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Abstract—This paper proposes a new methodology for subs-6
pace-based state-space identification for linear time-periodic (LTP)7
systems. Since LTP systems can be lifted to equivalent linear time-8
invariant (LTI) systems, we first lift input–output data from an un-9
known LTP system as if they were collected from an equivalent LTI10
system. Then, we use frequency-domain subspace identification11
methods to find the LTI system estimate. Subsequently, we pro-

Q1

12
pose a novel method to obtain a time-periodic realization for the13
estimated lifted LTI system by exploiting the specific parametric14
structure of Fourier series coefficients of the frequency-domain15
lifting method. Our method can be used to obtain state-space16
estimates for unknown LTP systems as well as to obtain Floquet17
transforms for known LTP systems.18

Index Terms—Linear time-periodic (LTP) systems, subspace19
methods, system identification, time-varying systems.20

I. INTRODUCTION21

In this paper, we introduce a frequency-domain subspace-based22

state-space identification method for linear time-periodic (LTP) sys-23

tems. Many problems in engineering and biology, such as wind tur-24

bines [1], rotor bearing systems [2], aircraft models [3], locomotion25

[4], [5], and power distribution networks [6], require the consideration26

of time-periodic dynamics. As such, the analysis, identification, and27

control of LTP systems have received considerable attention [7]–[9].28

A pioneering work by Wereley [7] introduced a frequency-domain29

analysis method for LTP systems. In this work, time-periodic sys-30

tem matrices in the LTP state-space formulation were expanded into31
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their Fourier series coefficients. The principle of harmonic balance was 32

used to obtain the concept of harmonic transfer functions (HTFs). 33

Wereley’s initial formulation for continuous-time LTP systems as 34

infinite-dimensional operators was subsequently adapted to discrete 35

time, which conveniently leads to finite-dimensional HTFs [10]. 36

Most existing literature on LTP system identification [2], [11], in- 37

cluding our own prior work on identification of legged locomotion 38

[12]–[14], focus on using input–output HTF representations rather than 39

state space. In addition, there are also contributions to state-space-based 40

system identification for LTP systems [15], [16], analogous to subspace 41

identification techniques commonly used for linear time-invariant (LTI) 42

systems [17]. For instance, Verhaegen and Yu developed a subspace 43

identification method for estimating successive state-transition matri- 44

ces from time-domain data for linear time-varying (LTV) (including a 45

special derivation for LTP) systems [15]. 46

Critically, LTI subspace identification methods readily support both 47

time-domain [17] and frequency-domain [18] data, whereas most sub- 48

space methods for LTP systems have focused on time-domain data 49

[15], [16], and those state-space methods that do rely on frequency- 50

domain data [19], [20] require that scheduling functions be known a 51

priori. To the best of our knowledge, there are no general methods for 52

frequency-domain subspace identification of LTP systems. 53

Here, we present a general subspace identification methodology for 54

estimating state-space models from frequency-domain data for LTP 55

systems. Our proposed methodology is based on the fact that LTP sys- 56

tems can be represented with equivalent LTI systems via lifting [10]. 57

Based on this observation, we first lift the input–output data of an un- 58

known LTP system as if they were collected from an equivalent LTI 59

system, following previous methods [10]. We, then, estimate a discrete- 60

time LTI state-space equivalent for the original LTP system by using 61

an existing LTI frequency-domain subspace identification method [18]. 62

A key property of the frequency-domain lifting method we utilize in 63

this paper is the specific parametric structure of Fourier series coef- 64

ficients associated with the original LTP system [10]. However, this 65

structure is not, in general, preserved during the subspace identifica- 66

tion process due to an inevitably unknown similarity transformation. 67

In order to solve this issue, we identify a similarity transformation for 68

the lifted LTI system that recovers the Fourier structure, although not 69

the specific coefficients, because there is a subset of similarity trans- 70

formations that preserves the Fourier structure but not its parameters. 71

Our identification–realization algorithm also allows the realization of 72

Floquet-transformed state-space models for LTP systems with arbitrary 73

time-periodic system matrices (see Remark 3), whose analytic deriva- 74

tions are often very challenging and may even be impossible [21]. 75

This paper is outlined as follows. We introduce the problem for- 76

mulation in Section II. Then, in Section III, we show the existence 77

of an equivalent discrete-time LTI system for a given LTP system via 78
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lifting and estimate its system matrices from frequency-domain data. In79

Section IV, we present a novel LTP realization algorithm for the esti-80

mated lifted LTI system. We provide an illustrative numerical example81

and a comparative analysis in Section V. Finally, we give our conclud-82

ing remarks in Section VI.83

II. PROBLEM FORMULATION84

In this paper, we consider single-input/single-output stable LTP sys-85

tems represented by86

˙̄x(t) = Ā(t)x̄(t) + B̄(t)u(t)

y(t) = C̄(t)x̄(t) + D̄(t)u(t) (1)

where u(t) ∈ R, y(t) ∈ R, and x̄(t) ∈ Rn p represent the input, output,87

and state vectors, respectively. The system matrices are periodic with88

a fixed common period T > 0 (see Section III-B for the computation89

of T ), with Ā(t) = Ā(t + nT ), B̄(t) = B̄(t + nT ), C̄(t) = C̄(t +90

nT ), and D̄(t) = D̄(t + nT ) ∀n ∈ Z.91

We formulate the identification problem as follows.92

Given93
� A single pair of input–output signals u(t) and y(t) in the form94

of a sum-of-cosines signal containing different frequency com-95

ponents that provide an LTP frequency response.96

Estimate97
� The four LTP system matrices that will be equivalent to (1) up98

to a similarity transform.99

The remaining sections detail our solution methodology (see100

Appendix A for the procedure). Obviously, LTI subspace identification101

methods would result in oversimplified LTI systems due to ignorance102

of harmonic responses. On the other hand, one can use LTV subspace103

identification methods in the time domain to solve a discrete-time ver-104

sion of this problem [15], [16]. Our solution method is unique in that105

it solves the problem in the frequency domain and results in intuitive106

state-space estimates in Floquet-transformed forms.107

III. EXISTENCE AND ESTIMATION OF A DISCRETE-TIME LIFTED LTI108

SYSTEM REPRESENTATION109

This section first introduces a system of transformations that needs110

to be used to prove the existence of a real-valued discrete-time LTI111

representation of (1). We, then, show how we estimate such an LTI112

system using input–output data of the original LTP system. Nat-113

urally, the original state-space form of (1) will not be available.114

Therefore, the transformations described in this section are not directly115

applied on the state-space form of (1); rather, the transformations map116

the input–output data into a form that makes it as if they were collected117

from the transformed (LTI) system.118

Based on Floquet theory, there exists a transformation that converts119

(1) into the following form:120

ẋ(t) = Ax(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)
(2)

where A, B(t), C(t), and D(t) can be obtained as real-valued (by121

doubling the system period, if necessary), as long as the system matrices122

in (1) are real-valued [21]. Note that deriving a Floquet transform is123

challenging even when the state-space is known. On the other hand,124

the Floquet transform is a similarity transformation and does not affect125

the input–output data. Hence, we assume, without loss of generality,126

that the LTP system to be identified has the state-space form given in127

(2). Note that Floquet-transformed forms are easier to work with since128

they have a time-invariant state matrix. Thus, we seek to find an LTP 129

state-space estimate for (1) in a Floquet form such as (2). 130

A. Discretization via Bilinear (Tustin) Transform 131

In principle, we could directly lift (2) to a continuous-time LTI equiv- 132

alent and utilize continuous-time LTI subspace identification methods. 133

However, the Hankel (data) matrices used for continuous-time LTI sys- 134

tems may become ill-conditioned with increasing system dimension 135

[22]. Therefore, we find it more convenient to work with discrete- 136

time LTI systems. To this end, we transform (2) into an approximate 137

discrete-time LTI system. This has two benefits. First, lifting discrete- 138

time LTP systems yields finite-dimensional LTI representations, un- 139

like infinite-dimensional ones in continuous-time models. Second, and 140

more importantly, it generalizes the applicability of our solutions to 141

both continuous-time and discrete-time LTP systems. To accomplish 142

this, we utilize the time-varying bilinear (Tustin) transformation to ob- 143

tain a discrete-time LTP state-space representation of (2). Note that (2) 144

is a special case of LTV systems with time-periodic system matrices 145

(and a time-invariant state matrix). Therefore, our special case reduces 146

the transformations in [23] to the following: 147

xd [k + 1] = Adxd [k] + Bd [k]ud [k]

yd [k] = Cd [k]xd [k] + Dd [k]ud [k]
(3)

where xd [k] represents discrete-time states and 148

Ad = ((2/Ts )I + A)((2/Ts )I − A)−1

Bd [k] =
(
2/

√
Ts

)
((2/Ts )I − A)−1B(kTs )

Cd [k] =
(
2/

√
Ts

)
C(kTs )((2/Ts )I − A)−1

Dd [k] = D(kTs ) + C(kTs )((2/Ts )I − A)−1B(kTs ). (4)

Here, Ts is the sampling period yielding sampled input–output data 149

as ud [k] := u(kTs ) and yd [k] := y(kTs ). Derivations for (3) can 150

be found in [24]. Note that (3) is an LTP system, where Bd [k] = 151

Bd [k + nN ] ∀n ∈ Z (also valid for Cd [k] and Dd [k]) and N is the 152

discrete-time system period defined as N := T/Ts . For the sake of 153

simplicity, N is assumed to be even. The sampling period Ts deter- 154

mines N and, hence, the dimension of the lifted LTI equivalent. Using 155

a higher sampling frequency allows capturing of high-frequency dy- 156

namics but also increases the complexity by increasing the lifted LTI 157

system dimension. In addition, bilinear (Tustin) transformation causes 158

frequency warping (distortions) at higher frequencies. To avoid this 159

problem, we utilize the experimental design procedure in [25] by first 160

prewarping the input frequencies that will be used while designing the 161

sum-of-cosines input. 162

B. Lifting to a Time-Invariant Reformulation 163

One of the key properties of LTP systems is that a complex exponen- 164

tial input with frequency ω produces an output not only at the input fre- 165

quency (which is the case for LTI systems) but also at different harmon- 166

ics ω ± kωp , k ∈ Z separated by the system frequency ωp = 2π/T , 167

with possibly different magnitudes and phases in the steady state (this 168

also allows estimating T from input–output data). In this context, the 169

concept of HTFs was developed to represent each harmonic response 170

of the LTP system with a distinct transfer function Gk (w + kωp ) for 171

k ∈ Z [7]. This approach represents an LTP system as the superposi- 172

tion of multiple modulated LTI systems. As such, HTFs can be used as 173

a lifting technique to transform an LTP system into an LTI equivalent 174

[10]. This motivates our use of HTFs as the frequency-domain lifting 175
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method to obtain an LTI equivalent state-space model for (3). Among176

possible alternatives (see [10] for a survey), we use frequency lifting in177

state space due to the convenient structure of Fourier series coefficients178

for periodic system matrices in lifted (semi)Toeplitz matrices.179

The lifting method starts by analyzing the input–output spectra of180

the LTP systems by referring the concept of exponentially modulated181

periodic (EMP) signals. An input signal ud [k] is a discrete-time EMP182

signal if there is a nonzero complex number z such that183

ud [k + pN ] = ud [k]zpN (5)

over one period for p ∈ Z and can be written as follows:184

ud [k] := zk

N /2−1∑
n =−N /2

Un ej 2π n k
N (6)

where Un are called modulated Fourier series coefficients for EMP185

signals and are defined as follows:186

Un :=
1
N

N −1∑
k=0

(
ud [k]z−k

)
e−j 2π n k

N . (7)

