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Harmonic transfer functions based
controllers for linear time-periodic
systems

Elvan Kuzucu Hidir1, Ismail Uyanik2 and Ömer Morgül3

Abstract
The analysis, identification and control of periodic systems has gained increasing interest during the last few decades due to the increased use of dyna-

mical systems that exhibit periodic motion. The vast majority of these studies focus on the analysis and control problem for a known state-space for-

mulation of the linear time-periodic (LTP) system. On the other hand, there are also some studies that focus on data-driven identification of LTP

systems with unknown state-space formulations. However, most of these methods provide numerical estimates for the harmonic transfer functions

(HTFs) of an LTP system that are extremely difficult to work with during controller design. The goal of this paper is to provide a simple controller

design methodology for unknown LTP systems by utilizing so-called HTFs estimates. To this end, we first build a mathematical basis of LTP controller

design for known LTP systems using the Nyquist diagrams and analytically derived HTFs. We propose a new methodology to design P-, PD- and PID-

type controllers for LTP systems using Nyquist diagrams and the eigenlocus of the HTFs. Having established the HTF-based controller design proce-

dure, we extend our methodology to unknown LTP systems by presenting a new sum-of-cosine signal-based data-driven system identification method.

We show that the proposed data-driven controller design method allows estimation of the HTFs and it provides simple tools for optimizing certain

time-domain performance metrics. We provide numerical examples for both known and unknown LTP system cases to illustrate the performance of

the proposed controller design methodology.

Keywords
linear time-periodic systems, harmonic transfer functions, Nyquist stability criterion, controller design

Introduction

The increased interest in periodic motion has also increased

the necessity to develop novel tools for the analysis, identifica-

tion and control of periodic systems (Farkas, 2013; Sandberg

et al., 2005). Some examples of such periodic systems are wind

turbines (Allen et al., 2011; Bottasso and Cacciola, 2015),

helicopter rotors (Hwang, 1997; Siddiqi, 2001), power systems

(Kwon et al., 2017; Mollerstedt and Bernhardsson, 2000a)

and some nonlinear systems that exhibit periodic behavior

around a stable limit cycle (Logan et al., 2016; Sracic and

Allen, 2011; Uyanik, 2017). Note that standard linear time-

invariant (LTI) analysis tools cannot capture the periodic

nature of the system dynamics for these examples. For

instance, the switching nature in power systems may result in

harmonic responses that should be considered carefully using

periodic system analysis methods to guarantee the stability of

such systems, see Möllerstedt (2000).
One of the most important tools on the analysis of peri-

odic systems was proposed by Wereley (1990), which models

the input–output relationship of linear time-periodic (LTP)

systems using a linear operator called harmonic transfer func-

tions (HTFs). HTFs are analogous to the input–output trans-

fer functions of LTI systems (Bittanti and Colaneri, 2000).

Different than a classical LTI transfer function, HTFs are

composed of multiple modulated LTI transfer functions

corresponding to each harmonic response of an LTP system.

Fortunately, identification of HTFs for LTP systems received

considerable attention from the scientific community and

there are some available methods for the estimation of HTFs

using input–output data of an LTP system (Hıdır, 2017;

Hwang, 1997; Siddiqi, 2001; Uyanik et al., 2016a). These

methods mostly use chirp type (or single-sinusoid) input sig-

nals for system identification. On the other hand, there are

also some methods that consider estimating a direct state-

space model for LTP systems using subspace identification

techniques (Goos and Pintelon, 2016; Uyanik et al., 2017,

2016b; Verhaegen and Yu, 1995).
The stability analysis of LTP systems is also not as mature

as in the case of LTI systems. However, Floquet theory has
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contributed a lot to the stability analysis of periodic systems
by proposing a change of coordinate transformation, where
one can obtain a time-invariant state matrix (Richards, 1983).
We note that in a more abstract setting the equivalence of an
LTP system to an LTI system through Floquet transforma-

tion is valid under certain assumptions on the time scale,
which trivially holds for continuous and discrete time systems.
For more information on this subject, see e.g. DaCunha and
Davis (2011) and the references therein. In addition, stability
analysis can also be achieved using the Lyapunov theory
(Owens et al., 2004) or Hill determinant methodology
(Richards, 1983). However, one common disadvantage of
these techniques is that they do not address the closed-loop
stability problem of LTP systems. In the case of LTI systems,
the Nyquist stability criterion is a very powerful technique to
investigate closed-loop stability based on the eigenlocus of the
system for a family of closed-loop gain parameters. Hall and
Wereley (1990) showed that a similar analysis can be applied
to LTP systems when they are lifted to an equivalent LTI sys-
tem by using the principle of harmonic balance. However, this
has only been shown for systems when the state-space
matrices are available. Hence, it still remains unclear whether
a similar analysis would hold for unknown LTP systems,
whose HTFs can be estimated using data-driven system iden-
tification techniques.

The control problem of periodic systems has also received
consideration from the control theory community (Bittanti
et al., 1973). One of the most successful control strategy
regarding the LTP systems is the use of linear quadratic regu-
lator (LQR) controllers, which can provide periodic feedback
gain to guarantee stability and robustness (Anderson and
Moore, 2007; Athans, 1971). LQR controllers are especially
favorable for the control of active vibrations in LTP systems
such as wind turbines, helicopter robots and turbo machinery
(Arcara et al., 1997; Jakobsen et al., 2013). However, one
main assumption behind the use of LQR controllers is the
availability of a state-space representation by using which one
can develop state observers. Similar ideas have been devel-

oped by using static feedback gain controllers via Nyquist
plots (Wereley, 1990) and some other power network system
controllers (Bellinaso et al., 2011; Mollerstedt and
Bernhardsson, 2000b; Scapini et al., 2012) when the state-
space representation of the LTP system is given a priori.
Despite the availability of some state-space identification
methods for LTP systems (Uyanik et al., 2017; Verhaegen
and Yu, 1995), the control problem based on estimated state-
space models is still an open issue to the best of authors’
knowledge. On the other hand, it is also very challenging to
design controllers based on estimated HTFs, because an LTP
system can include possibly infinite number of HTFs to accu-
rately represent its input–output characteristics.

