement application, different advertisements available
to display to users are modeled as the bandit arms, and the
act of clicking by the user on the displayed advertisement is
modeled as the reward [17].

In many instances of the bandit algorithms, additional
information is available [24], such as the age or the gender
of the patient in clinical trials [25], which is useful about the
arm selection decision. However, most of the conventional
bandit algorithms do not exploit or fail to fully exploit
this information [26]–[28]. To remedy, contextual multiarmed
bandit algorithms are introduced [16], [17], [29], where the
additional information is represented as a context vector. For
example, in the online advertisement applications, this context
vector may contain certain information about the users, such as
historical activities or demographic/geographical information.
Then, the goal of the multiarmed bandit problem is extended
to maximally exploit this additional information, i.e., the con-
text, for optimizing the arm selection strategy and, therefore,
gaining more rewards (or suffering less loss).

We consider the contextual extension in the online setting,
where we operate sequentially on a stream of observations
from a possibly nonstationary, chaotic, or even adversarial
environment [30]–[32]. Hence, we have no statistical assump-
tions on the context vectors and behavior of the bandit arms
so that our results are guaranteed to hold in an individual
sequence manner [16]. We follow a competitive algorithm
perspective [16] and define the performance (total time accu-
mulated reward or loss) with respect to a competition class
of context-dependent bandit arm selection policies. For this
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purpose, we design an exponentially large and parameterized
competition class of predetermined mappings from the space
of context vectors to the bandit arms, such that the best arm
selection policy1 can be approximated arbitrarily well to a
desired degree by the optimal mapping in the competition
class. We point out that each mapping in our competition class
partitions the space of context vectors into several disjoint
regions and assigns each one of these regions to one of the
bandit arms, i.e., each mapping selects the bandit arm corre-
sponding to the region containing the observed context vector.
Based on this competition class of such mappings, our goal is
to asymptotically—at least—achieve2 the performance of the
optimal mapping as well as the performance of the best arm
selection policy at a faster convergence (performancewise or in
terms of the convergence of the regret upper bound to zero)
rate compared to the state of the art as more data are observed.

In order to generate partitions of the context space and,
therefore, a rich competition class, we use various hierarchical
partitioning structures [33], such as the ones based on lexico-
graphical or arbitrary position splitting, binary trees (BTs), and
several other partitioning examples (see Section IV). In our
design, each of these structures leads to a different competition
class but approximates (arbitrarily well, and even perfectly if
desired) the same best arm selection policy by the optimal
mapping in the corresponding competition class. However,
each hierarchical structure encodes the best arm selection pol-
icy differently and one of them is the most efficient in the sense
of the required number of partition regions (i.e., less number
of regions means higher efficiency). Therefore, we explore
various hierarchical structures and introduce an algorithm that
covers each of such structures by using a carefully designed
weighting over the corresponding competition class. The out-
put of the introduced algorithm is the optimal data adaptive
combination (with respect to the designed weighting) of the
policies (aforementioned mappings) in the competition class.
Our weighting/adaptive combination favors simpler models in
the beginning of the data stream and gradually switches to
more complex ones as the data overwhelm.

As a result, our algorithm is guaranteed to asymptotically
perform—at least—as well as the best arm selection policy.
We achieve this performance optimality at a faster convergence
rate [for instance, at the rate O(((RM ln M ln N)/T )1/2) in
the case of BT partitioning after averaging the regret bound
over T , where R is the number of regions in the optimal
partition, M is the number of bandit arms, N is the number
of regions in the finest partition in the competition class, and
T is the number of rounds] compared to the state-of-the-art3

1This best arm selection policy is based on the fixed best partitioning of the
context space and the best assignment of the arms to the regions of that best
partition. It is not necessarily in our competition class. However, it can be
approximated arbitrarily well by the optimal mapping in the class by varying
the class parameter, and it can be determined only when the complete data
stream is observed.

2In addition to achieving, we might well outperform since our approach is
data driven and based on combination of partitions, i.e., we do not rely on a
single fixed partition.

3The convergence rates given here samples our general regret results
(after averaging over T ) in the case of BT partitioning. Our rates for other
partitionings in our generic class of hierarchical structures naturally vary, but
our superiority compared to the state of the art stays valid in a similar manner
(see Section IV, for our complete regret results for all structures).

rate O(((M N ln M)/T )1/2). Note that here, typically, N � R
is the dominating factor. Our superior performance is due
to exploiting the right hierarchical partitioning structure that
encodes the best policy more efficiently and, therefore, assigns
higher initial weights to the optimal partition. This exploitation
of the right structure with the introduced weighting scheme
also mitigates the overfitting issue as an additional merit.

We emphasize that our algorithm is designed to work
for a generic class of hierarchical partitioning structures and
our optimality results do hold for each type of structure
in this generic class. Therefore, one can use the proposed
algorithm with any type of partitioning that is appropriate
for the target application with the corresponding performance
guarantees. Such guarantees include upper bounds on the
regret with respect to the best arm selection policy that is
mathematically proven to vanish at O(1/

√
T ) (after averaging

over T ) in a superior manner over the state of the art
(see Sections I-A and IV, for detailed comparisons). We also
present a computationally high-efficient implementation for
the introduced algorithm that, for instance, combines M N

mappings with only computational complexity of O(M ln N)
in the case of BT partitioning structure. Through an extensive
set of experiments with real and synthetic data, we demonstrate
the proposed approach in several scenarios, such as multiclass
classification, online advertisement, and multiarmed bandit
along with various partitioning structures. In these experi-
ments, our algorithm is shown to significantly outperform the
state-of-the-art techniques with real-time data processing and
strong modeling capabilities.

A. Prior Art

The contextual bandit problem is mostly studied in the
stochastic setting [29], [34], [35], where context vectors and
losses are assumed to be drawn randomly and independently
of an unknown distribution. Additional assumptions regard-
ing the relations between the context vectors and the arm
losses are also used in other studies, e.g., a linear relation
in [17] and [36], and more general ones in [37]. These
algorithms essentially fail to hold their performance guarantees
if the context vectors or the arm losses are chosen by an
adversary rather than by a prefixed distribution.

An alternative to the stochastic approaches is the adversarial
setting, where algorithms do not use any assumptions on the
behavior of the context vectors and bandit arms. The well-
known EXP3 algorithm [32] formulates the noncontextual
bandit problem in an adversarial setting and achieves a regret
upper bound4 of O((T M ln M)1/2) against the best arm.
S-EXP3 algorithm [16] is a naive extension of EXP3 in the
contextual setting, which partitions the context space and
runs independent EXP3 algorithms over each one of the
partition regions. S-EXP3 achieves a regret upper bound of
O((T N M ln M)1/2) against the best mapping from the regions
to the bandit arms, where N is the number of regions in
the partition of the context space. As implied by the regret
bound, the S-EXP3 algorithm works well only when the

4We illustrate regret upper bounds without averaging over T here in this
section, but with averaging in Section I to demonstrate the convergence to 0
there.
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complexity (the granularity or the level of detailing/fineness)
of the required partitioning to model the truly optimal selection
policy is relatively small, otherwise it quickly overfits and
suffers from insufficient data.

