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Abstract—In the Online Contextual Influence Maximization
Problem with Costly Observations, the learner faces a series of
epochs in each of which a different influence spread process takes
place over a network. At the beginning of each epoch, the learner
exogenously influences (activates) a set of seed nodes in the
network. Then, the influence spread process takes place over the
network, through which other nodes get influenced. The learner
has the option to observe the spread of influence by paying
an observation cost. The goal of the learner is to maximize its
cumulative reward, which is defined as the expected total number
of influenced nodes over all epochs minus the observation costs.
We depart from the prior work in three aspects: (i) the learner
does not know how the influence spreads over the network,
i.e., it is unaware of the influence probabilities; (ii) influence
probabilities depend on the context; (iii) observing influence is
costly. We consider two different influence observation settings:
costly edge-level feedback, in which the learner freely observes
the set of influenced nodes, but pays to observe the influence
outcomes on the edges of the network; and costly node-level
feedback, in which the learner pays to observe whether a node
is influenced or not. Since the offline influence maximization
problem itself is NP-hard, for these settings, we develop online
learning algorithms that use an approximation algorithm as a
subroutine to obtain the set of seed nodes in each epoch. When
the influence probabilities are Hölder continuous functions of the
context, we prove that these algorithms achieve sublinear regret
(for any sequence of contexts) with respect to an approximation
oracle that knows the influence probabilities for all contexts. Our
numerical results on several networks illustrate that the proposed
algorithms perform on par with the state-of-the-art methods even
when the observations are cost-free.

Index Terms—Influence maximization, combinatorial bandits,
social networks, approximation algorithms, costly observations,
regret bounds.

I. INTRODUCTION

In recent years, there has been growing interest in under-
standing how influence spreads in a social network [2], [3],
[4]–[7]. This interest is motivated by the proliferation of viral
marketing in social networks. For instance, nowadays many
companies promote their products on social networks by giving
free samples of certain products to a set of seed nodes/users,
expecting them to influence people in their social circles into
purchasing these products. The objective of these companies
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is to find out the set of nodes that can collectively influence
the greatest number of other nodes in the social network. This
problem is called the influence maximization (IM) problem.

In the IM problem, the spread of influence is modeled by an
influence graph, where directed edges between nodes represent
the paths that the influence can propagate through and the
weights on the directed edges represent the likelihood of the
influence, i.e., the influence probability. Numerous models are
proposed for the spread of influence, with the most popular
ones being independent cascade (IC) and linear threshold (LT)
models [8]. In the IC model, the influence propagates on each
edge independently from the other edges of the network, and
an influenced node has only a single chance to influence its
neighbors. Hence, only recently influenced nodes can propagate
the influence. Thus, the influence stops to spread when the
recently influenced nodes fail to influence their neighbors.
On the other hand, in the LT model, a node’s chance to get
influenced depends on whether the sum of weights of its active
neighbors exceeds a threshold or not.

Most of the prior work in IM assume that the influence
probabilities of the influence graph are known and that the
influence spread process is observed [9]–[14], and focus on
designing computationally efficient algorithms to maximize
the influence spread. However, in many practical settings, it
is impossible to know beforehand the influence probabilities
exactly. For instance, a firm that wants to introduce a new
product or to advertise its existing products in a new social
network may not know the influence probabilities on the edges
of the network. In contrast to the prior works mentioned above,
our focus is to design an optimal learning strategy when the
influence probabilities are unknown.

In the marketing example given above, influence depends
on the product that is being advertised as well as the identities
of the users. Hence, the characteristic (context) of the product
affects the influence probabilities. The strand of literature that
is closest to the problem we consider in this paper in terms of
the dependence of the influence probabilities on the context is
called topic-aware IM [4]–[7]. To the best of our knowledge,
none of the prior works in topic-aware IM develop learning
algorithms with provable performance guarantees for the case
when the influence probabilities are unknown. In addition, prior
works in IM that consider unknown influence probabilities do
not consider the cost of feedback (cost of observation of the
influence spread process) [1], [15]–[18]. However, this cost
exists in most of the real-world applications of IM. For instance,
finding out who influenced a specific person into buying a
product might require conducting a costly investigation (e.g.,
a survey).
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Motivated by such real-world applications, in this paper,
we define a new learning model for IM, called the Online
Contextual Influence Maximization Problem with Costly Obser-
vations (OCIMP-CO). In contrast to IM, which is a single-shot
problem, OCIMP-CO is a sequential decision making problem.
In OCIMP-CO, the learner (e.g., the firm in the above example),
faces a series of epochs in each of which a different influence
campaign is run. At the beginning of each epoch, the learner
observes the context of that epoch. For instance, the context
can be the type of the influence campaign (e.g., one influence
campaign might promote a sports equipment, while another
influence campaign might promote a mobile data plan). After
observing the context, the learner chooses a set of k seed nodes
to influence. We call these nodes exogenously influenced nodes.
Then, the influence spreads according to the IC model, which
is explained in detail in Section III-A. The nodes that are
influenced as a result of this process are called endogenously
influenced nodes. An illustration of the influence spread process
is given in Fig. 1. At the end of each epoch, the learner obtains
as its reward the number of endogenously influenced nodes.
The goal of the learner is to maximize its cumulative expected
influence spread minus the observation costs over epochs.

In this paper, we consider two different influence observation
settings: costly edge-level feedback, in which the learner freely
observes the set of influenced nodes, but pays to observe
the influence outcomes on the edges of the network; and
costly node-level feedback, in which the learner pays to
observe whether a node is influenced or not. For the costly
edge-level feedback setting we propose a learning algorithm
called Contextual Online INfluence maximization COstly Edge-
Level feedback (COIN-CO-EL) to maximize the learner’s
reward for any given number of epochs. COIN-CO-EL can
use any approximation algorithm for the offline IM problem
as a subroutine to obtain the set of seed nodes in each
epoch. When the influence probabilities are Hölder continuous
functions of the context, we prove that COIN-CO-EL achieves
O(c1/3T (2θ+d)/(3θ+d)) regret (for any sequence of contexts)
with respect to an approximation oracle that knows the influence
probabilities for all contexts. Here, c represents the observation
cost, θ is the exponent of Hölder condition for the influence
probabilities, and d represents the dimension of the context.
Then, we also propose an algorithm for the costly node-
level feedback setting, called Contextual Online INfluence
maximization COstly Node-Level feedback (COIN-CO-NL),
which learns the influence probabilities by performing smart
explorations over the influence graph. We also show that COIN-
CO-NL enjoys O(c1/3T (2θ+d)/(3θ+d)) regret. In addition, we
prove that for the special case when the influence probabilities
do not depend on the context, i.e., the context-free online
IM problem with costly observations, our algorithms achieve
O(c1/3T 2/3) regret. We conclude that this bound is tight in
terms of the observation cost and the time order by proving
that the regret lower bound for this case is Ω(c1/3T 2/3).

The contributions are summarized as follows:
• We propose OCIMP-CO, where the influence probabilities

depend on the context and are unknown a priori.
• We propose online learning algorithms for both

costly edge-level and costly node-level feedback set-

tings, and prove that the proposed algorithms achieve
O
(
c1/3T (2θ+d)/(3θ+d)

)
regret for any sequence of con-

texts when the influence probabilities are Hölder continu-
ous functions of the context.

• We show that our algorithms achieve O(c1/3T 2/3) regret
for the context-free online IM problem with costly
observations, which is optimal.

• We empirically evaluate performance of our algorithms on
several real-world networks, and show that they perform
on par with the state-of-the-art methods even when the
observations are cost-free.

The rest of this paper is organized as follows. Related work
is given in Section II. Problem description and regret definition
are given in Section III. The approximation guarantee that an
approximation algorithm can provide given a set of estimated
influence probabilities is described in Section IV. The learning
algorithms and their regret analyses for the costly edge-level
and node-level feedback settings are considered in Sections V
and VI respectively. Then, several extensions are proposed in
Section VII. Detailed experiments on the proposed algorithms
and their extensions are carried out in Section VIII. Concluding
remarks are given in Section IX.

II. RELATED WORK

A. Influence Maximization

The IM problem was first proposed in [8], where it is
proven to be NP-Hard and an approximately optimal solution
is given. However, the solution given in [8] does not scale well
because it often requires thousands of Monte Carlo samples to
estimate the expected influence spread of each seed set. This
motivated the development of many heuristic methods with
lower computational complexity [10], [14], [19], [20].

In numerous other works, algorithms with approximation
guarantees are developed for the IM problem, such as CELF
[11], CELF++ [12] and NewGreedy [14]. In addition to these
works, in [21], an approximation algorithm based on reverse
influence sampling is proposed and its run-time optimality is
proven. In [9], the authors improved the scalability of this
algorithm by proposing two new algorithms TIM and TIM+.
More recently, [13] developed IMM which is an improvement
on TIM in terms of efficiency while preserving its theoretical
guarantees. None of the works mentioned above consider the
context information. IM based on context information is studied
in several other works such as [4], [6], [7]. However, in contrast
to our work which solves a more general problem, these
works assume that the influence probabilities are known and
topics/contexts are discrete. Moreover, in OCIMP-CO, context
is represented by a collection of continuous features (which
can be discretized if necessary). It is also worth to mention
that, to the best of our knowledge, there exists no work that
solves the online version of the IM problem where observing
the influence spread process is costly.

B. Multi-Armed-Bandits (MAB)

Several recent works use MAB-based methods to solve the
IM problem when the influence probabilities are unknown. In
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Fig. 1: An illustration that shows the influence spread process for k = 1 and time slots s = 1, 2, 3 in epoch t. Numbers on the edges denote the influence
probabilities. For this example, the influence spread in epoch t is 2, and the expected influence spread is 0.1 + 0.1 + 0.9 + 0.9 ∗ 0.9 = 1.91. Rs

t denotes the
set of nodes influenced in time slot s of epoch t. R1

t denotes the seed node. As
t denotes the set of nodes influenced prior to time slot s of epoch t. Cs+1

t
denotes the set of nodes that might be influenced in time slot s+ 1 of epoch t.

these works, as in ours, the set of arms chosen at each epoch
corresponds to the seed set of nodes.