It has been shown that when an LTP system is given an EMP input, the187

state and output signals are also EMP in the steady state [7]. Therefore,188

similar to (6), we obtain the state vector as follows:189

xd [k] = zk
∑

n∈IN

Xn ej 2π n k
N (8)

and a similar expression for yd [k], where IN defines the interval190

IN = [−N/2, N/2 − 1]. In addition, the discrete-time Fourier syn-191

thesis equation for Bd [k] is computed as follows:192

Bd [k] =
∑

n∈IN

Bn ej 2π n k
N . (9)

Similar expressions are also valid for Cd [k] and Dd [k]. Substituting193

Fourier synthesis equations into (3) yields194

0 = zk
∑

n∈IN

⎛
⎝zXn ej 2π n

N − AdXn −
∑

m ∈IN

Bn−m Um

⎞
⎠ ej 2π n k

N .

(10)

The exponentials {ej 2π n k
N |n ∈ IN } constitute an orthonormal basis.195

Thus, by the principle of harmonic balance, each term enclosed by the196

brackets must be zero to ensure that the overall sum is zero. Therefore,197

for all n ∈ IN , we have198

zej 2π n
N Xn = AdXn +

∑
m ∈IN

Bn−m Um . (11)

Note that the above equation is valid since Fourier coefficients Bm are199

also periodic with N . For the output, we also have200

Yn =
∑

m ∈IN

Cn−m Xm +
∑

m ∈IN

Dn−m Um (12)

for all n ∈ IN . Similar to continuous-time systems, (11) and (12) can201

be represented with (semi) Toeplitz matrices to obtain an LTI state-202

space model. To this end, we first define the N-block state Xd , input203

Ud , and output Yd vectors, whose ith block for i = 1, 2, . . . , N is given204

by205

Xd (i) = Xi−1− N
2

, Ud (i) = Ui−1− N
2

, Yd (i) = Yi−1− N
2

. (13)

In addition, the time-invariant reformulation of the unlifted N -periodic 206

output matrix can be obtained as follows: 207

Cd :=

⎡
⎢⎢⎢⎢⎢⎢⎣

C0 C−1 . . . C− N
2

C N
2 −1 C N

2 −2 . . . C1

C1 C0 . . . C− N
2 +1 C− N

2
C N

2 −1 . . . C2

...
...

...
...

...
...

C−1 C−2 . . . C N
2 −1 C N

2 −2 C N
2 −3 . . . C0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(14)

Similarly, (semi)Toeplitz forms forBd andDd matrices can be obtained 208

in terms of their Fourier series coefficients {Bn |n ∈ IN } and {Dn |n ∈ 209

IN }, respectively. Note that, since Ad is time-invariant, its Toeplitz 210

form Ad includes only Ad in its diagonals as follows: 211

Ad := blkdiag{Ad} | Ad ∈ RN n p ×N n p (15)

where blkdiag represents a block-diagonal matrix and Ad is repeated 212

blockwise on diagonals. Finally, we define a modulation matrix Nd to 213

capture the exponential terms in (11) as follows: 214

Nd := blkdiag
{
ej 2π n

N In p | ∀n ∈ IN
}

. (16)

We also define 215

AdN := N−1
d Ad , BdN := N−1

d Bd . (17)

Now, (11) and (12) can be represented as follows: 216

zXd = AdN Xd + BdN Ud

Yd = CdXd + DdUd . (18)

This is called the harmonic state-space (HSS) model, and it represents 217

a lifted LTI equivalent of (1) for a general class of input–output signals. 218

Following sections explain how we transform this HSS model into a 219

more intuitional single-input multioutput (SIMO) LTI equivalent by 220

limiting the space of EMP inputs. 221

C. SIMO LTI Equivalent 222

The input to the original LTP system (1) is a sum-of-cosines signal in 223

the form u(t) =
∑M

m =1 2K cos (ωm t). As stated earlier, each cosine 224

input at ωm produces an output spectra at ±ωm ± kωp for k ∈ Z, 225

since cosine triggers both ±ωm . Hence, the input frequencies should 226

be carefully selected to avoid any coincidence of harmonic responses 227

(see [26] for illustrative explanations). Once this is satisfied, we can 228

separate the input–output response of each individual cosine signal in 229

the frequency domain. At this point, we write each single cosine input 230

as follows: 231

uc (t) = 2K cos (ωm t) = Kejω m t︸ ︷︷ ︸
u +

c (t)

+ Ke−j ω m t︸ ︷︷ ︸
u−

c (t)

. (19)

Let the output of (1) to inputs u+
c (t), u−

c (t), and uc (t) be y+
c (t), y−

c (t), 232

and yc (t), respectively, where yc (t) = y+
c (t) + y−

c (t). Ensuring that 233

ωm �= 0.5kωp for k ∈ Z, one can also guarantee that there will be 234

no coincidence in harmonic responses of the single-cosine input [26]. 235

Thus, we can simulate (1) with uc (t) and only use y+
c (t) as the output, 236

assuming that our input was u+
c (t). We choose distinct exponential 237

modulation z = ejω m in (5) for each individual input signal. Hence, 238

the modulated Fourier series coefficient vector in (18) becomes Ud = 239

[0 . . . 0 K 0 . . . 0]T with K on row (N/2 + 1) for each input. More 240

importantly, with its current form, Ud selects only column (N/2 + 1) 241
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in (14) for Bd and Dd , yielding242

zXd = AdN Xd + B̄dN Ūd

Yd = CdXd + D̄d Ūd (20)

where Ūd = K , z = ejω m , and243

B̄dN := N−1
d

[
B−N /2 . . . B0 . . . BN /2−1

]T

D̄d :=
[
D−N /2 . . . D0 . . . DN /2−1

]T
. (21)

D. Transforming to a Real-Valued State-Space Model244

One problem with LTI subspace identification methods is that they245

rely on real-valued input–output data in the time domain to estimate246

real-valued system matrices [27]–[31]. Hence, we need to transform247

(20) into a system that, if it were converted to the time-domain, would248

produce real-valued states and outputs, given real-valued inputs. Note249

that this system would not correspond to our original time-domain250

system. Rather, the time-domain equivalent of (20) is a fictitious system,251

useful only for the purpose of analysis. This SIMO LTI system has N252

states and outputs. Thus, we have253

Xd [k] :=
[
X̄−N /2 [k] . . . X̄0 [k] . . . X̄N /2−1 [k]

]T

Yd [k] :=
[
Ȳ−N /2 [k] . . . Ȳ0 [k] . . . ȲN /2−1 [k]

]T
. (22)

Considering (20) as an LTI system in the z-domain and by utilizing the254

block-diagonal structure of AdN (noting that Ad is stable), one can255

simply solve for each state equation in the steady state as follows:256

X̄m [k] =
k−1∑
i=0

(
e−j 2π m

N In p Ad

)k−i−1 (
e−j 2π m

N In p Bm

)
u[i] (23)

where u[k] = 2K cos (ωm kTs ). This follows since Ūd = K in the257

z-domain corresponds to a single cosine input signal for the time-258

domain signal. (We write the input as in (19) and ignore the negative259

frequency component for the sake of our analysis.) Also, note that260

Bm = B∗
−m since Bd [k] is real-valued by definition. Hence, we can261

state that X̄m [k] = X̄ ∗
−m [k], except for X̄−N /2 [k] and X̄0 [k], which are262

both real-valued as seen in (23). A similar analysis can be done for263

Yd [k] by using (23). However, solutions for each LTI output signal264

Ȳm [k] are more challenging since complex-conjugate state solutions265

are now multiplied with shifted versions of Fourier series coefficients266

as illustrated in (14). To achieve our goal, we first write the steady-state267

solutions for each output signal as follows:268

Ȳm [k] =
∑

n∈IN

Cm −n X̄n [k]. (24)

By using lengthy but straightforward calculations, one can show that269

Ȳm [k] = Ȳ∗
−m [k] in the steady state. Having shown the complex-270

conjugate nature of the time-domain state and output signals, we define271

two complex-valued transformation matrices Tx and Ty as follows:272

X d [k] := TxXd [k], Y
d
[k] := TyYd [k] (25)

where Tx can be defined as follows:273

Tx := 0.5

⎡
⎢⎢⎢⎢⎣

2In p 0 0 0

0 I(N /2−1)n p 0 J(N /2−1)n p

0 0 2In p 0

0 −jJ(N /2−1)n p 0 jI(N /2−1)n p

⎤
⎥⎥⎥⎥⎦

(26)

with a similar expression for Ty , where In̄ is the usual n̄ × n̄ identity274

and Jn̄ is an antidiagonal n̄ × n̄ matrix (i.e., 1 for the entries where275

i = n̄ − j + 1, 0 otherwise) with associated sizes. Equation (25) trans- 276

forms (20) into the following: 277

zX = TxAdN T −1
x X + Tx B̄dN Ūd

Y = Ty CdT −1
x X + Ty D̄d Ūd (27)

where X := TxXd and Y := TyYd . Note that Tx and Ty also transform 278

the system matrices to real-valued equivalents. 279

E. Estimating an LTI Equivalent via Subspace Identification 280

At this point, we could utilize a variety of LTI subspace identification 281

methods [17], [18], [27], [32], [33]. Although we could not find a 282

general benchmarking study on these algorithms, it has been shown 283

that CVA [18] performs better than N4SID [17] and MOESP [32] in 284

terms of prediction error and computational complexity [34]. Moreover, 285

CVA [18] is MATLAB’s (The MathWorks Inc., Natick, MA, USA) built- 286

in frequency-domain subspace identification method. Hence, we use 287

CVA for estimating the equivalent LTI system by carefully selecting 288

the estimated system dimension (see Remark 1). Q2289

Remark 1: In classical LTI subspace identification, the estimated 290

system order n̂ is chosen based on large drops in singular values of 291

Hankel matrices [17]. However, one needs to be aware of the specific 292

parametric structure of LTP systems while selecting n̂. Let the eigen- 293

values of Ad be Sd = {λd
i }

n p

i=1 . Lifting to (17) results in AdN with the 294

following eigenvalues: 295

S =
{{

λd
i e−j 2π k

N

}n p

i=1

∣∣∀k ∈ IN

}
. (28)