The EXP4 algorithm [32] is another extension of EXP3 in
the contextual setting. In this algorithm, a set of K experts
observe the context vectors and suggest distributions on the
arms. Their suggestions are adaptively combined to select the
arm to pull. It is shown that EXP4 achieves a regret upper
bound of O((T M ln K )1/2) against the best expert. Consider-
ing the M N mappings from a partition of the context space to
the arms as the K experts, EXP4 achieves O((T N M ln M)1/2)
against the optimal mapping. As we show in Section III,
the EXP4 algorithm can be improved by producing an initial
tendency (in earlier times of the stream) toward the mappings
of smaller complexity. In this case, although the finest partition
has N regions (and hence, there are M N mappings in total),
it suffices to run EXP4 over O((N M)R ) mappings with R
regions, resulting a regret bound of O((T M R ln (N M))1/2),
if the optimal partition consists of R regions. However,
the main problem with this algorithm is its computational com-
plexity of O((N M)R ). On the other hand, the contextual semi
bandit-Follow the Perturbed Leader (CSB-FTPL) algorithm
[38] achieves a regret upper bound of O(T 2/3M(ln K )1/2)
against the best expert among a set of K experts with a
computational complexity that is polynomial in ln K . Hence,
running CSB-FTPL over O((N M)R ) mappings with R disjoint
regions yields a regret upper bound of O(T 2/3 M(R ln N )1/2)
with a polynomial computational complexity in ln N .

We emphasize that we seek to achieve a regret upper bound
vanishing (with respect to the rounds/time after averaging
over T ) faster than that of EXP4 with a computational com-
plexity linear in ln N , which allows us to grow the hierar-
chical structure freely. To this end, our algorithm not only
drastically reduces the computational complexity (e.g., down
to O(M ln N) in the case of BT partitioning) compared to the
discussed state-of-the-art techniques but also achieves a regret
upper bound of O((T M R ln M ln N )1/2).

Finally, a simple instance of our hierarchical structures,
the context trees, is widely used in various applications,
including, but not limited to, data compression [39], [40], esti-
mation [41], [42], communications [43], regression [44], [45],
and classification [46]. In all aforementioned applications,
context trees are used to partition the context space in a nested
structure, run an independent adaptive model over each one of
the tree nodes, and combine the models. On the other hand,
in this paper, we use a generalized novel notion of hierarchical
structures that are specifically designed for the completely
different multiarmed contextual bandit problem.

B. Contributions
Our main contributions are as follows:
1) We introduce a novel and efficient contextual bandit

arm selection algorithm that first quantizes the space of
context vectors and, then, achieves the performance of
the optimal mapping from the quantized regions to the
bandit arms (in the average loss per round sense).

2) We introduce an efficient quantization method and
show that using this quantization method, our algorithm

asymptotically achieves (not only the optimal mapping
but also) the performance of the best arm selection
policy (in the average loss per round sense) as the
number of quantization levels increases.

3) We introduce a novel and generalized notion of hierar-
chical context space partitioning structures for the con-
textual bandit setting and use such hierarchical structures
to design an efficient implementation of our algorithm
and achieve a faster convergence rate for the regret
compared to the state of the art.

4) We demonstrate significant performance gains with the
proposed algorithm in comparison to the state-of-the-art
techniques through extensive experiments involving both
synthetic and real data.

C. Organization of this Paper
In Section II, we describe the contextual multiarmed bandit

framework. Next, we explain a first mixture of expert-based
approach and its challenges in Section III. In Section IV,
we explain the notion of hierarchical structures and implement
our algorithm using these structures. We introduce an efficient
quantization method in Section V and show that our algorithm
is competitive against any mapping, including the best arm
selection policy, from the context space to the bandit arms.
Section VI contains the experimental results over several
synthetic and well-known real-life data sets followed by the
concluding remarks in Section VII.

II. PROBLEM DESCRIPTION

We study the contextual bandit problem in an adversarial
setting.5 Recall that the original multiarm bandit problem
is a sequential game. One of the available bandit arms
It ∈ {1, . . . , M} is selected at each round t , and then,
a related loss lt,It is observed.6 The objective is to minimize
the accumulated loss

∑T
t=1 lt,It in a sequence of T rounds.

In the contextual extension, a context vector st from a context
space S is additionally provided at each round before selecting
the arm. For example, S is [0, 1]2 in Fig. 1. Then, the objective
stays same but can be improved with the available context.

We consider this contextual bandit problem in adversarial
setting [47], where at each round t , an adversary assigns a
specific loss to each arm i ∈ {1, 2, . . . , M} simultaneously
in parallel with the player who chooses an arm to pull. The
adversary’s goal is to maximize the player’s loss, whereas
the player tries to maximize her/his gain (here, the loss
maximization by the opponent gives the name “adversary”).
We emphasize that the adversary is provided with all the
information from the previous rounds. It can even know the
algorithm followed by the player. However, if the player’s
choice is randomized, then the adversary does not know the
outcome of this randomization while assigning the losses to

5All vectors are column vectors and denoted by boldface lower case letters.
For a K -element vector u, ui represents the ith element and �u� = (uT u)1/2

is the l2-norm, where uT is the transpose. Indicator function 1{·} ∈ {0, 1}
outputs 1 only if its argument condition holds. A function f : R

n → R is
Lipschitz continuous over a region W ⊂ R

n if there exists a nonnegative
constant c, such that | f (x1) − f (x2)| ≤ c�x1 − x2� for all x1, x2 ∈ W .

6We assume lt,It ∈ [0, 1] for simplicity; however, it can be straightforwardly
shown that our results hold for any bounded loss after shifting and scaling in
magnitude.
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Fig. 1. Example mapping from the context space to the set of bandit arms and its approximations in the quantized competition classes. In each mapping,
the dark and bright sections are mapped to the arms 1 and 2, respectively. (a) Example mapping from the context space [0, 1]2 to the set of bandit arms {1, 2}.
(b) Closest mapping in the quantized competition class with 16 quantization levels to the mapping in (a). (c) Closest mapping in the quantized competition
class with 64 quantization levels to the mapping in (a).

the arms, e.g., the adversary may know that the player tosses
a coin to choose the arm to pull but does not know the
outcome of the toss. Namely, “adversarial setting” refers to
the algorithmic framework or the game, in which the data
generation (assignment of losses in this case) or the adversary
is acting against the player on purpose, while the player tries
to maximize her/his gain. In accordance with the nature of this
adversarial setting, in designing the algorithm for the player
to use, we make no statistical assumptions about the context
vectors and the bandit arms [32], and our performance bounds
are guaranteed to hold in an individual sequence manner.
Hence, in designing our algorithm, we rigorously address
such adversarial conditions and provide strong mathematical
guarantees that hold for all possible data streams or for all
possible moves of the adversary. Our algorithm is strictly
sequential, such that at each round t , it selects an arm It

according to the information coming from the previous rounds,
including observed context vectors, selected arms, and their
losses; alongside the context vector that we are currently
observing, i.e.,

It = ft (st ; st−1, It−1, lt−1,It−1 ; . . . ; s1, I1, l1,I1). (1)