For instance, [17] presents a combinatorial MAB problem
where multiple arms are chosen at each epoch, and these arms
probabilistically trigger the other arms. In our terminology,
multiple arms chosen at each epoch correspond to the set of
seed nodes and probabilistically triggered arms correspond to
nodes other than the set of seed nodes. For this problem,
a logarithmic gap-dependent regret bound is proven with
respect to an approximation oracle. In a subsequent work,
the dependence of the regret on the inverse of the minimum
positive arm triggering probability is removed under more
stringent assumptions on the reward function [22]. However,
the problem in [17] does not involve any contexts.

Another general MAB model that uses greedy algorithms
to solve the IM problem with unknown graph structure and
influence probabilities is proposed in [18]. In addition, [23]
considers a non-stationary IM problem, in which the influence
probabilities are unknown and time varying. OCIMP-CO is
more general than this, since the context can also be used to
model the time-varying nature of the influence probabilities
(for instance, one dimension of the context can be the time).

An online method for the IM problem that uses an upper
confidence bound (UCB) based and an ε-greedy based algorithm
is proposed in [24], but theoretical analysis of this method is
not carried out. In another related work [15], the IM problem is
defined on an undirected graph where the influence probabilities
are assumed to be linear functions of the unknown parameters,
and a linear UCB-based algorithm is proposed to solve it.
The prior works described above assume that the influence
outcomes on each edge in the network are observed by the
learner. Recently, another observation model, called node-level
feedback, is proposed in [16]. This model assumes that only the
influenced nodes are observable while the spread of influence
over the edges is not. However, no regret analysis is provided
for this model.

There also exists another strand of literature that studies
contextual MAB and its combinatorial variants under the linear
realizability assumption [25]–[27]. This assumption enforces
the relation between the expected rewards (also known as scores

in combinatorial MAB literature) of the arms and the contexts
to take a linear form, which boils down learning to estimating
an unknown parameter vector. This enables the development
of learning algorithms that can achieve Õ(

√
T ) regret.

While [25] directly models the expected reward of an arm
as a linear function of the context, [26] and [27] consider the
combinatorial MAB problem where the expected reward of
an action is a monotone and Lipschitz continuous function
of the expected scores of the arms associated with the action.
This model is more restrictive than ours since it forces the
arm scores (i.e., the influence probabilities in our setting) to be
linear in the context. In contrast, in our work, we only assume
that the influence probabilities are Hölder continuous functions
of the context (see Assumption 1).

In conclusion, our work differentiates itself by considering
context as well as the cost of observation in the online IM
problem. The differences between our work and the prior works
are summarized in Table I.

TABLE I: Comparison of our work with prior works.

Our
Work

[17],
[18], [23] [4]–[7]

[8]–[12],
[14],

[19]–[21]
[24]

Context Yes No Yes No No
Online
Learning Yes Yes No No Yes

Regret
Bound Yes Yes No No No

Costly
Observa-
tion

Yes No No No No

III. PROBLEM DESCRIPTION

A. Definition of the Influence

Consider a learner (e.g., a viral marketing engine) operating
on a social network with n nodes/users and m edges. The set
of nodes is denoted by V and the set of edges is denoted by E.
The network graph is denoted by G(V,E). The set of children
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of node i is given by Ni := {j ∈ V : (i, j) ∈ E}, and the set
of parents of node i is given by Vi := {j ∈ V : (j, i) ∈ E}.

Ads arrive to the learner sequentially over time in discrete
epochs, indexed by t ∈ {1, 2, . . .}. Without loss of generality,
context of the ad at tth epoch comes from a d-dimensional
context set X := [0, 1]d, and is denoted by xt. The influence
graph at epoch t is denoted by G(V,E, pxt), where pxt :=
{pxti,j}(i,j)∈E is the set of influence probabilities and pxti,j ∈
[0, 1] denotes the probability that node i influences node j when
the context is xt. These influence probabilities are unknown
to the learner a priori.

At the beginning of epoch t, the learner exogenously
influences k < n nodes in the network. The set of these nodes
is denoted by St, which is also called the action at epoch t. An
action is an element of the set of k-element subsets of V , which
is denoted by M. Nodes in St disperse the ad in their social
circles according to the IC model. A node that is a neighbor of
an influenced node probabilistically gets influenced if it shares
the ad in its social circle. A node that has not been influenced
yet is called an inactive node, whereas a node that has been
influenced is called an active node. In the IC model, each epoch
consists of a sequence of time slots indexed by s ∈ {1, 2, . . .}.
Let Ast denote the set of nodes that are already active at the
beginning of time slot s of epoch t, Rst denote the set of nodes
that are activated for the first time at time slot s of epoch t,
and Cst denote the set of nodes that might be activated at time
slot s of epoch t. In the IC model, we have A1

t = ∅, R1
t = St,

As+1
t = Ast ∪Rst and Cs+1

t = {j ∈ {∪i∈RstNi}−A
s+1
t }. For

j ∈ Cs+1
t , let Ṽs+1

t (j) = {i ∈ Vj ∩ Rst} denote the set of
nodes in Rst that can influence j. In the IC model, we have

Pr
(
j ∈ Rs+1

t |j ∈ Cs+1
t

)
= 1−

∏
i∈Ṽs+1

t (j)

(1− pxti,j). (1)

Suppose that the influence spread process started from a seed
set S of nodes. We denote the expected number of endogenously
influenced nodes (also called the expected influence spread)
given context x ∈ X and action S as σ(x, S), where the
expectation is taken over the randomness of the influence
spread given S.

We assume that similar contexts have similar effects on
the influence probabilities. This similarity is formalized in the
following assumption.

Assumption 1. There exists L > 0, θ > 0 such that for all
(i, j) ∈ E and x ∈ X , |px′i,j − pxi,j | ≤ L‖x′ − x‖θ, where ‖.‖
denotes the Euclidean norm in Rd.

Note that when θ > 1, the influence probabilities that satisfy
Assumption 1 are constants. Thus, in this degenerate case, the
problem reduces to the context-free online IM problem.

B. Definition of the Reward and the Regret

For a given network graph G(V,E), let p̂ = {p̂x}x∈X denote
the set of estimated and p = {px}x∈X denote the set of
true influence probabilities. We define σ̂(x, S) as the expected
influence spread of action S on G(V,E, p̂x). For the influence
spread process that results from action S, we call an edge
(i, j) ∈ E activated if node i influenced node j in this process.

We assume that the learner can (partially) observe the
influence spread process by paying an observation cost. In
particular, we propose two different influence observation
settings:

1) Costly Edge-level Feedback: In this setting, at the end of
each epoch, the learner freely observes the set of influenced
nodes, but pays to observe the influence outcomes on the
edges of the network. The cost of each observation is fixed
and known.

2) Costly Node-level Feedback: In this setting, at the end
of a time slot of an epoch, the learner may pay to observe
whether a node is activated or not. The cost of each observation
is fixed and known. The set of influenced nodes is not freely
revealed to the learner at the end of an epoch.1

We will compare the performance of the learner with the
performance of an oracle that knows the influence probabilities
perfectly. For this, we define below the omnipotent oracle.

Definition 1. The omnipotent oracle knows the influence
probabilities pxi,j ∀(i, j) ∈ E and ∀x ∈ X . Given context
x, it chooses S∗(x) ∈ arg maxS∈M σ(x, S) as the seed set.

The expected total reward of the omnipotent oracle by epoch
T given a sequence of contexts {xt}Tt=1 is given by

Rew∗(T ) :=
T∑
t=1

σ(xt, S
∗(xt)).

Since finding S∗(xt) is computationally intractable [8], we
propose another (weaker) oracle that only has an approximation
guarantee, which is called the (α, β)-approximation oracle
(0 < α, β < 1).

Definition 2. The (α, β)-approximation oracle knows the
influence probabilities pxi,j , ∀(i, j) ∈ E and ∀x ∈ X . Given
x, it generates an α-approximate solution with probability at
least β, i.e., it chooses the seed set S(α,β)(x) from the set of
actions M such that σ(x, S(α,β)(x)) ≥ α× σ(x, S∗(x)) with
probability at least β.

Note that the expected total reward of the (α, β)-
approximation oracle by epoch T is at least αβ × Rew∗(T ).
Next, we define the approximation algorithm that is used by the
learner, which takes the set of estimated influence probabilities
as input. Examples of approximation algorithms for the IM
problem can be found in [8] and [9].

Definition 3. The (α, β)-approximation algorithm takes as
input the estimated influence probabilities p̂xi,j , ∀(i, j) ∈ E

and ∀x ∈ X . Given x, it chooses Ŝ(α,β)(x) from the set of
actions M such that σ̂(x, Ŝ(α,β)(x)) ≥ α× σ̂(x, Ŝ∗(x)) with
probability at least β, where Ŝ∗(x) ∈ arg maxS∈M σ̂(x, S).

Similar to the related works in online learning that deal with
computationally intractable problems, including the works on
combinatorial MAB [22], [26], [27], we compare the learner
with an (α, β)-approximation oracle. When doing this, as usual
in prior work, we set the benchmark cumulative reward as
αβ fraction of the optimal reward. Hence, for a sequence

1Note that this does not hinder the learner’s capability to obtain the reward
as in the MAB problem with paid observations [28].
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of context arrivals {xt}Tt=1 the (α, β)-regret of the learner
that uses learning algorithm π, which chooses the sequence
of actions {St}Tt=1, with respect to the (α, β)-approximation
oracle by epoch T is defined as

R(α,β)
π (T ) := αβRew∗(T )−

T∑
t=1

σ(xt, St) + c
T∑
t=1

Bt (2)

where Bt represents the number of observations in epoch t
and c represents the cost per observation.

Our goal in this work is to design online learning algorithms
that can work together with any approximation algorithm
designed for the offline IM problem, whose expected (α, β)-
regrets, i.e., E[R

(α,β)
π (T )], grow slowly in time and in the

cardinality of the action set, without making any statistical
assumptions on the context arrival process.

