
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018 5565

An Online Minimax Optimal Algorithm for
Adversarial Multiarmed Bandit Problem

Kaan Gokcesu and Suleyman Serdar Kozat, Senior Member, IEEE

Abstract— We investigate the adversarial multiarmed bandit
problem and introduce an online algorithm that asymptotically
achieves the performance of the best switching bandit arm
selection strategy. Our algorithms are truly online such that
we do not use the game length or the number of switches
of the best arm selection strategy in their constructions. Our
results are guaranteed to hold in an individual sequence manner,
since we have no statistical assumptions on the bandit arm
losses. Our regret bounds, i.e., our performance bounds with
respect to the best bandit arm selection strategy, are minimax
optimal up to logarithmic terms. We achieve the minimax optimal
regret with computational complexity only log-linear in the
game length. Thus, our algorithms can be efficiently used in
applications involving big data. Through an extensive set of
experiments involving synthetic and real data, we demonstrate
significant performance gains achieved by the proposed algorithm
with respect to the state-of-the-art switching bandit algorithms.
We also introduce a general efficiently implementable bandit
arm selection framework, which can be adapted to various
applications.

Index Terms— Adversarial multiarmed bandit, big data, indi-
vidual sequence manner, minimax optimal, switching bandit.

I. INTRODUCTION

A. Preliminaries

IN THE contemporary online learning literature, one of the
main subjects of interest is reinforcement learning, where

an agent (or algorithm) takes actions to maximize a certain
reward in a given environment [1]. This area of online learning
is heavily investigated in different fields from the decision
theory [2], the game theory [3], [4], and signal processing [5]
to control theory [6] and multiagent systems [7]. In these
applications of reinforcement learning, we encounter the
fundamental dilemma of exploration–exploitation tradeoff,
which is most thoroughly studied in the multiarmed bandit
problem [8]. The multiarmed bandit problem is generally
considered to be the limited feedback version of the well-
studied prediction with expert advice [9]–[13]. It has attracted

Manuscript received September 11, 2016; revised April 26, 2017, July 26,
2017, September 23, 2017, November 20, 2017, and January 23, 2018;
accepted January 31, 2018. Date of publication March 8, 2018; date of current
version October 16, 2018. This work was supported in part by the Turkish
Academy of Sciences Outstanding Researcher Programme and in part by
the Scientific and Technological Research Council of Turkey under Contract
113E517. (Corresponding author: Kaan Gokcesu.)

K. Gokcesu was with the Department of Electrical and Electronics Engineer-
ing, Bilkent University, 06800 Ankara, Turkey. He is now with the Department
of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA 02139 USA (e-mail: gokcesu@mit.edu).

S. S. Kozat is with the Department of Electrical and Electronics Engineering,
Bilkent University, 06800 Ankara, Turkey (e-mail: kozat@ee.bilkent.edu.tr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2018.2806006

a significant attention, since the bandit setting can be success-
fully applied to a wide range of learning applications from
recommender systems [14] and dimensionality reduction [15]
to probability matching [16]. In applications regarding
multiarmed bandit problems, we have a set of M algorithms
(or action generating mechanisms) that run in parallel on a
task (such as different advertisements or campaigns) and each
of them is considered as an arm of a multiarmed bandit [17].
At each round of the decision process, we select one of the
arms. Due to the nature of these applications, only the loss
(or the gain) of this selected arm is observed (where the
performance of all the other arms remain hidden). An example
application is the advertisement placement on a website. Sup-
pose that we have an M number of advertisements (M bandit
arms) at our disposal that we can show to the visitors of a
website, and because of the space considerations, we can only
show one of these advertisements (i.e., we need to choose one
of these bandit arms). If there is an interaction by the visitor
and the advertisement is clicked, the advertisement placement
is successful. Otherwise, we incur a loss, because the
advertisement is ignored. We can only know the outcome of
the advertisement we selected and cannot know whether or not
the other advertisements would have been clicked.

We study the multiarmed bandit problem in an online
setting, where we operate continuously on a stream of obser-
vations from a possibly nonstationary, chaotic or even adver-
sarial environment. We assume no statistical assumptions on
the loss sequence (the environment) so that our results are
guaranteed to hold in an individual sequence manner. To this
end, we investigate the multiarmed bandit problem from a
competitive algorithm perspective. Since we have no statistical
assumptions on the losses of the bandit arms, we define our
performance with respect to a competing class of strategies.
As the competition class, we use the class of switching
bandit arm selection strategies and define our performance
with respect to the best strategy (minimum loss) in this class.
We point out that each such strategy constitutes a predeter-
mined arm selection sequence (e.g., in a game of length T
with M bandit arms, we have a total of MT strategies).
We emphasize that competing against the class of switching
experts (or bandit arms in our setting) is extensively studied in
the control theory [18], [19], the computational learning the-
ory [20], [21], neural networks [22], [23], the graph theory [9],
signal processing [10], universal source coding [24]–[26],
and multiagent systems [27] due to their ability to construct
algorithms that work in real-life conditions. We also emphasize
that in the competitive algorithm perspective, we do not
need to explicitly know the actions (the bandit arms) we

2162-237X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7333-419X

5566 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

are presented with. Each bandit arm can even be separately
running algorithms that learn throughout time. The only prior
knowledge we need about the bandit arms is that there are
M options (whatever they may be) that we can select from.
At each time t , the action is chosen solely based on the
sequential performance.

In this class, the optimal strategy is the one whose arm
selection at each round of the game is optimum and has
minimum loss. If the optimal strategy changes its arm selection
a total of S − 1 times and, hence, has S − 1 switches, we say
the optimal strategy has S segments. Each such segment
constitutes a part of the game (with possibly different lengths)
where the optimum strategy’s arm selection stays the same.

In this context, we introduce a truly online algorithm
that asymptotically achieves the performance of the optimal
strategy by observing only the loss of the selected arm at
each round t . Our algorithm does not require any knowledge
of the game length T , the number of segments S, the lengths
of these segments, and the location of these segments.
We emphasize that due to the limited information access of
the bandit setting compared with the widely studied predicting
with expert advice setting of the online learning literature,
directly using the mixing techniques such as [11] is highly
problematic. Since we do not have direct access to the loss
of the nonselected arms in contrast to the expert setting,
we represent their performance with unbiased estimates.
However, since the optimal number of switches and the true
loss values are not completely known, we cannot directly use
merging (or derandomizing) strategies of [28]. Instead, we first
design an online probability sharing network that sequentially
combines the selections of all possible bandit arm selection
strategies with carefully constructed weights, where the
number of possible strategies grow with MT . We efficiently
implement this network by creating equivalence classes,
which group certain strategies together, to store and update
their weights collectively. After that, we construct multiple
carefully designed probability sharing networks and tune each
network’s parameters (transition weights and learning rates)
to different numbers of switches. By combining the beliefs of
these probability sharing networks, we achieve the minimax
optimal regret up to logarithmic factors with computational
complexity only log-linear in the game length T without any
knowledge of the number of switches the optimal strategy has.

There exists a significant amount of prior art to construct
algorithms that can compete with the best bandit arm selec-
tion sequence chosen in hindsight (the optimal strategy).
However, we, as the first time in the literature, introduce
a truly online, low-complexity (log-linear) algorithm whose
performance with respect to the optimal strategy is mini-
max optimal (up to logarithmic factors). Through an exten-
sive set of experiments involving synthetic and real data,
we also demonstrate significant performance gains achieved
by the proposed algorithm with respect to the state-of-the-art
algorithms [29]–[31].

B. Prior Art and Comparisons
The adversarial multiarmed bandit problem where the player

competes against the best fixed arm has a regret lower bound

of O(
√

MT)1 for M bandits in a T round game [32]. When
competing against the best switching bandit arm strategy
(as opposed to the best fixed arm strategy), we can apply
O(

√
MT) bound separately to each one of S segment (if we

know the switching instants). Hence, maximization of the total
regret bound yields a minimax bound of O(

√
MT S), since the

square-root function is concave and the bound is maximum
when each segment is of equal length T/S. The state-of-the-art
algorithms [29]–[32] achieve an expected regret upper bound
Õ(

√
MT S) when both the number of switches S and the game

length T are known a priori. To achieve this regret in the
absence of the knowledge of the game length T , [29]–[32]
employ the doubling trick [33]. However, in that setting, while
the total number of switches during the entire game S is
known, the number of switches that occur in each epoch of
the algorithms are not known. Therefore, the authors also
construct a variant of their algorithms for the version of the
game where the game length T is known and instead of
the number of switches S, an upper bound Smax is known
such that S ≤ Smax. Employing the doubling trick for these
variants of the algorithms in [29]–[32] produces an expected
regret upper bound of Õ(

√
MT Smax), which in turn makes it

possible for these algorithms to achieve an expected regret of
Õ(

√
MT S) by knowing S but not T . However, their approach

is not enough to achieve the minimax optimal regret in the
absence of the knowledge of S as well.

In [30], the authors provide an algorithm that is able to
attain an expected regret upper bound of Õ(S

√
MT) if the

number of switches S is not known a priori. The analysis
done in [30] is also applicable to [29], [31], and [32], and the
regret bound is achievable in the setting where game length T
is also not known a priori as well. However, this bound differs
from the optimal regret bound by a factor of

√
S. Therefore,

if the number of switches S is not known a priori, the optimal
regret bound on the expected regret is not achievable with
the algorithms [29]–[32]. To this end, we introduce an online
randomized algorithm that has an expected regret bound of
Õ(

√
MT S) whether or not the number of switches S and the

game length T are known. The computational complexity of
our final algorithm is O(M log T) per round while the com-
plexity of the algorithms [29]–[32] is O(M) per round. Thus,
our algorithm uniformly achieves the minimax optimal regret
with only a logarithmic increase in computational complexity.

