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Abstract—In this paper, we propose an online learning algo-
rithm for optimal execution in the limit order book of a financial
asset. Given a certain number of shares to sell and an allocated
time window to complete the transaction, the proposed algorithm
dynamically learns the optimal number of shares to sell via market
orders at prespecified time slots within the allocated time inter-
val. We model this problem as a Markov Decision Process (MDP),
which is then solved by dynamic programming. First, we prove that
the optimal policy has a specific form, which requires either selling
no shares or the maximum allowed amount of shares at each time
slot. Then, we consider the learning problem, in which the state
transition probabilities are unknown and need to be learned on the
fly. We propose a learning algorithm that exploits the form of the
optimal policy when choosing the amount to trade. Interestingly,
this algorithm achieves bounded regret with respect to the optimal
policy computed based on the complete knowledge of the market
dynamics. Our numerical results on several finance datasets show
that the proposed algorithm performs significantly better than the
traditional Q-learning algorithm by exploiting the structure of the
problem.

Index Terms—Limit order book, Markov decision process, on-
line learning, dynamic programming, bounded regret.

I. INTRODUCTION

O PTIMAL execution of trades is a problem of key
importance for any investment activity [2]–[8]. Once the

decision has been made to sell a certain number of shares
the challenge often lies in how to optimally place this order
in the market. In simple terms, we can formulate the objective
as selling (buying) at the highest (lowest) price possible. Not
only do we want to leave as little a foot-print in the market as
possible, but also to sell (buy) at a price favorable to the order
in question, while ensuring the trade actually gets fulfilled.
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More formally we define the goal as to sell1 a specific number
of shares of a given stock during a fixed time period (round) in
a way that maximizes the revenue, or equivalently, minimizes
the accumulated cost of the trade. This problem is also called
the optimal liquidation problem, and is performed over the limit
order book (LOB) mechanism. In the LOB, the traders can
specify the volume and a limit on the price of shares that they
desire to sell/buy. The selling side is called the ask side and the
buying side is called the bid side. An order in which both volume
and price is defined is called a limit order. The limit orders may
get executed after a while or get canceled by a cancellation
order from the trader who submitted it. The order on one side of
the LOB is executed only if the LOB can match the order with a
previously submitted or a newly arrived order on the other side
of the LOB. Another type of order is the market order where the
trader only defines the volume, and then, the order is executed
against the best available offers on the other side of the LOB. An
LOB also lists the total selling and buying amounts and prices
on bid and ask sizes, respectively. A detailed discussion of the
LOB mechanism can be found in [9].

The optimal liquidation problem in the LOB is considered
in numerous prior works. Among these, [7] and [10] solve this
problem using static optimization approaches or dynamic pro-
gramming, while several other works tackle this problem us-
ing a reinforcement learning approach. Reinforcement learning
based methods consider various definitions of state, such as the
remaining inventory, elapsed time, current spread, signed vol-
ume, etc. Actions are defined either as the volume to trade with a
market order or as a limit order [8], [11], [12]. A hybrid method
is proposed in [8]: firstly, an optimization problem is solved
to define an upper bound on the volume to be traded in each
time slot, using the Almgren Chriss (AC) model proposed in
[7]. Then, a reinforcement learning approach is used to find the
best action, i.e., the volume to trade with a market order, which
is upper bounded by a relative value obtained in the optimiza-
tion problem. Another prior work [12] implements the same
approach with different action and state sets. In all of the above
works, the authors used Q-learning to find the optimal action for
a given state of the system. In [8] and [12] the learning problem
is separated into training and test phases, where the Q-values
are only updated in the training phase, and then, these Q-values
are used in the test phase.

Unlike prior approaches, we use a model-based approach by
considering the problem as an MDP, in which we develop a new
market model, and then, learn the state transition dynamics of
the model in an online manner through real-time execution of
market orders. Specifically, we propose a new market state space

1This problem can generalized to buying problem as well.
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model, which can be decomposed into private and market vari-
ables. The private variable is the inventory level of the available
shares to be sold during the remaining time slots in a round. The
market variable is defined as the difference between the current
bid price and the bid price at the beginning of the current round
scaled down by volatility. Similar to [8], the action in a time
slot is defined as the number of shares to be sold with a market
order.

For this problem, we first deduce the form of the optimal
policy using the mentioned decomposition of the state variables
and dynamic programming. Essentially, we prove that in each
time slot the optimal policy chooses an action from a candidate
action set that contains only two actions. This result allows us
to learn the optimal policy using the reduced action set, which
speeds up both computation and learning. Then, we propose a
learning algorithm, named Greedy exploitation in Limit Order
Book Execution (GLOBE), that uses the estimated state transi-
tion probabilities and the form of the optimal policy to place
orders at each round. To characterize how well GLOBE learns,
we define the notion of regret, which measures the excess cost
incurred by GLOBE compared to an oracle, which knows the
true problem parameters and statistics of the order book, and
computes the optimal policy at each round based on the market
dynamics. Then, we show that the regret of GLOBE is bounded,
which implies that GLOBE learns the optimal policy only af-
ter finitely many rounds. This is different from the results of
prior works in online reinforcement learning, where the regret
is shown to be O(log T ) [13]–[15]. This difference stems from
the fact that GLOBE is able to learn the long-term impact of
each action without the need for selecting that action due to the
specific decomposition of the state space. Finally, we show the
superiority of the proposed algorithm and its modifications over
several variants of Q-learning based algorithms that exist in the
literature.

The contributions of this paper can be summarized as follows:
� We propose a new model for LOB trade execution with

private and market states, and show that the optimal policy
has a special structure that allows efficient learning.

� We propose a new online learning algorithm called
GLOBE that greedily exploits the estimated optimal policy
in each round. Unlike other online reinforcement learning
approaches [13]–[15], this algorithm does not require ex-
plorations to learn the state transition probabilities, and
hence, its regret is bounded.

� We show that GLOBE provides significant performance
improvement over other state-of-the-art learning algo-
rithms designed for LOB in numerous finance datasets.

The rest of the paper is organized as follows. Related work
is covered in Section II. The problem formulation is given
in Section III. The form of the optimal policy is obtained in
Section IV. GLOBE is introduced in Section V, and its re-
gret analysis is carried out in Section VI. Section VII contains
numerical results that involve GLOBE and several other state-
of-the-art algorithms. The conclusion is given in Section VIII.

II. RELATED WORK

A. Limit Order Book

Numerous works are dedicated to modeling the LOB dynam-
ics [16]–[18], while others are concerned with learning to trade
efficiently using either static optimization methods [7], [10]

or reinforcement learning methods [8], [11], [12]. Apart from
these, some other works aim to predict future parameters of the
LOB [4], [19], which can help traders to optimize their trading
strategies for maximizing the long-term gain.

Our work departs from the prior works related to LOB in
two crucial aspects: (i) Similar to prior works, which model the
LOB dynamics as a Markov process [16]–[18], we also model
the LOB dynamics as a Markov process. However, our state
space enjoys a very special decomposition, where each state is
composed of a private state and a market state. This decom-
position allows us to compute the form of the optimal policy
analytically, and also serves as a basis for a computationally
efficient and fast online learning algorithm that learns to trade
optimally. Moreover, our market state model is novel in the
sense that instead of taking the exact price as a state variable,
we take the difference between the current bid price and the
bid price at the beginning of the current round scaled down by
the volatility as the state variable. As justified by our numerical
findings in Section VII, this model stays accurate even when the
price becomes much lower or higher than the usual range of the
price observed in historical data. (ii) To the best of our knowl-
edge, we are the first to define the notion of regret for LOB trade
execution and prove that bounded regret is achievable. As op-
posed to the Q-learning based methods in prior works [8], [12]
which only have asymptotic performance guarantees in terms
of the average reward (or cost) under strict assumptions on the
number of times each state-action pair is observed, our method
comes with finite time performance guarantees on the cumula-
tive reward (or cost). Note that bounded regret is a much stronger
result than average reward optimality, since every policy with
sublinear regret is average reward optimal [20].

B. Reinforcement Learning

Our work is also very closely related to the multi-armed bandit
problem [21] and reinforcement learning problem in MDPs [14],
[15]. Specifically, our model can be viewed as an episodic MDP,
where each round is a new episode.

Numerous works develop reinforcement learning algorithms
with regret bounds. For instance, in [14] and [15], the authors
consider undiscounted reinforcement learning in ergodic MDPs
with unknown state transition probabilities and develop algo-
rithms with O(log T ) regret2 with respect to the optimal pol-
icy. The authors of [22] consider online learning in an MDP
with both Markov and uncontrolled dynamics, and design an
algorithm that achieves O(T 1/2 log T ) regret. Another Markov
model in which the reward function is allowed to arbitrarily
change in every time step is proposed in [23], and a policy that
achieves O(T 3/4) regret with respect to uniformly ergodic class
of stationary policies is developed. In addition, an MDP with de-
terministic state transitions is studied in [24], and [25] and [26]
consider episodic MDPs with fixed and variable lengths, respec-
tively. Apart from these, several other works are concerned with
model-free online learning methods [27], [28]. Another related
work considers the risk-averse multi-armed bandit problem and
provides regret bounds for the mean-variance performance mea-
sure [29].

Almost all of the works mentioned above that come with re-
gret guarantees use the principle of optimism under uncertainty
to choose an action or a policy in each round. This principle

2T is the time horizon.