IV. APPROXIMATION GUARANTEE

The maximum difference between the true and estimated in-
fluence probabilities given context x is defined as ∆x(p, p̂) :=
max(i,j)∈E |pxi,j − p̂xi,j |, and the maximum difference over
all contexts is defined as ∆(p, p̂) = supx∈X ∆x(p, p̂). The
following theorem, originally given as Lemma 6 in [17]
provides a relation between the influence spread of action
S for G(V,E, p̂x) and G(V,E, px).

Theorem 1. (Lemma 6 in [17]) If ∆x(p, p̂) = ∆x, then
|σ̂(x, S)− σ(x, S)| ≤ mn∆x, for all S ∈M .

The next theorem provides an approximation guarantee
for the (α, β)-approximation algorithm with respect to the
omnipotent oracle, when it runs using p̂ instead of p.

Theorem 2. If ∆(p, p̂) = ∆, then

E
[
σ(x, Ŝ(α,β)(x))

]
≥ αβ × σ(x, S∗(x))− β(1 + α)mn∆

for all x ∈ X .

Proof. See Appendix A.

V. CONTEXTUAL ONLINE INFLUENCE MAXIMIZATION
WITH COSTLY EDGE-LEVEL FEEDBACK (COIN-CO-EL)

In this section, we propose the Contextual Online INfluence
maximization COstly Edge-Level feedback (COIN-CO-EL)
algorithm. The pseudocode of COIN-CO-EL is given in
Algorithm 1. COIN-CO-EL is an online algorithm that can use
any offline IM algorithm as a subroutine. In order to exploit
the context information efficiently, COIN-CO-EL aggregates
information gained from past epochs with similar contexts
together when forming the influence probability estimates.
This aggregation is performed by creating a partition Q of
the context set X based on the similarity information given
in Assumption 1. Each set in the partition has a size (i.e., the
maximum distance between any two contexts in the set) that is
less than a time-horizon dependent threshold. This implies that
the influence probability estimates formed by observations in
a certain set of the partition do not deviate too much from the
actual influence probabilities that correspond to the contexts
that are in the same set.

Algorithm 1 COIN-CO-EL
Require: T, qT , G = (V,E), D(t), t = 1, . . . , T

Initialize sets: Create the partition Q of X such that X is divided
into qdT identical hypercubes with edge lengths 1/qT
Initialize counters: fQ

i,j = sQi,j = 0, ∀(i, j) ∈ E,∀Q ∈ Q, t = 1

Initialize estimates: p̂Qi,j = 0, ∀(i, j) ∈ E, ∀Q ∈ Q
1: while t ≤ T do
2: Find the partition Qt ∈ Q that xt belongs to
3: Compute the set of under-explored edges YQt(t) given in (3)

and the set of under-explored nodes UQt(t) given in (4)
4: if |UQt(t)| ≥ k then {Explore}
5: Select St randomly from UQt(t) such that |St| = k

6: else if UQt(t) 6= ∅ and |UQt(t)| < k then
7: Select the |UQt(t)| many elements of St as UQt(t) and

the remaining k − |UQt(t)| elements of St by using an
(α, β)-approximation algorithm on G(V,E, p̂t)

8: else {Exploit}
9: Select St by using an (α, β)-approximation algorithm on

G(V,E, p̂t)

10: end if
11: Observe the set of edges in YQt(t)∩Ft, incur cost c×|YQt(t)∩

Ft|
12: Update the successes and failures ∀(i, j) ∈ YQt(t) ∩ Ft:
13: for (i, j) ∈ YQt(t) ∩ Ft do
14: if ai,j = 1 then
15: sQti,j ++

16: else if ai,j = 0 then
17: fQt

i,j ++

18: end if
19: p̂Qti,j =

s
Qt
i,j

s
Qt
i,j+f

Qt
i,j

20: end for
21: t = t+ 1

22: end while

Recall from (1) that in the IC model, at each time slot s+ 1
of epoch t, nodes in Rst attempt to influence their children
by activating the edges connecting them to their children. We
call such an attempt in any time slot of epoch t an activation
attempt. Let Ft be the set of edges with activation attempts at
epoch t. Ft is simply the collection of outgoing edges from
the active nodes at the end of epoch t, and hence, is known
by the learner in the costly edge-level feedback setting. For
(i, j) ∈ Ft, we call ai,j the influence outcome on edge (i, j):
ai,j = 1 implies that node j is influenced by node i while
ai,j = 0 implies that node j is not influenced by node i.
The learner does not have access to ai,j’s beforehand, but
can observe them by paying a cost c for each observation.2

COIN-CO-EL keeps two counters fQi,j(t) and sQi,j(t) for each
(i, j) ∈ E and each Q ∈ Q. The former denotes the number
of observed failed activation attempts on edge (i, j) at epochs
prior to epoch t when the context was in Q, while the latter
denotes the number of observed successful activation attempts

2For example, in viral marketing the marketer can freely observe a person
who bought a product [16]. It can also observe the people who influenced
that person to buy the product by performing a costly investigation (e.g.,
conducting a survey).
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on edge (i, j) in epochs prior to epoch t when the context was
in Q.

At the beginning of epoch t, COIN-CO-EL observes xt and
finds the set Q ∈ Q that contains xt, which is denoted by Qt.3

For each Q ∈ Q, COIN-CO-EL keeps sample mean estimates
of the influence probabilities. For any x ∈ Q and (i, j) ∈ E,
the estimate of pxi,j at epoch t is denoted by p̂Qi,j(t).4 This
estimate is updated whenever the influence on edge (i, j) is
observed by COIN-CO-EL for some context x ∈ Q.

COIN-CO-EL decides on which seed set of nodes St to
choose based on p̂t := {p̂Qti,j (t)}(i,j)∈E . Since these values are
noisy estimates of the true influence probabilities, two factors
play a role in the accuracy of these estimates: estimation error
and approximation error. Estimation error is due to the noise
introduced by the randomness of the influence samples, and
decreases with the number of samples that are used to estimate
the influence probabilities. On the other hand, approximation
error is due to the noise introduced by quantization of the
context set, and increases with the size of Qt. There is an
inherent tradeoff between these errors. In order to decrease
the approximation error, partition Q must be refined. This will
create more sets in Q, and hence, will result in smaller number
of samples in each set, which will cause the estimation error to
increase. In order to optimally balance these errors, size of the
sets in Q and the number of observations that fall into each of
these sets must be adjusted carefully. COIN-CO-EL achieves
this by using a time-horizon dependent partitioning parameter
qT , which is used to partition X into qdT identical hypercubes
with border lengths 1/qT .5 When p̂t is far away from p, the
estimation accuracy is low. Hence, in order to achieve sublinear
regret, the estimate p̂t should improve over epochs for all edges
(i, j) ∈ E and for all Q ∈ Q. This is achieved by alternating
between two phases of operation: exploration and exploitation.

In order to define when COIN-CO-EL explores and exploits,
we first define the set of under-explored edges at epoch t for
Q ∈ Q, which is given as

YQ(t) := {(i, j) ∈ E|fQi,j(t) + sQi,j(t) < D(t)} (3)

where D(t) is a positive, increasing function called the control
function.6 Based on this, the set of under-explored nodes at
epoch t for Q ∈ Q is defined as

UQ(t) := {i ∈ V |∃j ∈ Ni : fQi,j(t) + sQi,j(t) < D(t)}. (4)

COIN-CO-EL ensures that the influence probability estimates
are accurate when UQt(t) = ∅. In this case, it exploits by
running an (α, β)-approximation algorithm on G(V,E, p̂t).
Since, p̂t is accurate, it does not pay to observe the influence
outcomes on the edges in this phase.

On the other hand, COIN-CO-EL assumes that the influence
probability estimates are inaccurate when UQt(t) 6= ∅. In this
case, it explores by selecting the seed set of nodes according

3If there are multiple such sets, then one of them is randomly selected.
4We will drop the epoch index when it is clear from the context.
5The value of qT given in Theorem 3 achieves the balance between

estimation and approximation errors. When the time horizon T is not known
in advance, the same regret bound can be achieved by COIN-CO-EL by using
the standard doubling trick [29].

6D(t) is a sublinear function of t and is also inversely proportional to c.

to the following rule: (i) When |UQt(t)| < k, it selects all
of the nodes in UQt(t) and the remaining k − |UQt(t)| nodes
are selected by the (α, β)-approximation algorithm; (ii) When
|UQt(t)| ≥ k, k nodes are randomly selected from UQt(t).
When it explores, COIN-CO-EL also observes the influence
outcomes to improve its estimates. For this, it pays and observes
the influence outcomes on the edges in the set YQt(t) ∩ Ft,
which denotes the set of under-explored edges with activation
attempts.

A. Upper Bounds on the Regret

The following theorem shows that the expected (α, β)-
regret of COIN-CO-EL is sublinear in time for any sequence
of context arrivals x1, . . . , xT . Specifically, when an (α, β)-
approximation algorithm is used as the offline IM algorithm
in COIN-CO-EL, then the expectation of the regret of COIN-
CO-EL given in (2) is bounded by a sublinear function of
the number of epochs. This implies that the expected regret
of COIN-CO-EL averaged over epochs converges to zero as
the number of epochs increases, and hence, the performance
of COIN-CO-EL converges to the performance of the (α, β)-
approximation oracle.

Theorem 3. When COIN-CO-EL uses an (α, β)-approximation
algorithm as the subroutine, and when qT = dT 1/(3θ+d)e and
D(t) = (c+ 1)−2/3t2θ/(3θ+d), we have

E[R
(α,β)
COIN-CO-EL(T )]

≤
(m
k

+ 1
)
αβ(n− k)

⌈
T

1
3θ+d

⌉d ⌈
(c+ 1)−2/3T

2θ
3θ+d

⌉
+mc

⌈
(c+ 1)−2/3T

2θ
3θ+d

⌉ ⌈
T

1
3θ+d

⌉d
+ β(1 + α)mnLdθ/2T

2θ+d
3θ+d

+
β(1 + α)πm2n(c+ 1)1/3√

2
× T

2θ+d
3θ+d

2θ+d
3θ+d

= O
(
c1/3T

2θ+d
3θ+d

)
for an arbitrary sequence of contexts {xt}Tt=1.