In this paper, we aim to perform stability analysis and
controller design for LTP systems with known and unknown
state-space formulations. As mentioned above, stability of a
known LTP system can be simply checked by utilizing
Floquet theory to examine the eigenvalues of the fundamental
monodromy matrix. Similarly, one can use Lyapunov theory
to investigate the stability of a known LTP system. However,
both of these methods are highly challenging and it is even
impossible to find an analytic representation of the state

transition matrix in certain cases. One disadvantage of these
methods is that they need to be repeated for each value of a
feedback gain. In contrast to these techniques, Nyquist dia-
grams can provide a better analysis of the stability by using
the eigenlocus of HTFs to examine the stability for a range of

feedback gain values. Hence, we will first focus on how these
techniques can be utilized for LTP systems in terms of HTFs
to evaluate the closed-loop stability of periodic systems.

The closed-loop stability analysis of an LTP system with
respect to certain feedback controllers becomes more challen-
ging when the state-space formulation of the system is
unknown. A second contribution of this work is to provide a
data-driven system identification method to estimate HTFs of
an unknown open-loop stable LTP system. Here, our goal is
to construct the necessary HTF matrices to utilize the Nyquist
stability criterion for the closed-loop system for a family of
feedback controllers. To this end, we propose a sum-of-
cosines input design-based system identification strategy,
where we estimate the HTFs of the unknown LTP system
using the fundamental principles from the frequency response
functions of LTP systems. The proposed method provides
considerable advantages when compared with single-cosine-
based (Hwang, 1997) and chirp-input-based (Siddiqi, 2001;
Uyanik et al., 2015) methods in terms of number of tests
required and the estimation accuracy, respectively.

Once we have an accurate evaluation of the stability, we
can design controllers both to ensure stability as well as to
increase system performance of both the known and unknown
LTP systems. Note that most of the available controller
design methods for LTP systems exclusively focus on LQR
controllers (Arcara et al., 1997; Jakobsen et al., 2013;
Mckillip, 1985). There are two main concerns for using LQR-
type controllers in this study. First, we want to focus on
unknown LTP systems, where the state-space formulation is
not available. Second, we seek to increase some time-domain
system performance metrics such as the gain margin (GM)
and phase margin (PM), which might not be possible to
achieve by using only a feedback gain-type controller.

To summarize, our main contributions in this paper are as
follows. First, we analyze the stability of known LTP systems
by utilizing the Nyquist stability criterion based on HTFs.
Then, we design different type of controllers, such as P, PD
and PID, to stabilize the LTP system and enhance its perfor-
mance. To investigate the stability for a range of feedback
gain, Nyquist diagrams provide better analysis via eigenlocus
of HTFs. The key contribution at this point is that we sepa-
rate the Kp parameter of a controller (such as the PD case) as
a feedback gain and evaluate the stability for a range of Kp

parameter in a single Nyquist stability test. Hence, if we seek
to optimize the system performance for a PD-type controller,
which normally requires a two-dimensional optimization
problem due to unknown Kp and Kd , we only need to perform
a one-dimensional optimization, because the Nyquist test
provides the stability results with respect to Kp. The second
contribution of this paper is the controller design procedure
for unknown LTP systems. To this end, we first present a
new sum-of-cosines-based system identification method for
LTP system, which drastically reduces the number of required
experiments. We also provide a systematic controller design
methodology to utilize these estimated HTFs for designing
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controllers for the unknown LTP system. We also provide a

method for optimizing system performance such as the GM,

PM and settling time by optimizing control parameters for

the unknown LTP system.
This paper is outlined as follows. We first formulate our

problem definition including some preliminary background

introduction regarding the LTP systems. Then, we explain the

concept of HTFs including the analytical derivation when the

state-space structure is known and the data-driven estimation

for an unknown stable LTP system. Then, we detail how to

investigate the stability of a known LTP system using the

Nyquist criterion. We also explain how to design controllers

based on the HTFs for known and unknown LTP systems.

We provide numerical examples to illustrate the applicability

of our methodology for both known and unknown LTP sys-

tem examples. Finally, we provide some concluding remarks.

Problem definition

This paper focuses on the analysis and control of LTP sys-

tems, most of which can be represented in the form

_x(t)=A(t)x(t)+B(t)u(t)
y(t)=C(t)x(t)+D(t)u(t)

ð1Þ

where A(t) 2 R
n 3 n, B(t) 2 R

n 3 m, C(t) 2 R
p 3 n and

D(t) 2 R
p 3 m are all T periodic, i.e. A(t+NT)=A(t) for any

integer value of N. Here, T . 0 is called the fundamental

period of the system, which is the minimum common period

for all state matrices of (1). Similarly, the fundamental fre-

quency (pumping frequency) of the LTP system can be

defined as v0 = 2p=T . In addition, x(t) 2 R
n represents the

state vector, u(t) 2 R
m represents the input and y(t) 2 R

p rep-

resents the output.

Considering the definition of the LTP system that we

described above, this paper aims to attack two fundamental

problems associated with the stability analysis and control of

these systems.

Problem 1: Given the state-space system matrices A(t), B(t),

C(t) and D(t) for an LTP system of the form (1), (how) can we

design controllers for such LTP systems both to ensure stabi-

lity and to increase system performance by utilizing concepts

from the Nyquist stability criterion? h

As a remedy to this problem, in the first part of the paper,

we focus on lifting an LTP system to an equivalent (higher-

dimensional) LTI system using the principle of harmonic bal-

ance. The key idea here originates from the frequency

response characteristics of the LTP systems. When a complex

exponential input signal is applied to an LTP system, the out-

put includes complex exponentials both in the input fre-

quency as well as in the harmonics of the periodic (pumping)

frequency of the system. Wereley (1990) developed the con-

cept of HTFs to represent each of these harmonic responses

with a distinct transfer function. From this perspective, the

HTFs allow the representation of an LTP system as the

superposition of multiple modulated LTI systems. Based on

this fact, we use HTFs as a frequency domain lifting method

for LTP systems to find LTI equivalents, such that we can

utilize LTI stability analysis and control techniques for the

LTP systems as well.

Problem 2: Given an open-loop stable LTP system with
unknown state-space matrices, (how) can we design perfor-

mance increasing controllers ensuring that the closed-loop
system is also stable?

As a solution to this problem, we propose a data-driven
system identification approach to first estimate the HTFs of

the unknown LTP system and then apply the similar stability

analysis and control procedure from the solution of Problem
1. One challenge here is that the available LTI system identifi-

cation methods in the literature cannot be used directly for

the estimation of HTFs for an LTP system. Hence, we utilize
a new data-driven system identification method based on

sum-of-cosines input design methodology to estimate the

HTFs of an LTP system using frequency response data. Once
we have the estimates for the HTFs, the rest of the problem

will be equivalent to intermediate steps of Problem 1, because
we will use estimated HTFs instead of those that are derived

using state-space formulation.