In design of our algorithm, we aim at sequentially learning
the optimal partitioning of the context space with the optimal
assignment between the regions of the learned partition and
the set of arms. For this purpose, we investigate a general
framework of hierarchical structures to generate context space
partitions and eventually learn the asymptotically optimal, time
varying, context-driven arm chooser ft . We show that our
approach, compared to the state-of-the-art techniques, yields a
computationally highly superior algorithm with real-time data
processing capabilities while achieving a faster convergence
rate to the optimal conditions (in terms of the convergence of
the regret upper bounds to 0). The superiority of the proposed
algorithm is due to that the set of all possible context space
partitions considered here can theoretically achieve arbitrarily
high degree of granularity (can be of arbitrarily high capacity),
whereas the true complexity of the optimal partition is limited
(see Section IV) in reality. Based on this observation, our
approach additionally allows the regret analysis to incorporate

an upper bound on the complexity of the optimal partition,
which in turn significantly improves the convergence of the
presented algorithm in almost all practical scenarios. This gain
is essentially from O(

√
N ) to O((ln N )1/2) [N is measuring

the granularity (see Section IV)]. If the complexity of the
optimal partition cannot be upper bounded, which would be
a purely theoretical consideration as the true complexity is
almost always limited and finite in real scenarios, our regret
analysis then produces similar rates of convergence in that
very worst theoretical scenario. Nevertheless, in any case,
the proposed algorithm is computationally highly efficient
and superior and asymptotically optimal in the adversarial
setting, including the very worst scenario regardless of the
stationary or nonstationary or perhaps chaotic source statistics.

To this end, we consider a large class G of deterministic
mappings, i.e., ∀g ∈ G, g : S → {1, . . . , M}. Each such
mapping is composed of a fixed partition of the context space,
and an arm is assigned to each partition region. Depending
on the partition region that a context st falls in, g chooses
the assigned arm g(st ). An example is shown in Fig. 1(a)
in the case of 2-D context space S = [0, 1]2 with 2 bandit
arms, where g([0.5, 0.5]T ) = 1. Note that for a given
g ∈ G, all of the other deterministic mappings resulting from
all possible arm assignments to the regions of the partition of g
are also included in G. Since we work in the adversarial setting
and therefore refrain from making any statistical assumptions
about the context vectors and the loss of the bandit arms [32],
we next define our performance with respect to the optimum
(minimum loss) mapping in the “competition” class G based
on the following regret:

R(T,G) � max
g∈G

E

[
T∑

t=1

lt,It −
T∑

t=1

lt,g(st )

]

(2)

where the expectation is with respect to the internal random-
ization in our algorithm (the internal randomization here is
not related to data statistics). Our goal is to upper bound
the regret by a term that depends sublinearly in T and,
hence, asymptotically achieve—at least—the performance of
the best g in G (in the averaged regret per round sense).
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Achieving this goal is equivalent to achieving the performance
of the chooser of the optimal context space partition with
the optimal assignment to the arms. Here, optimality of the
context space partition should be understood with respect to
the class G, which is certainly not restrictive, since it can be
arbitrarily improved by generalizing (detailing) G to a desired
degree (see Section III).

We next construct the class G and provide a mixture-of-
expert-based first solution to the introduced problem.

III. CONTEXTUAL BANDIT ALGORITHM

BASED ON MIXTURE OF EXPERTS

The ultimate goal in the contextual bandit problem is ideally
to achieve the performance of the best mapping in the set U7

of all arbitrary mappings from the context space to the bandit
arms. Since this set of all arbitrary mappings is too powerful
to compete against in design of an algorithm, as the first step,
we uniformly quantize the context space S into N disjoint
regions r1, r2, . . . , rN , i.e., ∪N

i=1ri = S and ri ∩ r j = ∅ for
∀i �= j . We use uniform quantization for simplicity, however,
one can incorporate any arbitrary type of quantization into our
framework straightforwardly. In our framework, we consider
all possible assignments between the set of disjoint regions and
the set of bandit arms and call each context mapping resulting
from one of those assignments an N-level quantized mapping.
Therefore, each N-level quantized mapping is essentially a
function from ∪N

i=1ri = S to {1, . . . , M}: a context s ∈ r∗ ⊂ S
is mapped to the bandit arm that the region r∗ is assigned to.
Two examples of such quantized mappings of different levels
for the case of 2-armed bandit with the context space [0, 1]2

are shown in Fig. 1(b) and (c). Given a quantized context space
S = ∪N

i=1ri , we define the class GN of N-level quantized
mappings as the “competition class” with N quantization
levels consisting of all arbitrary assignments between the
bandit arms and the given N regions {ri }N

i=1.
Remark: We seek to achieve the performance of the best

quantized mapping in GN , which can get arbitrarily close
(and N can be freely chosen in our framework) to the
performance of the best arbitrary mapping in U , i.e., the best
arm selection policy, as N increases. For example, suppose
that the mapping shown in Fig. 1(a) is the best arbitrary
mapping. In this case, the mappings in Fig. 1(b) and (c)
of improving optimalities will be the best mappings in G16

and G64, respectively.
Based on M N different mappings in GN , we consider an

expert chooser that is one-to-one corresponding to each of
those mappings, such that g j (s) is the arm chosen by expert E j
for the context s, i.e., E j ↔ g j , 1 ≤ j ≤ M N . An example of
all 16 mappings followed by the experts for the case of M = 2
and N = 4 is shown in Fig. 2, where, unlike Fig. 1, we choose
a nonuniform quantization to demonstrate the generality in our
approach. One of these experts in Fig. 2 is G4-optimal for the
underlying sequence of losses, however, naturally, we do not
know which. Hence, instead of committing to a single expert,
we next use a mixture of experts approach to learn the best
one during rounds.

7This set U consists of all possible arbitrary context space partitions (not
confined to G) with all possible assignments of partition regions to the arms.

Fig. 2. All possible mappings in a 2-armed bandit problem with a
predetermined quantization of the context space S = [0, 1]2 into four regions.
In each mapping, the dark and bright regions are mapped to the arms 1 and 2,
respectively.

In order to achieve the performance of the best expert,
we assign each expert E j a weight αt, j (showing our
trust on the expert E j at round t) and use exponentiated
weights to adaptively combine them. After observing context
st at each round t , we randomly select one of the experts
using the probability simplex β t = (βt,1, . . . , βt,M N ), where
βt, j = αt, j/

∑Mn

k=1 αt,k is the normalized weight. Importantly,
the probability of selecting each arm then follows the proba-
bility simplex pt = (pt,1, . . . , pt,M), where

pt,i =
M N
∑

j=1

βt, j 1{g j (st )=i}. (3)

We initially set the weights α1,i according to the complexity
of the mappings of experts from GN and use exponentiated
losses to update during rounds; at each round t ≥ 2, we have

αt,i = α1,i e
−η
∑t−1

τ=1 l̃τ,gi (sτ ) (4)

where η ∈ R
+ is the (constant) learning rate and l̃τ,gi (sτ ) is

the unbiased estimator of lτ,gi (sτ ). Since we do not observe the
loss lt,m of the unchosen arms, we use the unbiased estimator

l̃t,m =
⎧
⎨

⎩

lt,m

pt,m
, m = It

0, m �= It

(5)

where E[l̃t,m] = lt,m . Using this bandit arm selection probabil-
ity assignment defined through (3)–(5), we have the following
regret result.