C. Contributions

Our main contributions are as follows.
1) We introduce an online algorithm, which achieves the

performance of the best bandit arm selection strategy,
where the regret of our algorithm is minimax optimal
up to logarithmic factors. Our results are uniformly
guaranteed to hold in an individual sequence manner for
all possible arm loss sequences, since we refrain from
making any statistical assumptions on the bandit arms.

2) Our algorithm is truly online such that neither the length
of the game T nor the number of switches S of the

1We use big-O notation, i.e., O(f (x)) to ignore constant factors and use
soft-O notation, i.e., Õ(f (x)) to ignore the logarithmic factors as well.

GOKCESU AND KOZAT: ONLINE MINIMAX OPTIMAL ALGORITHM FOR ADVERSARIAL MULTIARMED BANDIT PROBLEM 5567

optimal strategy is used to achieve the performance of
the best bandit arm selection strategy whose loss is
minimum at each round individually.

3) We achieve this performance with a computational com-
plexity and storage demand only log-linear in the game
length T . Thus, our algorithm can be efficiently used in
applications involving big data.

4) Through an extensive set of experiments involving syn-
thetic and real data, we demonstrate significant perfor-
mance gains achieved by the proposed algorithm with
respect to the state-of-the-art adversarial multiarmed
bandit algorithms in the reinforcement learning and
computational learning theory literature [29]–[32].

5) We introduce a general and efficient arm selection
framework that can be adapted to various applications.

D. Organization of This Paper

The organization of this paper is as follows. We first
define the adversarial multiarmed bandit problem in Section II.
In Section III, we introduce a general bandit arm selec-
tion framework. We provide the brute force approach
in Section III-A and introduce the efficient and elegant
implementation of the brute force approach with compu-
tational complexity only polynomial in the game length
in Section III-B. In Section IV, we construct an algorithm that
achieves the minimax optimal regret with prior information
of S and T . In Section V, we construct a truly online
algorithm that achieves the minimax optimal regret with no
prior information. We demonstrate the performance of our
algorithms via an extensive set of experiments in Section VI
and conclude with final remarks in Section VII.

II. PROBLEM DESCRIPTION

In this paper,2 we study the adversarial multiarmed bandit
problem where we have M bandit arms and randomly select
one of the arms at each round t . Based on our online
selection {ut }t≥1, ut ∈ {1, 2, . . . , M}, we receive only the
loss of the selected arm {lt,ut }t≥1, lt,ut ∈ [0, 1], and we
do not know the losses of the arms we did not choose.
We assume lt,ut ∈ [0, 1] for notational simplicity, however,
our derivations hold for any bounded loss after shifting and
scaling in the magnitude. In a T round game, we define uT

as the column vector containing the user selections up to
time T as uT = [u1, . . . , uT]T . We define the variable sT

as the column vector representing a deterministic bandit arm
selection sequence of length T as sT = [s1, . . . , sT]T such that
st ∈ {1, 2, . . . , M} for all t . In the rest of this paper, we refer to
each such deterministic bandit arm selection sequence, sT , as a
strategy. We define lsT as the loss sequence of the strategy sT ,
lsT = [l1,s1, . . . , lT ,sT]T . Thus, the loss sequence of uT

becomes luT = [l1,u1, . . . , lT ,uT]T .
We work in the adversarial bandit setting such that we do

not assume any statistical model on the behavior of the bandit
arms [32] and our algorithms are guaranteed to work in an

2All vectors are column vectors and denoted by boldface lowercase letters.
We work with real data for notational simplicity. We use log(x) to denote
logarithm with base 2 and ln(x) to denote the natural logarithm.

individual sequence manner. The output ut of our algorithm at
each round t is strictly online and randomized. It is a function
of only the past selections and observed losses as

ut � ut (lut−1; ut−1), ut ∈ {1, . . . , M}. (1)

We denote the accumulated loss at time T of any strategy sT

by LsT = ∑T
t=1 lt,st . Since we assume no statistical assump-

tions on the loss sequence, we define our performance with
respect to the optimum strategy s∗

T = [s∗
1 , . . . , s∗

T], which is
given as

s∗
T = arg min

sT

LsT or s∗
t = arg min

st

lt,st , 1 ≤ t ≤ T . (2)

We use the notion of regret to define our performance as

RT �
T∑

t=1

lt,ut −
T∑

t=1

lt,s∗
t

= LuT − Ls∗
T

(3)

where we denote the regret accumulated in T rounds as RT .
The regret RT depends on how hard it is to learn the optimum
strategy s∗

T . We quantify the hardness of learning the optimum
strategy by the number of switches it has, since at every
switch, we need to learn again the optimal arm from scratch.
For s∗

T , we define a switch as the event when its arm selection
changes between consecutive rounds. We denote S as the total
number of such switches where we also count the beginning
as a switch such that S = 1 + ∑T

t=2 �s∗
t �=s∗

t−1
, and �x is the

indicator function that outputs 1 if the statement x is true, and
0 otherwise. Each part of s∗

T starting with a switch constitute
a segment. Thus, the selected arm throughout a segment is the
same, however, the selected arms at successive segments are
strictly different. As an example, consider the strategy

s10 = {3, 3, 1, 1, 1, 1, 7, 3, 3, 3}. (4)

The strategy s10 in (4) has S = 4 switches and it selects the
arms 3, 1, 7, and 3 in segments 1, 2, 3, and 4 respectively.

Our goal is to introduce an algorithm that achieves the
minimax optimal expected regret up to logarithmic terms,
i.e., IE[RT] ≤ Õ(

√
MT S), without any information on the

bandit arms, the game length T , and the number of switches S.

III. GENERAL BANDIT ARM SELECTION FRAMEWORK

In this section, to achieve the performance of the best a pri-
ori selected strategy, we consider all possible arm selection
strategies and combine them with exponential weights similar
to [32]. To this end, we need to combine MT different arm
selection strategies in a T round game, since one can select
one of M bandit arms in each round yielding MT strategies.
Naturally, one of these MT strategies has the optimal selection
with the minimum loss, at every round t .

To achieve the performance of the optimum strategy over
any loss sequence, we can consider each one of MT strategies
as a deterministic expert and combine them with performance
weights just like the algorithm “Exponential-weight algo-
rithm for Exploration and Exploitation using Expert advice”
(Exp4) [30], since one of the MT strategies is by def-
inition optimal (but it is not known a priori). However,

5568 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

mixture algorithms, when used with uniform weights, pro-
duce O(T log N)1/2 regret and have O(N) computational
complexity where N is the number of algorithms combined.
Hence, a straightforward combination of these exponential
number of algorithms produces a nonvanishing regret bound
O(T) and has an exponential in time computational com-
plexity. Therefore, we need to intelligently combine these
strategies with carefully selected and efficiently computable
combination weights in an online manner to produce van-
ishing regret in polynomial time. To achieve this, we assign
different weights for each strategy based on its complexity
cost (the number of switches a strategy has [24]). This
weight selection is inline with the complexity penalty of
Akaike information criterion (AIC) and minimum description
length (MDL) [34], [35]. Strategies with a larger number of
switches are assigned lower weights.

We first consider the brute force approach to explain the
framework in detail and to derive the regret bounds, which
will also hold for the efficient implementation.

A. Brute Force Approach

We hypothetically assume that we run all possible MT

strategies in parallel, i.e., all the possible bandit arm selec-
tion sequences for a T length game, in an online manner.
However, note that, at time t , we have Mt parallel running
strategies. Each of these strategies suggest a different bandit
arm (in correspondence to their selection sequence) to use at
time t . We assign each of these strategies, st , a weight wst

(as detailed later in this section), which shows our trust on
this particular strategy. Based on these weights, we create a
probability simplex and assign each parallel running strategies
a probability by normalizing the weights wst as

Pst = wst∑
s′

t∈�t
ws′

t

(5)

where �t is the class of all strategies up to time t , and its
size is Mt , i.e., |�t | = Mt . To make our selection at time t ,
for each arm m, we find the strategies among all Mt strategies
that suggest m at round t and sum their assigned probabilities

pt,m =
∑

st (t :t)=m

Pst (6)

where st (i : j) is the vector consisting of i th through
j th elements of st , e.g., st (t : t) = st . By summing the
probabilities of strategies that suggests the same bandit arm,
we construct the probabilities of each bandit arm at time t .

The strategies to be used are not specifically selected
a priori. Instead, at each time t , all of the strategies st that
compromise the class Mt are treated as experts in our online
learning problem [11], [13], [21]. These strategies (or experts)
are combined according to their weights wst , which indicates
our trust in different strategies, to achieve the performance of
the optimal expert. Hence, our algorithm intrinsically achieves
the performance of the optimal strategy without knowing
which strategy specifically has the best performance because
of its universal prediction perspective [36].

The construction of (5) and (6) directly depends on wst ,
the weight we assign to each parallel running strategy.

The weight assignment wst has two components. As the first
component, we assign an a priori weight T (st) to each st ,
which only depends on the complexity of st , e.g., how many
switches it has, (more detail will be given for T (st) later on).
The second part directly depends on the past performance
of st , which is the exponential weight, exp(−ηL̃st (1:t−1)).
Hence, the combined weight is given by

wst = T (st)e
−ηL̃st (1:t−1) (7)

where η is the learning rate and L̃st (1:t−1) is the unbiased
estimator of Lst (1:t−1).