Once n̂ is chosen based on the singular values (not the eigenvalues), the 296

user should check the eigenvalues of the estimated state matrix for the 297

phase structure defined in (28). This phase structure will both reveal 298

the underlying LTP system’s dimension np as well as the number of 299

harmonics that will appear in the state vector Nh . The user might need 300

to use expert knowledge to decide on n̂ to maintain the phase structure 301

of (28). The correct choice of n̂ will yield eigenvalues as follows: 302

Ŝ =
{{

λd
i e−j 2π k

N

}n p

i=1

∣∣∀k ∈ [−Nh , Nh ]
}

. (29)

Note that, under these constraints, n̂ would be equal to the cardinality 303

of Ŝ, i.e., n̂ = |Ŝ| = (2Nh + 1)np , and this will limit the dimensions 304

of X̂ (and associated system matrices) in (30). It is quite possible that 305

the user could also limit the output harmonics in (13) based on the 306

LTP frequency response. This choice will be independent of n̂ and 307

it will limit the dimensions of Ŷ (and associated system matrices) 308

in (30). � 309

The CVA method estimates a quadruple of real-valued LTI system 310

matrices as [ ˆ̄A, ˆ̄B, ˆ̄C, ˆ̄D], which is equivalent to (27) up to a similarity 311

transformation. However, we need to backsubstitute the transforma- 312

tions in (17) to find an equivalent lifted LTI system for the unknown 313

LTP system. To this end, we use Â = ˆ̄A, B̂ = ˆ̄B, Ĉ = T −1
y

ˆ̄C , and 314

D̂ = T −1
y

ˆ̄D and obtain the equivalent lifted LTI system as follows: 315

zX̂ = ÂX̂ + B̂Ūd

Ŷ = ĈX̂ + D̂Ūd (30)

where Â ∈ Rn̂×n̂ , B̂ ∈ Rn̂×1 , Ĉ ∈ CN ×n̂ , and D̂ ∈ CN ×1 . Note that 316

we do not substitute Tx back since it is already in the form of a similarity 317

transformation. 318

At this point, our method provides a parametric system represen- 319

tation, which is equivalent to the lifted LTI form (27) of the original 320

LTP system. However, the main drawback of this representation—lifted 321



IEE
E P

ro
of

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 00, NO. 00, 2018 5

LTI—is that it is unintuitive and requires additional processes (unlift-322

ing the signals) to predict the output of the original LTP system. In323

Section IV, we introduce an LTP realization method that collapses the324

lifted LTI system to an LTP system in Floquet form.325

IV. TIME-PERIODIC REALIZATION FOR THE ESTIMATED LIFTED326

LTI EQUIVALENT327

The specific parametric structure of Fourier series coefficients is not328

generally preserved during subspace identification. Finding a compu-329

tationally effective solution to this problem remains an open issue [35].330

Motivated by this, we propose a time-periodic realization method for331

lifted LTI systems. Unlike the previous work that considers unforced332

LTP systems [36], we provide a framework for a general class of LTP333

systems with inputs. Our goal can be defined as finding a similarity334

transformation matrix T such that335
[
T −1 0

0 I

][
Â B̂

Ĉ D̂

][
T 0

0 I

]
=

[
AS BS

CS DS

]
(31)

where [AS , BS , CS , DS ] represents the parametric structure of Fourier336

series coefficients, as defined in (14), (15), and (21).337

Assumption 1: Â has nonrepeated eigenvalues, and hence, it is di-338

agonalizable via a similarity transformation matrix TD . Note that this339

also constrains Ad in (3) to be diagonalizable.340

Assumption 1 is reasonable since even small perturbations elim-341

inate repeated eigenvalues. We find such a TD using an eigenvalue342

decomposition of Â and transform the system as follows:343

ÂD = T −1
D ÂTD , B̂D = T −1

D B̂

ĈD = ĈTD , D̂D = D̂. (32)

Recall that there is a freedom in performing the eigenvalue decom-344

position; hence, when doing this, we ensure that TD is selected such345

that eigenvalues of ÂD enjoy the same parametric phase structure and346

ordering as (28). Finally, because of the SIMO structure of the lifted347

system, there are additional constraints (14) on the output matrix ĈD348

but not on B̂D (the input matrix is a column vector). These constraints349

can be satisfied with a similarity transformation TC . Note that such a350

transformation should maintain the parametric form of ÂD .351

Proposition 1: Given Assumption 1, the similarity transformation352

matrix TC ∈ Cn̂×n̂ that satisfies353

T −1
C ÂD TC = ÂD (33)

has a diagonal structure as TC = diag{γ1 , γ2 , . . . , γn̂ }.354

Given Assumption 1, the proof is trivial. Hence, we use TC to put355

ĈD into the desired parametric form CS as follows:356

ĈD TC = CS (34)

where CS is the N × n̂ center columns of Cd in (14). Note that CS357

is still in a parametric representation. However, we know that (34)358

projects ĈD onto CS such that there will be multiple equality con-359

straints due to the same complex Fourier series coefficients in main360

diagonals and subdiagonals, as shown in (14). However, these terms361

will not be numerically equal due to inevitable noise, and hence, we first362

find the optimal Fourier series coefficient candidates. For simplicity,363

we will show the computations as if each Fourier series coefficient in364

CS is a complex-valued scalar term, although they are vectors (C1×n p ).365

However, each variable in these vectors individually satisfies the form366

of CS and is multiplied with a different element of the diagonal sim-367

ilarity transformation matrix. Hence, we can process them separately368

and combine the results. With this in mind, we choose the candidate369

solutions as the mean of their occurrences in CS as follows:370

For −Nh − 1 ≤ m ≤ Nh , we have 371

C̄m =
2N h +1∑

i=1

ĈD (N/2 − Nh + m + i, i)γi

2Nh + 1
. (35)

For m > Nh , we have 372

C̄m =
3N h +1−m∑

i=1

ĈD (N/2 − Nh + m + i, i)γi

3Nh + 1 − m
. (36)

For m < −Nh − 1, we have 373

C̄m =
3N h +1+m∑

i=1

ĈD (i, i − Nh − 1 − m)γ(i−N h −1−m )

3Nh + 1 + m
. (37)

Now, we can generate CS in terms of the estimated (and transformed) 374

output matrix ĈD and the diagonal similarity transformation matrix 375

TC . We equate each variable on the left-hand side of (34) to their cor- 376

responding value in CS using the complex Fourier series coefficients 377

defined by (35)–(37). Note that these equalities will constrain the simi- 378

larity transformation matrix TC . However, we expect to have infinitely 379

many solutions that satisfy (34). Therefore, we formulate the set of 380

all possible solutions and select one towards an LTP realization of the 381

estimated system. For instance, for the fundamental harmonic, the first 382

equality can be written by using (35) as follows: 383

ĈD (N/2 + 1 − Nh , 1)γ1 =
2N h +1∑

i=1

ĈD (N/2 − Nh + i, i)γi

2Nh + 1
.

(38)

Organizing terms and multiplying both sides by 2Nh + 1 yield 384

2Nh ĈD (N/2 + 1 − Nh , 1)γ1 =
2N h +1∑

i=2

ĈD (N/2 − Nh + i, i)γi .

(39)

We utilize a vector form for (39) as ν1
0 Γ = 0, where 385

ν1
0 :=

[
2Nh ĈD (N/2 + 1 − Nh , 1),−ĈD (N/2 + 2 − Nh , 2), . . .

]

Γ :=
[
γ1 , γ2 , . . . , γ(2N h +1)

]T
. (40)

Here, ν1
0 represents the coefficients of the first constraint for the 0th 386

Fourier series coefficient. Similarly, the ith constraint on the 0th Fourier 387

series coefficient can be written as follows: 388

νi
0 :=

[
. . . ,−ĈD (., .), 2Nh ĈD (., .),−ĈD (., .), . . .

]
. (41)

Once we derive all constraint equations for all Fourier series coeffi- 389

cients, we combine in matrix multiplication form as follows: 390

VΓ = 0 (42)

where V includes all coefficient vectors for all complex Fourier series 391

coefficients. We expect a complex-valued similarity transformation 392

matrix and write (42) in real-valued form as follows: 393
[

Re{V} −Im{V}
Im{V} Re{V}

]

︸ ︷︷ ︸
V̄

[
Re{Γ}
Im{Γ}

]

︸ ︷︷ ︸
Γ̄

= 0. (43)

Note that V̄ ∈ R(2M )×(4N h +2) , where M > 2Nh + 1. 394

Proposition 2: V̄ is rank deficient, and hence, the nullspace of V̄ 395

(with dimension 2) defines the subspace of similarity transformation 396

matrices that satisfy (34). � 397
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Proof: We start by replacing the right-hand side of (38) with C̄m398

to show that each ĈD (., .) in V̄ can be written in terms of C̄m (see399

Remark 2). Hence, we can rewrite ν1
0 as follows:400

ν1
0 :=

[
2Nh C̄0/γ1 ,−C̄0/γ2 , . . . ,−C̄0/γ(2N h +1)

]
. (44)

At this point, we can expand ν1
0 as follows:401

ν1
0 := [2Nh C̄0 ,−C̄0 , . . . ,−C̄0︸ ︷︷ ︸

ν 1
0

]

⎡
⎢⎢⎢⎣

1/γ1

. . .