4628 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 17, SEPTEMBER 1, 2018

TABLE I
COMPARISON OF OUR WORK WITH RELATED WORKS

Fig. 1. Illustration of the trading activity. Each round lasts for 4 minutes and
consists of 4 time slots. The trader receives the initial inventory Wρ at the
beginning of round ρ, which needs to be liquidated by the end of that round.
Thus, at the end of round ρ, the trader always sells aρ

4 shares, which is equal to
the remaining inventory Iρ

4 .

explores rarely-selected actions to decrease the uncertainty over
the long-term rewards of the policies that include these actions.
Essentially, it serves to balance exploitation (selecting actions
according to the estimated optimal policy) and exploration (se-
lecting actions to reduce the uncertainty). As opposed to this
approach, the state decomposition in our work enables us to
decouple the state transition probabilities from the actions. This
allows us to learn the optimal policy by pure exploitation. Since
there is no exploration-exploitation tradeoff in our problem, we
are able to achieve bounded regret. Apart from our work, there
are numerous other settings in which bounded regret is achieved:
(i) the multi-armed bandit problem where the expected rewards
of the arms are related to each other through a global parameter
[31], [32], (ii) a specific class MDPs in which each admissi-
ble policy selects every action with a positive probability [33],
(iii) combinatorial multi-armed bandits with probabilistically
triggered arms, where arm triggering probabilities are strictly
positive [34]. A comparison of our work with the related works
is given in Table I.

III. PROBLEM FORMULATION

In this paper we consider the optimal liquidation problem
in the LOB with unknown market dynamics. We consider an
episodic setting, where at each round ρ the trader must sell a
given number of shares over a fixed number of L time slots using
market orders. In reality, depending on the trading application,
time duration between time slots can be several seconds, minutes
or hours. An illustration of how the trading activity takes places
over time is given in Fig. 1. Since trading is done via market
orders, the revenue from selling aρ

l shares at bid price pb(ρ, l)
in time slot l of round ρ is aρ

l pb(ρ, l). Thus, at the end of
round ρ, the trader receives as the revenue

∑L
l=1 aρ

l pb(ρ, l).
The goal of the trader is to maximize the revenue incurred

over rounds. However, the trader cannot compute the optimal
trading strategy beforehand, since it does not know the market
dynamics, and hence, the future distribution of the bid prices
beforehand. Thus, it needs to maximize its revenue by learning
the market dynamics over time.

In the remainder of this section, we give a formal description
of the problem faced by the trader by defining states, actions,
state transition dynamics, costs, the optimal policy and the regret
of the trader.

A. Notation

We use |A| to denote the cardinality of a set A. The system
operates in rounds indexed by ρ ∈ {1, 2, . . .}. Each round is
composed of L time slots, where L denotes the maximum exe-
cution time. The set of time slots is denoted byL := {1, . . . , L},
and the time slots are indexed by l ∈ L. The current round ends
and a new round begins when the maximum execution time is
reached.

B. States

The system is composed of a finite set of states denoted by
S := I ×M, where I denotes the set of private states and M
denotes the set of market states. In our model, private states are
related to the inventory of the trader, while the market states are
related to the dynamics of the bid price.

1) Private State: I := {0, . . . , Wmax} is the set of inventory
levels, where Wmax is an integer. In addition, the inventory level
of shares at the beginning of each round is between Wmin and
Wmax , where Wmin is an integer such that 0 < Wmin ≤ Wmax .
The private state at time slot l of round ρ is denoted by Iρ

l .
We assume that Iρ

1 = Wρ where Wρ ∈ I is the initial inventory
level at round ρ.

2) Market State: The market states are a set of integers,
denoted by M, that are used to define the dynamics of the
bid price. Let Mρ

l ∈ M be the market state, and pb(ρ, l) be
the bid price in time slot l of round ρ. It is assumed that the
bid price in round ρ evolves according to the following rule:
pb(ρ, l) = pb(ρ, 1) + σρM

ρ
l , where σρ denotes the volatility

(standard deviation) of the returns up to round ρ. Obviously,
Mρ

1 = 0 ∈ M, and all the states in M are assumed to be reach-
able from state 0 in at most L − 1 state transitions. Equivalently,
we can define the market state as the difference between the bid
prices normalized by the volatility:

Mρ
l =

pb(ρ, l) − pb(ρ, 1)
σρ

. (1)

In order to define the return of round ρ, we also need pa(ρ, l),
which is the ask price in time slot l of round ρ. Then, the return is
Ret(ρ) := log(pm (ρ, L)/pm (ρ, 1)), where pm (ρ, l) is the mid
price (the average of bid and ask prices) in time slot l of round ρ.
Hence, the volatility of the returns up to round ρ > 1 is simply
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Fig. 2. Illustration of the relationship between the bid prices, the volatility
and the market states. Each round lasts 4 minutes and consists of 4 time slots.

calculated as

σρ =
(∑ρ−1

j=1[Ret(j) − μρ ]2

ρ − 1

)0.5

(2)

where μρ =
∑ρ−1

j=1 Ret(j)/(ρ − 1) is the mean of the returns up
to round ρ. A sample plot that shows the relation between the
market states and the bid prices is given in Fig. 2. Moreover, we
define the joint state in time slot l of round ρ as Sρ

l := (Iρ
l ,Mρ

l ).
The intuition behind modeling the movement of the bid price

over time as pb(ρ, l) = pb(ρ, 1) + σρM
ρ
l is as follows. First of

all, since movement of the bid price is defined with respect to
the bid price at the beginning of the round, this allows the trader
to use the knowledge from past observations in predicting the
movement of the bid price even when the stock price enters to an
interval which is not observed in the past. For instance, suppose
that the past range of the stock price was [100, 110], and the
current range is [120, 140]. If the stochastic movement of the
bid price was defined based on the absolute stock price, then
the trader could not use its estimates from the training set to
predict the price movement in the current range. Secondly, the
amount of price change depends on the volatility (σρ ), which is
very natural to assume, and has also been used in price mod-
els in previous works [7]. In addition, this market model can
also be extended to the case when the bid price movement de-
pends on the drift (trend of increase or decrease) as shown in
Section VII. Finally, simulation results on real-world datasets
given in Section VII show that GLOBE and its variants, which
use this definition of the market state, outperform algorithms
that use the state definitions proposed in earlier works [8], [12].

C. Actions

Similar to [8], our action set is constructed based on the
AC model [7], which gives an optimal liquidation strategy by
assuming that the stock price follows an arithmetic random walk
with independent increments. In our case, the AC model defines
the maximum number of shares that can be sold in a time slot.
In the following, we provide a description of the AC model.

1) The AC Model: Suppose a trader wants to liquidate W 3

units of a security in L time slots.4 Let wl and Al be the

3The round index is dropped from all variables in this subsection for simplicity
of notation.

4The model proposed in [7] is simplified by taking τ (the length of discrete
time interval) as 1 and tl := lτ as l.

number of units planned to be hold and sold at time slot l ∈ L,
respectively. By definition, we have w1 = W . The sequence of
{w1 , w2 , . . . , wL} is called the trading trajectory, and we have
wl = W −∑l−1

k=1 Ak . Let ζl be independent samples drawn
from a distribution with zero mean and unit variance, g(Al) and
h(Al) be the permanent and temporary price impact functions,
respectively.5 The AC model assumes that the stock price6 fol-
lows an arithmetic random walk with independent increments.
Actually, the effective price per share at time slot l ∈ L − {1}
is modelled as

pb(l) = pb(l − 1) + σζl − g(Al) − h(Al).

where effect of h(·) vanishes in the next time slot.
The cost of trading, called the implementation shortfall (IS)

[35] is given as

IS := Wpb(1) −
L∑

l=1

pb(l)Al

=
L∑

l=1

[g(Al)wl + h(Al)Al ] −
L∑

l=1

σζlwl

whose distribution is Gaussian if ζl are sampled from a Gaussian
distribution. The expected value and the variance of the cost are

E(IS) =
L∑

l=1

[g(Al)wl + h(Al)Al ], Var(IS) = σ2
L∑

l=1

w2
l .

The objective in the AC model is to minimize E(IS) +
λVar(IS) given λ ≥ 0. If λ > 0, then the optimal policy be-
comes risk-averse.7

Let A∗
l denote the optimal volume to be traded at time slot

l ∈ L − {L}. Then, the general solution when g(Al) = γAl and
h(Al) = ηAl is

A∗
l =

2 sinh (κ/2)
sinh(κL)

cosh(κ(L − l + 0.5))W (3)

where

κ = cosh−1(0.5κ̃2 + 1), κ̃2 =
λσ

η − 0.5γ
.

In addition, the general solution under non-linear price impact
functions has been considered in [36].

2) Action Set: The action set of our model is based on the
AC model. We define actions as the amount of shares to be
traded with a market order.8 We assume that the action taken in
time slot l ∈ L − {L} of round ρ cannot be larger than Aρ

l = A∗
l

obtained in (3) for round ρ.9 Thus, the set of possible actions

5Temporary price impact causes temporary shift of the price from its equi-
librium due to our trading strategy which vanishes in the next trading time slot.
Permanent price impact refers to the shift in the equilibrium price due to our
trading strategy which lasts at least up to the end of a round.

6As we consider the liquidation problem, our formulation is given in terms
of the bid price.

7A policy is risk-averse if the trader would like to select actions such that the
variance of the cost does not change much.

8A market order to sell is an order to execute a trade at whatever the best
prevailing bid price which is a limit order with a price limit of zero at that time.

9This choice is made to roughly preserve the risk-awareness of the trader
in the AC model. For instance, if λ > 0, then the strategy is risk-averse and
risk-awareness is maintained if the actions are selected from Aρ

l
.
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to take in time slot l ∈ L − {L} of round ρ is defined as Aρ
l :=

{0, . . . , Aρ
l }. Since Aρ

l and Aρ
l are fixed at the beginning of

round ρ, when the round we refer to is clear from the context,
we will drop superscript ρ, and simply use Al and Al . Due to
using the AC model, we also have

∑L
l=1 Aρ

l = Wρ .
In each round, a sequence of actions is selected with the aim

of maximizing the revenue. Let aρ
l be the action taken at time

slot l in round ρ. For l = L, the only possible action is to sell
the remaining inventory since we require a complete liquidation
at the end of a round. Therefore, we have aρ

L = Iρ
L , ∀ρ ≥ 1.

