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Abstract—We introduce an online outlier detection algorithm
to detect outliers in a sequentially observed data stream. For this
purpose, we use a two-stage filtering and hedging approach. In
the first stage, we construct a multimodal probability density func-
tion to model the normal samples. In the second stage, given a
new observation, we label it as an anomaly if the value of afore-
mentioned density function is below a specified threshold at the
newly observed point. In order to construct our multimodal den-
sity function, we use an incremental decision tree to construct a set
of subspaces of the observation space. We train a single component
density function of the exponential family using the observations,
which fall inside each subspace represented on the tree. These
single component density functions are then adaptively combined
to produce our multimodal density function, which is shown to
achieve the performance of the best convex combination of the
density functions defined on the subspaces. As we observe more
samples, our tree grows and produces more subspaces. As a result,
our modeling power increases in time, while mitigating overfitting
issues. In order to choose our threshold level to label the obser-
vations, we use an adaptive thresholding scheme. We show that
our adaptive threshold level achieves the performance of the opti-
mal prefixed threshold level, which knows the observation labels
in hindsight. Our algorithm provides significant performance im-
provements over the state of the art in our wide set of experiments
involving both synthetic as well as real data.

Index Terms—Anomaly detection, exponential family, online
learning, mixture-of-experts.

I. INTRODUCTION

A. Preliminaries

W E STUDY sequential outlier or anomaly detection [1],
which has been extensively studied due to its applica-

tions in a wide set of problems from network anomaly detection
[2]–[4] and fraud detection [5] to medical anomaly detection
[6] and industrial damage detection [7]. In the sequential outlier
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detection problem, at each round t, we observe a sample vector
xt ∈ X and label it as “normal” or “anomalous” based on the
previously observed sample vectors, i.e., xt−1 , ...,x1 , and their
possibly revealed true labels. After we declare our decision, we
may or may not observe the true label of xt . The objective is to
minimize the number of mislabeled samples.

The problem formulation seems similar to binary classifica-
tion which has an extensive literature and can be solved with
recently emerging general purpose algorithms, e.g. contextual
bandits [8]. However, considering the fact that between quanti-
ties of normal and anomalous data there likely exists a disparity,
and the fact that anomalous data could be scattered with no clear
separation from the normal data, solutions specifically tailored
for anomaly detection are needed.

For this purpose, we use a two-stage “filtering” and “hedg-
ing” method [9]. In the “filtering” stage, we build in an online
manner “a model” for “normal” samples based on the informa-
tion gained from the previous rounds. Then, in the “hedging”
stage, we decide on the label of the new sample based on its con-
formity to our model of normal samples. A common approach
in constructing the aforementioned model is to assume that the
normal data is generated from an independent and identically
distributed (i.i.d.) random sequence [1]. Hence, in the first stage
of our algorithm, we model the normal samples using a proba-
bility density function, which can also be considered as a scoring
function [9]. However, note that the true underlying model of
the normal samples can be arbitrary in general (or may not even
exist) [1]. Therefore, we approach the problem in a competitive
algorithm framework [10]. In this framework, we define a class
of models called “competition class” and aim to achieve the per-
formance of the best model in this class. Selecting a rich class of
powerful models as the competition class enables us to perform
well in a wide set of scenarios [10]. Hence, as detailed later, we
choose a strong set of probability functions to compete against
and seek to sequentially learn the best density function which
fits to the normal data. Hence, while refraining from making any
statistical assumptions on the underlying model of the samples,
we guarantee that our performance is (at least) as well as the
best density function in our competition class.

We emphasize that there exist nonparametric algorithms for
density estimation [11], the parametric approaches have recently
gained more interest due to their faster convergence [12], [13].
However, the parametric approaches fail if the assumed model is
not capable of modeling the true underlying distribution [10]. In
this context, exponential-family distributions [14] have attracted
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significant attention, since they cover a wide set of parametric
distributions [9], and successfully approximate a wide range
of nonparametric probabilistic models as well [15]. However,
single component density functions are usually inadequate to
model the data in highly challenging real life applications [16].
In this paper, in order to effectively model multi-modal distribu-
tions, we partition the space of samples into several subspaces
using highly effective and efficient hierarchical structures, i.e.,
decision trees [17]. The observed samples, which fall inside
each subspace are fed to a single component exponential-family
density estimator. We adaptively combine all these estimators in
a mixture-of-experts framework [18] to achieve the performance
of their best convex combination.

We emphasize that the main challenge using a partitioning ap-
proach for multi-modal density estimation is to define a proper
partition of the space of samples [16]. Here, instead of stick-
ing to a pre-fixed partition, we use an incremental decision tree
[17], [19] approach to partition the space of samples in a nested
structure. Using this method we avoid overtraining, while ef-
ficiently modeling complex distributions composed of a large
number of components [17]. As the first time in the anomaly
detection literature, in order to increase our modeling power
with time, we apply a highly powerful incremental decision tree
[17]. Using this incremental tree, whenever we believe that the
samples inside a subspace cannot belong to a single component
distribution, we split the subspace into two disjoint subspaces
and start training two new single component density estimators
on the recently emerged subspaces. Hence, our modeling power
can potentially increase with no limit (and increase if needed),
while mitigating the overfitting issues.

In order to decide on the label of a given sample, as widely
used in the literature [9], we evaluate the value of our den-
sity function in the new data point xt and compare it against a
threshold. If probability density is lower than the threshold, the
sample is labeled as anomalous. While this is a shown to be an
effective strategy for anomaly detection, setting the threshold is
a notoriously difficult problem [9]. Hence, instead of commit-
ting to a fixed threshold level, we use an adaptive thresholding
scheme and update the threshold level whenever we receive a
feedback on the true label of the samples. We show that our
thresholding scheme achieves the performance of the best fixed
threshold level selected in hindsight.