The combination weights, T (st), are designed by us and
are predetermined. To get a truly online algorithm, we choose
sequentially calculable T (st) such that we have a telescoping
rule as: T (st) = T (st |st (1 : t − 1))T (st (1 : t − 1)), where we
denote the relative weight update from the strategy st (1 : t−1)
to the strategy st by T (st |st (1 : t − 1)). To get a probability
score, we design the relative weight updates such that

M∑

m=1

T ([st ; m]|st) = 1 ∀st , t ∈ {0, . . . , T − 1} (8)

where [st ; m] denotes the concatenation of the vector st and m
(creating a new strategy of length t + 1), s0 = [∅]T , and
T (s0) = 1. The exponential weights are the exponential losses
of each strategy up to time t − 1. Thus, the joint weight, wst ,
assigned to each strategy is sequentially constructible such that

wst = wst (1:t−1)T (st |st (1 : t − 1))e−ηl̃t,st (t−1:t−1) . (9)

Note that we only observe the loss of the selected arm at
time t , lt,ut . Thus, we construct estimates l̃t,m for the other
losses. We use the well-known unbiased estimator

l̃t,m =
{

lt,m/pt,m, m = ut

0, m �= ut
(10)

which gives IE[l̃t,m] = lt,m . Hence, the expected value of
each estimate is its true value [32]. We also define an
expectation operator IEm over bandit arms m ∈ {1, . . . , M}
such that IEm[f (m)] = ∑M

m=1 pt,m f (m), hence, IEm [l̃t,m] =
∑M

m=1 pt,ml̃t,m = lt,ut .
Using the bandit arm selection probability assignment given

in (5)–(7), we have the following regret result.
Theorem 1: Let m ∈ {1, . . . , M} be the arms of an adver-

sarial multiarmed bandit and lt,m be the loss incurred from
selecting the arm m at round t such that lt,m ∈ [0, 1]. Using
any sequentially constructible combination weight assign-
ment T (·) satisfying (8) and exponential losses as in (7) to
determine the selection probabilities of each arm yields an
expected regret

IE[RT] ≤ min
sT

(
ηMT

2
+ 1

η
ln W (sT) + LsT − Ls∗

T

)

(11)

accumulated in a T round game where η ≥ 0 is the learning
rate in the exponential weights and W (sT) � 1/T (sT), i.e., the
reciprocal of the combination weight of the strategy sT (the
complexity cost). LsT is the cumulative loss of the strategy sT ,
and Ls∗T is the cumulative loss of the optimum arm selection

GOKCESU AND KOZAT: ONLINE MINIMAX OPTIMAL ALGORITHM FOR ADVERSARIAL MULTIARMED BANDIT PROBLEM 5569

strategy, s∗
T , chosen a priori with full information of the losses

of every arm m ∈ {1, . . . , M} in every round t ∈ {1, . . . , T }.
The result in Theorem 1 indicates that by the careful design

of T (st) and η, one can achieve sublinear and even optimal
regret. However, the weight assignment T (st) needs to be
sequentially constructible and also satisfy (8).

If we naively assign equal probability to each strategy,
the predetermined weight updates T (st |st (1 : t − 1)) become
1/M for all st . However, such a selection makes the combi-
nation weight T (s∗

T) of the optimal strategy s∗
T at the end of

T rounds, M−T . Since by Theorem 1, the regret is dependent
on the negative logarithm of this combination weight, we end
up with a linear regret bound, which is undesirable (the
average regret does not diminish). Hence, we need to penalize
the strategies according to their complexity much like the
complexity penalty of AIC and MDL [34], [35]. In Section IV,
we construct an algorithm that can achieve the minimax
optimal regret bound and demonstrate how the combination
weight update T (st |st (1 : t − 1)) should be determined for
that particular situation.

Moreover, the result in Theorem 1 implies that the per-
formance of our framework is dependent on not only the
complexity cost of the optimum strategy (W (s∗

T) = 1/T (s∗
T))

but also the complexity cost of the strategies whose loss
is relatively close to the loss of the optimum strategy (the
optimum loss). Therefore, even if the optimal strategy were
to have a high complexity cost (a high number of switches),
our algorithm can attain a relatively low regret if there exist
a strategy with low complexity cost (a small number of
switches) that has a loss sufficiently close to the optimal
loss. We emphasize that the expectation in (11) is due to the
randomization in our algorithm such that the result uniformly
holds for any sequence of bandit losses without any statistical
assumption.

Proof of Theorem 1: The regret against the optimum
selection strategy s∗

T , where s∗
T = [s∗

1 , s∗
2 , . . . , s∗

T −1, s∗
T],

at time t is given by rt = lt,ut − lt,s∗
t
. We transform rt into a

more manageable form and construct two distinct terms, which
we will bound separately as

rt =
(

lt,ut + ln IEm [e−ηl̃t,m]
η

)

−
(

ln IEm [e−ηl̃t,m]
η

+ lt,s∗
t

)

.

(12)

We bound the first term in (12) by using ln x ≤ x − 1 for
x > 0

ln IEm[e−ηl̃t,m] ≤ IEm [e−ηl̃t,m − 1]. (13)

Using e−x − 1 + x ≤ x2/2 for x > 0 bounds (13) as

ln IEm[e−ηl̃t,m] ≤ IEm

[
η2l̃2

t,m

2

]

−ηIEm [l̃t,m] ≤ η2l2
t,ut

2 pt,ut

− ηlt,ut .

(14)

Putting (14) into the first term of (12) yields

rt ≤ η

2 pt,ut

+
[

− 1

η
ln IEm[e−ηl̃t,m] − lt,s∗

t

]

(15)

since lt,ut ≤ 1. To upper bound the second term in (15),
we calculate the expectation using (6) and (5) as

IEm[e−ηl̃t,m] =
M∑

m=1

pt,me−ηl̃t,m =
∑

s′
t∈�t

Ps′
t
e
−ηl̃t,s′t (t :t)

=
∑

s′t ∈�t

ws′
t∑

s′′t ∈�t ws′′t
e
−ηl̃t,s′t (t :t) . (16)

Using (7) in (16) provides

IEm [e−ηl̃t,m] =
∑

s′
t∈�t

T (s′
t)e

−ηL̃s′t

∑
s′′

t ∈�t
T (s′′

t)e
−ηL̃s′′t (1:t−1)

=
∑

s′
t∈�t

T (s′
t)e

−ηL̃s′t

∑
s′′

t−1∈�t−1
T (s′′

t−1)e
−ηL̃s′′t−1

(17)

where we used (8). Henceforth, summing the logarithm of (17)
for all T rounds yields

T∑

t=1

ln IEm[e−ηl̃t,m] = ln
∑

s′
T ∈�T

T (s′
T)e

−ηL̃s′T . (18)

Then, we multiply (18) with −1/η and upper bound as

T∑

t=1

− 1

η
ln IEm[e−ηl̃t,m]

= − 1

η
ln

∑

s′T ∈�T

T (s′
T)e

−ηL̃s′T

≤ − 1

η
ln

[
T (sT)e−ηL̃sT

]
≤ − 1

η
ln T (sT) + L̃sT (19)

for any sT ∈ �T . Summing (15) for all T rounds yields the
regret accumulated in a T round game as

RT =
T∑

t=1

η

2 pt,ut

− 1

η

T∑

t=1

ln IE[e−ηl̃t,m] −
T∑

t=1

lt,s∗
t
. (20)

Putting (19) into (20) gives the total regret RT as

RT ≤
T∑

t=1

η

2 pt,ut

− 1

η
ln T (sT) + L̃sT − Ls∗

T
. (21)

Our selections ut , hence pt,ut , for every t are random variables
in RT . We take the expectation of (21) with respect to the arm
selection probabilities (over {ut }T

t≥1), which gives

IE[RT] ≤ ηMT

2
− 1

η
ln T (sT) + LsT − Ls∗T .

For notational simplicity, we change the notation from combi-
nation weight to the complexity cost of the strategy such that
W (sT) � 1/T (sT). Hence

IE[RT] ≤ ηMT

2
+ 1

η
ln W (sT) + LsT − Ls∗

T
. (22)

Since (22) is satisfied for any strategy sT , a tighter bound can
be found by minimizing (22) over sT , which gives (11). �

5570 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

Fig. 1. Efficient combination example for a two-armed bandit case using last
switch time as the auxiliary parameter for the first three rounds. Equivalence
classes are denoted as C(t, m, k) where t is the present round, m is the bandit
arm associated with that class, and k is the time index of the last switch,
i.e., time index of the start of the present segment. In this case, the auxiliary
parameter vector σ t includes just k and the possible values it can take increase
linearly with time. Thus, this formulates an algorithm with linear complexity,
since k can only have t different values.

Corollary 1: To get an upper bound independent of the loss
sequence, we can set sT = s∗

T in Theorem 1, which will upper
bound (11) with

IE[RT] ≤ ηMT

2
+ 1

η
ln W

(
s∗

T

)
(23)

where W (s∗
T) is the reciprocal of the combination weight of

the optimum arm selection strategy s∗
T .

The computational complexity of the brute force approach
is O(Mt) in each round t , since both the combination weights
and exponential weights of each strategy are updated in every
time instant. However, both the combination and exponential
weights can be designed to be sequentially constructible and
efficiently computable. In Section III-B, we introduce an effi-
cient implementation and reduce the computational complexity
to polynomial in time.

B. Efficient Implementation

The complexity of the brute force algorithm increases
exponentially, since we combine an exponentially increasing
number of strategies. Every strategy, st ∈ �t , has a weight
wst , which has to be stored and updated at every round t .
To circumvent this, we create equivalence classes that group
together certain strategies to reduce computational complexity.