D. State Transitions

We impose the following assumption on the effect of actions
to the market states.

Assumption 1: It is assumed that the order book is resilient
to the trader’s trading activities.

This assumption holds when the number of shares of a stock
traded by the trader in each round forms only a small fraction
of the total number of shares of the stock being traded in the
market. This implies that the trader’s actions do not influence
the market states during a round, and is also assumed in other
prior works [8], [12]. In practice this means that the market
order should not be larger than the depth of the order book
at the best bid. This is imposed, for instance, in [7] and [8],
which effectively prevents taking large actions (large volume
of transaction). Assumption 1 implies that the market state in
a round evolves independently from the actions selected by the
trader. Hence, the actions only affect the private state, and the
market state is modeled as a Markov chain. Let S ′ := (I ′,M ′)
and S := (I,M). Then, the state transition probability between
time slots l and l + 1 of round ρ can be written as

P (Sρ
l+1 = S ′|Sρ

l = S, aρ
l = a) = P (M,M ′)I(I ′ = I − a),

∀S ∈ S,∀S ′ ∈ S,∀a ∈ Aρ
l ,∀l ∈ L − {L},∀ρ ≥ 1

where I(a = b) is the indicator function which is zero when
a �= b and one when a = b, and P (M,M ′) denotes the proba-
bility that the market state transitions from M to M ′. Also, let
P = {P (M,M ′)}M ∈Mr ,M ′∈M denote the set of state transition
probabilities, where Mr is the set of states that are reachable
from state 0 in at most L − 2 state transitions (Mr ⊂ M).

E. Cost Function

Similar to [8], we calculate implementation shortfall in round
ρ as:

ISρ :=
Wρpr (ρ) −∑L

l=1a
ρ
l pb(ρ, l)

Wρpr (ρ)
(4)

for a sequence of market states (Mρ
1 , . . . ,Mρ

L ), a sequence of ac-
tions (aρ

1 , . . . , a
ρ
L ), an inventory level Wρ such that

∑L
l=1 aρ

l =
Wρ , and a reference price pr (ρ), where the reference price is
set as pr (ρ) := pm (ρ, 1). The objective is to minimize the ac-
cumulated cost in a round, which is equivalent to maximizing
the revenue from the trade in that round. The normalization is
beneficial as the cost value depends on the ratio of volume being
traded at each time slot to the initial inventory level and the ratio
of bid price at each time slot to the reference price. Hence, if
these ratios remain the same, the cost would be the same regard-
less of the exact values of these parameters. This allows us to
fairly compare performances of different algorithms in different

Fig. 3. In each round ρ, the trader first observes the trade vector Xρ . Then,
at each time slot l ∈ L, it updates the private state Iρ

l
, observes the market

state M ρ
l

, and selects aρ
l

based on this observation. Finally, at the end of each
round, the trader calculates the implementation shortfall and updates its trading
strategy.

markets and different rounds, even when the reference prices
and the initial inventories are different.

Next, we decompose the implementation shortfall over time
slots in a round. For this, we first define the bid-ask spread10 in
time slot l of round ρ as Bρ

l := pa(ρ, l) − pb(ρ, l), and the trade
vector of round ρ as Xρ := (Wρ, pr (ρ), σρ , B

ρ
1 ). We assume

that Xρ takes values in a finite set X .11 By using the state
definition and Bρ

1 , (4) can be re-written as

ISρ =
1

Wρpr (ρ)

[
L∑

l=1

aρ
l (pr (ρ) − pb(ρ, l))

]

=
1

Wρpr (ρ)

[
L∑

l=1

aρ
l

(
Bρ

1

2
− Mρ

l σρ

)]

=
L∑

l=1

CXρ
(Mρ

l , aρ
l )

where

CXρ
(Mρ

l , aρ
l ) :=

1
Wρpr (ρ)

[

aρ
l

(
Bρ

1

2
− Mρ

l σρ

)]

is the immediate cost incurred at time slot l of round ρ. Note
that our market state definition allows us to decompose the
implementation shortfall as a function of the market state.

Finally, the observations and the decisions of the trader at
each time slot of a round is shown in Fig. 3.

F. Value Functions and the Optimal Policy

If the state transition probabilities were known in advance,
then, the optimal policy can be computed by dynamic program-
ming. In this subsection, we consider this case to gain insight
on the form of the optimal policy.

A deterministic Markov policy with time budget L specifies
the actions to be taken for each state and trade vector at each
time slot. Let π := (π1 , π2 , . . . , πL ) denote such a policy, where

10We always have pa (ρ, l) ≥ pb (ρ, l).
11X can be taken as finite by quantizing the possible values for the reference

price, volatility and the bid-ask spread.
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πl : S × X → Al . We use πl(Ml, Il ,X) to denote the action
selected by policy π in time slot l when the joint state is (Ml, Il)
in time slot l and the trade vector is X where Ml and Il represent
the market and private variables, respectively. When clear from
the context, we will drop the arguments, and represent the action
selected by the policy in time slot l by πl . Moreover, we replace
Mρ

l and Iρ
l with Ml and Il when the round is clear from the

context. We also let Π denote the set of all deterministic Markov
policies with time budget L. The cost incurred by following
policy π given trade vector X ∈ X is given as

Cπ
X :=

L∑

l=1

CX (Ml, πl(Ml, Il ,X)).

The optimal policy is the one that minimizes the expected cost
(or equivalently, maximizes the expected revenue), and is given
as

π∗(X) := arg min
π∈Π

E[Cπ
X ]

where the expectation is taken over the randomness of the market
states. The expected cost of the optimal policy given the trade
vector X is denoted by μ∗(X).

Let V ∗
l (M, I,X) denote the expected cost (V-value) of policy

π∗(X) starting from joint state (M, I) at time slot l given X .
The Bellman optimality equations [37], [38] are given below:
∀M ∈ Mr , ∀I ∈ I, ∀X ∈ X , ∀l ∈ L − {L},

Q∗
l (M, I,X, a)

:= CX (M,a) + E[V ∗
l+1(M

′, I − a,X)|M ]

= CX (M,a) +
∑

M ′∈M
P (M,M ′)V ∗

l+1(M
′, I − a,X) (5)

V ∗
l (M, I,X)=mina∈Al

Q∗
l (M, I,X, a), ∀l ∈ L − {L}. Then,

the optimal actions can be computed as π∗
l (M, I,X) =

arg mina∈Al
Q∗

l (M, I,X, a), ∀l ∈ L − {L}. Note that the Q-
values are not defined when l = L, and we have V ∗

L (M, I,X) =
CX (M, I) and π∗

L (M, I,X) = I . The optimal policy can be
computed by solving these equations backward from time
slot L down to 1. In addition, for all policy π ∈ Π, we use
Qπ

l (M, I,X, a) and V π
l+1(M, I,X) to denote the Q-value and

the V-value of the policy given the trade vector X and the joint
state (M, I), respectively. Hence, we have

V π
l (Ml, Il ,X)

:= E

[
L−l∑

k=0

CX (Ml+k , πl+k (Ml+k , Il+k ,X))
∣
∣
∣
∣Ml

]

(6)

which is the value of policy π at time slot l given the triplet
(Ml, Il ,X).

G. Learning and the Regret

We assume that the trader does not know the state transition
probabilities of the market Markov chain. Hence, these parame-
ters should be learned and updated online. In round ρ, the trader
selects actions based on the estimated optimal policy, denoted
by π̂ρ , which is calculated based on the estimated transition
probabilities, the estimated value functions and the trade vec-
tor (denoted by Xρ ) at the beginning of the round. The loss of
the trader in terms of the total expected cost with respect to

an oracle, who knows the state transition probabilities and acts
optimally at every round, is defined as the regret. The regret
by round R given a sequence of trade vectors (X1 , . . . , XR ) is
defined as

Reg(R) :=
R∑

ρ=1

(
E
[
C

π̂ρ

Xρ

]
− μ∗(Xρ)

)
. (7)

When the regret grows sublinearly over rounds, the average per-
formance of the trader converges to the performance of the op-
timal policy as R → ∞. Moreover, when the regret is bounded,
then, one can show that the trader only takes a finite number
of suboptimal actions as R → ∞. Therefore, in the latter case,
the trader places all of the market orders optimally only after
finitely many rounds. In Section VI, we prove that the expected
regret of GLOBE is bounded.

IV. FORM OF THE OPTIMAL POLICY

In this section, we show that the optimal policy takes a simple
form, which reduces the set of candidates for the optimal action
in each time slot to two. Before we discuss the theorem which
gives the form of the optimal policy, we decompose the cost
function as follows: CX (M,a) = agX (M) where gX (M) :=
(B/2 − Mσ)/(prW ) for X = (W,pr , σ,B).

Theorem 1: Given the LOB model defined in Section III, the
optimal action at each time slot is

π∗
l =

{
0 if gX (Ml) > E[gX (ML )|Ml ]
Al if gX (Ml) ≤ E[gX (ML )|Ml ]

,∀l ∈ L − {L}

and π∗
L = IL .

Proof: See Appendix A. �
The theorem above shows that the optimal action at each time

slot depends on the current market state and the distribution of
the market state at the final time slot given the current state. The
trader may decide to sell all of the available limit at the current
time slot or hold the shares up to the final time slot. The intuitive
reason behind this result is that we have a linear cost function in
a and gX (M). If the expected market state in the final time slot
is greater than the current market state, we desire to wait and
sell the maximum allowed amount of shares to sell in the current
time slot in the final time slot. The reason for this is that, the final
time slot is the only time slot where we can sell more than the
pre-defined limit. Thus, the set of candidate optimal actions is
given as A∗

l := {0, Al}, ∀l ∈ L − {L}. Therefore, the learning
problem reduces to learning the best of these two actions in
each time slot. This reduces the number of candidate optimal
policies from |A1 | × · · · × |AL−1 | to 2L−1 . We denote the set
of all candidate optimal policies by Πopt. Finally, it is important
to note that Πopt can differ between rounds.