B. Prior Art and Comparisons

Various anomaly detection methods have been proposed in
the literature that utilize Neural Networks [20], Support Vector
Machines [21], Nearest Neighbors [22], clustering [23] and sta-
tistical methods including parametric [24] and nonparametric
[25] density estimation. In the case when the normal data con-
form to a probability density function, the anomaly detection
algorithms based on the parametric density estimation method
are shown to provide superior performance [26]. For this rea-
son, we adopt the parametric probability estimation based ap-
proach. In [9], authors have introduced an online algorithm to fit
a single component density function of the exponential-family
distributions to the stream of data. However, since the real life

distributions are best described using multi-modal PDFs rather
than single component density functions [27], we seek to fit
multi-modal density functions to the observations. There are
various multi-modal density estimation methods in the litera-
ture. In [16], authors propose a sequential algorithm to learn the
multi-modal Gaussian distributions. However, as discussed in
their paper, this algorithm provides satisfactory results only if a
temporary coherency exists among subsequent observations. In
[27], an online variant of the well-known Kernel Density Esti-
mation (KDE) method is proposed. However, no performance
guarantees are provided for any of the algorithms. In this pa-
per, we provide a multi-modal density estimation method using
an incremental tree with strong performance bounds, which are
guaranteed to hold in an individual sequence manner through a
regret formulation [9].

Decision trees are widely studied in various applications in-
cluding coding [19], [28], prediction [29], [30], regression [31]
and classification [32]. These structures are shown to provide
highly successful results due to their ability to refrain from over-
training while providing significant modeling power. In this pa-
per, we adapt a novel notion of incremental decision trees [19],
[33] to the density estimation framework. Using this decision
tree, we train a set of single-component density estimators with
carefully chosen sets of data samples. We combine these single-
component estimators in an ensemble learning [34] framework
to approximate the underlying multi-modal density function and
show that our algorithm achieves the performance of the best
convex combination of the single component density estimators
defined on the, possibly infinite depth, decision tree.

Adaptive thresholding schemes are widely used for anomaly
detection algorithms based on density estimation [1]. While
most of the algorithms in the literature do not provide guaran-
tees for their anomaly detection performance, a surrogate regret
bound of O(

√
t) is provided in [9]. However, since in real life

applications the labels are revealed in a small portion of rounds
[35], stronger performance guarantees are highly desirable. We
provide an adaptive thresholding scheme with a surrogate regret
bound of O(log t). Hence, our algorithm steadily achieves the
performance of the best threshold level chosen in hindsight.

C. Contributions

Our main contributions are as follows:
� We adapt the notion of incremental decision trees [19] to

the multi-modal density estimation framework. We use this
tree, which can grow to an infinite depth, to partition the ob-
servations space into disjoint subspaces and train different
density functions on each subspace. We adaptively com-
bine these density functions to achieve the performance of
the best multi-modal density function defined on the tree.

� We provide guaranteed performance bounds for our multi-
modal density estimation algorithm. Due to our compet-
itive algorithm framework, our performance bounds are
guaranteed to hold in an individual sequence manner.

� Due to our individual sequence perspective, our algorithm
can be used in unsupervised, semi-supervised and super-
vised settings.
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� Our algorithm is truly sequential, such that no a priori
information on the time horizon or the number of com-
ponents in the underlying probability density function is
required.

� We propose an adaptive thresholding scheme that achieves
a regret bound of O(log t) against the best fixed threshold
level chosen in hindsight. This thresholding scheme im-
proves the state-of-the-art O(

√
t) regret bound provided in

[9].
� We demonstrate significant performance gains in compari-

son to the state-of-the-art algorithms through extensive set
of experiments involving both synthetic and real data.

D. Organization

In Section II, we formally define the problem setting and
our notation. Next, we explain our single-component density
estimation methods in Section III. In Section IV, we introduce
our decision tree and explain how we use it to incorporate the
single-component density estimators and create our multi-modal
density function. Then, we explain the anomaly detection step
of our algorithm in Section V, which completes our algorithm
description. In Section VI we demonstrate the performance
of our algorithm against the state-of-the-art methods on both
synthetic and real data. We finish with concluding remarks in
Section VII.

II. PROBLEM DESCRIPTION

In this paper, all vectors are column vectors and denoted
by boldface lower case letters. For a K-element vector u, ui

represents the ith element and ‖u‖ =
√

uT u is the l2-norm,
where uT is the ordinary transpose. For two vectors of the same
length u and v, 〈u,v〉 = uT v represents the inner product. We
show the indicator function by 1{condition}, which is equal to 1 if
the condition holds and 0 otherwise.

We study sequential outlier detection problem, where at each
round t ≥ 1, we observe a sample vector xt ∈ Rm and seek to
determine whether it is anomalous or not. We label the sam-
ple vector xt by d̂t = −1 for normal samples and d̂t = 1 for
anomalous ones, where dt corresponds to the true label which
may or may not be revealed. We make no assumption on the
generating model of the labels dt . They can be decided by the
environment (or nature) in an arbitrary fashion which can be
nonstationary, chaotic, adversarial and so on.

In general, the cost of making an error on normal and anoma-
lous data may not be the same. Therefore, we define Cdt

as the
cost of making an error while the true label is dt . The objective
is to minimize the accumulated cost in a series of rounds, i.e.,∑T

t=1 Cdt
1{d̂t �=dt }.