HTFs

The concept of HTFs was first developed by Wereley (1990)

to represent the frequency response characteristics of LTP
systems. Wereley (1990) defined the concept of exponentially

modulated periodic (EMP) signals as a signal space for the

input and output data of the LTP systems. This section first
shows how one can derive the HTFs of an LTP systems given

the time-periodic state-space formulation. This will also serve
as a frequency-domain lifting method by using which we can

obtain higher-dimensional LTI equivalents for the original

LTP system. Then, the second part of this section proposes a
data-driven system identification method for the estimation

of HTFs without having a priori information about the state-

space formulation of the original unknown LTP system.

Derivation of HTFs using the known state-space
formulation

The objective of this section is to present the basic derivations

for HTFs (see Wereley and Hall, 1990). To start with, we first
give a mathematical representation of the EMP signals as

u(t)=
X
n2Z

unesnt ð2Þ

as a common signal space for input–output data of the LTP

systems, where sn = s+ jnv0, 8n 2 Z and s 2 C. Different

than regular complex exponential signals, EMP signals
include another exponential term that creates the modulation

of input signals with the integer multiples of pumping fre-

quency of the system.
One fundamental property of using EMP signals for LTP

systems is that both the state and output vectors can be repre-

sented as EMP signals at steady state (Wereley, 1990). Hence,

we can write the state vector (and, hence, its derivative) as
given below
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x(t)=
P‘

n=�‘

xnesnt, _x(t)=
P‘

n=�‘

snxnesnt ð3Þ

Similarly, the output signal, y(t) can also be represented as

y(t)=
X‘

n=�‘

ynesnt ð4Þ

Different than input, output and state vectors, the system
matrices are regular time-periodic signal matrices and, hence,
they can be simply represented using complex Fourier series
expansions as

A(t)=
X‘

n=�‘

Ane jnv0t, B(t)=
X‘

n=�‘

Bne jnv0t ð5Þ

C(t)=
X‘

n=�‘

Cne jnv0t, D(t)=
X‘

n=�‘

Dne jnv0t ð6Þ

The derivations of HTFs start by plugging in these expan-
sions into the state-space LTP system form given in (1). We
start by expanding the state evaluation equation of (1) as

P‘
n=�‘

snxnesnt =
P‘

n,m=�‘

An�mxmesnt +
P‘

n,m=�‘

Bn�mumesnt

ð7Þ

Similarly, plugging in the expansions into the output equation
of (1) yields the equation

P‘
n=�‘

ynesnt =
P‘

n,m=�‘

Cn�mxmesnt +
P‘

n,m=�‘

Dn�mumesnt ð8Þ

Simplification and reorganization of the terms in (7) and (8)
yields

0=
P‘

n=�‘

snxn �
P‘

m=�‘

An�mxm �
P‘

m=�‘

Bn�mum

� �
esnt

0=
P‘

n=�‘

yn �
P‘

m=�‘

Cn�mxm �
P‘

m=�‘

Dn�mum

� �
esnt

ð9Þ

One of the very special properties of (9) is that the expo-
nential terms outside the brackets constitute basis vectors in
L2½0,T � space. By using this property on (9), we obtain the
following:

snxn =
P‘

m=�‘

An�mxm �
P‘

m=�‘

Bn�mum

yn =
P‘

m=�‘

Cn�mxm �
P‘

m=�‘

Dn�mum

ð10Þ

8n 2 Z and it is called the principle of harmonic balance.
Note that (10) defines infinitely many equations for the

representation of frequency response characteristics of LTP
systems. For the sake of obtaining a more intuitional repre-

sentation, these equations can be combined in a single equa-
tion using doubly infinite (semi-)Toeplitz matrices. To
accomplish this, we first define the doubly infinite input, out-
put and state vectors as

U(s)= ½. . . , uT
�1(s), uT0 (s), u

T
1 (s), . . . �T ð11Þ

Y(s)= ½. . . , yT�1(s), y
T
0 (s), yT1 (s), . . . �T ð12Þ

X(s)= ½. . . , xT�1(s), x
T
0 (s), x

T
1 (s), . . . �T ð13Þ

where un(s), yn(s) and xn(s) correspond to the nth harmonic

component of u(t), y(t) and x(t), respectively, and the super-

script T denotes the transpose. Using these new definitions

for input, output and state signals, the system of equations in

(10) can be written as a single doubly infinite matrix equation

as

sX=(A�N )X+BU
Y= CX+DU ð14Þ

Here the T-periodic state matrix, A(t), is represented as a dou-

bly infinite (semi-)Toeplitz matrix in terms of its complex

Fourier series coefficients as

A=

. .
. ..

. ..
. ..

. ..
.

. . . A0 A�1 A�2 A�3 . . .

. . . A1 A0 A�1 A�2 . . .

. . . A2 A1 A0 A�1 . . .

. . . A3 A2 A1 A0 . . .

..

. ..
. ..

. ..
. . .

.

2
666666664

3
777777775
: ð15Þ

Similarly, B, C and D are obtained using the complex Fourier

series coefficients of B(t), C(t) and D(t), respectively. In addi-

tion to these, another doubly infinite (semi-)Toeplitz matrix

N is constructed to include the frequency modulation terms

regarding to EMP signals as

N =

. .
. ..

. ..
. ..

.

. . . �jv0I 0 0 . . .

. . . 0 0 0 . . .

. . . 0 0 jv0I . . .

..

. ..
. ..

. . .
.

2
6666664

3
7777775

ð16Þ

where I is the identity matrix with dimension of the state

matrix A(t).
One last step remaining in our analysis is to find a direct

relation between the input and output signals using (14). This

relationship is called as the HTFs, H(s), of the underlying

LTP system and can be defined as

Y(s)=H(s)U(s) ð17Þ

where

H(s)= C½sI � (A�N )��1B+D ð18Þ

One important thing here is to note that the HTFs are also in

a doubly infinite matrix form as

4 Transactions of the Institute of Measurement and Control 00(0)



H(s)=

. .
. ..

. ..
. ..

.

. . . H0(s� jv0) H�1(s) H�2(s+ jv0) . . .

. . . H1(s� jv0) H0(s) H�1(s+ jv0) . . .

. . . H2(s� jv0) H1(s) H0(s+ jv0) . . .

..

. ..
. ..

. . .
.

2
6666664

3
7777775
ð19Þ

Here, the transfer function H0(s) defines the relationship

between the input in the fundamental frequency to the output

in the same frequency. Similarly, the other transfer functions

define the relationship between different harmonic input–

output pairs. One problem with the use of HTFs is their dou-

bly infinite matrix structure. To overcome this issue, we trun-

cate the HTFs after a certain number of harmonics for

numerical computations.