V. THE LEARNING ALGORITHM

In this section, we propose the learning algorithm for the
trader that selects actions by learning the state transition prob-
abilities and exploiting the form of the optimal policy given
in the previous section. This algorithm is named as Greedy
exploitation in Limit Order Book Execution (GLOBE) and its
pseudo-code is given in Algorithm 1.
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Algorithm 1: GLOBE.
1: Input: L, M, Mr

2: Initialize: ρ = 1, N(M) = 0, N(M,M ′) = 0, ∀M
∈ Mr , ∀M ′ ∈ M

3: while ρ > 1 do
4: P̂ρ(M,M ′) = N (M,M ′)+I(N (M )=0)

N (M )+ |M|I(N (M )=0)
5: Update σρ in the AC model based on the past

observations
6: Observe Xρ = (Wρ, pr (ρ), σρ , B

ρ
1 )

7: Compute Al based on the AC model [7], ∀l ∈ L
8: Compute the estimated optimal policy by dynamic

programming using the action set A∗
l , ∀l ∈ L − {L}

and P̂ρ(M,M ′), ∀M ∈ Mr , ∀M ′ ∈ M
9: Iρ

1 = Wρ , l = 1
10: while l < L do
11: Observe Mρ

l , sell aρ
l ∈ A∗

l using the estimated
optimal policy

12: Calculate CXρ
(Mρ

l , aρ
l )

13: Iρ
l+1 = Iρ

l − aρ
l

14: l = l + 1
15: end while
16: aρ

L = Iρ
L

17: ρ = ρ + 1
18: Update N(M,M ′) and N(M), ∀M ∈ Mr ,

∀M ′ ∈ M according to (8) and (9)
19: end while

GLOBE takes as input L, M and Mr .12 In addition, it keeps
the following counters: N(M,M ′), which denotes the number
of occurrences of a state transition from market state M to M ′,
and N(M), which denotes the number of times market state M
is visited before the final time slot by the beginning of the current
round. We use Nρ(M,M ′) and Nρ(M) to denote the values of
these counters at the beginning of round ρ. Using these, GLOBE
calculates an estimate of the transition probability from state M

to M ′ used in round ρ, which is denoted by P̂ρ(M,M ′). Thus,
we have ∀M ∈ Mr and ∀M ′ ∈ M

Nρ(M,M ′) =
ρ−1∑

ρ ′=1

L−1∑

l=1

I(Ml
ρ ′ = M)I(Ml+1

ρ ′ = M ′), (8)

Nρ(M) =
∑

M ′∈M
Nρ(M,M ′),

P̂ρ(M,M ′) =
Nρ(M,M ′) + I(Nρ(M) = 0)
Nρ(M) + |M|I(Nρ(M) = 0)

. (9)

At the beginning of round ρ GLOBE first updates the volatil-
ity σρ based on (2). Alternatively, one may also use the tech-
niques proposed in [39], [40] for volatility estimation. Then, it
uses the AC model to obtain the maximum number of shares
to sell in each time slot, i.e., Al , and implements dynamic
programming with action set A∗

l , obtained from Theorem 1,
instead of Al , l ∈ L − {L} and set of transition probabilities
{P̂ρ(M,M ′)}M ∈Mr ,M ′∈M to find the estimated optimal policy,

12In practice, M and Mr can be easily computed from historical data since
the market state measures price movement relative to the reference price at
the beginning of a round. Therefore, in the numerical analysis in Section VII,
GLOBE runs by using estimated M and Mr sets computed using historical
data.

and follows that policy during the round to sell the shares. The
above procedure repeats in each round.

As an alternative, GLOBE can also use the rule given in
Theorem 1 to decide on whether to sell Al or 0 in time slot l of
round ρ, by finding the expected market state in the final time
slot of that round using P̂ρ(M,M ′) values, and then comparing
gXρ

(Mρ
l ) and EP̂ρ

[gXρ
(ML )|Mρ

l ]. However, the computational
complexity of this method is greater than that of dynamic pro-
gramming that uses the reduced action set.

Remark 1: The number of multiplications for calculating
the expectation given in Theorem 1 for all time slots is
O(L|M|2.374) using algorithms optimized for matrix multi-
plication [41]. On the other hand, dynamic programming with
reduced action set requires O(L|M|2) multiplications when
computing the optimal policy.

VI. REGRET ANALYSIS

In this section, we upper bound the regret of GLOBE defined
in (7). Before delving into the details, we state a lemma, which
gives an explicit formula for the maximum possible estimation
error in the state transition probabilities (denoted by δ) such
that the estimated optimal policy is the same as the true optimal
policy.

Recall that we have

Qπ
l (M, I,X, a) =

CX (M,a) +
∑

M ′∈M
P (M,M ′)V π

l+1(M
′, I − a,X)

∀M ∈ Mr , ∀I ∈ I, ∀X ∈ X , ∀a ∈ Al , ∀l ∈ L − {L}, ∀π ∈
Πopt. We do not need to calculate Qπ

l (M, I,X, a) for M /∈ Mr

as these states are never observed in the first L − 1 time slots of
a round.

The estimate of Qπ
l (M, I,X, a) in round ρ is given as

Q̂π
l,ρ(M, I,X, a)

:= CX (M,a) +
∑

M ′∈M
P̂ρ(M,M ′)V̂ π

l+1,ρ(M
′, I − a,X)

∀M ∈ Mr , ∀I ∈ I, ∀X ∈ X , ∀a ∈ Al , ∀l ∈ L − {L}, ∀π ∈
Πopt where V̂ π

l,ρ(M, I,X) is the estimated V-value of policy π in
joint state (M, I) given the trade vector X in time slot l of round
ρ. In order to bound the regret, we need to analyze the distance
between Qπ

l (M, I,X, a) and Q̂π
l,ρ(M, I,X, a). As a first step,

we derive the form of Qπ
l (M, I,X, a) as a function of the state

transition probabilities. In order to simplify the notation, in the
next two lemmas, we use P̂ (M,M ′) instead of P̂ρ(M,M ′),
when the round is clear from the context.

Let POL(Z0:y , x) be a yth order polynomial function of
the variable x with the coefficients Z0:y := (Zy , Zy−1 , . . . , Z0)
where Zi , i ∈ {0, . . . , y} is the coefficient that multiplies xi .

Lemma 1: For all π ∈ Πopt, Qπ
l (M, I,X, a) is a polyno-

mial function of P (M̃, M̃ ′), ∀M̃ ∈ Mr and ∀M̃ ′ ∈ M where
the order is at most L − l. Let Zπ,i

M̃ ,M̃ ′(M, I,X, a, l) and

Zπ,0:L−l

M̃ ,M̃ ′ (M, I,X, a, l) be the coefficient of (P (M̃, M̃ ′))i and

the set of all coefficients of the powers of P (M̃, M̃ ′) in
Qπ

l (M, I,X, a), respectively. Hence, we have

Qπ
l (M, I,X, a) = POL(Zπ,0:L−l

M̃ ,M̃ ′ (M, I,X, a, l), P (M̃ , M̃ ′))
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∀π ∈ Πopt, ∀M ∈ Mr , ∀I ∈ I, ∀X ∈ X , ∀a ∈ Al , ∀l ∈ L −
{L}, ∀M̃ ∈ Mr and ∀M̃ ′ ∈ M.

Proof: See Appendix B. �
In the following lemma, we derive the relation between

the error in the estimated transition probabilities and the er-
ror in the estimated Q-values. Given a set of feasible actions
A1 , . . . ,AL−1 , let Q̂π

l (Ml, Il ,X, al) be the estimated value of
Qπ

l (Ml, Il ,X, al) when P̂ (M,M ′) has been used instead of
P (M,M ′), ∀M ∈ Mr and ∀M ′ ∈ M.

Lemma 2: Consider a set of feasible actions A1 , . . . ,AL−1
computed by the AC model. Let Nr := |M||Mr |, λ be any
value in (0, 1),

H := sup
π∈Πopt,I ,X,a,l,M̃ ∈Mr ,M ∈Mr ,M ′∈M,P∈P

L∑

i=1

i|Zπ,i
M ,M ′(M̃, I,X, a, l)|

where P denotes the set of all state transition probability matri-
ces where only the state transition probabilities from Mr to M
are allowed to be non-zero and γ := λ/(NrH). If

|P (M,M ′) − P̂ (M,M ′)| ≤ γ, ∀M ∈ Mr ,∀M ′ ∈ M
then we have

|Qπ
l (Ml, Il ,X, al) − Q̂π

l (Ml, Il ,X, al)| ≤ λ

∀π ∈ Πopt, ∀Ml ∈ Mr , ∀Il ∈ I, ∀X ∈ X , ∀al ∈ Al , ∀l ∈ L −
{L}.

Proof: See Appendix C. �
Let Δπ

X := E [Cπ
X ] − μ∗(X) denote the suboptimality gap of

policy π given trader vector X , and

Πsub
X := {π ∈ Πopt : Δπ

X > 0}
denote the set of suboptimal policies (among the set of candidate
optimal policies) given trade vector X . Let

Δmax := max
X∈X ,π∈Π sub

X

Δπ
X

Δmin := min
X∈X ,π∈Π sub

X

Δπ
X

be the maximum and the minimum suboptimality gaps, which
upper bound and lower bound the expected regret of a round in
which a suboptimal policy is chosen, respectively.