In our two step approach, we first introduce an algorithm for
probability density estimation, which learns a multi-modal den-
sity function that fits “best” to the observations. This density
function can be seen as a scoring function determining the nor-
mality of samples. Due to the online setting of our problem, at
each round t, our density function estimate, denoted by p̂t(·),
is a function of previously observed samples and their possibly

revealed labels, i.e.,

p̂t(·) = f(x1 ,x2 , ...,xt−1 , d1 , d2 , ..., dt−1). (1)

Note that in general, even if the samples are not generated
from a density function, e.g., deterministic framework [36], our
estimate p̂t(·) can be seen as a scoring function determining the
normality of the samples. As widely used in the literature [37],
we measure the accuracy of our density function estimate p̂t by
the log-loss function

lP (p̂t(xt)) = −log(p̂t(xt))). (2)

In order to refrain from any statistical assumptions on the
normal data, we work in a competitive framework [10]. In this
framework we seek to achieve the performance of the best model
in a class of models called the competition class. We use the
notion of “regret” as our performance measure in both density
estimation and anomaly detection steps. The regret of a density
estimator producing the density function p̂t(·) against a density
function p(·) at round t is defined as

rP,t(p̂t(xt), p(xt)) = −log(p̂t(xt)) + log(p(xt)), (3)

where selection of p(·) will be clarified later. We denote the
accumulated density estimation regret up to time T by

RP,T =
T∑

t=1

rP,t(p̂t(xt), p(xt)). (4)

Since the expected value of the per round regret in (3), with
respect to the random variable xt , corresponds to the KL diver-
gence between the estimate p̂t(·) and the true distribution p(·),
the cumulative regret in (4) asymptotically (T → ∞) converges
to the sum of such KL divergences emerging at each time t
which are always nonnegative and are only zero when the esti-
mates p̂t(·) are equivalent to p(·). Hence, the optimal strategy
is indeed to choose p̂t(·) = p(·).

In order to produce our decision on the label of observations
being “normal” or “anomalous”, at each round t, we observe the
new sample xt and declare our decision by thresholding p̂t(xt)
as

d̂t = sign(τt − p̂t(xt)), (5)

where τt is the threshold level. After declaring our decision, we
may or may not observe the true label dt as a feedback. We use
this information to optimize τt whenever we observe the correct
decision dt . We define the loss of thresholding p̂t(xt) by τt as

lA (τt , p̂t(xt), dt) = Cdt
1{sign(τt −p̂ t (xt )) �=dt }. (6)

We define the regret of choosing the threshold value τt against
a specific threshold τ (which can even be the unknown “best”
threshold that minimizes the cumulative error) at round t by

rA,t(τt , τ) = lA (τt , p̂t(xt), dt) − lA (τ, p̂t(xt), dt). (7)

We denote the accumulated anomaly detection regret up to time
T by

RA,T =
T∑

t=1

rA,t(τt , τ). (8)
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We emphasize that the main challenge in “two-step” ap-
proaches for anomaly detection is to construct a density function
p̂t(·), which powerfully models the observations distribution.
For this purpose, in Section III, we first introduce an algorithm,
which achieves the performance of a wide range of single com-
ponent density functions. Based on this algorithm, in Section IV,
we use a nested tree structure to construct a multi-modal density
estimation algorithm. In Section V, we introduce our adaptive
thresholding scheme, which will be used on the top of the den-
sity estimator described in Section IV to form our complete
anomaly detection algorithm.

III. SINGLE COMPONENT DENSITY ESTIMATION

In this section we introduce an algorithm, which sequentially
achieves the performance of the best single component distri-
bution in the exponential family of distributions [14]. At each
round t, we observe a sample vector xt ∈ Rm , drawn from an
exponential-family distribution

f(xt) = h(xt) exp (〈η, st〉 − A(η)), (9)

where
� η ∈ F is the unknown “natural parameter” of the

exponential-family distribution. Here, F ⊂ Rd is a
bounded convex set.

� h(xt) is the “base measure function” of the exponential-
family distribution.

� A(η) is the “log-partition function” of the distribution.
� st ∈ Rd is the “sufficient statistics vector” of xt . Given the

type of the exponential-family distribution, e.g., Gaussian,
Bernoulli, Gamma, etc., st is calculated as a function of
xt , i.e., st = T (xt).

With an abuse of notation, we put the “base measure function”
h(xt) inside the exponential part by setting st = [st ; log(h(xt))]
and η = [η; 1]. Hence, from now on, we write

f(xt) = exp (〈η, st〉 − A(η)). (10)

At each round t, we estimate the natural parameter η based on
the previously observed sample vectors, i.e., {x1 ,x2 , ...,xt−1},
and denote our estimate by η̂t . The density estimate at time t is
given by

f̂t(xt) = exp (〈η̂t , st〉 − A(η̂t)). (11)

In order to produce our estimate η̂t , we seek to minimize the
accumulated loss we would suffer following this η̂t during all
past rounds, i.e.,

η̂t = argmin
η

t−1∑

τ =1

l(η,xτ ), (12)

where

l(η,xτ ) = −〈η, sτ 〉 + A(η). (13)

This is a convex optimization problem. Finding the point in
which the gradient is zero, it can be seen that it suffices to
choose the η̂t such that

mη̂t
=

∑t−1
τ =1 sτ

t − 1
, (14)

Algorithm 1: Single Component Density Estimator.

1: Initialize m0
s = 0

2: Select η̂1 ∈ F arbitrarily
3: for t = 1 to T do
4: Observe xt ∈ Rm

5: Calculate st = T (xt)
6: Suffer the loss l(η̂t ,xt) according to (13)

7: Calculate mt
s = mt−1

s ×(t−1)+st

t
8: Calculate η̂t+1 s.t. mη̂t + 1 = mt

s

9: end for

where mη̂t
is the mean of st when xt is distributed with the

natural parameter η̂t .
Note that the memory demand of our single-component den-

sity estimator does not increase with time, as is suffices to keep
the sample mean of the “sufficient statistic vectors”, i.e., sτ ’s,
in memory. The complete pseudo code of our single component
density estimator is provided in Algorithm 1.

IV. MULTIMODAL DENSITY ESTIMATION

In this section, we extend our basic density estimation al-
gorithm to model the observation vectors using multi-modal
density functions of the form

p(xt) =
N∑

n=1

αnfn (xt), (15)

where each fn (·) is an exponential-family density function as in
(9) and (α1 , ..., αN ) is a probability simplex, i.e., ∀n : αn ≥ 0,
∑N

n=1 αn = 1.
In order to construct such model, we split the space of sam-

ple vectors into several subspaces and run an independent copy
of the Algorithm 1 in each subspace. Each one of these den-
sity estimators observe only the sample vectors, which fall into
their corresponding subspace. We adaptively combine the afore-
mentioned single component density estimators to produce our
multi-modal density function. In the following, in Section IV-A,
we first suppose that a set of subspaces is given and explain how
we combine the density estimators running over the subspaces.
Then, in Section IV-B, we explain how we construct our set of
subspaces using an incremental decision tree.