Theorem 1: Consider an M-armed contextual bandit prob-
lem. If the context space is quantized into N disjoint regions,
and experts E j ’s are following the M N possible mappings
in GN , as described in Section III, then R(T, E j ) satisfies

R(T, E j ) ≤ ln (1/β1, j )

η
+ MT η

2
(6)

based on the probability assignments defined through (3)–(5),
where T is the number of rounds, η ∈ R

+ is the learning rate
parameter in (4), and β1, j is the normalized initial weight of
the j th expert E j .
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Proof of Theorem 1 follows similar lines to
[16, Proof of Th. 4.2] with certain variations due to
our arbitrary initial weighting as opposed to uniform initial
weights of the experts in [16]. The proof of our Theorem 1 is
provided in Appendix A.

We observe that the regret bound is logarithmically depen-
dent on the reciprocal of the prior weight of the optimal
partitioning in the competition class (i.e., its complexity cost).
Hence, by using equal prior weights on the M N experts,
our regret bound will be in the order8 of O(

√
NT ) (after

optimizing the learning rate). We point out that this result
is similar to the EXP4 algorithm [16] that achieves a regret
upper bound of O(

√
NT ) with optimum selection of the

learning rate. Furthermore, S-EXP3 algorithm [16] achieves
a regret upper bound of the same order O(

√
NT ) using an

independent EXP3 algorithm over each quantized region of
the context space. This square-root dependence of the regret
bound on the quantization level is prohibitive and working
against our motivation of approximating the performance of
the best arbitrary mapping by freely increasing the number of
quantization levels. Instead, we would like our regret bound to
be dependent on the actual number R of disjoint regions that
are needed and sufficient to model the actual complexity of
the best arbitrary mapping, whatever the quantization level N
is. Hence, we want to achieve the order O(

√
RT ). Moreover,

working with these M N parameters αt,1, . . . , αt,M N has quite
high space and computational complexities of O(M N ).

To this end, we introduce hierarchical structures to generate
context space partitions and exploit the level of complexity
that is sufficient to model the best mapping over the introduced
hierarchy. Thus, we achieve a regret upper bound with square-
root dependence on the actual number of regions R in a
computationally highly superior manner with significantly low
space complexity.

IV. HIERARCHICAL STRUCTURES

We use hierarchical structures to implement our contextual
bandit algorithm efficiently in terms of both the regret upper
bound convergence to 0 in average loss per round sense
as well as computational and space complexities. Suppose
that we have H nodes in a hierarchical structure labeled vi ,
i ∈ {1, 2, . . . , H }. We assign each node vi a region ri from
the context space, and there is a hierarchical connection from
each parent node to its child nodes. Let �i be the set of
child node groups of the node vi , where each group φ ∈ �i

consists of child nodes, such that the union of their corre-
sponding regions gives the region associated with the parent
node vi .

For instance, consider the BT of depth 2 in Fig. 3, which
quantizes the 2-D context space S = [0, 1]2. Each node of
such BT corresponds to a region of the context space, as shown
in Fig. 3. The region corresponding to each node is the union
of the regions of its child nodes. Hence, for each node vi in
this tree (except for the leaf nodes), the set �i is of size 1,
which consists of only one group of cardinality 2 (which is the

8For ease of exposition and simplicity in our order notation here, we drop the
variables, on which the dependence of order is similar or same or negligible
across the compared algorithms.

Fig. 3. BT of depth D = 2 over the context space [0, 1]2. The regions
corresponding to each node are filled with black.

parent node’s child pair). For the leaf nodes, �i is the empty
set and, hence, has a size of 0.

Next, we use this hierarchical structure to compactly repre-
sent our experts and combine them in an efficient manner.

A. Weighted Mixture of Experts Algorithm Using
Hierarchical Structures

In the following, we explain the details of our efficient
implementation of the mixture of experts algorithm (described
in Section III) by using the hierarchical structures and present
several examples. In addition to achieving computational scal-
ability in our implementation, another goal of this paper is to
incorporate the model complexity of the best expert to improve
the upper bound on the regret.

Here, each expert is composed of a partition of the context
space and an arm assigned to each partition region. The
partition corresponding to each expert can be represented using
several nodes of the hierarchical structure. Hence, each expert
can be represented using several nodes (showing the partition)
and an arm corresponding to each one of them (showing the
arm assignments). As an example, consider a 2-armed bandit
problem. Suppose that we use a BT of depth 2 to quantize the
context space into four regions. In this case, we define 24 = 16
experts as in Fig. 2. We represent four samples among these 16
experts on our BT in Fig. 4. In Fig. 4, the nodes representing
the partition corresponding to the experts are marked using
the circles and the arm selected by the expert at each one of
these nodes is declared over the node. We seek to adaptively
combine all of the experts to achieve the performance of the
best one, as explained in Section III.

In order to implement our mixture of experts, over each
node vi , we define M parameters αt,m,i for m = 1 to M as
the weight of mth arm in the node vi . This weight shows our
trust on the mth arm when the context vector falls into the
region corresponding to the node vi . We set α1,m,i = 1 for
all m’s and vi ’s, and for t ≥ 2,

αt,m,i = exp

(

−η

t−1∑

τ=1

lIτ

pτ,m
1{Iτ =m}1{sτ ∈ri }

)

. (7)

We can easily update these weights as follows. At each
round t , after we receive st , calculate pt , select I th

t arm, and
observe the loss lt,It , we calculate

αt+1,m,i = αt,m,i exp

(

−η
lIt

pt,m
1{It =m}1{st∈ri }

)

. (8)
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Fig. 4. Representation of four sample mappings in Fig. 2 over the BT in Fig. 3.

We point out that the weight of each expert αt,k in (4) can be
written as a multiplication of its initial weight and our weight
parameters (i.e., αt,m,i ’s) on the tree nodes corresponding to
the mapping followed by the expert. To this end, in order to
obtain the expert weights (see Theorem 2), we define another
variable wt,i over each node vi , such that

wt,i = 1

(|�i | + 1)M

M∑

m=1

αt,m,i + 1

|�i | + 1

∑

φ∈�i

⎛

⎝
∏

j∈φ

wt, j

⎞

⎠.

(9)

Hence, if �i is the empty set (i.e., |�i | = 0), then the equation
simply becomes

wt,i = 1

M

M∑

m=1

αt,m,i . (10)

The following proposition shows that using this recursion to
calculate wt,i variables, the weight of the root node wt,1
becomes equal to the sum of the expert weights, i.e.,

∑
k αt,k

[as defined in (4)].
Proposition 1: Using the recursive formula in (9), at each

node vi , we have

wt,i =
∑

k∈�i

αt,k (11)

where �i is the set of all experts defined over node vi .
Proof of Proposition 1 is provided in Appendix B.
Now, in order to calculate the probability simplex in (3),

we define M other variables to calculate
∑

k αt,k1{gk(st )=i} for
i = 1, . . . , M . To this end, after we observe st , we set

γt,m,i = 1

M
αt,m,i (12)

at the nodes vi containing st , where |�i | = 0 (i.e., leaf nodes).
Then, we go up on the hierarchy using a recursive formula
similar to the way we calculate wt,i variables in (9) as

γt,m,i = 1

(|�i | + 1)M
αt,m,i

+ 1

|�i | + 1

∑

φ∈�i

⎛

⎝
∏

j∈φ

wt, j

(
γt,m, j

wt, j

)1{st ∈r j }
⎞

⎠. (13)