From Lemma 2 and the fact that V π
l (Mρ

l , Iρ
l ,Xρ) =

Qπ
l (Mρ

l , Iρ
l ,Xρ,πl(M

ρ
l , Iρ

l ,Xρ)), it is straightforward to see
that if |P (M,M ′) − P̂ρ(M,M ′)| ≤ λ/(NrH) for all M ∈
Mr and all M ′ ∈ M, then we have ∀π ∈ Πopt,∀Mρ

l ∈
Mr ,∀Iρ

l ∈ I,∀Xρ ∈ X ,∀l ∈ L − {L},∀ρ ≥ 1:

|V π
l (Mρ

l , Iρ
l ,Xρ) − V̂ π

l,ρ(M
ρ
l , Iρ

l ,Xρ)| ≤ λ. (10)

Moreover, if (10) holds, then by the result in Appendix D, we
have

|V ∗
l (Mρ

l , Iρ
l ,Xρ) − V

π̂ρ

l,ρ (Mρ
l , Iρ

l ,Xρ)| ≤ 2λ.

From (6) we know that

E
[
Cπ

Xρ

]
= E

[
L∑

l=1

CXρ
(Mρ

l , πl(M
ρ
l , Iρ

l ,Xρ))

]

= V π
1,ρ(M

ρ
1 , Iρ

1 ,Xρ)

where Mρ
1 = 0 and Iρ

1 = Wρ . Hence, if (10) holds, then we
have

|μ∗(Xρ) − E
[
C

π̂ρ

Xρ

]
| ≤ 2λ.

Let δ := Δmin/(3NrH). Based on the discussion above, if

|P (M,M ′) − P̂ρ(M,M ′)| ≤ δ,∀M ∈ Mr ,∀M ′ ∈ M (11)

then we have

|μ∗(Xρ) − E
[
C

π̂ρ

Xρ

]
| < Δmin .

Let

Oρ := {π̂ρ /∈ Πsub
Xρ

}
be the event of selecting an optimal policy in round ρ. Thus, if
(11) holds, we have π̂ρ /∈ Πsub

Xρ
. This implies that

⋂

M ∈Mr ,M ′∈M
{|P (M,M ′) − P̂ρ(M,M ′)| ≤ δ} ⊂ Oρ.

Using the statement above, we also obtain

OC
ρ ⊂

⋃

M ∈Mr ,M ′∈M
{|P (M,M ′) − P̂ρ(M,M ′)| ≥ δ}.

Let M0 := {(M,M ′) : M ∈ Mr ,M ′ ∈ M, P (M,M ′) =
0}. For all (M,M ′) ∈ M0 , if Nρ(M) > 0, then we have
P̂ρ(M,M ′) = Pρ(M,M ′) = 0 which means that the estima-
tion error is zero. Then, by using the union bound and the
definition of Oρ , we can divide the sum in (7) into two parts as
follows:

E[Reg(R)] ≤ E

[
R∑

ρ=1

I(OC
ρ )

]

Δmax =
R∑

ρ=1

E
[
I(OC

ρ )
]
Δmax

≤
R∑

ρ=1

∑

(M,M ′)/∈M0

P
(
|P (M,M ′) − P̂ρ(M,M ′)| ≥ δ

)
Δmax

+
R∑

ρ=1

∑

(M,M ′)∈M0

P
(
|P (M,M ′) − P̂ρ(M,M ′)| ≥ δ

)
Δmax .

(12)

Thus, all we need is to bound the convergence rate of the esti-
mated state transition probabilities to the true values.

We proceed by showing that for M ∈ Mr , Nρ(M) is not
smaller than a linear function of ρ, with a very high probability
for large ρ. To show this, let

ε := min
M ∈Mr

P (∪L−1
l=1 {Ml = M})

be a lower bound on the probability that state M is observed in
the first L − 1 time slots of a round. Since M ∈ Mr , we have
ε > 0.

Lemma 3: For all M ∈ Mr

P (Nρ+1(M) ≤ 0.5ερ) ≤ 1
ρ2 for ρ ≥ ρ′

where ρ′ is the smallest integer such that log ρ/ρ ≤ 0.25ε2 for
all ρ ≥ ρ′.

Proof: See Appendix E. �
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Lemma 3 will be used to show that the estimated state tran-
sition probabilities for (M,M ′) /∈ M0 are close to their true
values for ρ ≥ ρ′. Below, we povide an upper bound on ρ′ in
terms of ε.

Lemma 4: ρ′ ≤ 1 + (12/(εe))3 .
Proof: Let B1(ρ) := 0.5ερ −√

ρ log ρ, B2(ρ) := 0.5ερ −√
ρ log ρ. By definition, ρ′ > 1 is the smallest round in which

B1(ρ) ≥ 0 for all ρ ≥ ρ′. Let ρ∗ be the largest solution of
B2(ρ) = 0. Next, we show that ρ∗ + 1 ≥ ρ′. For ρ ≥ 3, we
have

√
log ρ ≤ log ρ, and hence,

√
ρ log ρ ≤ √

ρ log ρ, which
implies that B1(ρ) ≥ B2(ρ).

Since ρ∗ is the largest solution to B2(ρ) = 0, we have
B2(ρ) > 0 for ρ > ρ∗, which also implies that B1(ρ) > 0 for
ρ > ρ∗. Therefore, we must have ρ∗ + 1 ≥ ρ′. Next, we will
find an upper bound on ρ∗. B2(ρ∗) = 0 implies that 0.5ερ∗ =√

ρ∗ log ρ∗ ⇒ ρ∗ = (2/ε)
√

ρ∗ log ρ∗. Then, according to Part B
of Appendix G (by setting x = ρ∗, v = 0.5 and a3 = 2/ε), we
obtain ρ∗≤(12/(εe))3 . Thus, we have ρ′ ≤1+ (12/(εe))3 . �

The following lemma bounds the deviation of the estimated
state transition probabilities from the true state transition prob-
abilities for (M,M ′) ∈ M0 .

Lemma 5: For all (M,M ′) ∈ M0

P (|P̂ρ(M,M ′) − P (M,M ′)| ≥ δ) ≤ (1 − ε)ρ−1 .

Proof: For all (M,M ′) ∈ M0 , we have

P (|P̂ρ(M,M ′) − P (M,M ′)| ≥ δ)

≤ P (|P̂ρ(M,M ′) − P (M,M ′)| > 0)

= P (Nρ(M) = 0) ≤ (1 − ε)ρ−1 .

�
Finally, we combine the results of (12), Lemmas 3, 4 and 5

to bound the expected regret in the following theorem.
Theorem 2: The expected regret of GLOBE by round R is

bounded by

E[Reg(R)] ≤
(

ρ′ +
9Nr

εδ2

)

Δmax

≤
(

1 +
(

12
εe

)3

+
9Nr

εδ2

)

Δmax

where ρ′ is the smallest value such that log ρ/ρ ≤ 0.25ε2 for all
ρ ≥ ρ′, and the second inequality follows from Lemma 4.

Proof: See Appendix F. �
Theorem 2 shows that the expected regret of GLOBE is

bounded, i.e., E[Reg(R)] = O(1). Moreover, the expected re-
gret is inversely proportional to ε and δ, since GLOBE needs
more accurate estimations of state transition probabilities in
order to select the optimal policy when ε or δ is small.

Since regret of GLOBE is bounded, GLOBE selects a subop-
timal action or policy only in finitely many rounds with proba-
bility one.

Corollary 1: P (OC
ρ occurs infinitely often) = 0.

Proof: From Theorem 2, we have
∑∞

ρ=1 P (OC
ρ ) < ∞ The

result follows from the Borel-Cantelli lemma. �

VII. ILLUSTRATIVE RESULTS

A. Simulation Setup

We consider six order book datasets: Apple, Amazon, Google,
Intel-com and Microsoft shares traded in NASDAQ, which
are abbreviated as AAPL, AMZN, GOOG, INTC and MSFT,

respectively13 and Eurodollar short term interest rate (STIR)
future contract traded in Chicago Mercantile Exchange (CME).
The time horizon of the first five datasets is approximately 6
hours and 30 minutes and for the last dataset, it is approximately
90 hours and 45 minutes. Among all information available in
the datasets, we use the market bid/ask prices and bid/ask vol-
umes over time. More information on these datasets is given in
Appendix H.

The trader wants to sell Wρ number of shares in round ρ at the
best price using market orders. We obtain the market state from
the real-world bid price as follows. By using (1), we find the
market state in time slot l of round ρ as M , where M satisfies

∣
∣
∣
∣M − pb(ρ, l) − pb(ρ, 1)

σρ

∣
∣
∣
∣ ≤ 0.5.

The number of states varies from dataset to dataset based on the
volatility scale. To reduce the number of market states, we use
a scale factor K, where instead of σρ we use Kσρ in the market
state definition and the above inequalities. Tuning of the hyper-
parameter K as well as tuning of the other hyper-parameters are
done via validation (see Section VII-D).

We define Mr (ρ) and M(ρ) as the set of states which belong
toMr andM and have been observed by the beginning of round
ρ, respectively. After each round, these sets are updated. For
instance, let Mρ be the set of states observed in round ρ. Then,
we have M(ρ + 1) = M(ρ) ∪Mρ . A similar update rule also
applies to Mr (ρ). Note that Mr (ρ) and M(ρ) will converge to
Mr and M as the number of rounds increase.

Next, we continue by explaining the remaining simulation
parameters. Each data instance for each time slot is created
by taking the average of the mid/bid/ask prices for every
10 second interval. Then, the dataset is divided into rounds,
where each round consists of L = 4 consecutive time slots.
The initial inventory level of each round is drawn uniformly at
random from [10, 50]. The volatility parameter used in the AC
model is updated online.

Furthermore, similar to [8], the permanent price impact pa-
rameter is set to 0, and the temporary price impact parameter
is updated online according to [7]. Although one can specify
a fixed value of λ in the AC model, we decided to tune this
parameter for each algorithm separately.