We define C(t, m, σ t) as the weight of the equivalence
class of arm m and auxiliary parameters σ t at time t . The
equivalence class C(t, m, σ t) includes all the strategies st

that selects mth arm at time t and whose behavior match
with the parameter vector σ t . As an example, consider the
case in Fig. 1, where σ t only includes the time index of the
last switch the strategies have made. Grouping the strategies
together by their last switch time results in linearly increasing
the number of equivalence classes, e.g., strategies whose last
switch was at time t − 1, whose last switch was at time
t − 2, and so on. We emphasize that the auxiliary parameter

vector σ t can include different groupings, such as the number
of switches the strategies have made, e.g., the strategy s10
in (4) selects the arm m = 3 at time t = 10 and has
S = 4 number of switches, hence, it is in the equivalence
class C(10, 3, 4), since σ 10 = 4. If the auxiliary parameter
were to include both the last switch time (t ′ = 8) and the
number of switches (S = 4), s10 in (4) would be in the
equivalence class with the auxiliary variable σ 10 = [8, 4]T ,
i.e., C(10, 3, [8, 4]T).

The parameters included in σ t determine its extent and
how many different strategies it will represent, which in
turn determines how many equivalence classes we will have
at the end. The reason for using auxiliary parameters σ t

is to group together certain strategies whose weight update
in (9), i.e., T (st |st (1 : t − 1)) exp(−ηl̃t,st (t−1:t−1)), is the
same. Therefore, we need to include in σ t all the possible
parameters that are related to the combination weight update
T (st |st (1 : t − 1)). Hence, the design of the combination
weight assignment T (·) influences the parameters required to
be included in σ t . We define �t as the vector space including
all possible σ t vectors.

The weight of an equivalence class is simply the summation
of the weights of the strategies whose behavior conforms with
its class parameters t, m, σ t , such that

C(t, m, σ t) =
∑

st (t :t)=m
σ (st)=σ t

wst (24)

where σ (·) is the mapping from strategies st to the auxiliary
parameters σ t , σ : �t → �t , and wst is defined in (7).
In Fig. 1, example equivalence classes for a two-armed bandit
game for the first three rounds are given, where C(t, m, k)
denotes the weight of the class of strategies that made their last
switch at the kth round and selects mth arm at round t . As an
example, C(3, 1, 3) is the weight of the class (set) of strategies
s3 ∈ {[2, 2, 1]T , [1, 2, 1]T }. Since our goal is to do the mul-
tiplicative update in (9) at the same time for a number of
strategies, the update T (st |st (1 : t − 1)) exp(−ηl̃t,st (t−1:t−1))
needs to be the same for every strategy in the mix. The
exponential loss update is the same if the arms to be chosen by
the strategies are the same, which is satisfied if the strategies
belong to the same equivalence class. We design the combi-
nation weight update to be dependent on the class parameters,
which are made up of the present round t , the choice of bandit
arm in the present round m, and the auxiliary parameters σ t

such that each strategy in the same class have the same
combination weight update. We denote the common combi-
nation weight update from the equivalence class C(t, m′, σ ′

t)
to C(t + 1, m, σ t+1) by T (t + 1, m, σ t+1|t, m′, σ ′

t), where
we use m′ and σ ′

t to differentiate between subsequent time
instances. Thus

C(t+1, m, σ t+1)

=
∑

m′,σ ′
t

C(t, m′, σ ′
t)T (t+1, m, σ t+1|t, m′, σ ′

t)e
−ηl̃t,m′ (25)

since each equivalence class weight is the summation of
the joint weights of all the strategies that conform to its
parameters.

GOKCESU AND KOZAT: ONLINE MINIMAX OPTIMAL ALGORITHM FOR ADVERSARIAL MULTIARMED BANDIT PROBLEM 5571

Naturally, the computational complexity per round is depen-
dent on the number of equivalence classes. Therefore, if we
design the equivalence classes in such a way that their number
increases polynomially, the computational complexity will
reduce to polynomial in time from exponential in time.

Remark 1: In the brute force approach, σ t includes all
the past selections of a strategy. Therefore, each equivalence
class included only one strategy; hence, the number of classes
increased exponentially with time (Mt).

We need to emphasize that the equivalence classes have to
group together the strategies by the last selected arm, since
the exponential loss update is dependent on the last selected
arm. The auxiliary parameters in σ t are used for updating the
combination weights. In Algorithm 1, we provide the complete
efficient implementation of the general framework.

Algorithm 1 Efficient General Framework

1: Initialize constant η ∈ R
+

2: Select combination weight assignment
3: Set �t for t ∈ 1, . . . , T accordingly
4: Initialize σ 1, which is the extend of �1
5: Set C(1, m, σ 1) = 1/M for m ∈ 1, . . . , M
6: Initialize p1,m = C(1, m, σ 1)
7: for t = 1 to T do
8: Select one of the M arms with probability pt,m

9: Receive loss lt,ut

10: Set l̃t,m = lt,m�m=ut
pt,m

for m ∈ 1, . . . , M
11: for σ t+1 ∈ �t+1 do
12: for m = 1 to M do
13: Do the update in (25)
14: end for
15: end for
16: for m = 1 to M do

17: Set pt+1,m =
∑

σ t+1∈�t+1
C(t+1,m,σ t+1)

∑M
m=1

∑
σ t+1∈�t+1

C(t+1,m,σ t+1)

18: end for
19: end for

The efficient implementation in Algorithm 1 directly imple-
ments the weight assignment of the brute force approach in
Section III-A, since (25) is the direct implementation of (9)
by using (24). Therefore, all the regret analysis done for the
brute force approach holds for the efficient implementation as
well, i.e., Theorem 1 and Corollary 1 hold for Algorithm 1.
We have shown that by using equivalence classes, we can
reduce the computational complexity from exponential in time
to polynomial in time, since the computational complexity is
related to the number of equivalence classes, which is M|�t |
at each round t (where |�t | is the total number of distinct
auxiliary parameter vectors σ t).

Using more auxiliary parameters in σ t provides more flexi-
bility in the general weight assignments. The generality of this
framework and the weight assignments provide a wide range
of possibilities for various applications. Different weighting
assignments can be designed for different environments. The
weighting assignment can be tailored for different complexity
cost functions (instead of the number of switches, which is

the focus of this paper). For example, instead of treating all
switches equally, one can design a weighting scheme that
places more emphasis on switches made after segments with
longer lengths. If segments lower than a certain length are
considered anomalous and are not regarded as a switch, we can
design an appropriate weighting scheme by using the last
switch time as an auxiliary variable. Moreover, this general
framework can be used for combining only a feasible subset
of strategies instead of the whole set �T . For example, if the
optimum arm does not change for at least K rounds, one can
use the length of the last segment as an auxiliary variable and
combine only the strategies with at least K length segments by
preventing switches between arms when a segment does not
yet reach length K . If a certain arm m cannot be the optimum
arm immediately after the optimum arm is m′, the weighting
scheme can be designed to prevent switches from m′ to m to
combine only the feasible strategies.

However, achieving the minimax regret bound for the
number of switches complexity cost in the adversarial bandit
setting without any constraints requires no auxiliary variables,
only the last selected arm m, and the current round t .

In Section IV, we construct an algorithm that can achieve
the minimax optimal regret bound with prior knowledge of the
number of switches S and the game length T . In Section V,
we remove both of these prior information requirements and
introduce a truly online minimax optimal algorithm.

IV. ACHIEVING THE MINIMAX OPTIMAL REGRET FOR

KNOWN NUMBER OF SWITCHES AND GAME LENGTH

In this section, we first introduce an algorithm that achieves
the minimax optimal regret (Õ

√
MT S) with a priori knowl-

edge of the game length T and the number of switches S (we
will remove these requirements in Section V). Since the regret
we are trying to achieve is dependent only on the number
of switches (our complexity cost) irrespective of the length
of the segments, we design the combination weights, T (·),
in a way that its update at each round t does not depend on
anything except whether a switch is made or not. Therefore,
keeping track of only the last arm selection of a strategy and
the current time t will suffice. Hence, this algorithm will have
a computational complexity of O(M) per round. We optimize
the combination weight assignment according to S and T ,
since we assume that the number of switches of the optimum
strategy and the game length T are known beforehand.

We start our design by making the update T (st |st (1 : t −1))
only depend on the last arm selection such that

T (st |st (1 : t − 1)) =
⎧
⎨

⎩

α

M − 1
, st �= st−1 (switch)

1 − α, st = st−1 (no switch)
(26)

where α is the switching update parameter (or switch probabil-
ity). This weight assignment that uses no auxiliary variables is
sufficient for our problem, since the complexity cost (the num-
ber of switches) is defined only by the successive arm selec-
tions. When the weight update in (26) is used, the combination
weight of the optimum strategy with S segments becomes

T (s∗
T) = 1

M

1

(M − 1)S−1 αS−1(1 − α)T −S

5572 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

where the initial 1/M comes from the uniform start between
M bandit arms. Since W (s∗

T) = 1/T (s∗
T)

ln Wt (s∗
T) = ln M + (S − 1) ln

(
M − 1

α

)

− (T −S) ln(1−α).

(27)

Minimizing (27) yields the optimal value for α, which is
α∗ = (S − 1)/(T − 1). Next, we provide a general result
which will be useful in our derivations in Section V.

Lemma 1: Using the fixed switching update parameter,
α = (Sα − 1)/(T − 1) produces the following complexity
cost, ln W (s∗

T), for the optimum strategy, if Sα ≤ S:

ln W (s∗
T) ≤ ln M + (S − 1) ln

(
T − 1

Sα − 1
(M − 1)e

)

(28)

where Sα is the switch parameter used in selecting α, and S
is the number of switches of the optimum strategy.