A. Mixture of Single Component Density Estimators

Let S = {S1 , ..., SN } be a given set of N subspaces of the
observation space. For instance, in Fig. 1(a) set of 11 subspaces
in R2 is shown. We run N independent copies of the Algorithm 1
in these subspaces and denote the estimated density function
corresponding to Si at round t by f̃t,i(·). We adaptively combine
f̃t,i(·), i = 1, ...N , in a mixture-of-experts setting using the well
known Exponentiated Gradient (EG) algorithm [38]. At each
round t, we declare our multi-modal density estimation as

p̃t(·) =
N∑

i=1

α̃t,i f̃t,i(·), (16)
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Fig. 1. An example of 11 subspaces of R2 . The square shapes represent the
whole R2 space and the gray regions show subspaces.

where α̃1,i’s are initialized to be 1/N for i = 1, ..., N . After
observing xt , we suffer the loss l(p̃t ,xt) = − log(p̃t(xt)) and
update the mixture coefficients as

α̃t+1,i = α̃t,i exp

(

θ
f̃t,i(xt)
p̃t(xt)

)

, (17)

where θ is the learning rate parameter. The following proposi-
tion shows that in a T rounds trial, we achieve a regret bound
of O(

√
T ) against the multi-modal density estimator with the

best α̃ variables (in the log-loss sense), i.e., the best convex
combination of our single component density functions.

Theorem 1: For a T round trial, let R be a bound such that
maxt,n{f̃t,n} ≤ R, for all t, n. Let p∗t (·) =

∑N
n=1 α∗

n f̃t,n (·) be
the optimal (in the accumulated log-loss sense) convex com-
bination of f̃t,i’s with fixed coefficients (α∗

1 , ..., α
∗
N ) selected

in hindsight. If the accumulated log-loss of p∗t (xt) is upper
bounded as

T∑

t=1

lP (p∗t (xt)) ≤ cT, (18)

we achieve a regret bound as

RP,T (p̃t(·), p∗t (·)) ≤
√

2cT ln N +
R2 ln N

2
. (19)

Proof: Denoting the relative entropy distance [39] between
the best probability simplex (α∗

1 , ..., α
∗
N ) and the initial point

(α̃1,1 , ..., α̃1,N ) by D, since α̃1,n = 1/N,∀n = 1, ..., N , we
have

D ≤ ln N − H((α∗
1 , ..., α

∗
N )), (20)

where H((α∗
1 , ..., α

∗
N )) is the entropy of the best probability

simplex. Since the entropy is always positive, we have D ≤
ln N . Using Exponentiated Gradient [38] algorithm with the
parameter

θ =
2
√

ln N

R
√

2cT + R2
√

ln N
, (21)

we achieve the regret bound in (19).

Remark 1: We emphasize that one can use any arbitrary den-
sity estimator in the subspaces and achieve the performance
of their best convex combination using the explained adaptive
combination. However, since the exponential family distribution
covers a wide set of parametric distributions and closely approx-
imates a wide range of non-parametric real life distributions, we
use the density estimator in Algorithm 1.

As shown in the theorem, no matter how the set of sub-
spaces S is constructed, our multi-modal density estimate in
(16) is competitive against the best convex combination of the
density functions defined over the subspaces in S. However,
the subspaces themselves play an important role in building a
proper model for arbitrary multi-modal distributions. For in-
stance, suppose that the true underlying model is a multi-modal
PDF composed of several components, which are far away from
each other. If we carefully construct subspaces, such that each
subspace contains only the samples generated from one of the
components (or these subspaces are included in S), then the
best convex combination of the subspaces will be a good model
for the true underlying PDF. This scenario is further explained
through an example in Section VI-A.

In the following subsection, we introduce a decision tree
approach [17] to construct a growing set of proper subspaces and
fit a model of the form (15) to the sample vectors. Using this tree,
we start with a model with N = 1 and increase N as we observe
more samples. Hence, while mitigating overfitting issues due to
the ln N bound in (19), our modeling power increases with
time.

B. Incremental Decision Tree

We use a decision tree to partition the space of sample vec-
tors into several subspaces. Each node of this tree corresponds
to a specific subspace of the observation space. The samples
inside each subspace are used to train a single component PDF.
These single component probability density functions are then
combined to achieve the performance of their best convex com-
bination.

As explained in Section IV-A, our adaptive combination of
single component density functions will be competitive against
their best convex combination, regardless of how we build the
subspaces. However, in order to closely model arbitrary multi-
modal density functions of the form (15), we seek to find sub-
spaces that contain only the samples from one of the compo-
nents. Clearly, this is not always straightforward (or may not be
even possible), specially if the centroids of the component den-
sities are close to each other. To this end, we use an incremental
decision tree [17], [19] which generates a set of subspaces so
that as we observe more samples, our tree adaptively grows and
produces more subspaces tuned to the underlying data. Hence,
using its carefully produced subspaces, we are able to generate
a multi-modal PDF that can closely model the normal data even
for complex multi-modal densities, which are hard to learn with
classical approaches. We next explain how we construct this
incremental tree. We emphasize that we use binary trees as an
example and our construction can be extended to multi branch
trees in a straightforward manner.
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Fig. 2. An example structure of the binary tree introduced in Section IV-B, where the observation space is R represented as squares here. The regions
corresponding to the nodes are colored in gray. Each node is represented by a binary index of the form (i, j), where i is the level of the node, and j is its order
among the nodes in level i.