B. Algorithms

Next, we describe the algorithms that we compare GLOBE
against:14

1) EQ: In this method, the shares are equally15 divided
among the time slots. Hence, at each time slot of round ρ,
the trader sells �Wρ/L� [10], except the final time slot where
the remaining inventory is sold. EQ does not have any hyper-
parameter.

2) AC: This policy is defined in [7] and discussed in
Section III-C1. Different from [7], the volatility and tempo-
rary price impact parameters are updated after each round. In
addition, the suggested number of shares to be sold in each time
slot is rounded to an integer value. The remaining inventory
is sold in the final time slot. For AC, the penalty (λ) is the
hyper-parameter.

13See https://lobsterdata.com/info/DataSamples.php.
14The results of all of the Q-learning based methods are averaged over 50

runs.
15The abbreviation EQ comes from EQual.
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3) Q-Exp: This is a Q-learning method, which uses the state
set defined in [8] and the action set defined in our paper. It
uses the ε-greedy policy [28] which explores with probabil-
ity pexp and exploits with probability 1 − pexp. In this method,
the set of market states is the combination of bid-ask spread
and bid volumes as proposed by [8]. The number of market
states, denoted by NQ , pexp and λ are the hyper-parameters
of Q-Exp.

4) Q-Mat: This is a variant of the method proposed in [8],
which uses the state set defined in [8] and the action set defined
in our paper. This method uses a training set to calculate the
Q-values, and builds a Q-matrix for all combinations of market
states (bid-ask spread and traded volume), inventory states, ac-
tions and time slots. Then, it uses this Q-matrix on the test set.
The hyper-parameters of Q-Mat are NQ and λ.

5) GLOBE: GLOBE is given in Algorithm 1. The hyper-
parameters of GLOBE are K and λ.

6) C-GLOBE: This is the contextual version of GLOBE. C-
GLOBE takes the drift (trend of increase or decrease in the bid
price) as the context. The drift in round ρ is denoted by dρ , and
is calculated based on a window of past instances Kw as follows
for ρ > 1:

μd
ρ =

∑ρ−1
j=max{1,ρ−Kw } Ret(j)

min{Kw , ρ − 1} ,

dρ =

(∑ρ−1
j=max{1,ρ−Kw }[Ret(j) − μd

ρ ]
2

min{Kw , ρ − 1}

)0.5

.

The context set is divided into two parts: a part in which the drift
is negative and another part in which the drift is nonnegative.
Then, two different instances of GLOBE are run for the two
parts of the context set. First, C-GLOBE calculates the drift in
the current round and determines whether it is negative or not.
Then, it chooses the instance of GLOBE to run based on the
value of the drift. This way, the algorithm keeps two different
sets of state transition probability estimates: one for negative
drift and one for nonnegative drift. The hyper-parameters of
C-GLOBE are Kw , λ and K.

7) Extended Versions: Here, we introduce Q-Exp+, Q-Mat+,
GLOBE+, C-GLOBE+, which are variants of Q-Exp, Q-Mat,
GLOBE and C-GLOBE respectively, whose action sets in time
slot l are {0, 1, . . . , 2Al} instead of {0, 1, . . . , Al}. Such a modi-
fication allows exploration of a larger set actions, and is adopted
from [8]. Since the action sets of GLOBE+ and C-GLOBE+
are different from GLOBE and C-GLOBE, Theorem 1 does not
hold, and thus, we use dynamic programming with action set
{0, 1, . . . , 2Al} for these algorithms. The hyper-parameters of
the extended versions are the same as the hyper-parameters of
the original algorithms.

C. Performance Measure

For each method, we calculate the Averaged Cost Per Round
(ACPR), which is given as ACPRR = 1

R

∑R
ρ=1 ISρ to measure

the performance for R rounds. Then, we compare ACPRR of
each method (alg) against AC starting from the first round in the
test set, using a performance metric similar to the one used in
[19], which we call the Relative Improvement per round (RI),

TABLE II
SET OF HYPER-PARAMETERS

Fig. 4. Steps of the validation procedure.

given as

RIR (alg) :=
ACPRR (AC) − ACPRR (alg)

|ACPRR (AC)| × 100.

If an algorithm outperforms (under-performs) AC, then its RI
is positive (negative). The reason behind comparing with AC
arises from the fact that the action set of all algorithms (except
EQ) are built based on the AC model.

D. Hyper-Parameter Selection via Validation

In order to tune the hyper-parameters of the algorithms, we
divide each dataset into three blocks without disrupting chrono-
logical order of the events: A training block that contains either
20%, 40% or 60% of the samples, a validation block that con-
tains 20% of the samples and a test block that contains 20%
of the samples, respectively. Then, the algorithms are trained
on the training block for all hyper-parameter values listed in
Table II, and the best hyper-parameter values are chosen as the
ones which give the lowest ACPR on the validation block. Then,
the performances are reported on the test block. This procedure
is done three times for three different test blocks as illustrated
in Fig. 4. The size of training block increases in each step as
more samples are observed. In addition, the hyper-parameters
are adjusted dynamically at each step, which is consistent with
the online nature of the data. We would also like to note that
unlike Q-MAT and Q-MAT+, which learn only over the training
set, all versions of GLOBE and Q-EXP continue learning over
the validation and test sets.

E. Simulation Results

In Table III we report the average RI of all algorithms on
the three test blocks in Fig. 4. The ACPR of the algorithms are
reported in Table V in Appendix I. We observe that GLOBE and
its variants (C-GLOBE, GLOBE+, C-GLOBE+) outperform Q-
learning-based methods (Q-MAT, Q-EXP, Q-MAT+, Q-EXP+)
in all of the datasets. Specifically, GLOBE (GLOBE+) and C-
GLOBE (C-GLOBE+) have better performance than Q-MAT
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TABLE III
RI AND SD OF IMPLEMENTATION SHORTFALL OF ALL ALGORITHMS AT THE END OF THE TIME HORIZON WITH RESPECT TO THE AC MODEL CALCULATED OVER

THE TEST SETS. ALL SD VALUES ARE MULTIPLIED BY 104 . THE BEST TWO ARE SHOWN IN BOLD

(Q-MAT+) and Q-EXP (Q-EXP+) in general. We think that the
market state model proposed in this paper allows GLOBE and
its variants to learn faster than the Q-learning based methods.

In addition, the standard deviation (SD) of the implementa-
tion shortfall calculated over the test sets for AC algorithm is
usually among the best ones. This is expected since the penalty
term of the AC model is tuned to be positive, which makes it
risk-averse. Also, the standard deviations of the cost incurred
during the test rounds for GLOBE (GLOBE+) and C-GLOBE
(C-GLOBE+) are almost always better than Q-EXP (Q-EXP+)
and Q-MAT (Q-MAT+). The RI of the Q-learning based meth-
ods are better in EDC dataset than the other datasets due to the
fact that this dataset contains a higher number of samples than
the others. However, GLOBE+ and C-GLOBE+ still outperform
Q-MAT+ and Q-EXP+. In essence, based on both RI and SD,
under the same action set, GLOBE and its variants perform bet-
ter than the Q-learning based methods. This result shows that the
good performance of our proposed methods hold with a higher
confidence (lower risk) than the other learning methods.

VIII. CONCLUSION

In this paper, we proposed an online learning algorithm for
trade execution in LOB. We modeled this problem as an MDP
using a novel market state definition, and derived the form of
the optimal policy for this MDP. Then, we developed a learning
algorithm that learns to trade optimally using the state transi-
tion probability estimates, and proved that it achieves bounded
regret. We also showed that our method outperforms its com-
petitors in numerous finance datasets. As a future work, we will
investigate the performance of GLOBE on other datasets with
other types of stocks.

APPENDIX A
PROOF OF THEOREM 1

Using the tower property of the conditional expectation and
(6), we obtain

E[V π
l (Ml, Il ,X)|Ml−1 ]

= E

[

E

[
L−l∑

k=0

CX (Ml+k , πl+k (Ml+k , Il+k ,X))
∣
∣
∣
∣Ml

] ∣
∣
∣
∣Ml−1

]

=
L−l∑

k=0

E

[

E

[

CX (Ml+k , πl+k (Ml+k , Il+k ,X))
∣
∣
∣
∣Ml

] ∣
∣
∣
∣Ml−1

]

=
L−l∑

k=0

E[CX (Ml+k , πl+k (Ml+k , Il+k ,X))|Ml−1 ].

We use backward induction to prove the theorem. Induction
basis consists of time slots L, L − 1 and L − 2.

Induction basis:
Since all shares must be sold by the end of a round, in time

slot L, the trader must sell all remaining shares IL . Hence,
we have π∗

L = IL . We also have E [V ∗
L (ML, IL ,X)|ML−1 ] =

E [CX (ML, IL )|ML−1 ] = E [ILgX (ML )|ML−1 ]. Thus, for
π∗

L−1 , we have

π∗
L−1(ML−1 , IL−1 ,X)

= arg min
a∈AL −1

{CX (ML−1 , a)

+ E[V ∗
L (ML, IL−1 − a,X)|ML−1 ]}

= arg min
a∈AL −1

{CX (ML−1 , a) + E [CX (ML, IL−1 − a)|ML−1 ]}

= arg min
a∈AL −1

{agX (ML−1) + E[(IL−1 − a)gX (ML )|ML−1 ]}

= arg min
a∈AL −1

{agX (ML−1) + E[−agX (ML )|ML−1 ]}

= arg min
a∈AL −1

{a (gX (ML−1) − E[gX (ML )|ML−1 ])}.