1/γ(2N h +1)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
γ

(45)

where the summation of the elements of ν1
0 is 0. We can also apply the402

same expansion on V̄ as follows:403

V̄ =

[
Re{V} −Im{V}
Im{V} Re{V}

]

︸ ︷︷ ︸
V̄†

[
Re{γ} −Im{γ}
Im{γ} Re{γ}

]

︸ ︷︷ ︸
γ †

(46)

such that the summation of columns in V̄† would be 0, based on (45).404

Thus, one of the columns can always be written in terms of the others,405

proving that V̄ is rank deficient.406

Note that the rank of V̄ equals the rank of V̄† since γ† is full rank by407

definition. Further, the way we define V̄† ensures that the column space408

of its left and right halves is orthogonal to each other. Hence, we simply409

add the dimensions of nullspaces of the left and right halves to obtain the410

overall dimension of the nullspace of V̄ . We know that the left and right411

halves are rank deficient by (45). In order to find the dimension of the412

nullspace of the left half, we consider the constraint equations νi
0 ∀i =413

{1, 2, . . . , 2Nh + 1} for C̄0 only, which will generate the coefficient414

vectors (also valid for Im{γ}) as follows:415

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2Nh Re{C̄0} −Re{C̄0} . . . −Re{C̄0}

−Re{C̄0} 2Nh Re{C̄0}
. . . −Re{C̄0}

...
. . .

. . .
...

−Re{C̄0} . . . . . . 2Nh Re{C̄0}

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (47)

Putting (47) to row echelon form, one can simply show that Re{V}416

is only rank-1 deficient (as Im{γ}). Considering the same derivations417

for the right half, one can find the dimension of the nullspace of V̄418

as 2. �419

Remark 2: Note that (35)–(37) define the “optimal” Fourier se-420

ries coefficients as the mean of their occurrences. In the proof of421

Proposition 2, we assume that we can write each ĈD (., .) in V̄ in422

terms of C̄m . However, this equivalence is only valid for the noise-423

free case. Noise will perturb the constraint equations, and numerically,424

V̄ will be full rank. The reason we computed the dimension of the425

nullspace is that we can use this dimension to choose the number of426

least significant eigenvectors of V̄ when generating the solution space427

for Γ̄. �428

Now, we know that the dimension of the nullspace for V̄ should be 2.429

Therefore, we use SVD to find the eigenvectors for V̄ . Then, we choose430

two eigenvectors v1 and v2 corresponding to least significant singular431

values as the basis vectors of the nullspace of V̄ . Hence, the solution432

set for Γ̄ can be written as Γ̄ = α1v1 + α2v2 , and any choice of (α1 ,433

α2 ) pair yields a valid solution for Γ̄ that will construct the similarity434

transformation matrix TC , which transforms (32) into the following: 435

ÂS = T −1
C ÂD TC , B̂S = T −1

C B̂D

ĈS = ĈD TC , D̂S = D̂D . (48)

Given (48), we identify the Fourier series coefficients for system ma- 436

trices and construct the LTP state-space realization as follows: 437

x̂d [k + 1] = Âd x̂d [k] + B̂d [k]ud [k]

ŷd [k] = Ĉd [k]x̂d [k] + D̂d [k]ud [k] (49)

by using the Fourier synthesis equations, such as (9). Finally, an inverse 438

bilinear (Tustin) transformation on (49) yields 439

˙̂x(t) = Âx̂(t) + B̂(t)u(t)

ŷ(t) = Ĉ(t)x̂(t) + D̂(t)u(t) (50)

where 440

Â = (2/Ts )
(
Âd + I

)−1
(Âd − I)

B̂(kTs ) =
(
2/

√
Ts

) (
Âd + I

)−1
B̂d [k]

Ĉ(kTs ) =
(
2/

√
Ts

)
Ĉd [k]

(
Âd + I

)−1

D̂(kTs ) = D̂d [k] − Ĉd [k]
(
Âd + I

)−1
B̂d [k] (51)

and the intersample behavior is obtained via linear interpolation. 441

Remark 3: Note that one can use this methodology to obtain Flo- 442

quet transforms for known LTP systems. To accomplish this, one can 443

simply equate the system matrices in (30) to those in (27) by skipping 444

the LTI subspace identification part. 445

V. NUMERICAL EXAMPLE 446

In this section, we provide a numerical example to illustrate the 447

practicality of the proposed method as well as to present a compara- 448

tive analysis with one of the time-domain LTP subspace identification 449

methods in the literature [15]. 450

The numerical example we consider is in the following form: 451

˙̄x(t) = Ā(t)x̄(t) + B̄(t)u(t)

y(t) = C̄(t)x̄(t) (52)

with the following system matrices: 452

Ā(t) =

[
−2s2 (t) + 0.5s(2t) s(t) + s(2t)

−c2 (t) + s(2t) −2c2 (t) − 0.5s(2t)

]

B̄(t) =

[
−s(t)(1 + βbc(t))

c(t)(1 + βbc(t))

]

C̄(t) =
[
c(t)(1 + βcc(t)) s(t)(1 + βcc(t))

]
(53)

where s(t) = sin (4πt), c(t) = cos (4πt), s(2t) = sin (8πt), βb = 453

0.5, and βc = 0.3. 454

We simulate the LTP system with a sinusoidal input signal as the sum 455

of different frequency cosine inputs. In order to design our input signal, 456

we first choose the sampling frequency as fs = 1 kHz. We plan to use 457

the summation of 400 different frequency cosine signals in the range 458

of 0.1–250 Hz for 200 s. Instead of choosing equidistant frequency 459

values in continuous-time, we transform our limits into discrete-time 460

frequency equivalents using the technique presented in [25], and then, 461
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TABLE I
NRMSE OF IDENTIFICATION DATA WITH DIFFERENT NOISE REALIZATIONS

TABLE II
NRMSE FOR TEST SIGNALS

choose 400 equidistant frequency values in discrete-time to avoid dis-462

tortion (warping) at high frequencies. Then, we transform the discrete-463

time frequency values back into continuous-time. This process is called464

prewarping [25].465

Once we obtain the input–output data from the unknown system, we466

apply the proposed subspace identification method to estimate an LTP467

realization for the original system (see Appendix A). We estimate an468

equivalent representation for (52) in the form of (50) with the system469

matrices as follows:470

Â =

[
0 1

−170.4848 −2.0001

]

B̂(t) =

[
0

12.5671 + 6.2836c(t)

]
Ĉ(t) =

[
1 + 0.3c(t) 0

]
.

(54)

Note that we neglected the sine terms with magnitude less than 10−8471

for clarity. Since it is challenging to derive the Floquet transform for472

Ā(t) given in (53), we numerically computed a similarity transforma-473

tion matrix that will give us the Floquet multipliers ({eλi T }|n p

i=1 , where474

{λi}|n p

i=1 are the eigenvalues of A [21] as μ1 ,2 = 0.5903 ± 0.1419j.475

On the other hand, Floquet multipliers of Â, which is computed through476

our subspace identification method, are μ̂1 ,2 = 0.5911 ± 0.1360j,477

which are very close to the numerical solution. In order to evaluate478

the prediction performance, we compute the normalized root-mean-479

squared error (nrmse) on identification data (see Table I). We also480

contaminate the output data y(t) with zero mean white Gaussian noise481

to quantify the prediction performance with different signal-to-noise482

(SNR) conditions. As seen in Table I, the proposed method generates483

accurate output predictions for the noise-free case. For the noisy cases,484

we performed 100 independent noise realizations and report mean485

nrmse errors.486

To provide a comparative analysis, we implemented the time-domain487

subspace identification method proposed in [15] for the same example488

defined in (52). We simulated (52) with a white noise sequence and489

collected sampled input–output data. Note that the method proposed490

in [15] works with discrete-time LTP systems. However, since we are491

working with sampled data, it is fair to compare the input–output data492

of the two methods. Note that the nrmse results presented in Table I for493

[15] are based on the prediction performance of its own identification494

signal (noise sequence). Our method works slightly better than that495

presented in [15] for predicting the identification signals under different496

noise realizations. In addition, we tested both methods with different497

test signals, such as a sinusoidal noise sequence and step and square498

wave input signals (see Table II). Again, the proposed method works499

slightly better for the prediction of different test signals as compared500

with the method proposed in [15]. To illustrate, we show a comparison501

plot for the square wave test signal prediction performance of the two502

Fig. 1. Comparison of the proposed method and the method proposed
in [15] for predicting the output of a square wave input signal with period
π. Shaded and white regions represent the +0.5 and −0.5 regions of the
square wave, respectively.

methods in Fig. 1. The minor difference in prediction performance can 503

be spotted in this comparison plot. 504

The comparison of our method with that proposed in [15] reveals that 505

both methods are accurate in predicting identification and test signals. 506

However, we emphasize certain points for a complete discussion. First, 507

the LTP state-space model generated by our method is more intuitive 508

than the model obtained using [15], which seeks to find a time-invariant 509

state-space quadruple for each discrete-time step. Therefore, for an 510

N -periodic discrete-time LTP system, the model obtained using [15] 511

generates N different state-space quadruples, which are much more 512

difficult to interpret than the form in (54) generated by our method. 513

Moreover, the Floquet form in (54) is more preferable due to the time- 514

invariant state matrix. Nevertheless, even though both methods work 515

with a single input–output data pair, the model obtained using [15] 516

finds and works with the smallest data length. Therefore, the method 517

proposed in [15] is more advantageous in terms of using less data. 518

VI. CONCLUSION 519

In this note, we propose a new method for subspace-based state- 520

space identification of LTP systems using frequency response data. 521

Our solution is based on the fact that LTP systems can be transformed 522

into equivalent discrete-time LTI systems. To accomplish this, we uti- 523

lize a bilinear (Tustin) transformation and a frequency-domain lifting 524

method available in the literature. Then, we estimate an LTI system 525

representation that can predict the input–output data of the original 526

system. 527

We, then, introduce a novel method to obtain a time-periodic re- 528

alization for the estimated equivalent lifted LTI system. Note that 529

the proposed LTP realization method works with the complexity of 530

a standard subspace identification procedure. Finally, the estimated 531

LTP system has a time-invariant state matrix. Therefore, our method 532

allows finding Floquet transforms for known LTP systems via system 533

identification. 534

APPENDIX A 535

Following is a summary of implementation details. 536

1) Simulate (1) with a sum-of-cosines input, selecting the frequencies 537

as defined in [25]. 538

2) Obtain the sampled data ud [k] and yd [k] for (3). 539

3) Use (13) and (7) to obtain Ud and Yd . 540

4) Process each frequency separately; choose Ūd = K and use (25) 541

to obtain Y . 542

5) Combine Ūd and Y for each frequency in vectors, and use the CVA 543

[18] to obtain (30) (backsubstitute Tx and Ty ). 544

6) Perform eigenvalue decomposition on Â, and perform the similar- 545

ity transformation in (32). 546
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7) Construct the constraint equation in (42), and use the SVD to find547

the nullspace vectors.548

8) Choose a solution from the nullspace, and do the similarity trans-549

formation in (48) to obtain (49).550

9) Use (50) as the inverse bilinear (Tustin) transform.551
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Frequency-Domain Subspace Identification of Linear
Time-Periodic (LTP) Systems