We start building our binary tree with a single node cor-
responding to the whole space of the sample vectors. As an
example, consider step 1 in Fig. 2. We say that this node is the
1st node in level 0, and denote this node by a binary index of
(0, 1), where the first element is the node’s level and the sec-
ond element is the order of the node among its co-level nodes.
We grow the tree by splitting the subspace corresponding to
a specific node into two subspaces (corresponding to two new
nodes) at rounds t = βk for k = 1, 2, .... Hence, at each round t,
the tree will have �logβ t� nodes. We emphasize that, as shown
in Theorem 1, selecting the splitting times as the powers of β,
we achieve a regret bound of O(

√
T log log T ) against the best

convex combination of the single component PDFs (see (19)).
Moreover, this selection of splitting times leads to a logarith-
mic in time computational complexity. However, again, we note
that our algorithm is generic so that the splitting times can be
selected in any desired manner.

To build subspaces (or sets), we use hyperplanes to avoid
overfitting. In order to choose a proper splitting hyperplane,
we run a sequential 2-means algorithm [40] over all the nodes
as detailed in Algorithm 2. These 2-means algorithms are also
used to select the nodes to split as follows. At each splitting
time, we split the node that has the maximum ratio of “distance
between 2 centroids” to “2{level of the node}”, where “level of the
node” is the number of splits required to build the node’s cor-
responding subspace as shown in Fig. 2. Note that as this ratio
increases, it’s implied that the node does not include samples
from a single component PDF, which makes it a good choice to
split. This motivation is illustrated using a realistic example in
Section VI-A. We split the nodes using the hyperplane, which
is perpendicular to the line connecting the two centroids of the
2-means algorithm running over the node and splits this line in
half. The splitted node keeps a portion of its α̃ value for itself and
splits the remaining among its children. This portion, which is a

parameter of the algorithm is denoted by ξ. We emphasize that
using the described procedure, each node may be splitted sev-
eral times. Hence, if the splitting hyperplane is not proper due to
lack of observations, the problem can be fixed later by splitting
the node again with more accurate hyperplanes in the future
rounds. As an example, consider Fig. 2. At the last step, node
(2, 3) is splitted again with a slightly shifted splitting line. This
is illustrated in more detail using an example in Section VI-A.
The algorithm pseudo code is provided in Algorithm 2.

Remark 2: We use linear separation hyperplanes to avoid
overtraining while the modeling power is attained by using an
incremental tree. However, our method can be directly used with
different separation hyperplanes.

As detailed in Algorithm 2, at each round t, the tree nodes
declare their single component PDFs, i.e., f̃t,i(·), i = 1, ..., N .
We combine these density functions using (16) to produce our
multi-modal density estimate p̃t(·). Then, the new sample vector
xt is observed and we suffer our loss as (2). Subsequently, we
update the combination variables, i.e., α̃t,i , i = 1, ..., N , using
(17). The centroids of the 2-means algorithms running over
nodes are also updated as detailed in Algorithm 2. Finally, the
single component density estimates at the nodes are updated as
detailed in Algorithm 1. At the end of the round, if t = βk , we
update the tree structure and construct new nodes as explained
in Section IV-B.

In the following section, we explain our adaptive threshold-
ing scheme, which will be used on top of described multi-
modal density estimator to form our two-step anomaly detection
algorithm.

V. ANOMALY DETECTION USING ADAPTIVE THRESHOLDING

We construct an algorithm, which thresholds the estimated
density function p̂t(xt) to label the sample vectors. To this end,
we label the sample xt by comparing p̂t(xt) with a threshold τt
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Algorithm 2: IDT-based Multi-modal Density Estimator.
1: Select parameters β and ξ
2: Initialize N = 1
3: Initialize Σx1,L = Σx1,R = 0 (zero vector)
4: Initialize ξ1,L = ξ1,R = 1
5: Run Algorithm 1 over node 1.
6: for t = 1 to T do
7: Declare p̃t(·) as (16)
8: Observe xt

9: for n = 1 to N do
10: if xt belongs to the region assigned to node n then
11: Update f̃t,n using Algorithm 1.
12: if ‖Σxn , L

ξn , L
− xt‖ ≤ ‖Σxn , R

ξn , R
− xt‖ then

13: Σxn,L = Σxn,L + xt

14: ξn,L = ξn,L + 1
15: else
16: Σxn,R = Σxn,R + xt

17: ξn,R = ξn,R + 1
18: end if
19: end if
20: end for
21: Update α̃ variables as (17)
22: if t = βk then
23: Select the node n as explained in Section IV-B
24: Let L = Σxn,L/ξn,L , R = Σxn,R/ξn,R

25: Split the node using the hyperplane with normal
vector of a = D/‖D‖ and b = 〈a, (L + R)/2〉,
where D = L − R. (Hyperplane: 〈a, x〉 = b)

26: Run copies of Algorithm 1 over new nodes.
27: end if
28: end for

as

d̂t =

{
+1, p̂t(xt) < τt

−1, p̂t(xt) ≥ τt .
(22)

Suppose at some specific rounds t ∈ Tf , after we declared our
decision d̂t the true label dt is revealed. We seek to use this
information to minimize the total regret defined in (8). How-
ever, since we observe the incurred loss only at rounds t ∈ Tf ,
we restrict ourselves to these rounds. Moreover, since the loss
function used in (8) is based on the indicator function that is
not differentiable, we substitute the loss function defined in (6)
with the well known logistic loss function defined as

l̃(τt , p̂t(xt), dt) = Cdt
log(exp((p̂t(xt) − τt)dt) + 1). (23)

Our aim is to achieve the performance of the best constant τ in
a convex feasible set G. To this end, we define our regret as

R̃Tf
=

∑

t∈Tf

l̃(τt , p̂t(xt), dt) − min
τ ∈G

∑

t∈Tf

l̃(τ, p̂t(xt), dt), (24)

We use the Online Gradient Descent algorithm [41] to produce
our threshold level τt . To this end, we choose τ1 ∈ G arbitrarily.