Using this recursion, we calculate γt,m,1 for m = 1, . . . , M .
The following proposition shows that using this recursion,
γt,m,1 is the weighted sum of all experts, which select the
mth arm when they observe st . Hence, we can build the
probability simplex in (3) as

pt,m = γt,m,1/wt,1 ∀m ∈ {1, . . . , M}. (14)

Proposition 2: Using the recursive formula in (13), at each
node vi for all m ∈ {1, . . . , M}, we have

γt,m,i =
∑

k∈�i

αt,k1{gk(st )=m} (15)

where �i is the set of all experts defined over node vi .
Proof of Proposition 2 is provided in Appendix C.
With the proposed implementation of the algorithm, at each

round t , after observing st , we first calculate γt,m,1 for
m = 1, . . . , M and, then, divide by wt,1 to form the
probability simplex pt = (pt,1, . . . , pt,m), using which we
select an arm It . After we select our arm and suffer the
loss according to the selected arm, we first update αt,It ,i

parameters at the nodes containing st . Then, we update
wt,i variables at these affected nodes and go to the next
round. The pseudocode of the explained procedure is provided
in Algorithm 1.
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Algorithm 1 Hierarchical Structure-Based Bandits
1: Parameter:
2: Set constant η ∈ R

+
3: Initialization:
4: Initialize the structure including nodes vi , the regions ri

and the hierarchical relations �i .
5: Initialize α1,m,i = 1 for all m, i .
6: Initialize w1,i for all i using (9)
7: Algorithm:
8: for t = 1 to T do
9: Observe st

10: for m = 1 to M do
11: Calculate γt,m,i according to (13)
12: end for
13: for m = 1 to M do
14: pt,m = γt,m,1/wt,1
15: end for
16: Select a random arm It according to the probability

simplex pt = (pt,1, . . . , pt,M)
17: Set αt+1,m,i = αt,m,i for all m, i
18: Set wt+1,i = wt,i for all i
19: for the nodes vi , where st ∈ ri do
20: Calculate αt+1,It ,i according to (8)
21: end for
22: for the nodes vi , where st ∈ ri do
23: Calculate wt+1,i using (9)
24: end for
25: end for

Next, we show the regret bound of our hierarchical structure
algorithm.

Theorem 2: Algorithm 1 achieves the regret bound

R(T,GN ) ≤ 
(AR + 1) ln((HS + 1)M)

η
+ MT η

2
(16)

where 
 is an upper bound on the cardinality of the child
node groups φ, i.e., 
 ≥ |φ| for all φ, HS is an upper bound
on the cardinality of �i , i.e., HS ≥ |�i | for all i , and AR is an
upper bound on the minimum number of splittings needed in
the hierarchical structure to model the optimal partition with
R disjoint regions.

Proof of Theorem 2: If the optimal expert is defined over
the root node, i.e., AR = 0, its prior weight in the mixture
is

β1, j = 1

(|�i | + 1)M
≥ 1

(HS + 1)M
. (17)

With each split in the hierarchical structure (i.e., with each
move down the hierarchy), the prior weights of the experts
are divided by a factor that is at most (HS + 1)
 M
−1.
Thus, in case we need AR splittings to model the partition
corresponding to the optimal expert, its prior weight is

β1, j ≥ (HS + 1)−AR
−1 M AR −AR
−1. (18)

Since AR ≥ 1 and 
 ≥ 1, we have

β1, j ≥ (HS + 1)−
(AR+1)M−
(AR +1). (19)

Hence,

ln(1/β1, j ) ≤ 
(AR + 1) ln((HS + 1)M). (20)

Substituting (20) into (6) concludes the proof. �
Corollary 1: By setting

η =
√

2
(AR + 1) ln((HS + 1)M)

MT
(21)

we get the regret bound of

R(T,GN ) ≤ √0.5
MT (AR + 1) ln ((HS + 1)M). (22)

We next present several examples of hierarchical structures
that can be employed by our algorithm with the introduced
mathematical guarantees. Each structure has its own way of
encoding the best arm selection policy, i.e., optimal arbitrary
mapping. Hence, the proper selection of the hierarchical struc-
ture according to the target application leads to a smaller AR

and a better performance, i.e., a regret upper bound vanishing
faster in the average loss per round sense, together with
the introduced weighting over the corresponding competition
class GN (see Section VI as well as the examples in the
following).

B. Example 1: Arbitrary Splitting

If the hierarchical structure is an arbitrary splitting of N
leaf nodes into two groups, then 
 = 2, HS = 2N−1 − 1, and
AR = M − 1. Hence, the regret is upper bounded as

R(T,GN ) ≤ 2M ln(2N−1 M)

η
+ MT η

2

≤ 2M N ln(M)

η
+ MT η

2
(23)

where the last inequality uses 2 ≤ M .

C. Example 2: Binary Tree

In BTs, we have 
 = 2 and HS = 1. For a BT with N leaf
nodes, we need at most log2 N splitting to create each new
region. Hence, AR = (R − 1) log2 N . Therefore,

R(T,GN ) ≤ 2((R − 1) log2 N + 1) ln(2M)

η
+ MT η

2

≤ 2R log2 N ln(2M)

η
+ MT η

2
. (24)

D. Example 3: K-Ary Tree

If the hierarchical structure is a K-ary tree (for K = 2, this
becomes a BT) with N leaf nodes and depth D = logK N ,
then 
 = K , HS = 1, and AR = (R − 1) logK N . Therefore,
we have

R(T,GN ) ≤ K (1 + (R − 1) logK N) ln(2M)

η
+ MT η

2

≤ K R logK N ln(2M)

η
+ MT η

2
. (25)
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E. Example 4: Lexicographical Splitting Graph

In a lexicographal splitting graph with N leaf nodes,
we have 
 = 2, HS = N − 1, and AR = R − 1. Hence,

R(T,GN ) ≤ 2R ln(N M)

η
+ MT η

2
. (26)

F. Example 5: K-Group Lexicographical Splitting

If the hierarchical structure is a splitting of N sequentially
ordered leaf nodes into K groups (when K = 2, this structure
becomes the lexicographical splitting graph), then 
 = K ,
HS = (N−1

K−1

)
, and AR = �(R − 1)/(K − 1)�. Therefore,

the regret upper bound is

R(T,GN ) ≤ K
(⌈ R−1

K−1

⌉+ 1
)

ln
((

1 + (N−1
K−1

))
M
)

η
+ MT η

2

≤ K (R + 2K ) ln(N M)

η
+ MT η

2
. (27)

G. Example 6: Arbitrary Position Splitting

In this case, for a d-dimensional context space, we have

 = 2, HS = d , and AR = (R − 1) log2 N . Therefore,

R(T,GN ) ≤ 2((R − 1) log2 N + 1) ln((d + 1)M)

η
+ MT η

2

≤ 2R log2 N ln((d + 1)M)

η
+ MT η

2
. (28)

We have successfully achieved a regret bound of
O((MT R ln N ln M)1/2) with proper selection of the learning
rate. Note that typically N � R. Our regret bounds are only
logarithmically dependent on N ; hence, in soft-O notation,
we achieve the minimax optimal regret bound Õ(

√
T R).