Proof. See Appendix B.

Remark 1. As observed from Theorem 3, COIN-CO-EL
explores less when the cost of observation is large. In addition,
when the cost is 0, the regret bound is equivalent to the regret
bound in [1], which does not consider the observation costs
and assumes that the influence outcomes are always observed.
This result shows that sublinear number of observations is
sufficient to achieve the same order of regret as in [1].

The next corollary gives an upper bound on the expected
(α, β)-regret of COIN-CO-EL when θ > 1, which corresponds
to the context-free online IM problem with costly observations.

Corollary 1. When θ > 1 and COIN-CO-EL uses an (α, β)-
approximation algorithm as the subroutine with qT = 1 and
D(t) = (c+ 1)−2/3t2/3, we have

E[R
(α,β)
COIN-CO-EL(T )] = O

(
c1/3T 2/3

)
.
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Proof. The proof follows directly from the proof of Theorem
3. Since qT = 1, sum of the regrets incurred over exploration
epochs and due to observing the influence outcomes is propor-
tional to cD(T ) = O(c1/3T 2/3). Moreover, the regret incurred
over an exploitation epoch only depends on the estimation
error since there is no approximation error. Essentially, from
Lemma 4, it is observed that if the learner exploits at epoch t,
then it incurs at most O((c+ 1)1/3t−1/3) regret in that epoch.
Summing this from 1 to T gives O(c1/3T 2/3) regret due to
exploitation epochs.

The regret bounds given in Theorem 3 and Corollary 1
are gap-independent. For the cost-free online IM problem it
is shown in [17] that there exists a learning algorithm with
Õ(T 1/2) gap-independent regret. In the following subsection,
we show that learning in the online IM problem with costly
observations is inherently more difficult than the cost-free
version of the same problem by proving Ω(c1/3T 2/3) lower
bound on the regret.

B. Lower Bound on the Regret for the Context-free Online IM
Problem

In this section, we consider the special case of OCIMP-
CO when θ > 1, and show that the regret lower bound is
Ω(c1/3T 2/3).

Theorem 4. Consider OCIMP-CO with θ > 1. Assume that
both edge-level and node-level feedbacks are costly, where the
cost of each observation is c > 0. For this problem, there exists
a problem instance (influence graph) for which any learning
algorithm π run with an exact solver, i.e., (α, β) = (1, 1),
which makes OT observations by epoch T , will incur regret

E[R(1,1)
π (T )]

≥ max

{
1.88× (

√
6

16
)2/3k

2/3
0 c1/3m1/3T 2/3,

√
6

16
k0
√
T

}

for T ≥ 3
8
m
O k0, where k0 :=

(
1− k

m

)2
. Here, O is the average

number of observations made by the learning algorithm in an
epoch, which is a positive real number such that OT is an
integer. Since we have at most m observations in each epoch,
0 < O ≤ m.

Proof. See Appendix C.

Proof of Theorem 4 is built on the lower bound proofs
developed for prediction with expert advice and MAB problems
[28], [30]–[32]. The differences lie in the formulation of the
problem instance we show our worst-case regret lower bound
on and the way we handle actions, which do not correspond to
individual arms but a combination of the arms. In particular,
we use the fact that we can decouple actions from the arms as
long as observations of the arms determine the actions taken
by the learner.

VI. CONTEXTUAL ONLINE INFLUENCE MAXIMIZATION
WITH COSTLY NODE-LEVEL FEEDBACK (COIN-CO-NL)

The node-level feedback setting is proposed in [16]. In this
setting, at the end of an epoch, the learner observes the set of

activated nodes, but not the influence outcomes (i.e., edge-level
feedback). In this section, we consider an extension to the
node-level feedback setting, where at the end of a time slot of
an epoch, the learner may choose to observe whether a node is
activated or not by paying c for each observation, which implies
that the learner can observe the influence spread process at
node-level by costly observations. This is a plausible alternative
to the original node-level feedback setting when monitoring
status of the nodes in the network is costly. Moreover, obtaining
temporal information about when a node gets activated is also
plausible in many applications. For instance, in Twitter, a node
gets activated when it re-tweets the content of another node
that it is following. Similarly, in viral marketing, a node gets
activated when it purchases the marketed product. Similar to
the previous setting, the goal of the learner is to minimize
expectation of the regret given in (2). For this purpose, we
propose a variant of COIN-CO-EL called COIN-CO-NL, which
is able to achieve sublinear regret when only costly node-level
feedback is available.

The only difference of COIN-CO-NL from COIN-CO-EL is
in the exploration phases. In exploration phases COIN-CO-NL
selects the seed set St and the nodes to observe Zt,s in time slot
s of epoch t in a way that allows perfect inference of influence
outcomes on certain edges of the network. We introduce more
flexibility to COIN-CO-NL and allow |St| ≤ k. We use the fact
that the learner is able to perfectly obtain edge-level feedback
from node-level feedback when the children nodes of the seed
nodes are distinct. In this case, by observing the children nodes
of the seed nodes at s = 2 (seed nodes are activated at s = 1),
the learner can perfectly infer (observe) the influence outcome
on the edges between the children nodes and the seed nodes.
In order to ensure that the children nodes of the seed nodes
are distinct, in the worst-case, the learner can choose a single
seed node in exploration phases.

As in COIN-CO-EL, COIN-CO-NL keeps counters fQi,j(t)
and sQi,j(t) for the failed and successful activation attempts
perfectly inferred from node-level feedback. These are used at
each epoch to calculate YQ(t) in (3) and UQ(t) in (4). When
UQt(t) = ∅, COIN-CO-NL operates in the same way as COIN-
CO-EL. When UQt(t) 6= ∅, COIN-CO-NL explores in the
following way: When |UQt(t)| ≥ k, instead of choosing k
nodes randomly from |UQt(t)|, it randomly chooses as many
nodes as possible from |UQt(t)| with distinct children such that(
|⋃i∈St Ni| = ∑i∈St |Ni|

)
. Similarly, when |UQt(t)| < k, it

randomly chooses as many nodes as possible from UQt(t)
as long as children nodes of the chosen nodes are distinct,
and chooses the remaining nodes from V − UQt(t) as long
as |St| ≤ k and |⋃i∈St Ni| =

∑
i∈St |Ni|. Then, after the

seed nodes are chosen it observes all of the nodes j such that
j ∈ ⋃i∈St Ni and (i, j) ∈ YQt(t) for some i ∈ St at s = 2.
This way, fQi,j(t) and sQi,j(t) values are updated for a subset
of the nodes in YQt(t).

The (α, β)-regret of COIN-CO-NL is bounded in the
following theorem.

Theorem 5. When COIN-CO-NL uses an (α, β)-approximation
algorithm as the subroutine, and when qT = dT 1/(3θ+d)e and
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D(t) = (c+ 1)−2/3t2θ/(3θ+d), we have

E[R
(α,β)
COIN-CO-NL(T )]

≤ αβm(n− k)
⌈
T

1
3θ+d

⌉d ⌈
(c+ 1)−2/3T

2θ
3θ+d

⌉
+mc

⌈
(c+ 1)−2/3T

2θ
3θ+d

⌉ ⌈
T

1
3θ+d

⌉d
+ β(1 + α)mnLdθ/2T

2θ+d
3θ+d

+
β(1 + α)πm2n(c+ 1)1/3√

2
× T

2θ+d
3θ+d

2θ+d
3θ+d

= O
(
c1/3T

2θ+d
3θ+d

)
for an arbitrary sequence of contexts {xt}Tt=1.

Proof. See Appendix B.

Like COIN-CO-EL, COIN-CO-NL also ensures that when
it is in an exploitation epoch t, each edge is observed at least
D(t) many times. However, because exploration phases last
longer under node-level feedback, the regret incurred due to
explorations is greater. In the worst-case, COIN-CO-NL can
only update one edge during one exploration epoch.

The next corollary gives an upper bound on the expected
(α, β)-regret of COIN-CO-NL when θ > 1, which corresponds
to the context-free online IM problem with costly node-level
feedback.

Corollary 2. When θ > 1 and COIN-CO-NL uses an (α, β)-
approximation algorithm as the subroutine with qT = 1 and
D(t) = (c+ 1)−2/3t2/3, we have

E[R
(α,β)
COIN-CO-NL(T )] = O

(
c1/3T 2/3

)
.

Proof. The proof follows directly from the proof of Theorem
5 and the proof of Corollary 1.

Finally, we note that Theorem 4 also provides a matching
lower bound for the node-level feedback setting.

VII. EXTENSIONS

A. Improved Exploration Phase

To improve the performance of COIN-CO-EL in exploration
phases, we consider two additional exploration strategies. In
the first variant, which is called COIN-CO-EL+, instead of
choosing nodes in St randomly from UQt(t), a modified version
of TIM+ [9], which is restricted to choose St only from
UQt(t), is used to select St. The intuition behind this choice
is that since TIM+ is an (α, β)-approximation algorithm, it
may provide a larger influence spread, even when the influence
probability estimates are not completely accurate. In the second
variant, which is called COIN-CO-EL-HD, St is chosen using
the High-Degree heuristic [14]. High-Degree chooses nodes
who have the highest out-degree values as its seed set. The
motivation for using High-Degree in the exploration phases is
twofold. Firstly, since the influence probability estimates are
highly inaccurate in the initial epochs, an (α, β)-approximation
algorithm whose performance depends on the accuracy of the
influence probability estimates may not work well. Therefore,
High-Degree, which does not use these estimates but uses

the graph structure can work better. Secondly, High-Degree is
much faster than an (α, β)-approximation algorithm, since its
node selection strategy is very simple. Moreover, both COIN-
CO-EL+ and COIN-CO-EL-HD have the same theoretical
performance guarantees as COIN-CO-EL, since the regret
analysis carried out for COIN-CO-EL is agnostic to the type of
algorithm used to select from the set of under-explored nodes.
We perform experiments on COIN-CO-EL+ and COIN-CO-
EL-HD in Section VIII.