2
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4

5

Abstract—This paper proposes a new methodology for subs-6
pace-based state-space identification for linear time-periodic (LTP)7
systems. Since LTP systems can be lifted to equivalent linear time-8
invariant (LTI) systems, we first lift input–output data from an un-9
known LTP system as if they were collected from an equivalent LTI10
system. Then, we use frequency-domain subspace identification11
methods to find the LTI system estimate. Subsequently, we pro-

Q1

12
pose a novel method to obtain a time-periodic realization for the13
estimated lifted LTI system by exploiting the specific parametric14
structure of Fourier series coefficients of the frequency-domain15
lifting method. Our method can be used to obtain state-space16
estimates for unknown LTP systems as well as to obtain Floquet17
transforms for known LTP systems.18

Index Terms—Linear time-periodic (LTP) systems, subspace19
methods, system identification, time-varying systems.20

I. INTRODUCTION21

In this paper, we introduce a frequency-domain subspace-based22

state-space identification method for linear time-periodic (LTP) sys-23

tems. Many problems in engineering and biology, such as wind tur-24

bines [1], rotor bearing systems [2], aircraft models [3], locomotion25

[4], [5], and power distribution networks [6], require the consideration26

of time-periodic dynamics. As such, the analysis, identification, and27

control of LTP systems have received considerable attention [7]–[9].28

A pioneering work by Wereley [7] introduced a frequency-domain29

analysis method for LTP systems. In this work, time-periodic sys-30

tem matrices in the LTP state-space formulation were expanded into31
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their Fourier series coefficients. The principle of harmonic balance was 32

used to obtain the concept of harmonic transfer functions (HTFs). 33

Wereley’s initial formulation for continuous-time LTP systems as 34

infinite-dimensional operators was subsequently adapted to discrete 35

time, which conveniently leads to finite-dimensional HTFs [10]. 36

Most existing literature on LTP system identification [2], [11], in- 37

cluding our own prior work on identification of legged locomotion 38

[12]–[14], focus on using input–output HTF representations rather than 39

state space. In addition, there are also contributions to state-space-based 40

system identification for LTP systems [15], [16], analogous to subspace 41

identification techniques commonly used for linear time-invariant (LTI) 42

systems [17]. For instance, Verhaegen and Yu developed a subspace 43

identification method for estimating successive state-transition matri- 44

ces from time-domain data for linear time-varying (LTV) (including a 45

special derivation for LTP) systems [15]. 46

Critically, LTI subspace identification methods readily support both 47

time-domain [17] and frequency-domain [18] data, whereas most sub- 48

space methods for LTP systems have focused on time-domain data 49

[15], [16], and those state-space methods that do rely on frequency- 50

domain data [19], [20] require that scheduling functions be known a 51

priori. To the best of our knowledge, there are no general methods for 52

frequency-domain subspace identification of LTP systems. 53

Here, we present a general subspace identification methodology for 54

estimating state-space models from frequency-domain data for LTP 55

systems. Our proposed methodology is based on the fact that LTP sys- 56

tems can be represented with equivalent LTI systems via lifting [10]. 57

Based on this observation, we first lift the input–output data of an un- 58

known LTP system as if they were collected from an equivalent LTI 59

system, following previous methods [10]. We, then, estimate a discrete- 60

time LTI state-space equivalent for the original LTP system by using 61

an existing LTI frequency-domain subspace identification method [18]. 62

A key property of the frequency-domain lifting method we utilize in 63

this paper is the specific parametric structure of Fourier series coef- 64

ficients associated with the original LTP system [10]. However, this 65

structure is not, in general, preserved during the subspace identifica- 66

tion process due to an inevitably unknown similarity transformation. 67

In order to solve this issue, we identify a similarity transformation for 68

the lifted LTI system that recovers the Fourier structure, although not 69

the specific coefficients, because there is a subset of similarity trans- 70

formations that preserves the Fourier structure but not its parameters. 71

Our identification–realization algorithm also allows the realization of 72

Floquet-transformed state-space models for LTP systems with arbitrary 73

time-periodic system matrices (see Remark 3), whose analytic deriva- 74

tions are often very challenging and may even be impossible [21]. 75

This paper is outlined as follows. We introduce the problem for- 76

mulation in Section II. Then, in Section III, we show the existence 77

of an equivalent discrete-time LTI system for a given LTP system via 78

0018-9286 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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lifting and estimate its system matrices from frequency-domain data. In79

Section IV, we present a novel LTP realization algorithm for the esti-80

mated lifted LTI system. We provide an illustrative numerical example81

and a comparative analysis in Section V. Finally, we give our conclud-82

ing remarks in Section VI.83

II. PROBLEM FORMULATION84

In this paper, we consider single-input/single-output stable LTP sys-85

tems represented by86

˙̄x(t) = Ā(t)x̄(t) + B̄(t)u(t)

y(t) = C̄(t)x̄(t) + D̄(t)u(t) (1)

where u(t) ∈ R, y(t) ∈ R, and x̄(t) ∈ Rn p represent the input, output,87

and state vectors, respectively. The system matrices are periodic with88

a fixed common period T > 0 (see Section III-B for the computation89

of T ), with Ā(t) = Ā(t + nT ), B̄(t) = B̄(t + nT ), C̄(t) = C̄(t +90

nT ), and D̄(t) = D̄(t + nT ) ∀n ∈ Z.91

We formulate the identification problem as follows.92

Given93
� A single pair of input–output signals u(t) and y(t) in the form94

of a sum-of-cosines signal containing different frequency com-95

ponents that provide an LTP frequency response.96

Estimate97
� The four LTP system matrices that will be equivalent to (1) up98

to a similarity transform.99

The remaining sections detail our solution methodology (see100

Appendix A for the procedure). Obviously, LTI subspace identification101

methods would result in oversimplified LTI systems due to ignorance102

of harmonic responses. On the other hand, one can use LTV subspace103

identification methods in the time domain to solve a discrete-time ver-104

sion of this problem [15], [16]. Our solution method is unique in that105

it solves the problem in the frequency domain and results in intuitive106

state-space estimates in Floquet-transformed forms.107

III. EXISTENCE AND ESTIMATION OF A DISCRETE-TIME LIFTED LTI108

SYSTEM REPRESENTATION109

This section first introduces a system of transformations that needs110

to be used to prove the existence of a real-valued discrete-time LTI111

representation of (1). We, then, show how we estimate such an LTI112

system using input–output data of the original LTP system. Nat-113

urally, the original state-space form of (1) will not be available.114

Therefore, the transformations described in this section are not directly115

applied on the state-space form of (1); rather, the transformations map116

the input–output data into a form that makes it as if they were collected117

from the transformed (LTI) system.118

Based on Floquet theory, there exists a transformation that converts119

(1) into the following form:120

ẋ(t) = Ax(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)
(2)

where A, B(t), C(t), and D(t) can be obtained as real-valued (by121

doubling the system period, if necessary), as long as the system matrices122

in (1) are real-valued [21]. Note that deriving a Floquet transform is123

challenging even when the state-space is known. On the other hand,124

the Floquet transform is a similarity transformation and does not affect125

the input–output data. Hence, we assume, without loss of generality,126

that the LTP system to be identified has the state-space form given in127

(2). Note that Floquet-transformed forms are easier to work with since128

they have a time-invariant state matrix. Thus, we seek to find an LTP 129

state-space estimate for (1) in a Floquet form such as (2). 130

A. Discretization via Bilinear (Tustin) Transform 131

In principle, we could directly lift (2) to a continuous-time LTI equiv- 132

alent and utilize continuous-time LTI subspace identification methods. 133

However, the Hankel (data) matrices used for continuous-time LTI sys- 134

tems may become ill-conditioned with increasing system dimension 135

[22]. Therefore, we find it more convenient to work with discrete- 136

time LTI systems. To this end, we transform (2) into an approximate 137

discrete-time LTI system. This has two benefits. First, lifting discrete- 138

time LTP systems yields finite-dimensional LTI representations, un- 139

like infinite-dimensional ones in continuous-time models. Second, and 140

more importantly, it generalizes the applicability of our solutions to 141

both continuous-time and discrete-time LTP systems. To accomplish 142

this, we utilize the time-varying bilinear (Tustin) transformation to ob- 143

tain a discrete-time LTP state-space representation of (2). Note that (2) 144

is a special case of LTV systems with time-periodic system matrices 145

(and a time-invariant state matrix). Therefore, our special case reduces 146

the transformations in [23] to the following: 147

xd [k + 1] = Adxd [k] + Bd [k]ud [k]

yd [k] = Cd [k]xd [k] + Dd [k]ud [k]
(3)

where xd [k] represents discrete-time states and 148

Ad = ((2/Ts )I + A)((2/Ts )I − A)−1

Bd [k] =
(
2/

√
Ts

)
((2/Ts )I − A)−1B(kTs )

Cd [k] =
(
2/

√
Ts

)
C(kTs )((2/Ts )I − A)−1

Dd [k] = D(kTs ) + C(kTs )((2/Ts )I − A)−1B(kTs ). (4)

Here, Ts is the sampling period yielding sampled input–output data 149

as ud [k] := u(kTs ) and yd [k] := y(kTs ). Derivations for (3) can 150

be found in [24]. Note that (3) is an LTP system, where Bd [k] = 151

Bd [k + nN ] ∀n ∈ Z (also valid for Cd [k] and Dd [k]) and N is the 152

discrete-time system period defined as N := T/Ts . For the sake of 153

simplicity, N is assumed to be even. The sampling period Ts deter- 154

mines N and, hence, the dimension of the lifted LTI equivalent. Using 155

a higher sampling frequency allows capturing of high-frequency dy- 156

namics but also increases the complexity by increasing the lifted LTI 157

system dimension. In addition, bilinear (Tustin) transformation causes 158

frequency warping (distortions) at higher frequencies. To avoid this 159

problem, we utilize the experimental design procedure in [25] by first 160

prewarping the input frequencies that will be used while designing the 161

sum-of-cosines input. 162

B. Lifting to a Time-Invariant Reformulation 163

One of the key properties of LTP systems is that a complex exponen- 164

tial input with frequency ω produces an output not only at the input fre- 165

quency (which is the case for LTI systems) but also at different harmon- 166

ics ω ± kωp , k ∈ Z separated by the system frequency ωp = 2π/T , 167

with possibly different magnitudes and phases in the steady state (this 168

also allows estimating T from input–output data). In this context, the 169

concept of HTFs was developed to represent each harmonic response 170

of the LTP system with a distinct transfer function Gk (w + kωp ) for 171

k ∈ Z [7]. This approach represents an LTP system as the superposi- 172

tion of multiple modulated LTI systems. As such, HTFs can be used as 173

a lifting technique to transform an LTP system into an LTI equivalent 174

[10]. This motivates our use of HTFs as the frequency-domain lifting 175
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method to obtain an LTI equivalent state-space model for (3). Among176

possible alternatives (see [10] for a survey), we use frequency lifting in177

state space due to the convenient structure of Fourier series coefficients178

for periodic system matrices in lifted (semi)Toeplitz matrices.179

The lifting method starts by analyzing the input–output spectra of180

the LTP systems by referring the concept of exponentially modulated181

periodic (EMP) signals. An input signal ud [k] is a discrete-time EMP182

signal if there is a nonzero complex number z such that183

ud [k + pN ] = ud [k]zpN (5)

over one period for p ∈ Z and can be written as follows:184

ud [k] := zk

N /2−1∑
n =−N /2

Un ej 2π n k
N (6)

where Un are called modulated Fourier series coefficients for EMP185

signals and are defined as follows:186

Un :=
1
N

N −1∑
k=0

(
ud [k]z−k

)
e−j 2π n k

N . (7)