Proof of Lemma 1: Substituting the switching update
parameter α with α = (Sα − 1)/(T − 1) in (27) yields the
following complexity cost for s∗

T :

ln Wt (s∗
T) = ln M + (S−1) ln

(
T −1

Sα−1
(M−1)

)

+ (T −S) ln

(
T −1

T −Sα

)

.

We can bound the last term as

(T − S) ln

(
T − 1

T − Sα

)

= (T − S) ln

(

1 + Sα − 1

T − Sα

)

= ln

([

1 + Sα−1

T −Sα

]T −S
)

≤ ln

([

1 + S−1

T −S

]T −S
)

≤ S−1

when Sα ≤ S. Thus, the upper bound of ln Wt (s∗
T) is (28). �

In Algorithm 2, we provide a version of Algorithm 1 that
has no auxiliary variables in its equivalence classes and uses
the combination weight update in (26). This algorithm has the
following performance result.

Theorem 2: Running Algorithm 2 with parameters
α = (Sα − 1)/(T − 1) and

η =
√

2

MT

[

ln M + (Sη − 1) ln

(
T − 1

Sα − 1
(M − 1)e

)]

yields the regret bound

IE[RT] ≤
2 ln M + (S + Sη − 2) ln

(
e(M − 1) (T −1)

(Sα−1)

)

√

2 ln M + (2Sη − 2) ln
(

e(M − 1) (T −1)
(Sα−1)

)
√

MT

where Sα ≤ S is the switch parameter of α, and Sη is the
switch parameter of the learning rate η.

Proof of Theorem 2: The result directly follows from
putting (28) into (23) and substituting in η. �

Corollary 2: If S is known beforehand (as was our assump-
tion is this section), setting Sη = Sα = S in the parameters
α and η yields the compact regret bound

IE[RT] ≤ √
2MT S ln(eMT/S).

Algorithm 2 Switching Network Forecaster for Known S and
T and (SNF.F)

1: Initialize constant α, η ∈ R
+

2: Set C(1, m) = 1/M for m ∈ 1, . . . , M
3: Initialize p1,m = C(1,m)

∑M
m=1 C(1,m)

for m ∈ 1, . . . , M

4: for t = 1 to T do
5: Select one of the M arms with probability pt,m

6: Receive loss lt,ut

7: Set l̃t,m = lt,m�m=ut
pt,m

for m ∈ 1, . . . , M
8: for m = 1 to M do
9: C(t+1,m)=(1−α)C(t,m)e−ηl̃t,m + α

M−1

∑

m′ �=m

C(t,m′)e−ηl̃t,m′

10: end for
11: for m = 1 to M do
12: pt+1,m = C(t+1,m)

∑M
m=1 C(t+1,m)

13: end for
14: end for

We have successfully achieved Õ(
√

MT S) upper bound on
the expected regret when S is known beforehand. Up to now,
we have achieved the optimal regret performance when the
number of switches of the optimum strategy, S, is known.
In Section V, we introduce an algorithm that achieves the
optimal regret bound without knowing S and T beforehand.

V. ACHIEVING THE MINIMAX OPTIMAL REGRET FOR

UNKNOWN NUMBER OF SWITCHES AND GAME LENGTH

Algorithm 2 in Section IV achieves the optimal regret bound
Õ(

√
MT S) when it is given the game length T and the number

of switches S a priori as inputs. To remove the requirement of
knowing S, we can run T copies of this algorithm where each
copy is optimized for different numbers of switches, S0 =
{1, . . . , T }.

In batch setting, it is possible to set parameters by trying
different values and using the optimal one obtained from
cross validation. However, in the online setting, we do not
have the opportunity to try different values and select the
optimal one. Instead, we combine them in a mixture of
experts framework [11]. The combination structure achieves
the performance of each expert with some redundancy. Hence,
we achieve the performance of the optimally set value,
i.e., the performance achievable by knowing the number of
switches S a priori, without knowing S beforehand. The
candidate values cover all possible values of S; hence, there
is no need to have any information beforehand.

We use S0 as a common switch parameter and set both Sα

and Sη to S0 such that Sα = Sη = S0. We can then combine
the outputs of these T parallel running algorithms to achieve
the performance of the optimal algorithm with the optimal
number of switches, since one of these algorithms naturally
has the best switching parameter (S0 = S).

However, naively combining all these algorithms (for all
possible numbers of switches) increases the computational
complexity to linear in the game length, which would prove to
be highly problematic for games of long duration. Therefore,
instead of combining Algorithm 2 optimized for each possible

GOKCESU AND KOZAT: ONLINE MINIMAX OPTIMAL ALGORITHM FOR ADVERSARIAL MULTIARMED BANDIT PROBLEM 5573

number of switches, we combine Algorithm 2 optimized for
only the number of switches that are powers of 2. As an
example, for a game length of 100 rounds, instead of com-
bining switches S0 ∈ {1, 2, 3, 4, . . . , 99, 100}, we combine
switches S0 ∈ {1, 2, 4, 8, 16, 32, 64} so as to ensure that one
of the elements in the set of S0 is S0 ≤ S ≤ 2S0 − 1. This
combination will increase the computational complexity by
only O(log(T)) instead of O(T).

We consider each Algorithm 2 with a different S0 as an
expert, eS0 . Note that each algorithm eS0 is itself a randomized
algorithm, which provides a probability distribution at each
round t . In Algorithm 3, we provide the description of the
algorithm that achieves the optimal regret when S is not
known, which has the following performance result.

Algorithm 3 Switching Network Forecaster for Unknown S
(SNF.U)

1: Initialize experts eS0 according to SNF.F where S0 = 2i

for i ∈ {0, 1, 2, . . . , �log T
} such that S0 ∈ {1, 2, 4, . . .}
2: Initialize expert mixture weights q to be uniform.
3: Let pm be the vector of probabilities of selecting mth arm

by the experts and initialize all elements of pm to 1/M for
all m

4: Initialize p1,m = 1/M for all m
5: for t = 1 to T do
6: Select one of the M arms with probability pt,m

7: Receive loss lt,ut

8: Update q according to Exp4
9: Feed the selection ut and the loss lt,ut to the experts

10: for m = 1 to M do
11: Update each element of pm according to Algorithm 2

(SNF.F)
12: end for
13: for m = 1 to M do
14: pt+1,m = qT pm
15: end for
16: end for

Theorem 3: If S is not known beforehand but T is known,
then using Algorithm 3 (SNF.U) produces the regret bound

IE[RT]≤ O

(
3

2

√

2MT S ln

(
eMT

S

)

+√
2MT ln(log T + 1)

)

.

(29)

The first part of the expected regret is similar to the
expected regret we can obtain with the knowledge of S and
T beforehand, and there is only a multiplicative increase.
The second part of the regret is caused by not knowing
the number of switches S beforehand. Hence, Algorithm 3
achieves an expected regret bound of IE[RT] ≤ Õ(

√
MT S).

We run �log T
 copies of the algorithm (where �·
 is the
floor function) each with a different switch parameter that is
a power of 2 and combine them with Exp4. The total regret
now has two terms. The first one is due to the regret of one of
the �log T
 parallel running algorithms whose common switch
parameter S0 is such that S0 ≤ S ≤ 2S0−1. The second term is

the regret (redundancy) incurred from combining the parallel
running algorithms. We denote the first regret term by IE[RS

T].
Since the performance of the best algorithm will dominate,
we assume that the optimal algorithm will behave similar to
its individual run. We find this regret by putting Sα = Sη = S0
where S0 ≤ S ≤ 2S0 − 1 in Theorem 2, which yields

IE
[
RS

T

]

≤
2 ln M + (S + S0 − 2) ln

(
e(M − 1) (T −1)

(S0−1)

)

√

2 ln M + (2S0 − 2) ln
(

e(M − 1) (T−1)
(S0−1)

)

√
MT (30)

≤ 3√
2

√

MT

(

ln M + (S0 − 1) ln

(

e(M − 1)
(T − 1)

(S0 − 1)

))

(31)

≤ 3√
2

√

MT

(

S0 ln

(
eMT

S0

))

≤ 3

2

√

2MT S ln

(
eMT

S

)

(32)

where we used S ≤ 2S0 −1 to get (31) and S0 ≤ S to get (32).
We denote the second term, i.e., the regret (redundancy) we
incur for not knowing S beforehand, by RR

T , which is

IE
[
RR

T

] ≤ √
2MT ln(�log T
 + 1) ≤ √

2MT ln(log T + 1).

(33)

Hence, by combining (33) and (32), we have the total regret
IE[RT], which is in the order of their summation. The total
regret is IE[RT] ≤ O(IE[RS

T]+IE[RR
T]), which is given in (29),

without the knowledge of S beforehand. If we also have no
knowledge of the game length T , we can use the doubling
trick and run Algorithm 3 in the lengths of powers of 2 and
reset the algorithm after each run. We call each such run an
epoch and denote this algorithm as Algorithm 4, which has
the following result showing its optimality.

Algorithm 4 Switching Network Forecaster for Unknown S
and T (SNF.U.1)

1: Initialize T0 = 1, Tr = 2r−1 for r > 0
2: for r = 0, 1, . . . do
3: Run Algorithm 3 (SNF.U) for T = Tr

4: end for

Theorem 4: If S and T are not known beforehand, then
Algorithm 4 (SNF.U.1) has the regret bound

IE[RT] ≤ O(3
√

2MT (S + log 2T) ln(eMT/S)

+(2
√

2 + 2)
√

MT ln(log 2T)). (34)

In comparison with Theorem 3, not knowing the game
length causes a multiplicative increase in the redundancy regret
and a seemingly additive increase in the number of switches,
since Algorithm 4 resets each time an epoch ends, thus
creating a phantom switch. Nevertheless, the redundant terms
decay significantly faster. Our algorithm attains an expected
regret of IE[RT] ≤ Õ(

√
MT S) and achieves the minimax

regret.