B. A Randomized Algorithm for Costly Edge-level Feedback:
εt-Greedy-CO-EL

In this section, we propose an algorithm that is inspired by
the εt-greedy strategy for the MAB problem proposed in [30].
This algorithm, called εt-Greedy-CO-EL (pseudocode given in
Algorithm 2), is similar to the online IM algorithm presented
in [24]. While it does not take the context into account, in our
experiments we run a context-aware version of this algorithm
by using the procedure described in Algorithm 3.

Algorithm 2 εt-Greedy-CO-EL

Require: T,G = (V,E), εt, t = 1, . . . , T

Initialize counters: fi,j = 0, si,j = 0, ∀(i, j) ∈ E, t = 1

1: while t ≤ T do
2: Sample z ∼ Bernoulli(εt)
3: if z = 1 then {Explore}
4: p̂i,j = min

{
si,j

si,j+fi,j
+

√
si,jfi,j

(si,j+fi,j)2(si,j+fi,j+1)
, 1
}

5: Select St by using an (α, β)-approximation algorithm for
the IM problem on G(V,E, {p̂i,j}(i,j)∈E)

6: Observe the set of edges in Ft, incur cost c× |Ft|
7: Update the successes and failures ∀(i, j) ∈ Ft:
8: for (i, j) ∈ Ft do
9: if ai,j = 1 then

10: si,j ++

11: else if ai,j = 0 then
12: fi,j ++

13: end if
14: end for
15: else {Exploit}
16: p̂i,j =

si,j
si,j+fi,j

17: Select St by using an (α, β)-approximation algorithm for
the IM problem on G(V,E, {p̂i,j}(i,j)∈E)

18: end if
19: t = t+ 1

20: end while

As its name suggests, in each epoch εt-Greedy-CO-EL
explores with probability εt and exploits with probability 1−εt,
where εt is a positive decreasing function of t. For an edge
(i, j), εt-Greedy-CO-EL keeps the parameters si,j and fi,j ,
which are the counters for the observed successes and failures,
respectively. When it exploits, it uses an (α, β)-approximation
algorithm with the sample mean estimates of the influence
probabilities as input to select the set of seed nodes. On the
other hand, when it explores it uses an inflated version of the
influence probability estimates, which is given as the sample
mean plus the sample standard deviation. Then, it provides these
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as input to the (α, β)-approximation algorithm to select the
seed set of nodes. Using the additional standard deviation term
allows it to explore influence outcomes of the edges that are
sampled relatively less, working similar to the inflation factor
used in UCB algorithms. When εt-Greedy-CO-EL explores, it
observes the influence outcomes on all edges with activation
attempts.

VIII. EXPERIMENTS

In this section, we carry out numerical experiments to
compare the performance of our algorithms with existing ones
in numerous different settings.

A. Feedback Mechanisms
We consider three different feedback mechanisms in our

experiments.
1) Cost-free Edge-level Feedback: In this setting, the in-

fluence outcomes on all edges with activation attempts are
observed at the end of each epoch with no cost (c = 0). This
is the setting that is proposed in our prior work [1].

2) Cost-free Node-level Feedback: In this setting, all acti-
vated nodes are observed at the end of each epoch without
paying any observation cost [16]. Besides this, there is no other
feedback available.

3) Costly Edge-level Feedback: This setting is explained in
Section III-B.

B. Setup
We use a real-world and a synthetic network: NetHEPT and

NetHEPT-. NetHEPT is extensively used in IM literature [9],
[16], [24], and NetHEPT- is a random subgraph of NetHEPT
where all of the nodes have a positive in-degree. In NetHEPT,
roughly a third of the nodes have an in-degree value of 0, which
means that they cannot be activated endogenously whereas in
NetHEPT-, all of the nodes can be activated by a choice of
seed set. In our experiments, we set T = 5000 unless noted
otherwise.

TABLE II: Properties of the networks used in the experiments.

Dataset |V| |E| Average In-degree

NetHEPT 15K 59K 3.86
NetHEPT- 4K 10.5K 2.63

We consider one dimensional contexts, i.e., d = 1 and
assume that k = 50, which is a typical choice in the online
IM literature [16], [24]. For our algorithms, we set qT = 2
and initialize all influence probability estimates as 0. In order
to make exploration phases of the algorithms scalable, for
experiments with cost-free edge-level and cost-free node-level
feedbacks, we set D(t) = t2/5/100, and for experiments with
costly edge-level feedback, we set D(t) = c−2/3t2/5/200 and
c = 0.1.

We report both the time averaged regret and `2-error of
the influence probability estimates, where `2-error at epoch
t is given by `t2 :=

√∑
(i,j)∈E(pxti,j − p̂Qti,j )2. The (α, β)-

approximation algorithm used by our learning algorithms is
chosen as TIM+ [9].

C. Defining the Influence Probabilities

The context xt in any epoch t is sampled uniformly at
random from [0, 1]. The influence probabilities are generated
according to a Hölder-continuous surface over [0, 1] defined
by the following equations:

0.89

1 + e(−1000×(xt−0.5))
+ 0.01, (5)

0.89

1 + e(−1000×((1−xt)−0.5))
+ 0.01. (6)

In our simulations, we consider a network composed of two
groups of nodes with conflicting opinions or interests. For this,
we randomly partition the nodes in the network into two groups.
The influence probabilities of the outgoing edges of the nodes
in the two groups are calculated using (5) and (6) such that the
influence probabilities are roughly between 0.01 and 0.9. Hence,
when edges in one group have high influence probabilities,
edges in the other group have low influence probabilities.

D. Algorithms

Algorithm 3 Adapting MAB Algorithms to OCIMP

Require: T, qT , G = (V,E)

1: Create the partition Q of X such that X is divided into qdT
identical hypercubes with edge lengths 1/qT

2: Initialize ith instance of the algorithm πi, ∀i ∈ {1, ..., qdT }
3: t = 1.
4: while t ≤ T do
5: Find the partition Qt ∈ Q that xt belongs to
6: Get arm indices p̂t = {pQti,j }(i,j)∈E from πQt

7: Select St by using an (α, β)-approximation algorithm for the
IM problem on G(V,E, p̂t)

8: Obtain observations using the appropriate feedback setting
9: Update πQt using the observations

10: t = t+ 1

11: end while

We compare performance of the proposed algorithms with
various algorithms that we adapt to our problem. Inspired by the
structure of COIN-CO-EL, we use the approach presented in
Algorithm 3 to create a contextual version of any context-free
MAB algorithm π. Formally, we let qdT independent instances
of the algorithm denoted by {πi}q

d
T
i=1 to be run on separate sets

in the context partition in all our simulations.
Algorithms for the cost-free edge-level feedback setting:
1) COIN+: A contextual learning algorithm proposed in

our preliminary work [1], which is a variant of COIN-CO-EL+
that works for the cost-free edge-level feedback setting. COIN+
utilizes TIM+ to choose the seed set of nodes in exploration
phases.

2) COIN-HD: A variant of COIN+, which utilizes the High-
Degree heuristic to choose the seed set of nodes in exploration
phases instead of using TIM+.



2373-776X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2018.2866334, IEEE
Transactions on Signal and Information Processing over Networks

10

0 1000 2000 3000 4000 5000
Epochs

0

2000

4000

6000

` 2
-E

rr
or

COIN+

COIN-HD

Thompson

ThompsonG

CB+MLE

Pure Exploitation

εt-Greedy

CUCB

0 1000 2000 3000 4000 5000
Epochs

0

500

1000

1500

2000

2500

A
ve

ra
ge

R
eg

re
t

(a) Regret for NetHEPT

0 1000 2000 3000 4000 5000
Epochs

120

140

160

180

200

` 2
-E

rr
or

(b) L2-Error for NetHEPT

0 1000 2000 3000 4000 5000
Epochs

0

200

400

600

800

1000

1200

A
ve

ra
ge

R
eg

re
t

(c) Regret for NetHEPT-

0 1000 2000 3000 4000 5000
Epochs

0

10

20

30

40

50

60

70

80

` 2
-E

rr
or

(d) L2-Error for NetHEPT-

0 1000 2000 3000 4000 5000
Epochs

0

500

1000

1500

2000

2500

A
ve

ra
ge

R
eg

re
t

(e) Regret for NetHEPT

0 1000 2000 3000 4000 5000
Epochs

0

200

400

600

800

1000

1200

A
ve

ra
ge

R
eg

re
t

(f) Regret for NetHEPT-

0 1000 2000 3000 4000 5000
Epochs

0

500

1000

1500

2000

2500

A
ve

ra
ge

R
eg

re
t

(g) Regret for NetHEPT

0 1000 2000 3000 4000 5000
Epochs

0

200

400

600

800

1000

1200

1400

A
ve

ra
ge

R
eg

re
t

(h) Regret for NetHEPT-

0 2000 4000 6000 8000 10000
Epochs

−200

0

200

400

600

800

1000

1200

` 2
-E

rr
or

COIN-CO-EL+ COIN-CO-EL-HD εt-Greedy-CO-EL

Fig. 2: Results for context-aware algorithms under cost-free edge-level feedback (a-d), cost-free node-level feedback (e-f) and costly edge-level feedback (g-h).

3) Thompson: An algorithm that draws the estimated
influence probability of each edge from a Beta distribution,
where the parameters of the Beta distribution for edge (i, j) are
si,j and fi,j , which are the counters for the observed successful
and failed activation attempts on edge (i, j) respectively (both
are initialized as 1). Thompson updates these parameters in
each epoch based on the influence outcomes.

4) ThompsonG: A variant of Thompson, where the parame-
ters of the Beta distribution from which the estimated influence
probabilities are drawn are calculated using global priors 1 and
19 for α and β parameters, respectively, as explained in [24].
These global priors are updated in each epoch based on the
influence outcomes as in [24].