Algorithm 3: IDT-based Anomaly Detector.
1: Select parameters C1 and C−1
2: Fix αt using (27) for t = 1, ..., T
3: Select τ1 ∈ G arbitrarily
4: for t = 1 to T do
5: Observe p̂t(xt)
6: Calculate d̂t using (22)
7: Observe dt

8: Suffer the loss l̃(η̂t ,xt) according to (23)

9: Calculate τt+1 = PG

(
τt + αt dt Cd t

1+exp((τt −p̂ t (xt ))dt )

)

10: end for

At each round t, after declaring our decision d̂t , we construct

τt+1 =

{
PG

(
τt − αt∇τ l̃(τt , p̂t(xt), dt)

)
, if dt is known

τt , otherwise,
(25)

where αt is the step size at time t and PG (·) is a projection
function defined as

PG (a) = argmin
b∈G

‖b − a‖. (26)

The complete algorithm is provided in Algorithm 3.
For the sake of notational simplicity, from now on, we assume

that dt is revealed at all time steps. We emphasize that since the
rounds with no feedback do not affect neither the threshold in
(25), nor the regret in (24), we can simply ignore them in our
analysis. The following theorem shows that using Algorithm 3,
we achieve a regret upper bound of O(log T ), against the best
fixed threshold level selected in hindsight.

Theorem 2: Using Algorithm 3 with step size

αt =
(1 + exp(DG ))2

tCmin exp(DG )
, (27)

our anomaly detection regret in (24) is upper bounded as

R̃T ≤ exp(DG )C2
max

2Cmin
(1 + log T ), (28)

where DG = maxa,b∈G ‖a − b‖ is the diameter of the feasible
set G including τt and p̂t(xt). Cmax and Cmin are the maximum
and minimum of {C1 , C−1}, respectively.

Proof: Considering the loss function in (23), we take the first
derivatives of l̃ as

∂l̃(τt , p̂t(xt), dt)
∂τt

=
−dtCdt

1 + exp((τt − p̂t(xt))dt)
, (29)

and its second derivative as

∂2 l̃(τt , p̂t(xt), dt)
∂τ 2

t

=
Cdt

exp((τt − p̂t(xt))dt)
(1 + exp((τt − p̂t(xt))dt))2 . (30)

The first derivative can be bounded as
∣
∣
∣
∂l̃(τt , p̂t(xt), dt)

∂τt

∣
∣
∣ ≤ Cmax

1 + exp(−DG )
. (31)
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Similarly, the second derivative is bounded as

∣
∣
∣
∂2 l̃(τt , p̂t(xt), dt)

∂τ 2
t

∣
∣
∣ ≥ Cmin exp(DG )

(1 + exp(DG ))2 . (32)

Using Online Gradient Descent [41], with step size given in (27)
we achieve the regret upper bound in (28).

VI. EXPERIMENTS

In this section, we demonstrate the performance of our al-
gorithm in different scenarios involving both real and synthetic
data. In the first experiment, we have created a synthetic sce-
nario to illustrate how our algorithm works. In this scenario,
we sequentially observe samples drawn from a 4-component
distribution, where the probability density function is a con-
vex combination of 4 multivariate Gaussian distributions. The
samples generated from one of the components are considered
anomalous. The objective is to detect these anomalous sam-
ples. In the second experiment, we have shown the superior
performance of our algorithm with respect to the state-of-the-
art methods on a synthetic dataset, where the underlying PDF
cannot be modeled as a multi-modal Gaussian distribution. The
third experiment shows the performance of the algorithms on a
real multi-class dataset. In this experiment, the objective is to
detect the samples belonging to one specific class, which are
considered anomalous.

We compare the density estimation performance of our algo-
rithm ITAN, against a set of state-of-the-art competition com-
posed of wGMM [42], wKDE [42], and ML algorithms. The
wGMM [43] is an algorithm which uses a sliding window of the
last log t normal samples to train a GMM using the well known
Expectation-Maximization (EM) [43] method. The length of
sliding window is set to log t in order to have a fair comparison
against our algorithm in the sense of computational complexity.
In favor of the wGMM algorithm, we provide to it the num-
ber of components that provides the best performance for that
algorithm. The wKDE is the well-known KDE [42] algorithm
that uses a sliding window of the last

√
t normal samples to

produce its estimate on the density function. The length of slid-
ing window is

√
t in favor of the wKDE algorithm to produce

competitive results. The kernel bandwidth parameters are cho-
sen based on Silverman’s rule [42]. Finally, ML algorithm is
the basic Maximum Likelihood algorithm which fits the best
single-component density function to the normal samples. We
use our algorithm ITAN with the parameters β = 2, ξ = 0.8 and
with sufficient statistics of Gaussian in all three experiments.
We emphasize that no optimization has been performed to tune
parameters β and ξ to the datasets.

In order to compare the anomaly detection performance of
the algorithms, we use the same thresholding scheme described
in Algorithm 3 for all algorithms. We use the ROC curve as
our performance metric. Given a pair of false negative and false
positive costs, denoted by C1 and C−1 , respectively, each al-
gorithm achieves a pair of True Positive Rate (TPR) and False
Positive Rate (FPR), which determines a single point on its cor-
responding ROC curve. In order to plot the ROC curves, we
have repeated the experiments 100 times, where C1 = 1 and

Fig. 3. Visualization of samples in one of the datasets used in Experiment
VI-A.

C2 is selected from the set of { i
100 |i = 0, 1, ..., 99}. The ROC

curves are plotted using the resulting 100 samples. The Area
Under Curve (AUC) of the algorithms are also calculated using
these samples as another performance metric.

A. Synthetic Multimodal Distribution

In the first experiment, we have created 10 datasets of length
1000 and compared the performance of the algorithms in both
density estimation and anomaly detection tasks. Each sample is
labeled as “normal” or “anomalous” with probabilities of 0.9 and
0.1, respectively. The normal samples are randomly generated
using the density function

fnormal(xt) =
1
3

(

N

([−1
1

]

,

[
0.2 0
0 0.2

])

+N

([
1
−1

]

,

[
0.14 0.2
0.2 0.4

])

+N

([
2
2

]

,

[
0.4 −0.2
−0.2 0.14

]))

, (33)

while the anomalous samples are generated using

fanomaly(xt) = N

([
1
1

]

,

[
0.1 0
0 0.1

])

. (34)

Fig. 3 shows the samples in one of the datasets used in this
experiment to provide a clear visualization.