Hence,

{
gX (ML−1) > E[gX (ML )|ML−1 ] ⇒ π∗

L−1 = 0

gX (ML−1) ≤ E[gX (ML )|ML−1 ] ⇒ π∗
L−1 = AL−1

⇒ π∗
L−1 ∈ {0, AL−1}. (13)
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We also have

π∗
L−2(ML−2 , IL−2 ,X)

= arg min
a∈AL −2

{CX (ML−2 , a)

+ E[V ∗
L−1(ML−1 , IL−2 − a,X)|ML−2 ]

}

= arg min
a∈AL −2

{CX (ML−2 , a)

+ E[π∗
L−1(ML−1 , IL−2 − a,X)gX (ML−1)|ML−2 ]

+ E[π∗
LgX (ML )|ML−2 ]}

= arg min
a∈AL −2

{CX (ML−2 , a)

+ E[π∗
L−1(ML−1 , IL−2 − a,X)gX (ML−1)|ML−2 ]

+ E[(IL−2 − a − π∗
L−1(ML−1 , IL−2 − a,X))gX(ML)|ML−2 ]

}
.

From (13), we know that π∗
L−1 only depends on the market

statistics. It does not depend on the inventory level, and hence,
the action selected in time slot L − 2. Therefore, we have

π∗
L−2(ML−2 , IL−2 ,X)

= arg min
a∈AL −2

{agX (ML−2) + E[−agX (ML )|ML−2 ]}

= arg min
a∈AL −2

{a(gX (ML−2) − E[gX (ML )|ML−2 ])}.

Thus,
{

gX (ML−2) > E[gX (ML )|ML−2 ] ⇒ π∗
L−2 = 0

gX (ML−2) ≤ E[gX (ML )|ML−2 ] ⇒ π∗
L−2 = AL−2

⇒ π∗
L−2 ∈ {0, AL−2}.

Induction step:
Fix l∈{1, . . . , L−3}. We will prove that if π∗

l+k ∈{0, Al+k},
∀k ∈ {1, . . . , L − l − 1}, where π∗

l+k ’s only depend on the mar-
ket statistics, then π∗

l ∈ {0, Al}. We have

π∗
l (Ml, Il ,X)

= arg min
a∈Al

{CX (Ml, a) + E[V ∗
l+1(Ml+1 , Il+1 ,X)|Ml ]}

= arg min
a∈Al

{

CX (Ml, a)

+
L−l∑

k=1

E[CX (Ml+k , π∗
l+k (Ml+k , Il+k ,X))|Ml ]

}

= arg min
a∈Al

{

agX (Ml) +
L−l−1∑

k=1

E[π∗
l+k gX (Ml+k )|Ml ]

+E

[(

Il − a −
L−l−1∑

k=1

π∗
l+k

)

gX (ML )
∣
∣
∣
∣Ml

]}

.

Since by the induction assumption π∗
l+k , k ∈ {1, . . . , L − l −

1} only depends on the market statistics, they are all independent

from a. Therefore, we have

π∗
l (Ml, Il ,X) = arg min

a∈Al

{agX (Ml) + E[−agX (ML )|Ml ]}

= arg min
a∈Al

{a (gX (Ml) − E[gX (ML )|Ml ])}

from which we obtain
{

gX (Ml) > E[gX (ML )|Ml ] ⇒ π∗
l = 0

gX (Ml) ≤ E[gX (ML )|Ml ] ⇒ π∗
l = Al

⇒ π∗
l ∈ {0, Al}.

This proves that π∗
l ∈ {0, Al}, ∀l ∈ {1, . . . , L − 1}.

APPENDIX B
PROOF OF LEMMA 1

The proof is done by induction. In the proof, we use the trivial
fact that the implementation shortfall is finite.

Induction Basis:

Qπ
L−1(ML−1 , IL−1 ,X, aL−1) = CX (ML−1 , aL−1)

+
∑

ML ∈M
P (ML−1 ,ML )CX (ML, IL−1 − aL−1)

which is a polynomial function of P (M,M ′) with order at most
1, ∀π ∈ Πopt, ∀ML−1 ∈ Mr , ∀IL−1 ∈ I, ∀X ∈ X , ∀aL−1 ∈
AL−1 and ∀M ∈ Mr , ∀M ′ ∈ M.

Induction Step:
Assume that Qπ

l ′ (Ml ′ , Il ′ ,X, al ′) is a polynomial function
of P (M,M ′) whose order is at most L − l′, ∀π ∈ Πopt,
∀Ml ′ ∈ Mr , ∀Il ′ ∈ I, ∀X ∈ X , ∀al ′ ∈ Al ′ , ∀M ∈ Mr and
∀M ′ ∈ M, for all l′ ∈ {l, . . . , L − 1}. Then, we show that
Qπ

l−1(Ml−1 , Il−1 ,X, al−1), ∀π ∈ Πopt, ∀Ml−1 ∈ Mr , ∀Il−1 ∈
I, ∀X ∈ X and ∀al−1 ∈ Al−1 is a polynomial function of
P (M,M ′), ∀M ∈ Mr , ∀M ′ ∈ M where the order is at most
L − l + 1.

To see this, observe from (5) that

Qπ
l−1(Ml−1 , Il−1 ,X, al−1)

= CX (Ml−1 , al−1) +
∑

Ml ∈M
P (Ml−1 ,Ml)V π

l (Ml, Il ,X).

Since V π
l (Ml, Il ,X) = Qπ

l (Ml, Il ,X, πl(Ml, Il ,X)), V π
l

(Ml, Il ,X) is a polynomial function of P (M,M ′) where the
order is at most L − l. This completes the proof.

APPENDIX C
PROOF OF LEMMA 2

Let f(x1 , x2 , . . . , xn ) be a polynomial function of the vari-
ables {x1 , x2 , . . . , xn}. We are interested in upper bounding
|f(x1 , x2 , . . . , xn ) − f(x̂1 , x̂2 , . . . , x̂n )| where x̂i is the esti-
mated value of the ith variable. We can rewrite this difference
as sum of the differences of functions that differ only in one
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variable as follows:

|f(x1 , x2 , . . . , xn ) − f(x̂1 , x̂2 , . . . , x̂n )|
= |(f(x1 , x2 , . . . , xn ) − f(x̂1 , x2 , . . . , xn ))

+ (f(x̂1 , x2 , . . . , xn ) − f(x̂1 , x̂2 , . . . , xn ))

+ . . .

+ (f(x̂1 , x̂2 , . . . , x̂n−1 , xn ) − f(x̂1 , x̂2 , . . . , x̂n ))|.
Then, by using the triangle inequality we get

|f(x1 , x2 , . . . , xn ) − f(x̂1 , x̂2 , . . . , x̂n )|
≤ |(f(x1 , x2 , . . . , xn ) − f(x̂1 , x2 , . . . , xn ))|

+ |(f(x̂1 , x2 , . . . , xn ) − f(x̂1 , x̂2 , . . . , xn ))|
+ . . .

+ |(f(x̂1 , x̂2 , . . . , x̂n−1 , xn ) − f(x̂1 , x̂2 , . . . , x̂n ))|. (14)

If each absolute difference on the right-hand side of (14) is
smaller than λ/n, then, the left-hand side is smaller than λ.

The variables of the polynomial that we consider in our
problem are the state transition probabilities. First, we sort
P (M,M ′), ∀M ∈ Mr , ∀M ′ ∈ M in an ascending way, and
re-index them such that κ corresponds to the state-next state pair
with the κth lowest P (M,M ′) value,16 where κ ∈ {1, . . . , Nr}.
We define Jκ as the state transition probability that corresponds
to the κth state-next state pair. Let J := (J1 , . . . , JN r ) denote
the set of all Jκs, Ĵκ denote the estimate of Jκ used by GLOBE,
and Jm := {Ĵ1 , . . . , Ĵm , Jm+1 , . . . , JN r }.

Let Q̃π
l,m (M, I,X, a) be the estimate of Qπ

l (M, I,X, a)
computed based on the set of state transition probabilities Jm .
Note that if m = 0, then Q̃π

l,m (M, I,X, a) = Qπ
l (M, I,X, a)

and if m = Nr , then Q̃π
l,m (M, I,X, a) = Q̂π

l (M, I,X, a).
Next, we take Q̃π

l,m (M, I,X, a) and write it as a func-
tion of the kth term in Jm . Let Zπ,i,m

κ (M, I,X, a, l) and
Zπ,0:L−l,m

κ (M, I,X, a, l) be the coefficient of the ith power
of the κth term in Jm and the set of all coefficients of all
the powers of the κth term in Jm , respectively. Given that
|P (M,M ′) − P̂ (M,M ′)| ≤ γ, ∀M ∈ Mr , ∀M ′ ∈ M, we ob-
tain the following for all m ∈ {1, . . . , Nr} using the result of
Lemma 1:

|Qπ
l (Ml, Il ,X, al) − Q̂π

l (Ml, Il ,X, al)|

≤
N r
∑

m=1

|Q̃π
l,m (Ml, Il ,X, al) − Q̃π

l,m−1(Ml, Il ,X, al)|

=
N r
∑

m=1

∣
∣
∣
∣

L−l∑

i=1

Zπ,i,m
m (Ml, Il ,X, al , l)((Ĵm )i − (Jm )i)

∣
∣
∣
∣

=
N r
∑

m=1

∣
∣
∣
∣

L−l∑

i=1

(

Zπ,i,m
m (Ml, Il ,X, al , l)(Ĵm − Jm )

×
i−1∑

j=0

(Ĵm )j (Jm )i−j−1
)∣
∣
∣
∣

16Ties can be broken arbitrarily.