It has been shown that when an LTP system is given an EMP input, the187

state and output signals are also EMP in the steady state [7]. Therefore,188

similar to (6), we obtain the state vector as follows:189

xd [k] = zk
∑

n∈IN

Xn ej 2π n k
N (8)

and a similar expression for yd [k], where IN defines the interval190

IN = [−N/2, N/2 − 1]. In addition, the discrete-time Fourier syn-191

thesis equation for Bd [k] is computed as follows:192

Bd [k] =
∑

n∈IN

Bn ej 2π n k
N . (9)

Similar expressions are also valid for Cd [k] and Dd [k]. Substituting193

Fourier synthesis equations into (3) yields194

0 = zk
∑

n∈IN

⎛
⎝zXn ej 2π n

N − AdXn −
∑

m ∈IN

Bn−m Um

⎞
⎠ ej 2π n k

N .

(10)

The exponentials {ej 2π n k
N |n ∈ IN } constitute an orthonormal basis.195

Thus, by the principle of harmonic balance, each term enclosed by the196

brackets must be zero to ensure that the overall sum is zero. Therefore,197

for all n ∈ IN , we have198

zej 2π n
N Xn = AdXn +

∑
m ∈IN

Bn−m Um . (11)

Note that the above equation is valid since Fourier coefficients Bm are199

also periodic with N . For the output, we also have200

Yn =
∑

m ∈IN

Cn−m Xm +
∑

m ∈IN

Dn−m Um (12)

for all n ∈ IN . Similar to continuous-time systems, (11) and (12) can201

be represented with (semi) Toeplitz matrices to obtain an LTI state-202

space model. To this end, we first define the N-block state Xd , input203

Ud , and outputYd vectors, whose ith block for i = 1, 2, . . . , N is given204

by205

Xd (i) = Xi−1− N
2

, Ud (i) = Ui−1− N
2

, Yd (i) = Yi−1− N
2

. (13)

In addition, the time-invariant reformulation of the unlifted N -periodic 206

output matrix can be obtained as follows: 207

Cd :=

⎡
⎢⎢⎢⎢⎢⎢⎣

C0 C−1 . . . C− N
2

C N
2 −1 C N

2 −2 . . . C1

C1 C0 . . . C− N
2 +1 C− N

2
C N

2 −1 . . . C2

...
...

...
...

...
...

C−1 C−2 . . . C N
2 −1 C N

2 −2 C N
2 −3 . . . C0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(14)

Similarly, (semi)Toeplitz forms forBd andDd matrices can be obtained 208

in terms of their Fourier series coefficients {Bn |n ∈ IN } and {Dn |n ∈ 209

IN }, respectively. Note that, since Ad is time-invariant, its Toeplitz 210

form Ad includes only Ad in its diagonals as follows: 211

Ad := blkdiag{Ad} | Ad ∈ RN n p ×N n p (15)

where blkdiag represents a block-diagonal matrix and Ad is repeated 212

blockwise on diagonals. Finally, we define a modulation matrix Nd to 213

capture the exponential terms in (11) as follows: 214

Nd := blkdiag
{
ej 2π n

N In p | ∀n ∈ IN
}

. (16)

We also define 215

AdN := N−1
d Ad , BdN := N−1

d Bd . (17)

Now, (11) and (12) can be represented as follows: 216

zXd = AdN Xd + BdN Ud

Yd = CdXd + DdUd . (18)

This is called the harmonic state-space (HSS) model, and it represents 217

a lifted LTI equivalent of (1) for a general class of input–output signals. 218

Following sections explain how we transform this HSS model into a 219

more intuitional single-input multioutput (SIMO) LTI equivalent by 220

limiting the space of EMP inputs. 221

C. SIMO LTI Equivalent 222

The input to the original LTP system (1) is a sum-of-cosines signal in 223

the form u(t) =
∑M

m =1 2K cos (ωm t). As stated earlier, each cosine 224

input at ωm produces an output spectra at ±ωm ± kωp for k ∈ Z, 225

since cosine triggers both ±ωm . Hence, the input frequencies should 226

be carefully selected to avoid any coincidence of harmonic responses 227

(see [26] for illustrative explanations). Once this is satisfied, we can 228

separate the input–output response of each individual cosine signal in 229

the frequency domain. At this point, we write each single cosine input 230

as follows: 231

uc (t) = 2K cos (ωm t) = Kejω m t︸ ︷︷ ︸
u +

c (t)

+ Ke−j ω m t︸ ︷︷ ︸
u−

c (t)

. (19)

Let the output of (1) to inputs u+
c (t), u−

c (t), and uc (t) be y+
c (t), y−

c (t), 232

and yc (t), respectively, where yc (t) = y+
c (t) + y−

c (t). Ensuring that 233

ωm �= 0.5kωp for k ∈ Z, one can also guarantee that there will be 234

no coincidence in harmonic responses of the single-cosine input [26]. 235

Thus, we can simulate (1) with uc (t) and only use y+
c (t) as the output, 236

assuming that our input was u+
c (t). We choose distinct exponential 237

modulation z = ejω m in (5) for each individual input signal. Hence, 238

the modulated Fourier series coefficient vector in (18) becomes Ud = 239

[0 . . . 0 K 0 . . . 0]T with K on row (N/2 + 1) for each input. More 240

importantly, with its current form, Ud selects only column (N/2 + 1) 241
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in (14) for Bd and Dd , yielding242

zXd = AdN Xd + B̄dN Ūd

Yd = CdXd + D̄d Ūd (20)

where Ūd = K , z = ejω m , and243

B̄dN := N−1
d

[
B−N /2 . . . B0 . . . BN /2−1

]T

D̄d :=
[
D−N /2 . . . D0 . . . DN /2−1

]T
. (21)

D. Transforming to a Real-Valued State-Space Model244

One problem with LTI subspace identification methods is that they245

rely on real-valued input–output data in the time domain to estimate246

real-valued system matrices [27]–[31]. Hence, we need to transform247

(20) into a system that, if it were converted to the time-domain, would248

produce real-valued states and outputs, given real-valued inputs. Note249

that this system would not correspond to our original time-domain250

system. Rather, the time-domain equivalent of (20) is a fictitious system,251

useful only for the purpose of analysis. This SIMO LTI system has N252

states and outputs. Thus, we have253

Xd [k] :=
[
X̄−N /2 [k] . . . X̄0 [k] . . . X̄N /2−1 [k]

]T

Yd [k] :=
[
Ȳ−N /2 [k] . . . Ȳ0 [k] . . . ȲN /2−1 [k]

]T
. (22)

Considering (20) as an LTI system in the z-domain and by utilizing the254

block-diagonal structure of AdN (noting that Ad is stable), one can255

simply solve for each state equation in the steady state as follows:256

X̄m [k] =
k−1∑
i=0

(
e−j 2π m

N In p Ad

)k−i−1 (
e−j 2π m

N In p Bm

)
u[i] (23)

where u[k] = 2K cos (ωm kTs ). This follows since Ūd = K in the257

z-domain corresponds to a single cosine input signal for the time-258

domain signal. (We write the input as in (19) and ignore the negative259

frequency component for the sake of our analysis.) Also, note that260

Bm = B∗
−m since Bd [k] is real-valued by definition. Hence, we can261

state that X̄m [k] = X̄ ∗
−m [k], except for X̄−N /2 [k] and X̄0 [k], which are262

both real-valued as seen in (23). A similar analysis can be done for263

Yd [k] by using (23). However, solutions for each LTI output signal264

Ȳm [k] are more challenging since complex-conjugate state solutions265

are now multiplied with shifted versions of Fourier series coefficients266

as illustrated in (14). To achieve our goal, we first write the steady-state267

solutions for each output signal as follows:268

Ȳm [k] =
∑

n∈IN

Cm −n X̄n [k]. (24)

By using lengthy but straightforward calculations, one can show that269

Ȳm [k] = Ȳ∗
−m [k] in the steady state. Having shown the complex-270

conjugate nature of the time-domain state and output signals, we define271

two complex-valued transformation matrices Tx and Ty as follows:272

X d [k] := TxXd [k], Y
d
[k] := TyYd [k] (25)

where Tx can be defined as follows:273

Tx := 0.5

⎡
⎢⎢⎢⎢⎣

2In p 0 0 0

0 I(N /2−1)n p 0 J(N /2−1)n p

0 0 2In p 0

0 −jJ(N /2−1)n p 0 jI(N /2−1)n p

⎤
⎥⎥⎥⎥⎦

(26)

with a similar expression for Ty , where In̄ is the usual n̄ × n̄ identity274

and Jn̄ is an antidiagonal n̄ × n̄ matrix (i.e., 1 for the entries where275

i = n̄ − j + 1, 0 otherwise) with associated sizes. Equation (25) trans- 276

forms (20) into the following: 277

zX = TxAdN T −1
x X + Tx B̄dN Ūd

Y = Ty CdT −1
x X + Ty D̄d Ūd (27)

where X := TxXd and Y := TyYd . Note that Tx and Ty also transform 278

the system matrices to real-valued equivalents. 279

E. Estimating an LTI Equivalent via Subspace Identification 280

At this point, we could utilize a variety of LTI subspace identification 281

methods [17], [18], [27], [32], [33]. Although we could not find a 282

general benchmarking study on these algorithms, it has been shown 283

that CVA [18] performs better than N4SID [17] and MOESP [32] in 284

terms of prediction error and computational complexity [34]. Moreover, 285

CVA [18] is MATLAB’s (The MathWorks Inc., Natick, MA, USA) built- 286

in frequency-domain subspace identification method. Hence, we use 287

CVA for estimating the equivalent LTI system by carefully selecting 288

the estimated system dimension (see Remark 1). Q2289

Remark 1: In classical LTI subspace identification, the estimated 290

system order n̂ is chosen based on large drops in singular values of 291

Hankel matrices [17]. However, one needs to be aware of the specific 292

parametric structure of LTP systems while selecting n̂. Let the eigen- 293

values of Ad be Sd = {λd
i }

n p

i=1 . Lifting to (17) results in AdN with the 294

following eigenvalues: 295

S =
{{

λd
i e−j 2π k

N

}n p

i=1

∣∣∀k ∈ IN

}
. (28)