In order to show how our algorithm learns, we illustrate how
the tree splits the observation space, how the density estimations
train their single component PDFs and how the combination of
single component PDFs models the normal data in the experi-
ment over one of the 10 datasets. Fig. 4 shows five growth steps
of the tree. In each subfigure, the observed samples are shown
using black cross signs. The centroids of the 2-means algorithm
running over the node that is going to split are shown using
two blue and red points. The thicker green line is the new split-
ting line, while the thiner green lines show previous splitting
lines. The splittings shown in this figure result in a tree structure
that is shown in Fig. 2. Fig. 5 shows how the single compo-
nent PDFs defined over nodes are combined to construct our
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Fig. 4. An example on how the tree learns the underlying distribution of the samples. The normal samples are from a synthetic dataset generated using (33).

Fig. 5. The true underlying PDF, the tree structure and the single component PDFs defined over nodes, and the final PDF learned by the algorithm at the end of
the experiment on one of the datasets of the first experiment described in Section VI-A.

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on January 18,2021 at 06:40:07 UTC from IEEE Xplore.  Restrictions apply. 



1002 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 4, FEBRUARY, 15 2019

TABLE I
“LOG-LOSS,” “AUC,” AND “RUNNING TIME” OF THE ALGORITHMS OVER THE

DATASETS DESCRIBED IN SECTION VI-A. THE AUC AND RUNNING TIME

VALUES ARE IN THE FORMAT OF “MEAN VALUE ± STANDARD DEVIATION

TABLE II
“LOG-LOSS,” “AUC,” AND “RUNNING TIME” OF THE ALGORITHMS OVER THE

DATASETS DESCRIBED IN SECTION VI-B. THE AUC AND RUNNING TIME

VALUES ARE IN THE FORMAT OF “MEAN VALUE ± STANDARD DEVIATION

multi-modal density function. In Fig. 5(a) the contour plot of
the normal data distribution function is shown. Fig. 5(c) shows
the structure of the tree at the end of the experiment, the con-
tour plots of the single component PDFs learned over the nodes,
and their coefficient in the convex combination which yields
the final multi-modal density function. The contour plot of this
final multi-modal PDF is shown in Fig. 5(b). As shown in these
figures, the three components of the underlying PDF are almost
captured by the three nodes generated in the second level of our
tree.

In order to compare the density estimation performance
of the algorithms, their averaged loss per round defined by
Loss(t) =

∑t
τ =1 lP (p̂τ (xτ ))/t, are shown in Fig. 7(a). The loss

of all algorithms on the rounds with anomalous observations are
considered as 0 in these plots. The anomaly performance of the
algorithms are compared in Fig. 7(d). This figure shows the
ROC curves of the algorithms averaged over 10 datasets. The
time-averaged log-loss performance, AUC results and running
time of the algorithms are provided in Table I. All results are ob-
tained using a Intel(R) Core(TM) i5-4570 CPU with 3.20 GHz
clock rate and 8 GB RAM.

As shown in Figs. 7(a), our algorithm achieves a significantly
superior performance for the density estimation task. This supe-
rior performance was expected because in the dataset used for
this experiment the components are far from each other. Hence,
our tree can generate proper subspaces, which contain only the
samples from one of the components of the underlying PDF, as
shown in Fig. 5. For the anomaly detection task, as shown in
Fig. 7(d), our algorithm and wGMM provide close performance,
where ITAN performs better in low FPRs and wGMM provides
superior performance in high FPRs. However, as shown in Ta-
ble I, we achieve this performance with a significantly lower
computational complexity. Comparing Fig. 7(a) and Fig. 7(d)
shows that while satisfactory log-loss performance is required
for successful anomaly detection, it is not sufficient in general.
For instance, while ML algorithm performs as well as wKDE and
wGMM in the log-loss sense, its anomaly detection performance
is much worse than the others. In fact, labeling the samples

Fig. 6. Visualization of samples in one of the datasets used in Experiment
VI-B.

exactly opposite of the suggestions of the ML algorithm provides
way better anomaly detection performance. This is because of
the weakness of the model assumed by the ML algorithm. This
weak performance of the ML algorithm was expected due to
the underlying PDF of the normal and anomalous data. It can
be also seen from Fig. 3. If we fit a single component Gaussian
PDF to the normal samples shown in blue, roughly speaking, the
anomalous samples shown in red will get the highest normality
score when evaluated using our PDF.

In the next experiment, we compare the algorithms in a sce-
nario, where the data cannot be modeled as a convex combina-
tion of Gaussian density functions.

B. Synthetic Arbitrary Distribution

In this experiment, we have created 10 datasets of length 1000.
In order to generate each sample, first its label is randomly de-
termined to be “normal” or “anomalous” with probabilities of
0.9 and 0.1, respectively. The normal samples are 2-dimensional
vectors xt = [xt,1 , xt,2 ]T generated using the following distri-
bution:

{
fnormal(xt,1) = U(−1, 1),
fnormal(xt,2) = U(sin (πxt,1), sin (πxt,1) + 0.2),

(35)

where U(a, b) is the uniform distribution between a and b. The
anomalous samples are generated using the following distribu-
tion:

{
fanormal(xt,1) = U(−1, 1),
fanormal(xt,2) = U(cos (πxt,1), cos (πxt,1) + 0.2).

(36)

Fig. 6 shows the samples in one of the datasets used in this
experiment to provide a clear visualization.

Fig. 7(b) shows the averaged accumulated loss of the algo-
rithms averaged over 10 data sets. As shown in the figure, our
algorithm outperforms the competitors for the density estima-
tion task. This superior performance is due to the growing in
time modeling power of out algorithm. The ROC curves of the
algorithms for the anomaly detection task are shown in Fig. 7(e).
This figure shows that our algorithm provides superior anomaly
detection performance as well. This superior performance is
due to the better approximation of the underlying PDF made

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on January 18,2021 at 06:40:07 UTC from IEEE Xplore.  Restrictions apply. 