≤
N r
∑

m=1

L−l∑

i=1

∣
∣
∣
∣Z

π,i,m
m (Ml, Il ,X, al , l)(Ĵm − Jm )

∣
∣
∣
∣

×
( i−1∑

j=0

(Ĵm )j (Jm )i−j−1
)

≤
N r
∑

m=1

L−l∑

i=1

|Zπ,i,m
m (Ml, Il ,X, al , l)|γi

≤
N r
∑

m=1

γH = NrHγ (15)

where we used (
∑i−1

j=0(Ĵm )j (Jm )i−j−1) ≤ i.
According to (15), this implies that γ should be set to

λ/(NrH) such that

|Qπ
l (Ml, Il ,X, al) − Q̂π

l (Ml, Il ,X, al)| ≤ λ,

∀π ∈ Πopt, ∀X ∈ X , ∀Ml ∈ Mr , ∀Il ∈ I, ∀al ∈ Al , ∀l ∈ L −
{L}, ∀M ∈ Mr and ∀M ′ ∈ M.

APPENDIX D
SUB-OPTIMALITY GAP BOUND

In order to simplify the notation, for a given (M, I,X),
we use μπ and μ̂π as the true and estimated V-value of
policy π ∈ Πopt, respectively. Let π∗ = arg minπ∈Πopt μπ and
π̂ = arg minπ∈Πopt μ̂π . The trader selects the policy π̂ among
the set of policies based on the estimated values. The subopti-
mality gap of the selected policy is bounded as follows:

|μπ∗ − μπ̂| = |μπ∗ − μπ̂ − μ̂π̂ + μ̂π̂| ≤ |μπ∗ − μ̂π̂|
+ |μπ̂ − μ̂π̂|.

Next, assume that |μπ − μ̂π| ≤ λ, ∀π ∈ Πopt. Then, we have
{

μπ∗ ≤ μπ̂ ⇒ μπ∗ − μ̂π̂ ≤ μπ̂ − μ̂π̂ ≤ λ

μ̂π∗ ≥ μ̂π̂ ⇒ μπ∗ − μ̂π̂ ≥ μπ∗ − μ̂π∗ ≥ −λ

⇒ |μπ∗ − μ̂π̂| ≤ λ ⇒ |μπ∗ − μπ̂| ≤ 2λ.

APPENDIX E
PROOF OF LEMMA 3

Let mρ(M) be the indicator function of the event that state
M is observed at least once in the first L − 1 time slots of
round ρ, and N ′

ρ+1(M) :=
∑ρ

i=1mi(M). Due to the definition
of mρ(M) and ε, for all M ∈ Mr we have

E[N ′
ρ+1(M)] = E

[
ρ∑

i=1

mi(M)

]

=
ρ∑

i=1

E [mi(M)] ≥ ερ.

Using Hoeffding’s inequality, we obtain

P
(
N ′

ρ+1(M) − E[N ′
ρ+1(M)] ≤ −z

) ≤ e−2z 2 /ρ

⇒ P
(
N ′

ρ+1(M) ≤ ερ − z
) ≤ e−2z 2 /ρ .

We set z =
√

ρ log ρ and we obtain

P
(
N ′

ρ+1(M) ≤ ερ −
√

ρ log ρ
)
≤ 1

ρ2 .
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For all ρ ≥ ρ′, we have log ρ ≤ 0.25ε2ρ which results in 0.5ερ ≤
ερ −√

ρ log ρ. Therefore,

P
(
N ′

ρ+1(M) ≤ 0.5ερ
) ≤ 1

ρ2 for ρ ≥ ρ′ ⇒

P (Nρ+1(M) ≤ 0.5ερ) ≤ 1
ρ2 for ρ ≥ ρ′ (16)

where in (16) we used the fact that Nρ(M) ≥ N ′
ρ(M).

APPENDIX F
PROOF OF THEOREM 2

E[Reg(R)] ≤ ρ′Δmax

+
R−1∑

ρ=ρ ′

∑

(M,M ′)/∈M0

P
(
|P (M,M ′) − P̂ρ+1(M,M ′)| ≥ δ

)
Δmax

(17)

+
R−1∑

ρ=ρ ′

∑

(M,M ′)∈M0

P
(
|P (M,M ′) − P̂ρ+1(M,M ′)| ≥ δ

)
Δmax .

(18)

We start by bounding (17). Let f(ρ) := 0.5ερ. For all ρ ≥ ρ′

and all (M,M ′) /∈ M0 , we have

P
(
|P (M,M ′) − P̂ρ+1(M,M ′)| ≥ δ

)

=
∞∑

n=0

P (|P (M,M ′) − P̂ρ+1(M,M ′)| ≥ δ|Nρ+1(M) = n)

× P (Nρ+1(M) = n)

≤ P (Nρ+1(M) = 0) +
∞∑

n=1

2e−2nδ 2
P (Nρ+1(M) = n)

≤
∞∑

n=0

2e−2nδ 2
P (Nρ+1(M) = n)

=
�f (ρ)�−1∑

n=0

2e−2nδ 2
P (Nρ+1(M) = n)

+
∞∑

n=�f (ρ)�
2e−2nδ 2

P (Nρ+1(M) = n)

≤ 2
�f (ρ)�−1∑

n=0

P (Nρ+1(M) = n)

+ 2e−2f (ρ)δ 2
∞∑

n=�f (ρ)�
P (Nρ+1(M) = n)

≤ 2P (Nρ+1(M) ≤ f(ρ)) + 2e−εδ 2 ρ

≤ 2
ρ2 + 2e−εδ 2 ρ (19)

where the first inequality results from Hoeffding’s inequality
and (19) results from Lemma 3. Using (19), we upper bound

(17) as

R−1∑

ρ=ρ ′

∑

(M,M ′)/∈M0

P
(
|P (M,M ′) − P̂ρ+1(M,M ′)| ≥ δ

)
Δmax

≤ NrΔmax

⎛

⎝
R−1∑

ρ=ρ ′

(
2
ρ2 + 2e−εδ 2 ρ

)
⎞

⎠

≤ NrΔmax

( ∞∑

ρ=1

2
ρ2 +

∞∑

ρ=0

2e−εδ 2 ρ

)

≤ NrΔmax

(
π2

3
+

2
1 − e−εδ 2

)

≤ NrΔmax

(

6 +
2

εδ2

)

(20)

where (20) follows from

1 − e−εδ 2 ≥ εδ2

εδ2 + 1
⇒ 1

1 − e−εδ 2 ≤ 1 +
1

εδ2

since e−x ≤ 1/(1 + x) for x > 0, and 2 + π2/3 ≤ 6.
Next we bound (18). By Lemma 5, we have for all (M,M ′) ∈

M0

R−1∑

ρ=ρ ′
P
(
|P (M,M ′) − P̂ρ+1(M,M ′)| ≥ δ

)

≤
R−1∑

ρ=ρ ′
(1 − ε)ρ ≤

∞∑

ρ=0

(1 − ε)ρ =
1
ε
.

Hence, we obtain

R−1∑

ρ=ρ ′

∑

(M,M ′)∈M0

P
(
|P (M,M ′) − P̂ρ+1(M,M ′)| ≥ δ

)
Δmax

≤ Nr

ε
Δmax . (21)

Finally, we combine the results in (20) and (21), and use the
fact that ε ≤ 1 and δ ≤ 1 to get

E[Reg(R)] ≤
(

ρ′ + Nr

(

6 +
2

εδ2

)

+
Nr

ε

)

Δmax

=
(

ρ′ + Nr

(
6εδ2

εδ2 +
2

εδ2 +
δ2

εδ2

))

Δmax

≤
(

ρ′ + Nr

(
9

εδ2

))

Δmax .

APPENDIX G
LINEAR-EXPONENTIAL EQUATION

A) From the result in [42] we have

x = a1 log x + a2 ⇒ x = e(x−a2)/a1 ⇒ ea2/a1 x = (e1/a1)x ⇒

x =
1

log e1/a1
glog

(
ea2 /a1

log e1/a1

)

= a1glog
(
a1e

a2 /a1

)
. (22)

According to the definition of glog(y), given y ≥ e, two solu-
tion exist for glog(y). The larger one is called glog+(y) and



4640 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 17, SEPTEMBER 1, 2018

TABLE IV
STATISTICS OF THE DATASETS. THE ABBREVIATIONS ARE DEFINED AS

FOLLOWS, SD: STARTING DATE, ST: STARTING TIME, TH: TIME HORIZON IN

HOURS, NS: NUMBER OF SAMPLES, ATD: AVERAGE TIME DIFFERENCE

BETWEEN SAMPLES IN SECONDS, MID: MID PRICE, BAS: BID-ASK SPREAD,
VOL: TRADING VOLUME IN THE MARKET (SUM OF BID AND ASK VOLUMES)

the smaller one is called glog−(y). As we are interested in up-
per bounding x in (22), we use the bound given in [42] for
the larger value which holds for e ≤ y and k ≥ 1: glog+(y)
≤ (y( k

e )k )
1

k −1 . We set k = 3 and y = a1e
a2 /a1 . Then, we get

x ≤ a1

(

a1e
a2 /a1

(
3
e

)3
)0.5

= a1.5
1 ea2 /2a1

(
3
e

)1.5

=
(

3a1

e

)1.5

ea2 /2a1 .

B) Let v ∈ (0, 1) and u := xv . Then, for x = a3x
1−v log x, we

have

x = a3x
1−v log x ⇒ xv =

a3

v
log xv ⇒ u =

a3

v
log u.

Then according to part (A), we obtain

xv = u ≤
(

3a3

ev

)1.5

⇒ x ≤
(

3a3

ev

)1.5/v

.

APPENDIX H
INFORMATION AND STATISTICS OF THE STOCKS

Table IV illustrates some properties of the stocks used in
Section VII.

APPENDIX I
ACPR OF THE ALGORITHMS

Table V illustrates the ACPR of the algorithms calculated over
the test sets discussed in Section VII. Substituting these values in

TABLE V
ACPR OF ALL ALGORITHMS CALCULATED OVER THE TEST SETS.

ALL VALUES ARE MULTIPLIED BY 10

the formula given for RI may not give the exact values reported
in Table III since the values given in Table V are truncated.
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