5) CB+MLE: A UCB-based algorithm proposed for the
online IM problem that is explained in [24].

6) εt-Greedy: A variant of εt-Greedy-CO-EL, which works
under c = 0 and uses εt = 1/

√
t.

7) Pure Exploitation: A variant of COIN+, which always
exploits at each epoch in the same way as COIN+ exploits.

8) CUCB: A UCB-based algorithm proposed in [17] for
the combinatorial MAB problem.

Algorithms for the cost-free node-level feedback setting:
For this setting, it is known that for each endogenously

influenced node i ∈ V , at least one of its parent nodes j ∈ Vi
should be active. Thus, we use the frequentist credit assignment
method proposed in [16] to adapt an algorithm designed for
cost-free edge-level feedback to work under cost-free node-
level feedback.

For this, let V ′i ⊂ Vi denote the set of active parents of i.
We assume that the probability with which a node i ∈ V is
influenced by a node j ∈ V ′i is 1/|V ′i |. Then, we sample from
this distribution one of the nodes l in V ′i as the influencer

of node i, set al,i = 1, and aj,i = 0 for all other j in V ′i .
Finally, the assigned influence outcomes are used to update
the influence probability estimates.

All algorithms proposed for the cost-free edge-level feedback
setting are adapted using the above procedure to work under
the cost-free node-level feedback setting.

Algorithms for the costly edge-level feedback setting:
For this setting, we use COIN-CO-EL+, COIN-CO-EL-HD

and εt-Greedy-CO-EL described in Sections VII-A and VII-B.
As its learning parameter, εt-Greedy-CO-EL uses εt = 1/

√
t.

Since other algorithms do not explicitly separate exploration
and exploitation phases, their extension to this setting is not
straightforward, and hence, they are not considered for this
setting.

E. Results for Cost-free Edge-level Feedback

Regret Comparison. Results in Fig. 2(a) and Fig. 2(c) show
that most of the algorithms used in the cost-free edge-level
feedback setting are outperformed by COIN+ and COIN-HD
in the long run, and only CUCB and Thompson are able
to achieve competitive average regret. We also observe that
COIN+ and COIN-HD suffer from high exploration regret in
the beginning due to performing large number of explorations.
This issue arises especially in NetHEPT, which is a larger
graph than NetHEPT-. However, after the initial exploration
phase, COIN+ and COIN-HD learn the influence probabilities
of the graph well enough to achieve much lower regret in
exploitation epochs, which results in a quick reduction of their
average regret.
`2-error Comparison. Since the `2-error measures the

accuracy of the influence probability estimates, rate of decrease
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of the `2-error over epochs explains how well the influence
probabilities are learned. Results in Fig. 2(b) and Fig. 2(d)
show that COIN-HD and COIN+ achieve lower `2-errors
than all other algorithms due to their explicit exploration
phases. However, as seen from the average regret results,
having accurate influence probability estimates does not always
translate into achieving small average regret. This is due to the
fact that knowledge about the influence probabilities associated
with nodes that are not influential in the network does not
have much impact on the seed set selection process. However,
we argue that in more challenging networks of larger size, the
disparity between `2-errors of these algorithms would be more
indicative of their performance as the algorithms that do not
conduct extensive exploration phases would be more likely to
miss out on some of the more influential nodes in the network,
and hence, under-perform.

F. Results for Cost-free Node-level Feedback

Regret Comparison. Results in Fig. 2(e) and Fig. 2(f) show
that COIN+ and COIN-HD outperform most of the benchmark
algorithms and perform on par with CUCB and Thompson in
the long run. Similar to the case for the cost-free edge-level
feedback, initially both COIN+ and COIN-HD suffer high
average regrets due to their extensive explorations, but benefit
from it in the long run by achieving low exploitation regret
and catching up with the best performing algorithms.

One interesting observation that highlights the importance of
extensive explorations is the performance of Pure Exploitation
in this setting. The performance of this greedy algorithm is
very poor for NetHEPT, but significantly better for NetHEPT-.
The smaller scale of the latter network benefits the algorithm
as implicit exploration due to the influence spread process
is enough to learn most of the network. However, in the
case of NetHEPT, due to the larger scale of the network and
the existence of nodes with zero in-degree, the greediness of
the algorithm hurts it as it can not estimate many important
influence probabilities accurately.

This observation supports the discussion about the `2-error
results. The bigger and more complex the network is, the
more valuable thorough exploration seems to become for the
learning algorithms. We would expect to see the impact of the
forced exploration phases of COIN+ and COIN-HD in more
challenging settings, where implicit exploration of CUCB and
Thompson might fail to identify all of the influential nodes.

Since the `2-error trend in this and the following experiments
are similar to the results presented for the cost-free edge-level
feedback setting, for the sake of brevity we show only the
results that are related to the regret hereafter.

G. Results for the Costly Edge-level Feedback

Regret Comparison. Results in Fig. 2(g) and Fig. 2(h)
show that COIN-CO-EL-HD and COIN-CO-EL+ perform
significantly better than εt-greedy-CO-EL on both networks.
In addition, in order to separately observe how well COIN-
CO-EL+ and COIN-CO-EL-HD performs in exploration and
exploitation phases, the average regrets calculated separately
over exploration and exploitation epochs are shown in Fig. 3.
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Fig. 3: Average regrets of COIN-CO-EL+ and COIN-CO-EL-HD calculated
over exploration and exploitation epochs. Simulation for NetHEPT is carried
over 10000 epochs to observe the convergence better.

We observe that immediately after their high regret explo-
ration epochs, COIN-CO-EL+ and COIN-CO-EL-HD start to
perform very close to the (α, β)-approximation oracle, suffering
substantially lower regrets. The impact of this decrease is
reflected on the average regret in the long run.

IX. CONCLUSION

In this paper, we propose a new online influence maxi-
mization problem where the influence probabilities depend on
the context and influence outcomes are costly to observe. We
develop computationally efficient learning algorithms for this
problem, for both edge-level and node-level feedback settings,
and prove that they achieve sublinear regret. We also show
that these algorithms perform on par with their competitors on
real-world networks. Since the online influence maximization
problem is a special case of the combinatorial MAB problem
with probabilistically triggered arms, our model also generalizes
the latter problem by introducing context dependent rewards.

APPENDIX A
PROOF OF THEOREM 2

By definition of the (α, β)-approximation oracle, we have
σ̂(x, Ŝ(α,β)(x)) ≥ α × σ̂(x, Ŝ∗(x)) with probability at least
β. Theorem 1 implies that for any seed set S, |σ̂(x, S) −
σ(x, S)| ≤ mn∆. Using the results above, we obtain

σ(x, Ŝ(α,β)(x)) ≥ σ̂(x, Ŝ(α,β)(x))−mn∆

≥ ασ̂(x, Ŝ∗(x))−mn∆

≥ ασ̂(x, S∗(x))−mn∆

≥ α (σ(x, S∗(x))−mn∆)−mn∆

= ασ(x, S∗(x))− (1 + α)mn∆

with probability at least β. Since σ(x, Ŝ(α,β)(x)) is non-
negative, we obtain the following bound by taking the ex-
pectation:

E[σ(x, Ŝ(α,β)(x))] ≥ αβ × σ(x, S∗(x))− β(1 + α)mn∆.

APPENDIX B
PROOF OF THEOREMS 3 AND 5

For Q ∈ Q let pQi,j := supx∈Q p
x
i,j and pQ

i,j
:= infx∈Q p

x
i,j .

Consider an algorithm π (COIN-CO-EL or COIN-CO-NL)
with partitioning parameter qT = dT ze and control function
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D(t) = (c + 1)ηtγ , where 0 < γ, z < 1 and η < 0. For
any sequence of context arrivals {xt}Tt=1, let T s,πT be the set
of epochs by epoch T in which algorithm π exploits and
T o,πT be the set of epochs by epoch T in which π explores.
Since the activation attempts are random variables, T s,πT and
T o,πT are random sets for which T s,πT ∪ T o,πT = {1, . . . , T}
with probability 1. By the definition of the exploration and
exploitation phases of COIN-CO-EL and COIN-CO-NL, we
have for any t ∈ T s,πT

fQti,j (t) + sQti,j (t) ≥ D(t) ∀(i, j) ∈ E. (7)

The simple (α, β)-regret of algorithm π for epoch t is defined
as

r(α,β)π (t) := αβ × σ(xt, S
∗(xt))− σ(xt, St).

Let

Rsπ(T ) :=
∑

t∈T s,πT

r(α,β)π (t)

be the regret incurred over epochs in which algorithm π
exploits,

Roπ(T ) :=
∑

t∈T o,πT

r(α,β)π (t)

be the regret (except the cost of observing the influence
outcomes or activated nodes) incurred over epochs in which
algorithm π explores, and

Rcπ(T ) = c×
T∑
t=1

Bt

be the regret due to observing the influence outcomes (or
activated nodes) over epochs in which algorithm π explores.
Based on the above definitions, the regret can be decomposed
as follows:

E[R(α,β)
π (T )] = E[Rsπ(T )] + E[Roπ(T )] + E[Rcπ(T )].

The proof proceeds with bounding each of the terms given
above. First, we bound Roπ(T ) for COIN-CO-EL and COIN-
CO-NL .

Lemma 1. When π = COIN-CO-EL runs with control function
D(t) = (c + 1)ηtγ and partitioning parameter qT = dT ze,
where 0 < γ, z < 1 and η < 0, we have

Roπ(T ) ≤ αβ(n− k)
(m
k

+ 1
)
dT zed d(c+ 1)ηT γe

with probability 1.

Proof. At each epoch when COIN-CO-EL explores, in the
worst case, COIN-CO-EL will fail to influence the remaining
(n− k) nodes and the omnipotent oracle will influence all the
remaining (n−k) nodes. Hence, we have r(α,β)π (t) ≤ αβ(n−k)
for each t ∈ T o,πT , which implies that

Roπ(T ) ≤ αβ(n− k)|T o,πT | with probability 1. (8)

Next, we will bound |T o,πT |. Let T LT denote the set of
exploration epochs of COIN-CO-EL where |YQt(t)| < k and
T HT denote the set of exploration epochs where |YQt(t)| ≥ k.