GOKCESU et al.: SEQUENTIAL OUTLIER DETECTION BASED ON INCREMENTAL DECISION TREES 1003

Fig. 7. The averaged density estimation loss and ROC curves of the algorithms over three experiments.

by our algorithm. The averaged log-loss performance, AUC re-
sults and running time of the algorithms in this experiment are
summarized in Table II.

For brevity, tables for real experiments are excluded.

C. Real Multiclass Dataset

In this experiment, we use Vehicle Silhouettes [44] dataset.
This dataset contains 846 samples. Each sample includes a 18-
dimensional feature vector extracted from an image of a vehi-
cle. The labels are the vehicle class among 4 possible classes of
“Opel”, “Saab”, “Bus” and “Van”. Our objective in this experi-
ment is to detect the vehicles with “Van” labels as our anomalies.
Fig. 7(c), shows the density estimation loss of the opponents,
based on the rounds in which they have observed “normal”
samples. Fig. 7(f) shows the ROC curves of the algorithms.
As shown in the figures, our algorithm achieves a significantly
superior performance in both density estimation and anomaly
detection tasks over this dataset.

Fig. 7(c) shows that the performance of wGMM highly de-
pends on the stationarity of normal samples stream. The intrinsic
abrupt change of the underlying model at around round 250 has
caused a heavy degradation in its density estimation perfor-
mance. However, our algorithm shows a robust log-loss perfor-
mance even in the case of non-stationarity. Fig. 7(f) shows that
our algorithm achieves the best anomaly detection performance
among the competitors. Note that ML algorithm outperforms
both wGMM and wKDE algorithms in both density estimation
and anomaly detection tasks. This is because wGMM and wKDE
suffer from overfitting due to the high dimensionality of the sam-
ple vectors and short time horizon of the experiment. However,

due to the growing tree structure used in our algorithm, we
significantly outperform the ML algorithm and provide highly
superior and more robust performance compared to the all other
three algorithms.

D. Real Anomaly Detection Datasets

In this section, we will compete against more density estima-
tors. In the previous experiments we have drawn the ROC curve
using our thresholding scheme. This time, for variety to further
the examination of how well these density estimators work in
anomaly detection, we will draw the ROC curve by varying a
fixed threshold instead.

We have included three new real dataset called Wisconsin-
Breast Cancer Diagnostics dataset (WBC), Thyroid Disease
dataset (Thyroid) and Japanese Vowels dataset (Vowels) [45].

We have renamed one of the competitors and included three
new ones, denoted as “G-ROT”, “G-LCV”, “E-LSCV”, “E-
HSJM” in the plots. These competitors are based on non-
parametric density estimators. In the denotations, before the
hyphen, “G” refers to Gaussian kernel and “E” refers to the
Epanechnikov kernel, also called the optimal kernel [46]; after
the hyphen refers to the bandwidth selection strategies. “ROT”
is the Silverman’s rule of thumb method. “LCV” is the like-
lihood cross-validation method. “LSCV” is the least-squares
cross-validation method and “HSJM” is the method proposed
by Hall et al. in [47].

In these new experiments, we observe that only our algorithm
ITAN performs well in both log-loss and ROC plots for all three
datasets. This can be attributed to the fact that our algorithm
combines best of parametric and non-parametric approaches by
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Fig. 8. (a) Time-averaged cumulative log-loss for WBC dataset over time. (b) Time-averaged cumulative log-loss for thyroid dataset over time. (c) Time-averaged
cumulative log-loss for vowels dataset over time. (d) ROC plots for WBC dataset. (e) ROC plots for thyroid dataset. (f) ROC plots for vowels dataset.

creating coarser and finer estimators via an incremental tree
which hierarchically separates the sample space. Coarser esti-
mators towards the tree root, spanning relatively larger regions,
behave like component learning in parametric approaches, while
finer estimators towards the leaves, spanning relatively smaller
regions, behave more like kernels in non-parametric approaches.

As seen in Figs. 8(a), 8(d), 8(b) and 8(e), ITAN outperforms
the competition for both WBC and Thyroid datasets in terms
of both log-loss and area under ROC plot. The competition “G-
LCV” performs better on a small region of low FPR for WBC
dataset as seen in Fig. 8(d), however it performs the second
worst in log-loss for WBC dataset as seen in Fig. 8(a).

As seen in Fig. 8(c) and 8(f), for the Vowels dataset, our
algorithm ITAN is outperformed by “G-LCV” in log-loss plots
and by “G-ROT” in both the log-loss and area under ROC plot.
However, “G-LCV” performs very poorly in area under ROC
plot for Vowels dataset as in Fig. 8(f). Furthermore, “G-ROT”
have performed very poorly in log-loss and area under ROC plot
for WBC and Thyroid datasets as in Figs. 8(a), 8(b), and 8(d),
8(e), respectively.

Based on these new set of experiments, we have observed that
our algorithm ITAN performs reliably well while performance
of the competitors heavily depend on the dataset.

VII. CONCLUDING REMARKS

We studied the sequential outlier detection problem and intro-
duced a highly efficient algorithm to detect outliers or anoma-
lous samples in a series of observations. We use a two-stage
method, where we learn a PDF that best describes the normal
samples, and decide on the label of the new observations based

on their conformity to our model of normal samples. Our algo-
rithm uses an incremental decision tree to split the observation
space into subspaces whose number grow in time. A single
component PDF is trained using the samples inside each sub-
space. These PDFs are adaptively combined to form our multi-
modal density function. Using the aforementioned incremental
decision tree, while avoiding overtraining issues, our modeling
power increases as we observe more samples. We threshold our
density function to decide on the label of new observations using
an adaptive thresholding scheme. We prove performance upper
bounds for both density estimation and thresholding stages of
our algorithm. Due to our competitive algorithm framework,
we refrain from any statistical assumptions on the underlying
normal data and our performance bounds are guaranteed to hold
in an individual sequence manner. Through extensive set of ex-
periments involving synthetic and real datasets, we demonstrate
the significant performance gains of our algorithm compared to
the state-of-the-art methods.
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