Once n̂ is chosen based on the singular values (not the eigenvalues), the 296

user should check the eigenvalues of the estimated state matrix for the 297

phase structure defined in (28). This phase structure will both reveal 298

the underlying LTP system’s dimension np as well as the number of 299

harmonics that will appear in the state vector Nh . The user might need 300

to use expert knowledge to decide on n̂ to maintain the phase structure 301

of (28). The correct choice of n̂ will yield eigenvalues as follows: 302

Ŝ =
{{

λd
i e−j 2π k

N

}n p

i=1

∣∣∀k ∈ [−Nh , Nh ]
}

. (29)

Note that, under these constraints, n̂ would be equal to the cardinality 303

of Ŝ, i.e., n̂ = |Ŝ| = (2Nh + 1)np , and this will limit the dimensions 304

of X̂ (and associated system matrices) in (30). It is quite possible that 305

the user could also limit the output harmonics in (13) based on the 306

LTP frequency response. This choice will be independent of n̂ and 307

it will limit the dimensions of Ŷ (and associated system matrices) 308

in (30). � 309

The CVA method estimates a quadruple of real-valued LTI system 310

matrices as [ ˆ̄A, ˆ̄B, ˆ̄C, ˆ̄D], which is equivalent to (27) up to a similarity 311

transformation. However, we need to backsubstitute the transforma- 312

tions in (17) to find an equivalent lifted LTI system for the unknown 313

LTP system. To this end, we use Â = ˆ̄A, B̂ = ˆ̄B, Ĉ = T −1
y

ˆ̄C , and 314

D̂ = T −1
y

ˆ̄D and obtain the equivalent lifted LTI system as follows: 315

zX̂ = ÂX̂ + B̂Ūd

Ŷ = ĈX̂ + D̂Ūd (30)

where Â ∈ Rn̂×n̂ , B̂ ∈ Rn̂×1 , Ĉ ∈ CN ×n̂ , and D̂ ∈ CN ×1 . Note that 316

we do not substitute Tx back since it is already in the form of a similarity 317

transformation. 318

At this point, our method provides a parametric system represen- 319

tation, which is equivalent to the lifted LTI form (27) of the original 320

LTP system. However, the main drawback of this representation—lifted 321
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LTI—is that it is unintuitive and requires additional processes (unlift-322

ing the signals) to predict the output of the original LTP system. In323

Section IV, we introduce an LTP realization method that collapses the324

lifted LTI system to an LTP system in Floquet form.325

IV. TIME-PERIODIC REALIZATION FOR THE ESTIMATED LIFTED326

LTI EQUIVALENT327

The specific parametric structure of Fourier series coefficients is not328

generally preserved during subspace identification. Finding a compu-329

tationally effective solution to this problem remains an open issue [35].330

Motivated by this, we propose a time-periodic realization method for331

lifted LTI systems. Unlike the previous work that considers unforced332

LTP systems [36], we provide a framework for a general class of LTP333

systems with inputs. Our goal can be defined as finding a similarity334

transformation matrix T such that335
[
T −1 0

0 I

][
Â B̂

Ĉ D̂

][
T 0

0 I

]
=

[
AS BS

CS DS

]
(31)

where [AS , BS , CS , DS ] represents the parametric structure of Fourier336

series coefficients, as defined in (14), (15), and (21).337

Assumption 1: Â has nonrepeated eigenvalues, and hence, it is di-338

agonalizable via a similarity transformation matrix TD . Note that this339

also constrains Ad in (3) to be diagonalizable.340

Assumption 1 is reasonable since even small perturbations elim-341

inate repeated eigenvalues. We find such a TD using an eigenvalue342

decomposition of Â and transform the system as follows:343

ÂD = T −1
D ÂTD , B̂D = T −1

D B̂

ĈD = ĈTD , D̂D = D̂. (32)

Recall that there is a freedom in performing the eigenvalue decom-344

position; hence, when doing this, we ensure that TD is selected such345

that eigenvalues of ÂD enjoy the same parametric phase structure and346

ordering as (28). Finally, because of the SIMO structure of the lifted347

system, there are additional constraints (14) on the output matrix ĈD348

but not on B̂D (the input matrix is a column vector). These constraints349

can be satisfied with a similarity transformation TC . Note that such a350

transformation should maintain the parametric form of ÂD .351

Proposition 1: Given Assumption 1, the similarity transformation352

matrix TC ∈ Cn̂×n̂ that satisfies353

T −1
C ÂD TC = ÂD (33)

has a diagonal structure as TC = diag{γ1 , γ2 , . . . , γn̂ }.354

Given Assumption 1, the proof is trivial. Hence, we use TC to put355

ĈD into the desired parametric form CS as follows:356

ĈD TC = CS (34)

where CS is the N × n̂ center columns of Cd in (14). Note that CS357

is still in a parametric representation. However, we know that (34)358

projects ĈD onto CS such that there will be multiple equality con-359

straints due to the same complex Fourier series coefficients in main360

diagonals and subdiagonals, as shown in (14). However, these terms361

will not be numerically equal due to inevitable noise, and hence, we first362

find the optimal Fourier series coefficient candidates. For simplicity,363

we will show the computations as if each Fourier series coefficient in364

CS is a complex-valued scalar term, although they are vectors (C1×n p ).365

However, each variable in these vectors individually satisfies the form366

of CS and is multiplied with a different element of the diagonal sim-367

ilarity transformation matrix. Hence, we can process them separately368

and combine the results. With this in mind, we choose the candidate369

solutions as the mean of their occurrences in CS as follows:370

For −Nh − 1 ≤ m ≤ Nh , we have 371

C̄m =
2N h +1∑

i=1

ĈD (N/2 − Nh + m + i, i)γi

2Nh + 1
. (35)

For m > Nh , we have 372

C̄m =
3N h +1−m∑

i=1

ĈD (N/2 − Nh + m + i, i)γi

3Nh + 1 − m
. (36)

For m < −Nh − 1, we have 373

C̄m =
3N h +1+m∑

i=1

ĈD (i, i − Nh − 1 − m)γ(i−N h −1−m )

3Nh + 1 + m
. (37)

Now, we can generate CS in terms of the estimated (and transformed) 374

output matrix ĈD and the diagonal similarity transformation matrix 375

TC . We equate each variable on the left-hand side of (34) to their cor- 376

responding value in CS using the complex Fourier series coefficients 377

defined by (35)–(37). Note that these equalities will constrain the simi- 378

larity transformation matrix TC . However, we expect to have infinitely 379

many solutions that satisfy (34). Therefore, we formulate the set of 380

all possible solutions and select one towards an LTP realization of the 381

estimated system. For instance, for the fundamental harmonic, the first 382

equality can be written by using (35) as follows: 383

ĈD (N/2 + 1 − Nh , 1)γ1 =
2N h +1∑

i=1

ĈD (N/2 − Nh + i, i)γi

2Nh + 1
.

(38)

Organizing terms and multiplying both sides by 2Nh + 1 yield 384

2Nh ĈD (N/2 + 1 − Nh , 1)γ1 =
2N h +1∑

i=2

ĈD (N/2 − Nh + i, i)γi .

(39)

We utilize a vector form for (39) as ν1
0 Γ = 0, where 385

ν1
0 :=

[
2Nh ĈD (N/2 + 1 − Nh , 1),−ĈD (N/2 + 2 − Nh , 2), . . .

]

Γ :=
[
γ1 , γ2 , . . . , γ(2N h +1)

]T
. (40)

Here, ν1
0 represents the coefficients of the first constraint for the 0th 386

Fourier series coefficient. Similarly, the ith constraint on the 0th Fourier 387

series coefficient can be written as follows: 388

νi
0 :=

[
. . . ,−ĈD (., .), 2Nh ĈD (., .),−ĈD (., .), . . .

]
. (41)

Once we derive all constraint equations for all Fourier series coeffi- 389

cients, we combine in matrix multiplication form as follows: 390

VΓ = 0 (42)

where V includes all coefficient vectors for all complex Fourier series 391

coefficients. We expect a complex-valued similarity transformation 392

matrix and write (42) in real-valued form as follows: 393
[

Re{V} −Im{V}
Im{V} Re{V}

]

︸ ︷︷ ︸
V̄

[
Re{Γ}
Im{Γ}

]

︸ ︷︷ ︸
Γ̄

= 0. (43)

Note that V̄ ∈ R(2M )×(4N h +2) , where M > 2Nh + 1. 394

Proposition 2: V̄ is rank deficient, and hence, the nullspace of V̄ 395

(with dimension 2) defines the subspace of similarity transformation 396

matrices that satisfy (34). � 397
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Proof: We start by replacing the right-hand side of (38) with C̄m398

to show that each ĈD (., .) in V̄ can be written in terms of C̄m (see399

Remark 2). Hence, we can rewrite ν1
0 as follows:400

ν1
0 :=

[
2Nh C̄0/γ1 ,−C̄0/γ2 , . . . ,−C̄0/γ(2N h +1)

]
. (44)

At this point, we can expand ν1
0 as follows:401

ν1
0 := [2Nh C̄0 ,−C̄0 , . . . ,−C̄0︸ ︷︷ ︸

ν 1
0

]

⎡
⎢⎢⎢⎣

1/γ1

. . .