Data-driven identification of HTFs

The previous section shows how the HTFs for an LTP system

can be derived when the state-space matrices of the system

are available. Different than the previous section, this section

aims to estimate the HTFs using input–output data without

having a priori knowledge of the state-space system matrices.

In this section, we propose a data-driven system identification

method for the estimation of HTFs using input–output data

of an LTP system.

System identification with single-cosine excitations. In this sec-
tion, we explain how HTFs can be estimated using the funda-

mental principles of LTP frequency response characteristics.

Let the pumping frequency of an LTP system be v0. Given

an input signal u(t)= cos (vf t), the LTP system generates

sinusoidal signals both at the input frequency, vf , as well as

at the harmonics of the pumping frequency, v0. Truncating

the number of harmonics observed in the output, the input–

output relationship of an LTP system can be written as

u(t)= cos (vf t) ð20Þ

y(t)=
XM

n=�M

An cos ((vf + nv0)t+fn) ð21Þ

Here, M is the number of HTFs (after truncation), An and fn

are the gain and phase changes corresponding to input at vf

for the nth HTF.
Considering the fundamental principles of the frequency

response characteristics of the LTP systems, one can estimate

these HTFs by observing the gain and phase between the

input–output data of the LTP systems. Hence, HTFs can be

computed as

Ĥ7n(vf )=
U�(vf )Y (vf 7nv0)

U�(vf )U (vf )
ð22Þ

where U (v) and Y (v) represent Fourier transforms of u(t) and

y(t), respectively.

System identification with sum-of-cosine input signal. Although
the identification via single-cosine experiments is very basic

and accurate in the sense that it is based directly on the funda-

mental principles of LTP frequency response characteristics,

it requires many experiments to identify HTFs over a wide

range of frequency bands. As a remedy to this problem, some

researchers use frequency sweeping functions (chirp signals)

to trigger all desired frequency bands in a single experiment

(Siddiqi, 2001). However, chirp inputs are not preferred for

LTP system identification for the following reasons, which

might contaminate estimated frequency response functions.

� When a cosine input at a specific frequency, vf , is

given to an LTP system, it actually triggers both vf

and �vf . Hence, both of these frequencies will yield

harmonics of the pumping frequency v0 in the output.

Therefore, the integer multiples of the pumping fre-

quency should be avoided in the input, because the

harmonics of the positive and negative sides will over-

lap and it will not be possible to discriminate between

the effects of individual inputs without applying more

specially designed input signals at the same frequency.

One basic way to avoid these frequencies in a chirp

signal is to divide the frequency band into sub-bands

to exclude those frequencies; however, this will also

increase the number of experiments required for sys-

tem identification. In addition, it is not easy to guar-

antee that the designed chirp signal will avoid the

specified frequency without using a high-order spe-

cially designed filters.
� Chirp signals yield frequency leakage during system

identification, because they cover a continuous fre-

quency range. Such frequency leakage problems

decrease the accuracy of the estimations (Hwang,

1997).
� The system identification algorithms become much

more complex than the single-cosine methods when

chirp signals are used as the inputs.

As an alternative to chirp signals, we propose the use of

sum-of-cosines signals, which also reduce the number of

experiments required for system identification drastically and

also eliminate the major disadvantages listed above for chirp

signals. However, the classical sum-of-cosines strategy that is

used for LTI systems cannot be applied directly to LTP sys-

tems, because one needs to consider the harmonics of an input

signal while designing the sum-of-cosines input. The key idea

here is that when we look at the frequency spectrum of the

input–output signals after having the discrete Fourier trans-

form, thespectrum is divided into small bins based on the

sampling frequency and the signal length, which we call the

frequency resolution, fr. Hence, we first guarantee that input

signal frequency is an integer multiple of fr to eliminate fre-

quency leakage, which was one of the major disadvantages of

using chirp signals. In addition, because we now have full

control over the individual frequencies we can select, we

exclude the frequency points that are integer multiples of the

pumping frequency of the system. Hence, the frequency spec-

tra will be divided into small frequency bands of the pumping

Hidir et al. 5



frequency. The key problem here is that once one chooses a

frequency point on any frequency band, it actually triggers

outputs in the same frequency point of all frequency bands

owing to the harmonics that are multiples of the pumping fre-

quency appearing in the output. Hence, we need to design a

clever frequency scheduling strategy, where we can define a

mathematical formulation for choosing the correct frequency

values while designing our sum-of-cosines input signal. Before

going into the details of this formulation, we first define some

notation that will be used for our derivations in Table 1.
Based on the definitions given in Table 1, we first divide

the desired frequency range for system identification into fre-

quency bands of f0. Hence, the number of frequency bands

required for system identification can be found by dividing

the maximum frequency range fmax to the pumping frequency

of the system f0. For the sake of clarity, the proposed fre-

quency scheduling procedure is illustrated in Figure 1. In

Figure 1, the sum-of-cosine input signal can only contain one

of the frequencies that are of the same colour. The reason

behind this selection procedure is to avoid any possible over-

lap between the harmonics of the input frequencies. In the

case of such an overlap, the outputs of the corresponding

input signals will coincide and basic empirical transfer func-

tion estimation methods would not work. Therefore, to avoid

this issue, the input frequencies of these signals should not be

in the same column that are illustrated with same colour in

Figure 1. In addition, in Figure 1, there is a new red box in

different column with the frequencies f = 0:21. The first slid-

ing frequency process is completed and the new sliding fre-

quency for the input frequencies of sum-of-cosine input

signals is started. This process is continued until the first half

of the first band ends. Based on this principle, a sum-of-

cosine input signal design formula is developed for the first

and second parts of the frequency bands in

u(t)=
XNfb

l= 1

XNbt�1

k = 0

cos (2p(fr +(l � 1)3 (fp + fdr)+Nfbfdrk)t)

u(t)=
XNfb

l= 1

XNbt�1

k = 0

cos 2p(fr +(l � 1)3 (fp + fdr)+Nfbfdrk +
f0

2
)t

� �

ð23Þ

Stability analysis and control of known/
unknown LTP systems

In this section, we aim to investigate the stability characteris-

tics of LTP systems and to design stabilizing controllers that

also increase system performance metrics. In standard LTI

systems, the above goal can be achieved by a Nyquist stability

test as a function of a feedback gain. Our goal here is to adapt

this methodology for LTP systems, because LTP systems can

be lifted to LTI equivalents, where they are represented with

multiple modulated LTI systems. This idea necessitates the

utilization of a Nyquist stability test in terms of HTFs of an

LTP system. In addition to stability analysis, we also seek to

Table 1. Notation related to the sum-of-cosines input design

f0 ¼D Fundamental frequency of LTP system.

fr ¼D Frequency resolution in frequency domain.

fdr ¼D Desired frequency resolution in input signal.

fmax ¼D Maximum value of frequency range of input signal.