5574 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

We remove the requirement of knowing T beforehand by
using the doubling trick. Taking intervals of T0 = 1, Tr = 2r−1

for r > 0, and resetting the final algorithm after each interval’s
end gives an expected regret of

IE[RT] ≤
n∑

r=0

IE[RTr]

where n = �log T � (�·� is the ceil function), and
Tn < T ≤ 2Tn . Let Sr denote the number of switches made
in epoch "r ." Then, applying Theorem 3 in each epoch yields
the expected regret

IE[RT]

≤
n∑

r=0

O

(
3

2

√

2MTr Sr ln

(
eMTr

Sr

)

+ √
2MTr ln(log 2Tr)

)

.

The summation of the first term of each epoch’s regret is max-
imum when Sr and Tr are proportional; therefore, we replace
Sr with Tr S′/T , where S′ = ∑n

r=0 Sr , which gives

IE[RT]

≤
n∑

r=0

O

⎛

⎝3

2

√
2MT 2

r S′
T

ln

(
eMT

S′

)

+ √
2MTr ln(log 2Tr)

⎞

⎠.

Since Tr < T for all r , we substitute Tr with T inside the
logarithm in the second part. Thus, the bound becomes

IE[RT]

≤
n∑

r=0

O

(
3Tr

2

√
2M S′

T
ln

(
eMT

S′

)

+ √
2MTr ln(log 2T)

)

.

Sum of Tr is equal to 2Tn , which is upper bounded by 2T ,
and summation of their square roots are upper bounded by√

2T /(
√

2 − 1). Thus, the bound can be written as

IE[RT] ≤ O

(

3

√

2MT S′ ln

(
eMT

S′

)

+ (2
√

2 + 2)
√

MT ln(log 2T)

)

.

By definition, S ≤ S′ ≤ S + n ≤ S + log 2T , and we get (34).
Since we run O(log T) instances of Algorithm 2 as sub-

routines and combine them, the computational complexities
of Algorithms 3 and 4 are O(M log T).

VI. EXPERIMENTS

In this section, we demonstrate the performance of our
algorithm both on real and synthetic data. We use two syn-
thesized data sets and three real data sets to show how our
algorithm performs individually and in comparison with the
state-of-the-art techniques: ShiftBand [29], implicitly normal-
ized forecaster (INF) [31], and Exp3.S [30]. All the simulated
algorithms are constructed as instructed in their original publi-
cations. We run Algorithm 3 (SNF.U) when game length T is
provided and run Algorithm 4 (SNF.U.1) otherwise. We also
compare each algorithm against the trivial algorithm, Chance
(i.e., random guess) for a baseline comparison.

A. Sudden Game Change

We first construct a game with three-armed bandit, where
in all rounds, the optimum arm has zero loss while the
other arms have loss of 1. This synthesized data set can be
thought as representing a classification problem where the
loss is binary, e.g., zero loss is a correct classification and
a loss of one is a misclassification. The parameters of the
individual algorithms are set as instructed by their respective
publications [29]–[31]. The information of both the game
length T and the number of switches S have been given
a priori to all of the algorithms, since the compared algorithms
are unable to compete otherwise, as we shall see in Fig. 3(d)
in Section VI-B.

A game of length 1000 has been created with switches
at rounds 333 and 666. The optimum arms at consecutive
segments are different. The loss of the arms changes abruptly
at the switching time instances, e.g., the optimum arm of the
first segment has a loss of 1 throughout the second segment.
The same game has been presented to the algorithms and we
calculate their time averaged accumulated regrets and track
their probabilities of selecting the optimum arm. This process
is repeated for 100 times and the ensemble averages are plotted
in Fig. 2(a) and (b), respectively. Our algorithm significantly
outperforms the other algorithms as illustrated in Fig. 2(a).
The switches at rounds 333 and 666 are apparent with a slight
increase in the regret. In Fig. 2(b), the probability of selecting
the optimum arm in each round is shown. We emphasize that
this figure plots the selection probability of the optimum arm
for each round individually. For example, if the optimum arm
is 1 up to round 333 and 2 up to round 666 and 1 again after
that, then the figure plots the probability of selecting arm 1 up
to round 333 and arm 2 after that and so on. This is the reason
for the sudden dips in probability at each switch. Fig. 2(b)
clearly demonstrates why our algorithm outperforms the oth-
ers. Since SNF.U saturates at a higher probability, the dip in the
probability is much greater. However, since SNF.U has a faster
convergence, it is able to select more frequently the optimum
arm than the other algorithms. Fig. 2(a) and (b) shows that
while the performances of ShiftBand and INF are similar
for this data set, their behavior is slightly different. While
ShiftBand has a faster convergence, its probability saturates at
a lesser value than the INF. The behavior of SNF.U and Exp3.S
are similar to each other. However, in terms of convergence
speed and saturation level, SNF.U is significantly better than
Exp3.S. SNF.U is able to achieve a better performance than
the other algorithms, because it reacts to the change better.

B. Random Game and Benchmark

In this section, we construct a game whose behavior is
completely random with the only regularization condition
being a single arm should be optimum throughout a segment.
We start to synthesize the data set by randomly selecting losses
in [0, 1] for all arms for all rounds. We predetermine the
optimum arms in each segment and then switch the minimum
losses with the loss of the optimum arm at each round. This
synthesized data set creates a game with randomly determined
losses while maintaining that one arm is uniformly optimum

GOKCESU AND KOZAT: ONLINE MINIMAX OPTIMAL ALGORITHM FOR ADVERSARIAL MULTIARMED BANDIT PROBLEM 5575

Fig. 2. (a) Regret performances of the algorithms in a three-armed bandit game with sudden game (concept) change at every 333 rounds. (b) Probabilities
of selecting the optimum arm for all of the algorithms in sudden game change setting.

throughout each segment. We synthesize multiple data sets to
analyze the effects of the parameters of the game individually,
where we compare the algorithms’ performances for varying
game length (T), the number of switches (S), the number
of arms (M), and prior information given. We start with
the control group of T = 1000, M = 3, and S = 3,
and both T and S are known a priori. Then, for each case,
we vary one of the above-mentioned four parameters. Different
from before, the time instances of switches are not fixed to
333 and 666 but instead selected randomly to be in anywhere
in the game. Thus, we create random games with three arms
and three segments. We provided the algorithms with the
prior information of both the game length and the number
of switches. We selected the game lengths to be Fibonacci
numbers between 100 and 10 000. In Fig. 3(a), we have
plotted the average regret incurred at the end of the game
by all of the algorithms at different values of game length
while fixing the other parameters. For any set of parameters,
we have simulated the setting for 10 times with recreating the
game each time to get a value closer to the true mean. The
algorithms ShiftBand and INF perform close to random guess
up to approximately the game length of 400 rounds. After that,
they start to perform better than chance. SNF.U and Exp3.S,
however, perform better than chance for all values of game
length. There is a significant performance difference between
SNF.U and Exp3.S, especially in the games of shorter lengths.

To observe the effect of the number of switches on the
performances, we created random change games with three
arms and the game length of 1000. We provided the algorithms
with the prior information of both the game length and the
number of switches. We selected the number of switches to be
Fibonacci numbers between 1 and 1000. In Fig. 3(b), we have
plotted the average regret incurred at the end of the game by all
of the algorithms at different values of the number of switches
while fixing the other parameters. For any set of parameters,
we have simulated the setting for 10 times with recreating the
game each time. The algorithm ShiftBand perform similar to
random guess after approximately 10 switches, i.e., S = 10.

Both INF and Exp3.S behave no better than random guess
after S = 50; however, Exp3.S increases from a much lower
value of regret. SNF.U on the other hand catches random guess
at S = 400, even for the number of switches comparable to
game length, SNF.U manages to provide a better performance
than random guess unlike the other algorithms.

To observe the effect of the number of bandit arms on the
performances, we created random change games with three
segments and the game length of 1000. We provided the
algorithms with the prior information of both the game length
and the number of switches. We selected the number of bandit
arms to be Fibonacci numbers between 2 and 100. In Fig. 3(c),
we have plotted the average regret incurred at the end of the
game by all of the algorithms at different values of the number
of bandit arms while fixing the other parameters. For any set
of parameters, we have simulated the setting for 10 times with
recreating the game each time. The algorithms ShiftBand and
INF perform similar to random guess after approximately 10
bandit arms. Exp3.S reduces to random guess after 50 bandit
arms. However, SNF.U always outperforms random guess.
Even for 89 bandit arms, SNF.U provides a slight performance
gain, whereas the others are indistinguishable from chance.
SNF.U outperforms all algorithms for all values of bandit arms
uniformly.

To observe the effect of prior information on the perfor-
mances, we created random change games with three bandit
arms, three segments, and the game length of 1000. Cases 1–4
represent providing both S and T , only S, and only T , none
of them a priori, respectively. In Fig. 3(d), we have plotted
the average regret incurred at the end of the game by all of
the algorithms at different settings of prior information while
fixing the other parameters. For any set of parameters, we have
simulated the setting for 10 times with recreating the game
each time. ShiftBand and INF perform similar to each other
in all the cases. Exp3.S has a better performance than them
when S is known a priori. All competition performs close
to random guess when S is not known, since Smax is set to
be T as per their rules. What we observe here tells us that

5576 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

Fig. 3. Per round regret performances of the algorithms with increasing (a) game length, (b) number of switches, and (c) number of bandit arms.
(d) Per round regret performances of the algorithms according to the prior information given.

the other algorithms are simply not cut out for settings when
the number of switches is not known. Auer [29] provided a
version for Exp3.S that uses a minimum possible number of
switches, S = 1, to initialize the parameters, which in turn
provides guaranteed regret linear with the number of switches
instead of square-root dependence, as was in the variant of
Exp3.S when parameters are set according to Smax. However,
such an initialization gives guaranteed lower regret only if we
can be sure that S ≤ √

T (which is not the case). Therefore,
that kind of initialization is meaningless when no information
regarding S is known, since setting the parameters according to
Smax = T has lower guaranteed regret. The prior information
given does not effect SNF.U drastically, since SNF.U is a
universal algorithm. The knowledge of T has a bit of an
effect on its performance, because it does not have to reset the
algorithm in every epoch. SNF.U outperforms all algorithms,
especially when the number of switches is not known.