1/γ(2N h +1)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
γ

(45)

where the summation of the elements of ν1
0 is 0. We can also apply the402

same expansion on V̄ as follows:403

V̄ =

[
Re{V} −Im{V}
Im{V} Re{V}

]

︸ ︷︷ ︸
V̄†

[
Re{γ} −Im{γ}
Im{γ} Re{γ}

]

︸ ︷︷ ︸
γ †

(46)

such that the summation of columns in V̄† would be 0, based on (45).404

Thus, one of the columns can always be written in terms of the others,405

proving that V̄ is rank deficient.406

Note that the rank of V̄ equals the rank of V̄† since γ† is full rank by407

definition. Further, the way we define V̄† ensures that the column space408

of its left and right halves is orthogonal to each other. Hence, we simply409

add the dimensions of nullspaces of the left and right halves to obtain the410

overall dimension of the nullspace of V̄ . We know that the left and right411

halves are rank deficient by (45). In order to find the dimension of the412

nullspace of the left half, we consider the constraint equations νi
0 ∀i =413

{1, 2, . . . , 2Nh + 1} for C̄0 only, which will generate the coefficient414

vectors (also valid for Im{γ}) as follows:415

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2Nh Re{C̄0} −Re{C̄0} . . . −Re{C̄0}

−Re{C̄0} 2Nh Re{C̄0}
. . . −Re{C̄0}

...
. . .

. . .
...

−Re{C̄0} . . . . . . 2Nh Re{C̄0}

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (47)

Putting (47) to row echelon form, one can simply show that Re{V}416

is only rank-1 deficient (as Im{γ}). Considering the same derivations417

for the right half, one can find the dimension of the nullspace of V̄418

as 2. �419

Remark 2: Note that (35)–(37) define the “optimal” Fourier se-420

ries coefficients as the mean of their occurrences. In the proof of421

Proposition 2, we assume that we can write each ĈD (., .) in V̄ in422

terms of C̄m . However, this equivalence is only valid for the noise-423

free case. Noise will perturb the constraint equations, and numerically,424

V̄ will be full rank. The reason we computed the dimension of the425

nullspace is that we can use this dimension to choose the number of426

least significant eigenvectors of V̄ when generating the solution space427

for Γ̄. �428

Now, we know that the dimension of the nullspace for V̄ should be 2.429

Therefore, we use SVD to find the eigenvectors for V̄ . Then, we choose430

two eigenvectors v1 and v2 corresponding to least significant singular431

values as the basis vectors of the nullspace of V̄ . Hence, the solution432

set for Γ̄ can be written as Γ̄ = α1v1 + α2v2 , and any choice of (α1 ,433

α2 ) pair yields a valid solution for Γ̄ that will construct the similarity434

transformation matrix TC , which transforms (32) into the following: 435

ÂS = T −1
C ÂD TC , B̂S = T −1

C B̂D

ĈS = ĈD TC , D̂S = D̂D . (48)

Given (48), we identify the Fourier series coefficients for system ma- 436

trices and construct the LTP state-space realization as follows: 437

x̂d [k + 1] = Âd x̂d [k] + B̂d [k]ud [k]

ŷd [k] = Ĉd [k]x̂d [k] + D̂d [k]ud [k] (49)

by using the Fourier synthesis equations, such as (9). Finally, an inverse 438

bilinear (Tustin) transformation on (49) yields 439

˙̂x(t) = Âx̂(t) + B̂(t)u(t)

ŷ(t) = Ĉ(t)x̂(t) + D̂(t)u(t) (50)

where 440

Â = (2/Ts )
(
Âd + I

)−1
(Âd − I)

B̂(kTs ) =
(
2/

√
Ts

) (
Âd + I

)−1
B̂d [k]

Ĉ(kTs ) =
(
2/

√
Ts

)
Ĉd [k]

(
Âd + I

)−1

D̂(kTs ) = D̂d [k] − Ĉd [k]
(
Âd + I

)−1
B̂d [k] (51)

and the intersample behavior is obtained via linear interpolation. 441

Remark 3: Note that one can use this methodology to obtain Flo- 442

quet transforms for known LTP systems. To accomplish this, one can 443

simply equate the system matrices in (30) to those in (27) by skipping 444

the LTI subspace identification part. 445

V. NUMERICAL EXAMPLE 446

In this section, we provide a numerical example to illustrate the 447

practicality of the proposed method as well as to present a compara- 448

tive analysis with one of the time-domain LTP subspace identification 449

methods in the literature [15]. 450

The numerical example we consider is in the following form: 451

˙̄x(t) = Ā(t)x̄(t) + B̄(t)u(t)

y(t) = C̄(t)x̄(t) (52)

with the following system matrices: 452

Ā(t) =

[
−2s2 (t) + 0.5s(2t) s(t) + s(2t)

−c2 (t) + s(2t) −2c2 (t) − 0.5s(2t)

]

B̄(t) =

[
−s(t)(1 + βbc(t))

c(t)(1 + βbc(t))

]

C̄(t) =
[
c(t)(1 + βcc(t)) s(t)(1 + βcc(t))

]
(53)

where s(t) = sin (4πt), c(t) = cos (4πt), s(2t) = sin (8πt), βb = 453

0.5, and βc = 0.3. 454

We simulate the LTP system with a sinusoidal input signal as the sum 455

of different frequency cosine inputs. In order to design our input signal, 456

we first choose the sampling frequency as fs = 1 kHz. We plan to use 457

the summation of 400 different frequency cosine signals in the range 458

of 0.1–250 Hz for 200 s. Instead of choosing equidistant frequency 459

values in continuous-time, we transform our limits into discrete-time 460

frequency equivalents using the technique presented in [25], and then, 461
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TABLE I
NRMSE OF IDENTIFICATION DATA WITH DIFFERENT NOISE REALIZATIONS

TABLE II
NRMSE FOR TEST SIGNALS

choose 400 equidistant frequency values in discrete-time to avoid dis-462

tortion (warping) at high frequencies. Then, we transform the discrete-463

time frequency values back into continuous-time. This process is called464

prewarping [25].465

Once we obtain the input–output data from the unknown system, we466

apply the proposed subspace identification method to estimate an LTP467

realization for the original system (see Appendix A). We estimate an468

equivalent representation for (52) in the form of (50) with the system469

matrices as follows:470

Â =

[
0 1

−170.4848 −2.0001

]

B̂(t) =

[
0

12.5671 + 6.2836c(t)

]
Ĉ(t) =

[
1 + 0.3c(t) 0

]
.

(54)

Note that we neglected the sine terms with magnitude less than 10−8471

for clarity. Since it is challenging to derive the Floquet transform for472

Ā(t) given in (53), we numerically computed a similarity transforma-473

tion matrix that will give us the Floquet multipliers ({eλi T }|n p

i=1 , where474

{λi}|n p

i=1 are the eigenvalues of A [21] as μ1 ,2 = 0.5903 ± 0.1419j.475

On the other hand, Floquet multipliers of Â, which is computed through476

our subspace identification method, are μ̂1 ,2 = 0.5911 ± 0.1360j,477

which are very close to the numerical solution. In order to evaluate478

the prediction performance, we compute the normalized root-mean-479

squared error (nrmse) on identification data (see Table I). We also480

contaminate the output data y(t) with zero mean white Gaussian noise481

to quantify the prediction performance with different signal-to-noise482

(SNR) conditions. As seen in Table I, the proposed method generates483

accurate output predictions for the noise-free case. For the noisy cases,484

we performed 100 independent noise realizations and report mean485

nrmse errors.486

To provide a comparative analysis, we implemented the time-domain487

subspace identification method proposed in [15] for the same example488

defined in (52). We simulated (52) with a white noise sequence and489

collected sampled input–output data. Note that the method proposed490

in [15] works with discrete-time LTP systems. However, since we are491

working with sampled data, it is fair to compare the input–output data492

of the two methods. Note that the nrmse results presented in Table I for493

[15] are based on the prediction performance of its own identification494

signal (noise sequence). Our method works slightly better than that495

presented in [15] for predicting the identification signals under different496

noise realizations. In addition, we tested both methods with different497

test signals, such as a sinusoidal noise sequence and step and square498

wave input signals (see Table II). Again, the proposed method works499

slightly better for the prediction of different test signals as compared500

with the method proposed in [15]. To illustrate, we show a comparison501

plot for the square wave test signal prediction performance of the two502

Fig. 1. Comparison of the proposed method and the method proposed
in [15] for predicting the output of a square wave input signal with period
π. Shaded and white regions represent the +0.5 and −0.5 regions of the
square wave, respectively.

methods in Fig. 1. The minor difference in prediction performance can 503

be spotted in this comparison plot. 504

The comparison of our method with that proposed in [15] reveals that 505

both methods are accurate in predicting identification and test signals. 506

However, we emphasize certain points for a complete discussion. First, 507

the LTP state-space model generated by our method is more intuitive 508

than the model obtained using [15], which seeks to find a time-invariant 509

state-space quadruple for each discrete-time step. Therefore, for an 510

N -periodic discrete-time LTP system, the model obtained using [15] 511

generates N different state-space quadruples, which are much more 512

difficult to interpret than the form in (54) generated by our method. 513

Moreover, the Floquet form in (54) is more preferable due to the time- 514

invariant state matrix. Nevertheless, even though both methods work 515

with a single input–output data pair, the model obtained using [15] 516

finds and works with the smallest data length. Therefore, the method 517

proposed in [15] is more advantageous in terms of using less data. 518

VI. CONCLUSION 519

In this note, we propose a new method for subspace-based state- 520

space identification of LTP systems using frequency response data. 521

Our solution is based on the fact that LTP systems can be transformed 522

into equivalent discrete-time LTI systems. To accomplish this, we uti- 523

lize a bilinear (Tustin) transformation and a frequency-domain lifting 524

method available in the literature. Then, we estimate an LTI system 525

representation that can predict the input–output data of the original 526

system. 527

We, then, introduce a novel method to obtain a time-periodic re- 528

alization for the estimated equivalent lifted LTI system. Note that 529

the proposed LTP realization method works with the complexity of 530

a standard subspace identification procedure. Finally, the estimated 531

LTP system has a time-invariant state matrix. Therefore, our method 532

allows finding Floquet transforms for known LTP systems via system 533

identification. 534

APPENDIX A 535

Following is a summary of implementation details. 536

1) Simulate (1) with a sum-of-cosines input, selecting the frequencies 537

as defined in [25]. 538

2) Obtain the sampled data ud [k] and yd [k] for (3). 539

3) Use (13) and (7) to obtain Ud and Yd . 540

4) Process each frequency separately; choose Ūd = K and use (25) 541

to obtain Y . 542

5) Combine Ūd and Y for each frequency in vectors, and use the CVA 543

[18] to obtain (30) (backsubstitute Tx and Ty ). 544

6) Perform eigenvalue decomposition on Â, and perform the similar- 545

ity transformation in (32). 546
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7) Construct the constraint equation in (42), and use the SVD to find547

the nullspace vectors.548

8) Choose a solution from the nullspace, and do the similarity trans-549

formation in (48) to obtain (49).550

9) Use (50) as the inverse bilinear (Tustin) transform.551
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