Nst ¼D Number of frequencies contained in a test.

Nfb ¼D Number of bands.

Nbt ¼D Number of tests that can be performed in a band.

Definitions

Nst = f0
2fdr

Nfb = fmax

f0
Nbt = Nst

Nfb

Figure 1. Locations of the frequencies included in Sum of Cosine input signal.
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utilize the Nyquist plots of HTFs to design closed-loop con-

trollers for the LTP system.
In this respect, we first show how one can construct the

Nyquist plots for LTP systems via computing the eigenlocus

of analytically derived HTFs. We then use these Nyquist plots

to assess the stability characteristics of the known LTP sys-

tem. One important point to note here is that Nyquist plots

are obtained via the eigenlocus of the HTFs, which one can

also estimate using data-driven techniques even without need-

ing the state-space formulation of the original LTP system.

To this end, we present how one can estimate the HTFs for

an open-loop stable unknown LTP system and utilize these

HTFs for the construction of Nyquist plots towards assessing

the closed-loop stability of the overall system. After having a

comprehensive understanding of the stability for both known/

unknown LTP systems, we show how one can design P-, PD-

and PID-type controllers to increase closed-loop system per-

formance based on Nyquist diagrams.

Stability analysis of known LTP Systems via
analytically derived HTFs

Stability analysis of LTP systems can be achieved via differ-

ent methodologies such as Floquet theory (Richards, 1983),

Lyapunov theory (Owens et al., 2004) or a Hill determinant

technique. However, when there is a feedback gain, these

techniques can only evaluate the stability of the closed-loop

systems for only a specific value of gain. However+ , evalu-

ating the stability of an LTP system for a range of feedback

gains using a single stability test and choosing the optimal

feedback gain that enhances system performance would make

an important contribution to the controller design problem of

LTP systems. Motivated by this, we focus on techniques such

as Nyquist stability analysis that provide stability evaluation

for a range of feedback gains. Note that for the system given

in Figure 2, where H(s) represents an LTI transfer function

with p unstable poles, the closed-loop system is stable if and

only if the Nyquist plot of H(s) encircles the point �1=k

exactly p times counterclockwise.
In the literature, the classical Nyquist stability criterion is

first developed for single-input single-output (SISO) systems

(Richards, 1983). Then, this notion is extended to the multi-

input multi-output (MIMO) systems in various ways

(Barmanj and Katzenelson, 1974; MacFarlane and

Postlethwaite, 1977). In addition, MIMO Nyquist stability

criterion which depends on eigenlocus of transfer function

matrices is developed by (Desoer and Wang, 1980). Note that

LTP systems can also be represented as MIMO LTI systems

when they are lifted with HTFs (Mollerstedt and
Bernhardsson, 2000a). Hence, the Nyquist stability criterion
for MIMO LTI systems can also be utilized to assess the sta-

bility of an LTP system. Thus, one can decide on the stability
of the LTP system with respect to a range of feedback gains
by using the Nyquist diagrams.

In this section, we explain how to apply the Nyquist stabi-
lity criterion to evaluate the stability of a closed-loop LTP
system illustrated in Figure 2. In an LTI system, closed-loop
stability analysis with feedback gain k can be examined by
plotting a Nyquist contour of the transfer function H0(jv) for
a frequency range �‘\v\‘ and counting encirclements of
the point �1=k. In principle, we can utilize the same idea for
LTP systems, because they can always be represented with
their MIMO LTI equivalents. However, owing to the possibly
infinite number of harmonics that can be observed in an LTP
system, the direct application of this idea might not be possi-
ble. Fortunately, this problem received considerable attention
from the control theory community and we can adapt the
Nyquist stability test to LTP systems by utilizing Theorem 1.

Theorem 1 (Hall and Wereley, 1990). Assume that there is a

linear, periodic input output relation from r to y shown in

Figure 2. Denote the eigenvalues of the doubly infinite Toeplitz

for matrix H(s) given in (19) as fli(s)g‘
i= 1, for s varying

through the dotted contour in Figure 3 which is denoted as the

fundamental strip �N f . These eigenvalues generate a number of

closed curves in the complex plane that is called the eigenlocus

of the HTFs. The feedback system illustrated in Figure 2 is sta-

ble from input, r, to the output, y, if and only if the total num-

ber of counterclockwise encirclements of the point �1=k of

these closed curves is equal to the number of right half-plane

poles of open loop HTF, H(s) in the fundamental strip. h

In Wereley (1990), the eigenlocus of HTFs is parametrized
by s 2 �Nf and Hill determinant is expressed as jI + kH(s)j
regarding eigenvalues of HTFs as

jI + kH(s)j=
Y‘

n=�‘

(1+ kln(s)): ð24Þ

Here, the product formulation is infinite owing to the dou-
bly infinite transfer function matrix H(s) in (19). The number
of harmonics here should be truncated for computational

purposes, so we separate Equation (24) into the two parts as
follows:

jI + kH(s)j=
YM

n=�M

(1+ kln(s))
Y

n62½�M ,M �
(1+ kln(s)) ð25Þ

The first M harmonics of the HTFs can be treated as sig-
nificant parts and others should not be considered as neces-
sary because they do not contribute to the encirclement of the
point � 1=k. This is because the eigenvalues whose indices
are greater than M remain inside the unit disc, Dc. Thus, the
number of eigenvalues of the first M HTFs given in (25) can
be counted as encirclements. As a result, the eigenlocus of
truncated HTFs are obtained by computing eigenvalues of
these HTFs through the Nyquist diagram, �Nf , illustrated in
Figure 3 and plotted to the complex plane. The closed-loop
stability of the system is provided if and only if the point

Figure 2. An illustration of the LTP system in closed loop with a

feedback gain.
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�1=k is encircled in counterclockwise direction np times,

which is equal to the number of right half-plane poles of trun-

cated HTFs in the fundamental strip.