Next and finally, we address the goal of achieving the
performance of the best arm selection policy, i.e., the per-
formance of the optimal arbitrary mapping (in the ultimate
set U) from the context space to the bandit arms, which
is not necessarily in the competition class GN but can be
approximated arbitrarily well and almost perfectly, if desired,
by the class by increasing N . The quantization process in
our algorithm naturally produces an additive linear-in-time
term in our regret against the truly optimal mapping in U .
In Section V, we assume that the arm losses are Lipschitz
continuous in the context vectors at each specific round. With
this assumption, we show that using a uniform quantization of
the context space, and we can diminish the linear-in-time term
in our regret against the optimal mapping in U by increasing
the number of quantization levels N . Hence, we can achieve
a performance as close as desired to the performance of the
optimal mapping in U .

V. EFFICIENT QUANTIZATION METHOD TO

ASYMPTOTICALLY ACHIEVE THE OPTIMAL

CONTEXT-BASED ARM SELECTION

Suppose that the context space is the n-dimensional space
S = [0, 1]n . Using a hierarchical structure with N leaf nodes,
our quantization scheme is as follows. We split the con-
text space into 2�(log2 N)/n�+1 equal subspaces along the first

log2 N (mod n) dimensions (of the total n dimensions) and
2�(log2 N)/n� equal subspaces along the remaining dimensions.

Theorem 3: Using aforementioned quantization method for
our algorithm, if the arm loss functions are the Lipschitz con-
tinuous with the Lipschitzness constant c, then the difference
between the loss corresponding to the best mapping in GN and
the loss corresponding to the truly optimal mapping (in the
ultimate set9 U of all possible arbitrary mappings from the
context space to the set of bandit arms) is upper bounded by

2c
√

n
n
√

N
. (29)

Proof of Theorem 3: Using this quantization method,
the subspaces in the finest partition of the context space are
n-dimensional cubes with the longest diagonal length equal to

√
√
√
√

n − (log2 N (mod n))
(

2
⌊

log2 N
n

⌋)2 + log2 N (mod n)
(

2
⌊

log2 N
n +1

⌋)2 . (30)

Since log2 N (mod n) ≥ 0, this upper bound is at most equal
to

√
n

22
⌊

log2 N
n

⌋ ≤ 2
√

n

2
log2 N

n

= 2
√

n
n
√

N
. (31)

Since the loss functions are Lipschitz continuous, the dif-
ference between the loss corresponding to the truly optimal
mapping in U and the best mapping in GN cannot exceed
the Lipschitzness constant times the quantized cubes diagonal
length, which concludes the proof. �

Note that the Lipschitzness assumption does not intervene
with the adversarial setting. The loss functions can be quite
different in different rounds, and as long as they are Lipschitz
continuous at each specific round, the assumption holds and
our algorithm is competitive against the ultimate set of all
possible arbitrary mappings U . In this case, combining (29)
with the regret bound in (22) directly concludes the following
theorem.

Theorem 4: Consider a contextual M-armed bandit prob-
lem with the context space S = [0, 1]n , where the loss
functions of the arms are the Lipschitz continuous with the
constant c at all rounds. If we use a hierarchical structure with
N leaf nodes following the quantization scheme described in
Section V, the regret of Algorithm 1 against the truly optimal
strategy in a T round trial is upper bounded as follows:

R(T,U) ≤
√


MT (AR + 1) ln ((HS + 1)M)

2
+ 2T c

√
n

n
√

N
.

(32)

We emphasize that we can make the linear-in-time term
of the upper bound in (32) as small as desired by growing
the hierarchical structure and increasing the number of leaf
nodes N , which is equal to the number of quantization levels.

9This ultimate set can be nonrigorously considered as G∞.
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VI. EXPERIMENTS

In this section, we demonstrate the performance of our algo-
rithm in different scenarios involving both real and synthetic
data. We demonstrate the performance of our main algorithm
hierarchical structure-based bandits (HSB) with various hierar-
chical structures, including HSB-BT, lexicograph (HSB-LG),
and arbitrary position splitting (HSB-APS) [33]. We compare
the performance of our algorithm against the state-of-the-art
adversarial bandit algorithms EXP3 and S-EXP3 [16]. In all
of the experiments, the parameters of EXP3 and S-EXP3
algorithms are set to their optimal values according to their
publication [16].

A. Stationary Environment

We first construct a game with 3-armed bandit, where the
context space is the 1-D space S = [0, 1]. Each arm i
generates its loss according to the Bernoulli distribution with
parameter pi , i.e., the loss is equal to 1 with probability equal
to pi . These parameters, i.e., p1, p2, and p3, depend on the
context variable st as

p1(st ) = 0.5 + 0.5 sin(2πst )

p2(st ) = sin(πst )

p3(st ) = st . (33)

Here, the optimal strategy is defined as follows

g(st ) =

⎧
⎪⎨

⎪⎩

3, st < 0.5

1, 0.5 ≤ st < 0.9182

2, 0.9182 ≤ st .

(34)

In this experiment, we generate the context variable st

randomly with uniform distribution over the context space,
i.e., [0, 1], and compare the averaged cumulated loss perfor-
mance, i.e., (

∑t
τ=1 lτ,Iτ )/t , for our algorithm HSB-BT with

various depth parameters equal to 2, 5, and 10, S-EXP3 [16]
with the same depth parameters, and EXP3 [16].

To this end, we generate 10 synthetic data sets of length 105.
To produce each data set, first, 105 context variables st are
drawn according to a uniform probability distribution over the
interval [0, 1]. Then, the arm losses corresponding to different
rounds are drawn from the Bernoulli distributions, parameters
of which are determined according to (33). Each data set
is presented to the algorithms 10 times, and the results are
averaged. This process is repeated for all 10 data sets and the
ensemble averages are plotted in Fig. 5. Two important results
can be derived from the result of this experiment. First, our
algorithm HSB-BT outperforms both of the S-EXP3 and EXP3
algorithms. Second, while increasing the depth uniformly
improves the performance of our algorithm, it can degrade the
performance of S-EXP3 due to the overtraining. The superior
performance of our algorithm in this experiment is because of
its fast convergence to the optimal mapping. Here, EXP3 has
a fast convergence but it converges to a suboptimal mapping
because it does not use the context information. On the other
hand, S-EXP3 converges to the optimal mapping but needs a
huge amount of data to get trained. Our algorithm uses an
efficient adaptive combination of the experts with intelligent

Fig. 5. Averaged accumulated loss of HSB-BT, S-EXP3, and EXP3 on the
data sets defined using (33).

initial weights to obtain the advantages of both EXP3 and
S-EXP3 algorithms while mitigating their disadvantages.

B. Nonstationary Environment

In this part, we illustrate the averaged cumulated loss
performance of the algorithms in a nonstationary environment.
To this end, we construct 10 different data sets of length 105

as in Section VI-A. However, here, the arm losses follow a
model as in (33) in the first quarter of the rounds and the
following model in the rest of the rounds:

p1(st ) = sin(πst )

p2(st ) = st

p3(st ) = 0.5 + 0.5 sin(2πst ). (35)

Hence, we have an abrupt change in the model of the arms
within the rounds. Each data set is presented to the algorithms
10 times and the results are averaged. This process is repeated
for all 10 data sets and the ensemble averages are plotted
in Fig. 6. As shown in Fig. 6, our algorithm HSB-BT not
only outperforms its competitor before the rapid change in
the model of the bandit arms but also adopts better to this
rapid change in comparison to the competitors.