We have T o,πT = T HT ∪ T LT .
Firstly, we bound |T LT |. Note that for each Q ∈ Q, there

will be at most dD(T )e many epochs where Qt = Q and
|YQt(t)| < k. Therefore,

|T LT | < qdT dD(T )e with probability 1. (9)

Secondly, we bound |T HT |. Let u(t) := |Ft ∩ YQt(t)|. Note
that given T , we have a total of mqdT many context set-edge
pairs. Hence, the total number of explorations can be at most
mqdT dD(T )e. Thus∑

t∈T HT

u(t) ≤ mqdT dD(T )e with probability 1. (10)

From the definition of T HT , we know that u(t) ≥ k for all
t ∈ T HT . Using this together with (10), we obtain k|T HT | ≤
mqdT dD(T )e, and hence,

|T HT | ≤
mqdT dD(T )e

k
with probability 1. (11)

Hence, by summing (9) and (11), we obtain

|T o,πT | ≤
(m
k

+ 1
)
dT zedd(c+ 1)ηT γe with probability 1.

(12)

The result follows by plugging the bound in (12) into (8).

Lemma 2. When π = COIN-CO-NL runs with control function
D(t) = (c + 1)ηtγ and partitioning parameter qT = dT ze,
where 0 < γ, z < 1 and η < 0, we have

Roπ(T ) ≤ αβ(n− k)m dT zed d(c+ 1)ηT γe
with probability 1.

Proof. At each epoch when COIN-CO-NL explores, in the
worst case, COIN-CO-NL will fail to influence the remaining
(n− k) nodes and the omnipotent oracle will influence all the
remaining (n−k) nodes. Hence, we have r(α,β)π (t) ≤ αβ(n−k)
for each t ∈ T o,πT , which implies that

Roπ(T ) ≤ αβ(n− k)|T o,πT | with probability 1. (13)

Next, we will bound |T o,πT |. Note that COIN-CO-NL
explores (infers the influence outcome on) at least one edge in
each exploration epoch, and each context partition-edge pair
will be explored at most qdT dD(T )e times. Hence, we have

|T o,πT | ≤ mqdT dD(T )e with probability 1.

which gives the desired result when used together with (13).

Next, we bound the regret due to costly influence outcome
(node activation) observations for COIN-CO-EL (COIN-CO-
NL).

Lemma 3. When COIN-CO-EL or COIN-CO-NL runs with
control function D(t) = (c+ 1)ηtγ and partitioning parameter
qT = dT ze, where 0 < γ, z < 1 and η < 0, we have

Rcπ(T ) ≤ cmdT zedd(c+ 1)ηT γe with probability 1.

Proof. Since COIN-CO-EL and COIN-CO-NL both keep an
influence probability estimate for each edge (i, j) ∈ E for each
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Q ∈ Q, they keep mqdT parameters to represent the influence
probability estimates. At each exploration epoch t, they observe
the influence outcomes on the edges that correspond to a subset
of the edges which are explored less than D(t) times (COIN-
CO-EL) or node activations for a subset of nodes that are
adjacent to a subset of the under-explored edges (COIN-CO-
NL). Thus, by the end of epoch T , the influence outcome
on an edge (or a node) is observed at most dD(T )eqdT times.
Therefore, the total number of costly observations is at most
mdD(T )eqdT and each of these observations costs c.

Next, we bound the exploitation regret. For this, we first
propose the following lemma, which bounds r(α,β)π (t) when
COIN-CO-EL or COIN-CO-NL exploits at epoch t.

Lemma 4. When π = COIN-CO-EL or π = COIN-CO-NL
runs with control function D(t) = (c+ 1)ηtγ and partitioning
parameter qT = dT ze, where 0 < γ, z < 1 and η < 0, we
have

E[r(α,β)π (t)|t ∈ T s,πT ] ≤ β(1 + α)mnLdθ/2q−θT

+
β(1 + α)πm2nt−γ/2(c+ 1)−η/2√

2
.

Proof. In the analysis below, we consider t ∈ T s,πT , hence
all the expectations are conditioned on this event. Let ∆t :=
∆xt(p, p̂t). By Theorem 2, we have

E[r(α,β)π (t)] = αβ × σ(xt, S
∗(xt))− E[σ(xt, St)]

≤ β(1 + α)mnE[∆t].

Since ∆t ∈ [0, 1], we have

E[r(α,β)π (t)] ≤ β(1 + α)mn

∫ 1

0

Pr(∆t ≥ y)dy. (14)

Note that

{∆t ≥ y} =

{
max

(i,j)∈E
(|p̂Qti,j (t)− pxti,j | ≥ y

}
=

⋃
(i,j)∈E

{
|p̂Qti,j (t)− pxti,j | ≥ y

}
=

⋃
(i,j)∈E

{p̂Qti,j (t)− pxti,j ≤ −y} ∪
⋃

(i,j)∈E

{p̂Qti,j (t)− pxti,j ≥ y}

⊂
⋃

(i,j)∈E

{p̂Qti,j (t)− pQti,j ≤ −y} ∪
⋃

(i,j)∈E

{p̂Qti,j (t)− pQt
i,j
≥ y}.

Hence, by the union bound, we get

Pr(∆t ≥ y) ≤
∑

(i,j)∈E

Pr(p̂Qti,j (t)− pQti,j ≤ −y)

+
∑

(i,j)∈E

Pr(p̂Qti,j (t)− pQt
i,j
≥ y).

By Assumption 1, we have pQti,j − pQti,j ≤ Ldθ/2q−θT for all

(i, j) ∈ E and Qt ∈ Q. Hence, we have pQti,j ≤ E[p̂Qti,j (t)] +

Ldθ/2q−θT and pQt
i,j
≥ E[p̂Qti,j (t)]−Ldθ/2q−θT for all (i, j) ∈ E

and Qt ∈ Q. Using the fact above, we obtain

Pr(p̂Qti,j (t)− pQti,j ≤ −y)

≤ Pr(p̂Qti,j (t)− E[p̂Qti,j (t)] ≤ Ldθ/2q−θT − y)

and

Pr(p̂Qti,j (t)− pQt
i,j
≥ y)

≤ Pr(p̂Qti,j (t)− E[p̂Qti,j (t)] ≥ y − Ldθ/2q−θT ).

Since (7) holds for t ∈ T s,πT , by using the above inequalities
together with Hoeffding’s inequality, we obtain the following
for y ≥ Ldθ/2q−θT :∑

(i,j)∈E

Pr(p̂Qti,j (t)− pQt
i,j
≥ y) ≤ me−2(y−Ldθ/2q−θT )2(c+1)ηtγ

(15)∑
(i,j)∈E

Pr(p̂Qti,j (t)− pQti,j ≤ −y) ≤ me−2(y−Ldθ/2q−θT )2(c+1)ηtγ .

(16)

In order to bound (14), we will separate the integral into two
parts. For 0 ≤ y < Ldθ/2q−θT , we have Pr(∆t ≥ y) ≤ 1. For
Ldθ/2q−θT ≤ y ≤ 1 by (15) and (16), we have Pr(∆t ≥ y) ≤
2me−2(y−Ld

θ/2q−θT )2(c+1)ηtγ . Hence,∫ 1

0

Pr(∆t ≥ y)dy

=

∫ Ldθ/2q−θT

0

1dy +

∫ 1

Ldθ/2q−θT

2me−2(y−Ld
θ/2q−θT )2(c+1)ηtγdy

≤ Ldθ/2q−θT
+ 2m

∫ 1

Ldθ/2q−θT

dy

1 + 2(y − Ldθ/2q−θT )2(c+ 1)ηtγ

= Ldθ/2q−θT + 2m
(c+ 1)−η/2t−γ/2√

2

× (arctan(
√

2tγ/2(c+ 1)η/2(1− Ldθ/2q−θT ))

≤ Ldθ/2q−θT +
m(c+ 1)−η/2t−γ/2π√

2
(17)

since e−y ≤ 1
1+y for all y ≥ 0 and that arctan(z) ≤ π

2 for all
z ∈ R. The result is obtained by substituting (17) in (14).

The next lemma uses Lemma 4 to bound E[Rsπ(T )].

Lemma 5. When π = COIN-CO-EL or π = COIN-CO-NL
runs with control function D(t) = (c+ 1)ηtγ and partitioning
parameter qT = dT ze, where 0 < γ, z < 1, η < 0, we have

E[Rsπ(T )] ≤ β(1 + α)mnLdθ/2T 1−θz

+
β(1 + α)πm2n(c+ 1)−η/2√

2
× T 1−γ/2 − γ/2

(1− γ/2)
.

Proof. We utilize the following inequalities in the proof:
|T s,πT | ≤ T with probability 1 and

∑T
t=1 t

−x ≤ T 1−x−x
(1−x) ∀x ∈

(0, 1). For any realization of T s,πT denoted by T ⊂ {1, . . . , T}
we have

E[Rsπ(T )|T s,πT = T ] =
∑
t∈T

E[r(α,β)π (t)|t ∈ T ]

≤ β(1 + α)

×
∑
t∈T

(
mnLdθ/2dT ze−θ +

πm2nt−γ/2(c+ 1)−η/2√
2

)
≤ β(1 + α)
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×
T∑
t=1

(
mnLdθ/2dT ze−θ +

πm2nt−γ/2(c+ 1)−η/2√
2

)
≤ β(1 + α)

×
T∑
t=1

(
mnLdθ/2T−zθ +

πm2nt−γ/2(c+ 1)−η/2√
2

)
≤ β(1 + α)mnLdθ/2T 1−θz

+
β(1 + α)πm2n(c+ 1)−η/2√

2
× T 1−γ/2 − γ/2

(1− γ/2)
.