Poles of LTP systems in an s plane. The poles of the LTP sys-
tem can be found by checking the points where the HTFs are

not analytical. As can be seen from (19), poles of an LTP sys-

tem can be described based on the poles of its corresponding

LTI transfer functions, Hk(s). Hence, in a complex s plane, the

solution of the following eigenvalue problem yields the poles

of the LTP system:

sI � (A�N )f gV= 0 ð26Þ

The solution to above equation gives an infinite number

of poles. To obtain the right half-plane poles of the LTP sys-

tems considered in Theorem 1, we look at the poles that are

placed in the fundamental strip of HTFs. Thus, we obtain the

Nyquist diagram of known LTP systems by computing eigen-

values of analytically derived HTFs after truncation and plot-

ting them on the complex plane.

Stability analysis of unknown LTP systems via
estimated HTFs

In this section, we explain how we can utilize these data-

driven techniques to generate the Nyquist diagram for the

unknown LTP system. To this end, we first utilize the data-

driven techniques explained in previous sections to estimate

the HTFs of the open-loop LTP system. Then, we compute

the eigenlocus of estimated HTFs by using standard numeri-

cal methods. One key difference here is the structure of the

HTFs matrices between the analytically derived and esti-

mated ones. Estimated HTFs are actually a subset of the ana-

lytically derived HTFs, which were used for obtaining the

Nyquist diagrams.

The relation between estimated HTFs (Ĥ7n(vf )) with the

data-driven approach and the required HTF structure to
obtain Nyquist diagram is shown in Figure 4. The Nyquist

diagram is obtained via the eigenlocus of the doubly infinite
matrix structure, Ĥ(s), illustrated in Figure 4. To obtain the

eigenlocus of Ĥ(s), first we truncate it to the order of N and
compute the eigenvalues of these matrices for s= jv and v

varying through �v0=2\v\v0=2. However, our estimated
HTFs with data-driven approach, (Ĥ7n(vf )), will preserve the

structure illustrated in the dashed rectangle in Figure 4.
Here, our aim is to obtain the structure of Ĥ(s) with esti-

mated HTFs, (Ĥ7n(vf )). If we look at the structure of HTF

matrix shown in Figure 4, which forms the basis of Nyquist
diagram, Ĥ(s), includes modulated LTI transfer functions

from Ĥ6n(� v0=2� Nv0) to the Ĥ6n(v0=2+Nv0). On the
other hand, when we perform system identification for s= jv

and v varying through �v0=2\v\v0=2, estimated HTFs
consist of LTI transfer functions from Ĥ6n(� v0=2) to the

Ĥ6n(v0=2). Therefore, to make estimated HTFs suitable for
plotting a Nyquist diagram as it will have same structure as

Ĥ(s), we perform system identification methods for s= jv

and v varying through ( �v0

2
� Nv0) to ( v0

2
+Nv0). Here, to

obtain an appropriate value for the truncation number of N,
we increase it until the result of estimated HTFs does not

change, and the additional eigenvalues ended up in the origin
(Möllerstedt, 2000). Then, by placing estimated HTFs in this
frequency range in their corresponding locations in the HTF

structure, we can successfully plot the Nyquist diagram of
unknown LTP systems with estimated HTFs by using only

input and output data.

Algorithm for controller design based on HTFs

In this section, our goal is to analyze the stability of LTP sys-
tems by closing the feedback loop with P-, PD- and PID-type

controllers by using the Nyquist stability criterion. One key
problem we will be focusing on in this section is to formulate

the stability problem as a function of a feedback gain Kp and
determine the range of Kp that stabilizes the closed-loop

Figure 3. The contour for the Nyquist criterion with HTFs in an s

plane that is denoted by �Nf . The notation ‘‘3" corresponds to the poles

of H(s).

Figure 4. The relation between estimated HTFs and required HTF to

plot the Nyquist diagram.
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system with a single Nyquist stability test. We note that the

methodology presented here could easily be extended to other
types of controllers, e.g. lead/lag controllers, etc.

HTF representation of controllers. Despite the fact that we are
dealing with time-invariant P, PD and PID controllers, we
need to have their HTF-like representations for the sake of

our HTF-based stability analysis. To accomplish this, we uti-
lize the same approach used for lifting the time-periodic sys-

tem matrices to obtain Toeplitz form structures of the
controllers. However, one needs to keep in mind that the

lifted controllers do not have any spectral interactions and
their HTFs representations can be obtained as follows

(Bellinaso et al., 2011; Scapini et al., 2012):

HC(s)=

. .
. ..

. ..
. ..

.

. . . C(s� jv0) 0 0 . . .

. . . 0 C(s) 0 . . .

. . . 0 0 C(s+ jv0) . . .

..

. ..
. ..

. . .
.

2
6666664

3
7777775
ð27Þ

where C(s) is the transfer function of the LTI form of the con-
troller. To apply Nyquist stability analysis, we have to exam-

ine the eigenvalues of H(s)=HC(s)HP(s).

PD-type controller. The main objective of this section is to
illustrate adoption of the structure of a PD controller into the

closed-loop LTP feedback system, which is shown in Figure
5. The PD controller structure is given as

Cpd(s) =Kp +Kds=Kp (1+as)|fflfflfflfflffl{zfflfflfflfflffl}
C(s)

ð28Þ

where a=Kd=Kp: By using LTI C(s), the HTF form of the

controller is obtained as illustrated in (27). Here, the reason
behind extracting a Kp parameter from the HTF form of the

controller is to design the Kp parameter as feedback gain as is
shown in Figure 5 and, thus, for different values of a, by

applying the Nyquist stability test to compute the range of
Kp, which stabilizes the closed-loop system. The important

point is that by designing the Kp parameter of the PD control-
ler as a feedback gain and applying the Nyquist stability test

provides stability analysis along the line a=Kd=Kp with one
test instead of requiring a stability analysis for each single

point in the (Kp,Kd) plane. Hence, a two-dimensional stability

problem that depends on the points in the (Kp,Kd) plane can

be reduced successfully to the one-dimensional stability analy-

sis problem investigating stability along the line of a=Kd=Kp

(see Remark 1).

Remark 1. Note that the structure of the PID controller is

given in the following:

Cpid(s)=Kp +
Ki

s
+Kds=Kp (1+

a1

s
+a2s)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

C(s)

ð29Þ

where a1 =Ki=Kp and a2 =Kd=Kp. Similarly, designing the

Kp parameter as a feedback gain, the Nyquist stability test can

be applied for different values of (a1,a2) and the range found

for Kp, Ki and Kd parameters, which stabilize the LTP system.