C. Real-Life Online Advertisement Data Set

In this section, we demonstrate the superior performance
of our algorithms HSB-BT and HSB-LG against their natural
competitors EXP3 and S-EXP3 over the well-known real-life
data set provided by Yahoo! Research. This data set contains
a user click log for news articles displayed in the featured
tab of the Today Module on Yahoo!’s front page, within
October 2 to 16, 2011. The data set contains 28 041 015 user
visits. For each visit, the user is associated with a binary
feature vector of dimension 136 that contains information
about the user, such as age, gender, behavior targeting features,
and so on. We used an unbiased off-line evaluation method
as in [48] to test the competitors over this data set. A brief
pseudocode of this evaluation method is shown in Algorithm 2.
In this experiment, we ran a principal component analysis
algorithm [49] over the first 5% of the data to get the principal
components of the feature vectors. We mapped the feature



MOHAGHEGH NEYSHABOURI et al.: ASYMPTOTICALLY OPTIMAL CONTEXTUAL BANDIT ALGORITHM 933

Fig. 6. Averaged accumulated loss of HSB-BT, S-EXP3, and EXP3 on the data
sets, as described in Section VI-B, involving a rapid change in the behavior
of the arms after 25% of the rounds.

Algorithm 2 Off-Line Evaluation Method Used to Test the
Competitor Algorithms Over the Yahoo! Today Module Data
Set
1: Input: Bandit algorithm A, logged data for T rounds
2: Initialize: L = 0 and R = 0
3: for t = 1 to T do
4: Get st ∈ {1, 2, . . . , N} from the log
5: Run the algorithm A.
6: if the arm, selected by A is the arm which is shown to

the user then
7: Use the user feedback to update A.
8: Set R = R + 1.
9: If the user has not clicked set L = L + 1.
10: else
11: Ignore this round.
12: end if
13: end for
14: L and R show the total loss and the total rounds respec-

tively.

vectors over the first principal component to form a set of 1-D
context variables. We used these context variables for S-EXP3,
HSB-BT, and HSB-LG algorithms. We tested the EXP3 and S-
EXP3 algorithms with several depth parameters, while their
parameters were set to their optimum values [16]. However,
since we do not have any information about the number of dis-
joint regions in the optimal mapping, i.e., R, the η parameter
for the HSB-BT and HSB-LG algorithms cannot be tuned to
the optimum value analytically. In this experiment, in order to
have a fair comparison, we set the η parameter of the HSB-BT
and HSB-LG algorithm with a specific depth equal to the
η parameter of the S-EXP3 algorithm with the same depth.
We emphasize that no numerical optimization is done for the
η parameter of our algorithms. The percentage of user clicks
for different algorithms is shown in Fig. 7. As shown in Fig. 7,
our algorithms outperform both of the S-EXP3 and EXP3
algorithms even though the learning rate parameters of our

Fig. 7. Percentage of click in the Yahoo! Today Module data set.

algorithms are not tuned to the optimum values due to the
lack of knowledge on the parameter R.

D. Real-Life Classification Data Set

In this experiment, we use the well-known Landsat data
set [50] to show how our algorithm can be employed for
online multiclass classification in the error-correcting output
codes (ECOCs) framework [51]. This data set consists of
6435 samples from six classes. The feature vectors are
36-D integer vectors.

In the ECOC framework, given a set of C classes, we assign
a binary code word of length NC to each one of the
classes. We arrange these code words as rows of a coding
matrix MC ∈ {+1,−1}C×NC . We consider each one of the
NC columns of MC as a binary classification problem and
run a binary classifier over each column. The i th classifier is
to learn whether the i th bit of the code word is +1 or −1.
In order to label a new sample, the feature vector is fed to the
binary classifiers to obtain a code word based on their outputs.
We then decide on the label of the sample based on its code
word.

In this experiment, we use the one-versus-all coding [51]
to form our coding matrix and run six Online Percep-
trons in parallel as our binary classifiers. We use the code
words obtained from the Perceptrons as our context vec-
tors and the classes as our bandit arms. We provide our
algorithm HSB with the context vectors and label the sam-
ple based on the arm suggested by the algorithm. Then,
we observe the true label and suffer a loss equal to 1
in case of incorrect label. The competitors in this experi-
ment are our algorithm HSB with two different hierarchical
structures of “Arbitrary Position Splitting” (HSB-APS) and
“Binary Tree” (HSB-BT ), alongside EXP3, S-EXP3, and Ham-
ming Decoding [51]. The learning parameters of the algorithms
are set to their optimal value.

We emphasize that while the Hamming Decoder knows
the code words corresponding the classes a priori, other
competitors do not use this information and try to learn the
best mapping from the context space, i.e., code words space,
to the classes. For presentation simplicity, we have splitted
the samples into nine consecutive epochs and averaged the
number of errors over each epoch. As shown in Fig. 8,
the algorithms S-EXP3, HSB-BT, and HSB-APS compensate
their lack of information on the coding matrix (compared to
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Fig. 8. Percentage of misclassification of the competitors over nine
consecutive epochs of length 715.

the Hamming Decoder) as time goes on. Among them,
HSB-APS outperforms the others and even Hamming Decoder
in the last three epochs as expected.

VII. CONCLUSION

We studied the contextual multiarmed bandit problem in
an adversarial setting and introduced a truly online and
low-complexity algorithm that asymptotically achieves the
performance of the best context-dependent bandit arm selec-
tion policy. Our core algorithm quantizes the space of the
context vectors into a large number of disjoint regions using
an efficient quantization method and forms the class of all
mappings from these regions to the bandit arms. Then, it adap-
tively combines these mappings in a mixture-of-experts setting
and achieves the performance of the best mapping in the
class. We prove performance upper bounds for the introduced
algorithm. These upper bounds show that we achieve the
performance of the truly optimal mapping (which might be out
of our class of mappings) by increasing the number of quan-
tization levels. We use hierarchical structures to implement
our algorithm in an efficient way, such that the computational
complexity is log-linear in the number of quantization levels.
We have no statistical assumptions on the behavior of the
context vectors and the bandit arms, and hence, our results are
guaranteed to hold in an individual sequence manner. Through
extensive set of experiments involving synthetic and real data,
we demonstrate the significant performance gains achieved by
the proposed algorithm in comparison to the state-of-the-art
techniques.