By summing the results of Lemmas 1, 3 and 5, we obtain
for π = COIN-CO-EL:

E[R(α,β)
π (T )] ≤ αβ(n− k)

(m
k

+ 1
)
dT zedd(c+ 1)ηT γe

+ β(1 + α)mnLdθ/2T 1−θz

+ cmd(c+ 1)ηT γedT zed

+
β(1 + α)πm2n(c+ 1)−η/2√

2
× T 1−γ/2 − γ/2

(1− γ/2)
. (18)

Similarly, by summing the results of Lemmas 2, 3 and 5,
we obtain for π = COIN-CO-NL:

E[R(α,β)
π (T )] ≤ αβ(n− k)mdT zedd(c+ 1)ηT γe

+ β(1 + α)mnLdθ/2T 1−θz

+ cmd(c+ 1)ηT γedT zed

+
β(1 + α)πm2n(c+ 1)−η/2√

2
× T 1−γ/2 − γ/2

(1− γ/2)
. (19)

Finally, we calculate the optimal values of the parameters,
which minimize the regrets given in (18) and (19) . We observe
that the terms in the regret bounds with the highest time orders
are O(T zd+γ), O(T 1−γ/2) and O(T 1−θz). Hence, the optimal
z and γ should minimize max{zd+ γ, 1− γ/2, 1− θz}. This
is achieved by setting z = 1/(3θ+d) and γ = 2θ/(3θ+d). In
addition, we also minimize the order of the cost in the regret
bound, given the optimal z and γ values for the time order of
the regret. For this, we look at the regret terms whose time
orders are T (2θ+d)/(3θ+d). The cost order of these terms are
O((c+ 1)1+η) and O((c+ 1)−η/2). Hence, to balance these
terms, we set η = −2/3.

APPENDIX C
PROOF OF THEOREM 4

Our proof is built on the proof of Theorem 4 in [28]. In the
proof, we assume that the learner is deterministic and makes
a fixed number of observations, denoted by OT , by epoch T .
It is well known that lower bound results for deterministic
learners apply for stochastic learners as well [31].

First Step: Influence Graph and a Regret Lower Bound

We define a specific directed graph Ḡ(V̄ , Ē) with the
following properties. Assume that n is even and m = n/2.
Let V̄0 := {v10 , . . . , vn/20 }, V̄1 := {v11 , . . . , vn/21 }, Ē :=
{(v10 , v11), (v20 , v

2
1), . . . , (vm0 , v

m
1 )} and V̄ := V̄0 ∪ V̄1. Since

the nodes in V̄1 cannot influence any other node, any sensible
policy will only select nodes from V̄0 as the seed set. Let
A =

(
m
k

)
denote the cardinality of the action set M. We index

the actions in a way that Vi denotes the ith action, and hence,
M := {V1, . . . , VA}. Due to the fact that each node in V̄1 has a
single parent, in this setting edge-level and node-level feedbacks
are equivalent. Thus, in the rest of the proof, we focus on only
edge-level feedback. We assume that the influence probabilities
are independent of context, we simplify the notation and use
σ(S) and S∗ to denote the expected influence spread of action
S and an optimal action, respectively.

We define m+1 problem instances on Ḡ(V̄ , Ē), indexed by
{0, 1, . . . ,m}. For h > 0, in the hth problem instance, we set
the influence probabilities on the edges as pvh0 ,vh1 = 1+ε

2 , and
pi = 1−ε

2 for i ∈ Ē − (vh0 , v
h
1 ). Moreover, in the 0th problem

instance, we set pi = 1−ε
2 for all i ∈ Ē. Note that with the

above construction, for any problem instance h > 0, there exists(
m−1
k−1

)
actions with expected influence spread (k−1) 1−ε

2 + 1+ε
2 ,

and
(
m
k

)
−
(
m−1
k−1

)
=
(
m−1
k

)
actions with expected influence

spread k 1−ε
2 .

Let q̂ = {q̂1, . . . , q̂A} be the marginal distribution over the
actions selected by the learner over time horizon T , where
q̂i = 1

T

∑T
t=1 1{St=Vi} and 1{·} denotes the indicator variable

which is equal to one when the condition inside is satisfied
and zero otherwise. Let J be a random variable distributed
according to q̂. Let Ph be the law of J when the problem
instance is h and Eh denote expectations in problem instance h.
Note that we have Ph(J = Vh) = Eh

[
1
T

∑T
t=1 1{St=Vh}

]
. In

addition, for any problem instance h > 0, we denote the set of
optimal actions by S∗h := {Vi : Eh [σ(Vi)] = (k−1) 1−ε

2 + 1+ε
2 }.

Hence, for the hth problem instance, we have

Rh(T ) := Eh[R(1,1)(T )]− cEh
[
T∑
t=1

Bt

]
(20)

= Eh

[
T∑
t=1

1{St /∈S∗h}ε

]

= εTEh

[
T∑
t=1

1{St /∈S∗h}/T

]
= εTPh(J 6∈ S∗h) (21)
= εT (1− Ph(J ∈ S∗h)) . (22)

Therefore, there exist at least one problem instance h′ for
which Rh′(T ) is greater than or equal to the mean of (22) over
all problem instances h > 0:

sup
h>0

Rh(T ) ≥ εT
(

1− 1

m

m∑
h=1

Ph(J ∈ S∗h)

)
. (23)

Second Step: Pinsker’s Inequality
By Pinsker’s inequality and union bound, we have

Ph(J ∈ S∗h) ≤ P0(J ∈ S∗h) +

√
1

2
KL(P0||Ph)

≤
∑
Vi∈S∗h

P0(J = Vi) +

√
1

2
KL(P0||Ph).
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Finally, by taking the average over all problem instances
h > 0, and then, applying Jensen’s inequality using concavity
of the square root, we obtain

1

m

m∑
h=1

Ph(J ∈ S∗h) ≤ k

m
+

1

m

m∑
h=1

√
1

2
KL(P0||Ph) (24)

≤ k

m
+

√√√√ 1

2m

m∑
h=1

KL(P0||Ph) (25)

where (24) is due to the fact that
∑
h

∑
Vi∈S∗h

P0(J = Vi) = k
since each action Vi is optimal exactly for k problem instances
out of m problem instances with h > 0.

Third Step: Computation of KL(P0||Ph)

Let Zt be the set of observed edges and Ot be the set of
influence outcomes on the observed edges in epoch t, O1:t :=
{O1, . . . , Ot}, and let Pth be the law of O1:t in problem instance
h. Note that the sequence of observations O1:T deterministically
determines the sequence of actions {S1, . . . , ST } taken by the
learner, which in turn determines the law of J . Similarly, O1:t−1
deterministically determines Zt due to the structure of the
influence graph. In order to proceed from (25), first by the data
processing inequality, we obtain KL(P0||Ph) ≤ KL(PT0 ||PTh ).
Then, we apply the chain rule for KL-divergence to get

KL(P0||Ph) ≤ KL(PT0 ||PTh )

= KL(P1
0||P1

h) +
T∑
t=2

Eo1:t−1
[KL(Pt0(.|o1:t−1)||Pth(.|o1:t−1))]

= KL(P1
0||P1

h)

+

T∑
t=2

∑
o1:t−1

Pt−10 (o1:t−1)KL(Pt0(.|o1:t−1)||Pth(.|o1:t−1))

= KL(P1
0||P1

h) +
T∑
t=2

∑
o1:t−1

Pt−10 (o1:t−1)1{(vh0 ,vh1 )∈Zt|o1:t−1}

KL

(
1− ε

2

∣∣∣∣∣
∣∣∣∣∣1 + ε

2

)
(26)

= KL

(
1− ε

2

∣∣∣∣∣
∣∣∣∣∣1 + ε

2

)
E0

[
T∑
t=1

1{(vh0 ,vh1 )∈Zt}

]
(27)

where (26) is due to the fact that KL-divergence is non-zero
only when the edge (vh0 , v

h
1 ) is observed since the influence

probabilities corresponding to the other edges are the same for
problem instances 0 and h.

Using the inequality, KL(p||q) ≤ (p−q)2
q(1−q) we obtain

m∑
h=1

KL(PT0 ||PTh )

= KL

(
1− ε

2

∣∣∣∣∣
∣∣∣∣∣1 + ε

2

)
m∑
h=1

E0

[
T∑
t=1

1{(vh0 ,vh1 )∈Zt}

]

= KL

(
1− ε

2

∣∣∣∣∣
∣∣∣∣∣1 + ε

2

)
E0

[
T∑
t=1

m∑
h=1

1{(vh0 ,vh1 )∈Zt}

]

≤ 4ε2

1− ε2OT (28)

where OT is the expected number of edges observed until
epoch T .

Fourth Step: ε-tuning

Substituting (28) into (23) and setting ε ≤ 1
2 , we get

sup
h>0

Rh(T ) ≥ εT
(

1− k

m
− 4ε

√
O

6m
T

)
(29)

Letting ε = α
√

m
OT for some α > 0 and k′ = m

k we obtain

sup
h>0

Rh(T ) ≥
√
mT

O

(
α− α

k′
− 4α2

√
6

)
. (30)

For α =
(

1− 1
k′

) √
6
8 , we have

sup
h>0

Rh(T ) ≥
[√

6

8

(
1− 1

k′

)2

− 4√
6

6

64

(
1− 1

k′

)2
]√

mT

O

=

√
6

16

(
1− 1

k′

)2
√
mT

O
.

Hence, by the definition of Rh(T ) in (20), we have

Eh[R(1,1)(T )]− cOT ≥
√

6

16

(
1− 1

k′

)2
√
mT

O
(31)

for at least one problem instance.
This shows that for at least one problem instance h

Eh[R(1,1)(T )] = Rh(T ) + cOT

≥
√

6

16
k0

√
mT

O
+ cOT (32)

≥ max

{
1.88× (

√
6

16
)2/3k

2/3
0 c1/3m1/3T 2/3,

√
6

16
k0
√
T

}

where k0 =
(
1− 1

k′

)2
, by setting O =

(
√
6

32 )2/3k
2/3
0 c−2/3m1/3T−1/3 in (32) and using the fact

that O is upper bounded by m.
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