C. Real Data Benchmark

We use a real-world networking data set that corresponds
to the retrieval latencies of more than 700 universities home-
pages. The pages have been probed every 10 min for more

than one week in May 2004 from an Internet connection
located in New York City, NY, USA. The data include
760 URLs and 1361 latencies per URL. The initial purpose
of this data set was to be used as a benchmarking data
set for the multiarmed bandit problem [37]. An agent must
retrieve data through a network with several redundant sources
available. For each retrieval, the agent selects one source
and waits until the data are retrieved. The objective of the
agent is to minimize the sum of the delays for the successive
retrievals. Vermorel and Mohri have used the homepages
of 760 universities [37]. The home pages have been retrieved
roughly every 10 min for about 10 days (1361 rounds), where
the retrieval latencies are in milliseconds. Intuitively, each
page is associated with a bandit arm and each latency to a
loss [37].

Using the universities as the bandit arms and 1361 latencies
as the losses at each round, we have extracted games with two
bandit arms and at most three segments 100 times. For each
game, we have normalized the losses into [0, 1] and plotted
the time-averaged regret averaged over 100 trials in Fig. 4(a),
where we have given only the knowledge of S a priori. Similar
to all of the tests before, ShiftBand and INF perform the
worst. Exp3.S performs better than the other two but SNF.U

GOKCESU AND KOZAT: ONLINE MINIMAX OPTIMAL ALGORITHM FOR ADVERSARIAL MULTIARMED BANDIT PROBLEM 5577

Fig. 4. Time averaged regret performances in “univ-latencies” data set (a) when M = 2 and Smax = 3 and (b) with time-out when M = 2 and Smax = 3.
Per round regret performances of the algorithms with increasing (c) number of switches and (d) number of bandit arms.

outperforms all of them. However, even chance has a time
averaged regret of 0.03, which implies that the data set is
too diverge and sparse. Because of some very high latencies,
normalization considerably diminishes most values in the data
set. Therefore, we have truncated the latencies at 1000 ms,
which can be thought of as time-out for a more realistic
real-world setting. Reperforming the same experiments after
truncation gives the results in Fig. 4(b), which provides a
clearer comparison.

Using the truncated data, we do benchmarks on the number
of switches and the number of arms. For the number of
switches benchmark, we set the number of bandit arms to 2
and set Smax to Fibonacci numbers between 1 and 1000. For
each value of Smax, we extract games with S between the
current Smax and previous Smax so as to not use the same
game for different values of Smax. Interestingly, as Smax
increases, the regret of random guess decreases, which can
only mean that a high number of switches occur in the data
set when the latency values are closer together. All of the
other algorithms perform similar to chance after approximately
30 switches, whereas our algorithm performs similarly after
approximately 600 switches.

For the number of bandit arms, we set Smax to 20, since
this is a real-world data set, it is not always possible to get
high-armed games with a low number of switches. We set
M to Fibonacci numbers between 2 and 100. Interestingly,
as M increases, the regret of random guess approximately
stays the same. All of the other algorithms perform simi-
lar to chance after M = 10, while our algorithm always
outperforms chance when M ≤ 100. It is apparent in all
the cases that the INF performs not really well because
by design, only an additive bias term is applied to each
arm’s potential function. ShiftBand and Exp3.S are similar
in spirit with their pooling of the arm selection probabilities.
However, Exp3.S performs significantly better than ShiftBand.
SNF.U considerably outperforms INF, ShiftBand, and Exp3.S,
since it creates a probability sharing network between all of
the arms. The power of SNF.U is especially clear in a high
number of bandit arms and switches.

The behaviors of the algorithms in synthesized and real
data set benchmarks may seem quite different at first glance.
However, considering the performance of the Chance algo-
rithm as a baseline and observing the performance increases
of the algorithms in each individual case show us that the

5578 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

Fig. 5. Regret performances of the algorithms in (a) occupancy detection data set (classification) and (b) combined cycle power plant data set (regression).

synthetic and real experiments significantly agree with each
other.

D. Classification Task

For the classification experiment, we have used the “occu-
pancy detection data set” [38], which contains a binary clas-
sification task for detecting the room occupancy based on the
room temperature, relative humidity, light, CO2, and humidity
ratio. The data set includes 20 560 data samples. In each trial
of the experiment, we have randomly split the data set into
6000 test set and 14 560 training set. The feature vector in the
data set is 5-D. We have split the training data according to
the orthant each sample belongs to. Hence, we have 25 = 32
disjoint training sets. Using each training set, we train a
perceptron with the learning rate

√
1/n for the nth sample.

We feed the training set 10 times to the perceptrons. Each such
perceptron has been trained on a different part of the training
set. We treat the perceptrons as the arms of a multiarmed
bandit and run the bandit algorithms to select the correct
model. For the test phase, we split the test data set according
to their orthants. First, we sequentially feed the samples
belonging to the first orthant; then, we feed the second orthant
and so on until we have fed all of the test data (i.e., the orthants
are fed in order). Thus, if the dimension of the feature vector
is D (in this case 5), then the number of bandit arms is
M = 2D and the number of switches S = M = 2D .
The experiment has been done for 100 trials. In Fig. 5(a),
we have illustrated the performances of the competing bandit
algorithm. Similar to the rest of the experiments, our algorithm
SNF.U has outperformed all of the other algorithms. As can
be seen in Fig. 5(a), the convergence rate of SNF.U is much
higher in comparison with the other algorithms, which is most
clear up to the approximately 600th round. Our algorithm
is much more robust to orthant switches. The algorithms,
ShiftBand and INF, again perform the worst and have very
close performance to chance. Exp3.S performs the best except
our algorithm but even that falls behind considerably. Nonethe-
less, none of the algorithms’ performance comes close to our
algorithm SNF.U.

E. Regression Task

For the regression experiment, we have used the “combined
cycle power plant data set” [39], which contains 9568 data
points collected from a combined cycle power plant over six
years (2006–2011), when the plant was set to work with full
load. Features of the data set are the hourly average ambient
variables: temperature, ambient pressure, relative humidity,
and exhaust vacuum. The goal is to predict the net hourly
electrical energy output of the plant. In each trial of the exper-
iment, we have randomly split the data set into 3000 test set
and 6568 training set. The feature vector in the data set is 4-D.
Similar to the classification task, we have split the training
data according to the orthant each sample belongs to. Hence,
we have 24 = 16 disjoint training sets. Using each training set,
we train a linear predictor with the learning rate 0.1

√
1/n for

the nth sample. We feed the training set 10 times to the linear
predictors. Each such predictor has been trained on a different
part of the training set. We again treat the predictors as the
arms of a multiarmed bandit and run the bandit algorithms
to select the correct model. For the test phase, we split the
test data set according to their orthants. First, we sequentially
feed the samples belonging to the first orthant, and then we
feed the second orthant and so on until we have fed all of
the test data (i.e., the orthants are fed in order). Thus, if the
dimension of the feature vector is D (in this case 4), then the
number of bandit arms is M = 2D and the number of switches
S = M = 2D . In Fig. 5(b), we have illustrated the perfor-
mances of the competing bandit algorithms. Similar to the rest
of the experiments, our algorithm SNF.U has outperformed all
of the other algorithms. Our algorithm uniformly outperforms
the others and is nearly nonresponsive to the changes and
holds down its regret. The algorithms, ShiftBand and INF,
again perform the worst and have the closest performance to
chance. They switch orders at the 900th round and perform
quite similar. Exp3.S performs the best except our algorithm
but even that falls behind considerably. All in all, SNF.U. has
performed better than the other bandit algorithms for varying
real-world data sets (both classification and regression).

GOKCESU AND KOZAT: ONLINE MINIMAX OPTIMAL ALGORITHM FOR ADVERSARIAL MULTIARMED BANDIT PROBLEM 5579

VII. CONCLUSION

We studied an important problem in the field of reinforce-
ment learning, which is the adversarial multiarmed bandit
problem, and introduced, as the first time in the literature,
a truly online, low-complexity (log-linear) algorithm whose
performance with respect to the best bandit arm selection strat-
egy is minimax optimal (up to logarithmic factors). We empha-
size that we achieve this minimax optimal regret without
any knowledge about the best arm selection strategy (e.g., its
number of segments S, the lengths of these segments, and the
location of these segments) and the game length T . The results
we provide are uniformly guaranteed to hold in an individual
sequence manner for all possible arm loss sequences, since we
refrain from making any statistical assumptions on the bandit
arms. We achieved these results by first introducing a gen-
eral efficiently implementable bandit arm selection framework
that works with any kind of weighting scheme for various
applications. Then, based on this framework, we designed an
online probability sharing network that sequentially combines
the selections of all possible bandit arm selection strategies
with carefully constructed weights, where the number of
possible strategies grow with MT . We efficiently implement
this network by creating equivalence classes, which group
certain strategies together to store and update their weights
collectively. Then, by combining the beliefs of different care-
fully designed probability sharing networks with its parameters
(transition weights and learning rates) carefully tuned to dif-
ferent numbers of switches, we achieve the minimax optimal
regret up to logarithmic factors with computational complexity
only log-linear in the game length T . Thus, our algorithm can
be efficiently used in applications involving big data. Through
an extensive set of experiments involving synthetic and real
data, we demonstrated significant performance gains achieved
by our algorithm with respect to the state-of-the-art adversarial
multiarmed bandit algorithms in the reinforcement learning
and computational learning theory literature [29]–[31].