APPENDIX A
PROOF OF THEOREM 1

From the definition, denoting the mapping followed by the
j th expert by g j (.), we have:

R(T, E j ) = E

[
T∑

t=1

lt,It −
T∑

t=1

lt,g j (st )

]

(36)

where lt,It can be expanded as

lt,It = E j∼β t
l̃t,g j (st )

= 1

η
(ln(E j∼β t

e
−ηl̃t,g j (st ) ) + ηE j∼β t

l̃t,g j (st ))

− 1

η
ln E j∼βt

e
−ηl̃t,g j (st ) . (37)

The first term in (37) can be bounded using the inequalities
ln x ≤ x − 1 and exp(−x) − 1 + x ≤ x2/2 for all x ≥ 0, as

ln(E j∼β t
e
−ηl̃t,g j (st ) ) + ηE j∼β t

l̃t,g j (st )

≤ E j∼βt
[e−ηl̃t,g j (st ) − 1 + ηl̃t,g j (st )]

≤ E j∼βt

η2l̃2
t,g j (st )

2
= η2l2

t,It

2 pt,It

≤ η2

2 pt,It

. (38)

In order to bound the second term in (37), we just rewrite the
expectation using (4) as follows. For t = 1, we have

− 1

η
ln E j∼β1

e
−ηl̃1,g j (s1) = − 1

η
ln

∑M N

j=1 α1, j e
−ηl̃1,g j (s1)

∑M N

j=1 α1, j

(39)

and for t ≥ 2, we have

− 1

η
ln E j∼β t

e
−ηl̃t,g j (st ) = − 1

η
ln

∑M N

j=1 α1, j e
−η
∑t

τ=1 l̃τ,g j (sτ )

∑M N

j=1 α1, j e
−η
∑t−1

τ=1 l̃τ,g j (sτ )

.

(40)

Putting the bounds in (38) and (40) into (37), we have

T∑

t=1

lt,It ≤ − 1

η

⎛

⎝
T∑

t=2

ln

∑M N

j=1 α1, j e
−η
∑t

τ=1 l̃τ,g j (sτ )

∑M N

j=1 α1, j e
−η
∑t−1

τ=1 l̃τ,g j (sτ )

+ ln

∑M N

j=1 α1, j e
−ηl̃1,g j (s1)

∑M N

j=1 α1, j

⎞

⎠+ ηT

2 pt,It

. (41)

Opening the first two terms in (41), we have

T∑

t=1

lt,It ≤ − 1

η
ln

M N
∑

j=1

α1, j e
−η
∑T

τ=1 l̃τ,g j (sτ )

+ 1

η
ln

M N
∑

j=1

α1, j + ηT

2 pt,It

. (42)

Since
∑M N

j=1 α1, j e
−η
∑T

τ=1 l̃τ,g j (sτ ) ≤ α1, j e
−η
∑T

τ=1 l̃τ,g j (sτ ) ,
we have

T∑

t=1

lt,It ≤ − 1

η
ln α1, j +

T∑

τ=1

l̃τ,g j (sτ ) + 1

η
ln

M N
∑

j=1

α1, j + ηT

2 pt,It

= ln 1/β1, j

η
+ ηT

2 pt,It

+
T∑

τ=1

l̃τ,g j (sτ ). (43)

Taking expectation from both sides (with respect to It ∼ pt )
and substituting E[l̃τ,g j (sτ )] = lτ,g j (sτ ) and E[1/(pt,It )] = M
into the result concludes the proof.

APPENDIX B
PROOF OF PROPOSITION 1

We prove this proposition using induction. For leaf nodes
where �i = ∅, we have

wt,i = 1

M

M∑

m=1

αt,m,i . (44)
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From the definition of αt,m,i in (7), we have

wt,i =
M∑

m=1

1

M
exp

⎛

⎜
⎝−η

∑

τ<t
sτ ∈ri

l̃τ,m

⎞

⎟
⎠ =

∑

k∈�i

αt,k (45)

where α1,k = 1/M for all k ∈ �i .
Consider the node vi . Suppose ∀φ ∈ �i ,∀ j ∈ φ, we have

wt, j =
∑

k∈� j

αt,k . (46)

It suffices to show that

wt,i =
∑

k∈�i

αt,k . (47)

The set of experts defined over vi , i.e., �i , can be decom-
posed into the following subsets.

1) �o
i : The set of experts, which map the whole context

space into a fixed arm. This set contains M experts.
2) �

φ
i , φ ∈ �i : The set of experts, which partition the

context space into the regions r j , j ∈ φ, and follow
a specific expert over each node j ∈ φ, based on the
observed st . If st ∈ r j , the experts in �

φ
i follow the

experts in � j . This set contains
∏

j∈φ |� j | experts. Each

experts in �
φ
i can be represented by a vector of experts

kφ ∈ ∏ j∈φ � j , where kφ( j) is an expert defined over
node j .

We emphasize that even though we have

�o
i ∪ (

⋃

φ∈�i

�
φ
i ) = �i (48)

the intersection of any two of these |�i | + 1 subsets is not
empty necessarily. In particular, the M experts in �o

i are also
included among the elements of �

φ
i for all φ ∈ �i . In fact,

each expert in �o
i can be seen as an expert that partitions the

context space into r j s for j ∈ φ and follows the experts that
select a fixed arm m over all the nodes v j s.

We have

∏

j∈φ

wt, j =
∏

j∈φ

⎛

⎝
∑

k∈� j

αt,k

⎞

⎠ =
∑

kφ∈∏ j∈φ � j

⎛

⎝
∏

j

αt,kφ( j )

⎞

⎠.

(49)

We open the product term as

∏

j

αt,kφ( j )

=
∏

j

α1,kφ( j ) exp

⎛

⎝−η
∑

τ<t

∑

j

l̃τ,gkφ ( j)
(sτ )1{sτ ∈r j }

⎞

⎠

=
∏

j

α1,kφ( j ) exp

⎛

⎜
⎝−η

∑

τ<t
sτ ∈ri

l̃τ,gkφ
(sτ )

⎞

⎟
⎠. (50)

Substituting (50) into (9), we get

wt,i = 1

(|�i | + 1)M

∑

k∈�o
i

αt,k + 1

|�i | + 1

×
∑

φ∈�i

⎛

⎜
⎝

∑

kφ∈∏ j∈φ � j

α1,kφ
exp

⎛

⎜
⎝−η

∑

τ<t
sτ ∈ri

l̃τ,gkφ(sτ )

⎞

⎟
⎠

⎞

⎟
⎠

= 1

(|�i | + 1)M

∑

k∈�o
i

αt,k + 1

(|�i | + 1)

∑

φ∈�i

∑

k∈�
φ
i

αt,k

=
∑

k∈�i

αt,k (51)

where

α1,k = 1

(|�i | + 1)M
1{k∈�o

i }

+ 1

|�i | + 1

∑

φ∈�i

⎛

⎝1{k=kφ }
∏

j∈φ

α1,kφ( j )

⎞

⎠. (52)

APPENDIX C
PROOF OF PROPOSITION 2

Consider a specific bandit arm m∗. Given the context
vector st , for all m ∈ {1, 2, . . . , M}, and for all nodes vi in
the hierarchy, we define the variables α̃t,m,i as

α̃t,m,i =
{

0, st ∈ ri , m �= m∗

αt,m,i , otherwise.
(53)

Now, from the definition of γt,m,i in (13), we have

γt,m∗,i = 1

(|�i | + 1)M

M∑

m=1

α̃t,m,i

+ 1

(|�i | + 1)

∑

φ∈�i

⎛

⎝
∏

j∈φ

w̃t, j

⎞

⎠. (54)

The exact same lines of the Proof of Theorem 1 hold to show
that

w̃t,i =
∑

k∈�i

α̃t,k (55)

where

α̃t,k =
{

αt,k, gk(st ) = m∗

0, otherwise.
(56)

Hence, (15) holds.
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