Here, the three-dimensional stability analysis problem can be

reduced successfully to the two-dimensional problem. h

Examples and simulation results

Stability analysis and control of known unstable LTP
system via theoretical HTFs

In this section, our goal is to investigate the stability analysis

of known LTP systems and design P, PD and PID controllers

accordingly by using the Nyquist stability criterion.
According to the stability analysis results of LTP systems

including the controller, we will obtain the GM and PM of

the closed-loop system from the Nyquist diagram with respect

to the specific parameters of controllers. As a result of these

measurements, we choose some controllers that enhance the
performance of the system and we perform various simula-

tion studies with chosen controllers to show the performance

of the controllers in the time domain.
To implement these procedures, we use a well-known lossy

Mathieu example whose system matrices are given in the

following:

A(t)=
0 1

�(5� b cosv0t) �2z

� �

B=
0

1

� �
, C = 1 0½ �

ð30Þ

The parameters of this system are chosen as v0 = 2, b= 8

and z= 0:2. The poles of the open-loop system in s plane are
obtained as s1 = 0:3931 and s2 = � 0:7931 by computing

eigenvalues of A�N in the fundamental strip. This system

has one pole at the right half-plane.

P-type controller. The lossy Mathieu equation in (30) is
unstable with the parameters given above because it includes

one pole at right half-plane. To make the system stable, the
P-type controller can be designed by using the Nyquist criter-

ion. According to Theorem 1, because the system has one

pole at the right half-plane, the closed-loop system will be sta-

ble if and only if the �1=k point is encircled only once in
counterclockwise direction. To calculate Kp values of the P

controller that stabilizes the system, HTF of the LTP system,Figure 5. Closed-loop feedback system with controller.
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Hp is computed as in Equation (18) and the Nyquist diagram

of Hp is obtained as in Figure 6. In the Nyquist diagram of

the lossy Mathieu equation shown in Figure 6, the negative

real axis is encircled counterclockwise once for the values of

�1=k 2 ½�0:58, 0�. Hence, the range of Kp values that stabilize

the closed-loop system is computed as ½1:71,‘).
According to the values of Kp that stabilizes the system,

GM and PM graphics of the closed-loop system are obtained

in Figure 7 (A) and (B), respectively, from the Nyquist dia-

gram by using classical methods. If we investigate GM and

PM of the closed-loop system with respect to Kp, as GM

changes between (0:01, 1�, PM varies between (28, 138�.
However, the PM of the closed-loop system does not vary

much and as can be seen from Figure 7 (B) the PM is not suf-

ficiently high. Therefore, to enhance the performance and sta-

bilize the system, alternative controllers can be designed and

the performances of these controllers on the system can be

investigated.

PD-type controller. The main objective of this section is to
design a PD controller that stabilizes the unstable LTP system

and enhances the performance of the system in terms of PM

and GM. In this respect, we first analyze the stability of LTP

unstable Mathieu example given in the previous section that

includes the PD controller with respect to the (Kp,Kd) con-

troller parameters via the Nyquist stability criterion. We then

obtain GM and PM graphs of the closed-loop system accord-

ing to the (Kp,Kd) parameters that stabilize the unstable sys-

tem by using the Nyquist diagram. For different values of

a=Kd=Kp between ½0:01, 100� changing with 0.01 steps, we

apply the Nyquist stability test and we obtain the range of Kp

that stabilizes the closed-loop system. By using Kd =aKp, we

also calculate the range of Kd . According to this, we obtain

Figure 8, which includes stable and unstable regions of the

closed-loop system with respect to the (Kp,Kd) parameters of

the PD controller via the Nyquist stability criterion.
In Figure 8, blue (vertically dashed) lines illustrate the

region where the closed-loop system is stable for correspond-

ing (Kp,Kd) values and red (horizontally dashed) lines include

the controller parameters which leave the system as unstable.

A significant point is that the closed-loop stability analysis of

a LTP system with a controller is achieved along the line

a=Kd=Kp, where a 2 ½0:01, 100� by designing he Kp para-

meter as a feedback gain instead of checking the stability for

a single point in the (Kp,Kd) plane. After finding the range of

(Kp,Kd), which makes the closed-loop system stable, for the

purpose of investigating the performance of the system, we

compute the GM and PM of the system with a controller by

using the Nyquist diagram. Thus, we aim to test a PD con-

troller having (Kp,Kd) parameters that may provide a possible

performance improvement for the system given by the

damped Mathieu equation. In this respect, the three-

dimensional graphs of GM and PM of the closed-loop system

with respect to the value of (Kp,Kd) parameters that stabilize

the system are given in Figures 9 and 10, respectively. In these

Figure 6. Nyquist diagram of an open-loop HTF, Hp.

p

Figure 7. (A) GM and (B) PM graphs with respect to the Kp values that

stabilize the system.

Figure 8. Stable and unstable regions of the closed-loop system with

respect to the value of Kp and Kd. Red (horizontally dashed) lines

illustrate unstable regions and blue (vertically dashed) lines include stable

regions of the closed-loop system.
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figures, the x-axis corresponds to Kp values and the y-axis

belongs to Kd values of the PD controller. The GM and PM

values are shown via a colour map. The red regions illustrated

in Figures 9 and 10 belong to the unstable regions, which are

also shown in Figure 8.
If we examine Figure 9, the GM has high values in the

locations where Kp and Kd are close to the origin. However,

PM increases in the regions where Kd also increases.

According to this, it can be concluded that there is a trade-off

between GM and PM.
When GM and PM are taken into consideration, as GM

and PM will be between ½0:25, 0:6� and ½408, 908�, respectively,
we design two different PD controllers that yield PM and GM

close to the boundaries of these ranges. The first controller is

given as CPD1
= 2:3+ 0:75s where the resulting GM and PM

are found as 0.55 and 438, respectively. The second controller

is given as CPD2
= 1:6+ 3s where the resulting GM and PM

are found as 0.27 and 878, respectively.

Time domain simulations with CPD1
and CPD2

. In this section,
we evaluate the performance of the PD controllers that are

designed above in terms of percentage overshoot (PO), rising

time (Tr) and settling time (Ts) criterion. In these simulations,

the input is equal to zero and corresponding output is the first
state variable, x. We observe that when Kd increases, PM

increases and time domain simulations show that the percent-

age overshoot and settling time also decrease, as shown in

Table 2.