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
vol. 1. Cambridge, MA, USA: MIT Press, 1998,

[2] J. Moody and M. Saffell, “Learning to trade via direct reinforcement,”
IEEE Trans. Neural. Netw., vol. 12, no. 4, pp. 875–889, Jul. 2001.

[3] R. Song, F. L. Lewis, and Q. Wei, “Off-policy integral reinforcement
learning method to solve nonlinear continuous-time multiplayer nonzero-
sum games,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 3,
pp. 704–713, Mar. 2017.

[4] H. S. Chang, J. Hu, M. C. Fu, and S. I. Marcus, “Adaptive adversarial
multi-armed bandit approach to two-person zero-sum Markov games,”
IEEE Trans. Autom. Control, vol. 55, no. 2, pp. 463–468, Feb. 2010.

[5] H. Ozkan, M. A. Donmez, S. Tunc, and S. S. Kozat, “A deterministic
analysis of an online convex mixture of experts algorithm,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 26, no. 7, pp. 1575–1580, Jul. 2015.

[6] H. R. Berenji and P. Khedkar, “Learning and tuning fuzzy logic
controllers through reinforcements,” IEEE Trans. Neural Netw., vol. 3,
no. 5, pp. 724–740, Sep. 1992.

[7] N. D. Vanli, M. O. Sayin, I. Delibalta, and S. S. Kozat, “Sequential
nonlinear learning for distributed multiagent systems via extreme learn-
ing machines,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 3,
pp. 546–558, Mar. 2017.

[8] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “Gambling in
a rigged casino: The adversarial multi-armed bandit problem,” in Proc.
36th Annu. Symp. Found. Comput. Sci., Oct. 1995, pp. 322–331.

[9] A. J. Bean and A. C. Singer, “Universal switching and side information
portfolios under transaction costs using factor graphs,” IEEE J. Sel.
Topics Signal Process., vol. 6, no. 4, pp. 351–365, Aug. 2012.

[10] T. Moon, “Universal switching FIR filtering,” IEEE Trans. Signal
Process., vol. 60, no. 3, pp. 1460–1464, Mar. 2012.

[11] A. C. Singer and M. Feder, “Universal linear prediction by model order
weighting,” IEEE Trans. Signal Process., vol. 47, no. 10, pp. 2685–2699,
Oct. 1999.

[12] T. Moon and T. Weissman, “Universal FIR MMSE filtering,” IEEE
Trans. Signal Process., vol. 57, no. 3, pp. 1068–1083, Mar. 2009.

[13] A. C. Singer and M. Feder, “Universal linear least-squares prediction,”
in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2000, p. 81.

[14] C. Tekin, S. Zhang, and M. van der Schaar, “Distributed online learning
in social recommender systems,” IEEE J. Sel. Topics Signal Process.,
vol. 8, no. 4, pp. 638–652, Aug. 2014.

[15] C. Tekin and M. V. D. Schaar, “RELEAF: An algorithm for learning
and exploiting relevance,” IEEE J. Sel. Topics Signal Process., vol. 9,
no. 4, pp. 716–727, Jun. 2015.

[16] M. R. W. Dawson, B. Dupuis, M. L. Spetch, and D. M. Kelly, “Simple
artificial neural networks that match probability and exploit and explore
when confronting a multiarmed bandit,” IEEE Trans. Neural Netw.,
vol. 20, no. 8, pp. 1368–1371, Aug. 2009.

[17] R. Zheng and C. Hua, Adversarial Multi-armed Bandit. Cham,
Switzerland: Springer, 2016, pp. 41–57. [Online]. Available: https://
doi.org/10.1007/978-3-319-50502-2_4

[18] A. Heydari and S. N. Balakrishnan, “Optimal switching and control of
nonlinear switching systems using approximate dynamic programming,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 6, pp. 1106–1117,
Jun. 2014.

[19] X. Liu, H. Su, and M. Z. Chen, “A switching approach to designing
finite-time synchronization controllers of coupled neural networks,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 2, pp. 471–482,
Feb. 2016.

[20] P. Auer and M. K. Warmuth, “Tracking the best disjunction,” Mach.
Learn., vol. 32, no. 2, pp. 127–150, 1998.

[21] M. Herbster and M. K. Warmuth, “Tracking the best expert,” Mach.
Learn., vol. 32, no. 2, pp. 151–178, 1998.

[22] P. Lim, C. K. Goh, K. C. Tan, and P. Dutta, “Multimodal degrada-
tion prognostics based on switching Kalman filter ensemble,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 28, no. 1, pp. 136–148,
Jan. 2017.

[23] A. Heydari, “Feedback solution to optimal switching problems with
switching cost,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 10,
pp. 2009–2019, Oct. 2016.

[24] F. M. J. Willems, “Coding for a binary independent piecewise-
identically-distributed source,” IEEE Trans. Inf. Theory, vol. 42, no. 6,
pp. 2210–2217, Nov. 1996.

[25] N. Merhav, “On the minimum description length principle for sources
with piecewise constant parameters,” IEEE Trans. Inf. Theory, vol. 39,
no. 6, pp. 1962–1967, Nov. 1993.

[26] G. I. Shamir and N. Merhav, “Low-complexity sequential lossless coding
for piecewise-stationary memoryless sources,” IEEE Trans. Inf. Theory,
vol. 45, no. 5, pp. 1498–1519, Jul. 1999.

[27] X. Liu, J. Lam, W. Yu, and G. Chen, “Finite-time consensus of
multiagent systems with a switching protocol,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 27, no. 4, pp. 853–862, Apr. 2016.

[28] V. Vovk, “Derandomizing stochastic prediction strategies,” Mach.
Learn., vol. 35, no. 3, pp. 247–282, 1999.

[29] P. Auer, “Using confidence bounds for exploitation-exploration trade-
offs,” J. Mach. Learn. Res., vol. 3, pp. 397–422, Nov. 2003.

[30] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The nonsto-
chastic multiarmed bandit problem,” SIAM J. Comput., vol. 32, no. 1,
pp. 48–77, 2003.

[31] J.-Y. Audibert and S. Bubeck, “Regret bounds and minimax policies
under partial monitoring,” J. Mach. Learn. Res., vol. 11, pp. 2785–2836,
Oct. 2010.

[32] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic and non-
stochastic multi-armed bandit problems,” Found. Trends Mach. Learn.,
vol. 5, no. 1, pp. 1–122, 2012.

[33] N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire,
and M. K. Warmuth, “How to use expert advice,” J. ACM, vol. 44, no. 3,
pp. 427–485, 1997.

[34] H. Akaike, “A new look at the statistical model identification,” IEEE
Trans. Autom. Control, vol. 19, no. 6, pp. 716–723, Dec. 1974.

[35] J. Rissanen, “Modeling by shortest data description,” Automatica,
vol. 14, no. 5, pp. 465–471, 1978.

[36] N. Merhav and M. Feder, “Universal prediction,” IEEE Trans. Inf.
Theory, vol. 44, no. 6, pp. 2124–2147, Oct. 1998.

5580 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

[37] J. Vermorel and M. Mohri, “Multi-armed bandit algorithms and empir-
ical evaluation,” in Proc. Eur. Conf. Mach. Learn., 2005, pp. 437–448.

[38] L. M. Candanedo and V. Feldheim, “Accurate occupancy detection of an
office room from light, temperature, humidity and CO2 measurements
using statistical learning models,” Energy Buildings, vol. 112, pp. 28–39,
Jan. 2016.

[39] P. Tüfekci, “Prediction of full load electrical power output of a base load
operated combined cycle power plant using machine learning methods,”
Int. J. Electr. Power Energy Syst., vol. 60, pp. 126–140, Sep. 2014.

Kaan Gokcesu received the B.S. and M.S.
degrees (Hons.) in electrical and electronics engi-
neering from Bilkent University, Ankara, Turkey,
in 2015 and 2017, respectively. He is currently
pursuing the Ph.D. degree with the Department
of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge,
MA, USA.

His current research interests include sequential
learning, adaptive filtering, machine learning, bandit
problems, anomaly detection, and optimization.

Suleyman Serdar Kozat (A’10–M’11–SM’11)
received the B.S. degree (Hons.) from Bilkent Uni-
versity, Ankara, Turkey, and the M.S. and Ph.D.
degrees in electrical and computer engineering from
the University of Illinois at Urbana–Champaign,
Urbana, IL, USA.

He joined the IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, USA, as a Research
Staff Member, where later he became a Project
Leader with the Pervasive Speech Technologies
Group and he was involved in problems related

to statistical signal processing and machine learning. He was a Research
Associate with the Cryptography and Anti-Piracy Group, Microsoft Research,
Redmond, WA, USA. He is currently an Associate Professor with the
Electrical and Electronics Engineering Department, Bilkent University. He has
co-authored over 100 papers in refereed high-impact journals and conference
proceedings. He holds several patent inventions (used in several different
Microsoft and IBM products) due to his research accomplishments with the
IBM Thomas J. Watson Research Center and Microsoft Research. His current
research interests include cyber security, anomaly detection, big data, data
intelligence, adaptive filtering, and machine learning algorithms for signal
processing.

Dr. Kozat received many international and national awards. He is the elected
President of the IEEE Signal Processing Society, Turkey Chapter.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