Controller design of unknown LTP system via
estimated HTFs with data-driven approach

In this section, we illustrate the design of a controller to

enhance the performance of an unknown Mathieu example
by using the Nyquist diagram of estimated HTFs, which is

obtained with sum-of-cosine input signal and its correspond-

ing data. The system matrices of a stable lossy Mathieu equa-

tion are given by (30) with a= 4, v0 = 2p, z = 0:2. The
poles of the open-loop system in s plane are obtained as

s1 = � 0:2� 2:2271i and s2 = � 0:2+ 2:2271i by computing

eigenvalues of A�N in fundamental strip. Note that this

system is stable as it has no pole at the right half-plane.
As this system is stable, we can estimate the HTF by using

data-driven system identification methods. For this example,

we first estimate the HTFs of the system. Here, as an input,

we apply a sum-of-cosine input signal that includes different

frequency cosine signals to the Matlab Simulink model of the
Mathieu example and we compute the corresponding output.

We estimate HTFs from these inputs–outputs by using the

data-driven system identification procedure detailed in the

previous sections. Then, we modify it to obtain the HTF
structure illustrated in Figure 4, which is required to obtain

the Nyquist diagram. The important point here is that we do

not have any information about the state space model of the

example, we only have the exciting input signal and their cor-
responding outputs. Here, the Nyquist diagram of the

unknown Mathieu example that is obtained from the eigenlo-

cus of estimated HTFs by using input output data is shown

in Figure 11.
When we investigate the Nyquist diagram of the unknown

Mathieu example, there are two real-axis crossing points at

�0:3062 and �0:1569. According to Theorem 1, to satisfy sta-

bility, the �1=k point should not be encircled. Regarding this,

stabilizing feedback gain values are obtained as follows:

0\k\3:33 and 6:37\k\‘ ð31Þ

Figure 9. GM of the closed-loop system with respect to Kp and Kd

values. The red region illustrates the unstable regions.

Figure 10. PM of the closed-loop system with respect to Kp and Kd

values. The red region illustrates the unstable regions.

Table 2. Performance of CPD1
and CPD2

in time domain simulations

Controller (PD) GM PM (8) PO (%) Tr(sn) Ts(sn)

2:3+ 0:75s 0.55 43 29 1.5 9.33

1:6+ 3s 0.25 87 2 1.7 2.3
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The open-loop output response of the stable Mathieu

equation is illustrated in Figure 12.
If we investigate the time domain performance of the

open-loop stable Mathieu equation, whereas percentage over-

shoot is obtained as PO= 108% and settling time is acquired

as Ts = 24 s. To enhance the performance of this system, we

also design PD controllers by using the procedure explained

in (28) by using the corresponding Nyquist diagram. To

investigate the robustness and performance of the system, we

obtain the GM and PM of the closed-loop system via the

Nyquist diagram that is plotted according to the estimated

HTF with respect to parameters of the PD controller. The

three-dimensional graphs of GM and PM of the closed-loop

system with respect to the value of (Kp,Kd) parameters are

illustrated in Figures 13 and 14, respectively.

According to the obtained results, the GM and PM are

found in the ranges ½0:6, � 1] and ½408, 908�, respectively.

Then, we design two different PD controllers that yield PM

and GM close to the boundaries of these ranges. Accordingly,

the first controller is given as CPD1
= 5+ 3s where the result-

ing GM and PM are found as 80 and 758, respectively. The

second controller is given as CPD2
= 2:4+ 5s where the result-

ing GM and PM are found as . 106 and 898, respectively.
Here, we evaluate the performance of these PD controllers

which are designed above in terms of percentage overshoot

(PO), rising time (Tr) and settling time (Ts) criterion. Time

domain simulation results of CPD1
and CPD2

which are

designed regarding GM and PM graphs are illustrated in

Figure 15 -A and Figure 15 -B respectively. Corresponding

results are also given in Table 3. If we compare the closed

Figure 11. Nyquist diagram of the stable Mathieu equation that is

obtained from the eigenlocus of estimated HTFs.

Figure 12. Output response of the open-loop stable Mathieu equation

in the time domain with input zero.

Figure 13. GM of the closed-loop stable Mathieu system with respect

to Kp and Kd values.

Figure 14. PM of the closed-loop stable Mathieu system with respect

to Kp and Kd values.
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loop time domain simulation results of stable Mathieu exam-

ple including PD controller with time domain simulation of
open loop stable Mathieu example without controller, we can

conclude that, stability robustness and performance of the
system are enhanced regarding percentage overshoot and set-

tling time criterion. As a result, by using only input and out-
put data of unknown Mathieu example, we estimate the

HTF. Then, by applying Nyquist test via estimated HTF, we
design two different PD controllers which can achieve suc-

cessful results in enhancing the robustness and improving the
performance of stable system.

Conclusion

In this paper, we have investigated the problem of stabiliza-

tion and control of LTP systems. We utilized HTFs and the
Nyquist stability criterion as basic tools in our analysis. We

first considered the stabilization of a known LTP system by
using these tools. Then we considered an unknown but stable

LTP system from an input/output point of view. We proposed
a method to estimate the HTFs of such a system. Then based

on these estimations, we have proposed a novel controller
design method to improve some performance measures of

associated closed-loop system.
The main contributions of this work are as follows. First

of all, we investigated the stability of known LTP systems by

utilizing the Nyquist stability criterion that is based on HTFs
and we designed P, PD and PID controllers that stabilize and

enhance the performance of unstable LTP systems by using

Nyquist diagrams. While designing PD or PID controllers, we

extract the Kp parameter from the HTF form of controller

and design this parameter as feedback gain. The important

point here is that designing the Kp parameter of the PD con-

troller as a feedback gain allow us to apply the Nyquist stabi-

lity test along the line a=Kd=Kp. By doing so, a single test

for each a value provides stability analysis along the associ-

ated Kd=Kp line. Hence, two-dimensional stability problem

that depends on the points in the (Kp,Kd) plane can be

reduced successfully to the one-dimensional stability analysis

problem as investigating stability along the line of a=Kd=Kp.

Hence, we analyzed the stability of an known LTP system

and design P, PD and PID controllers to provide stability and

increase the performance of the system.
The second contribution of this work is related to the con-

trol of unknown LTP systems. For the unknown LTP sys-

tems whose state space model may not be available, we seek

to design a controller by using similar methodology for the

known systems. To achieve that, we first estimated the HTFs

of unknown LTP systems by using a data-driven system iden-

tification procedure. In this regard, we designed a sum-of-

cosine input signal including different frequencies whose cor-

responding output components do not coincide. By using

input–output relation, we obtained the estimated HTFs of

the unknown system. Then, we designed P and PD controllers

to enhance the performance and increase the robustness by

using Nyquist diagram of estimated HTFs. As a final work,

we illustrated the performances of designed controllers in

time domain simulations for both known and unknown LTP

systems.
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