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Multi-objective Contextual Multi-armed Bandit With
a Dominant Objective

Cem Tekin , Member, IEEE, and Eralp Turğay

Abstract—We propose a new multi-objective contextual multi-
armed bandit (MAB) problem with two objectives, where one of the
objectives dominates the other objective. In the proposed problem,
the learner obtains a random reward vector, where each compo-
nent of the reward vector corresponds to one of the objectives and
the distribution of the reward depends on the context that is pro-
vided to the learner at the beginning of each round. We call this
problem contextual multi-armed bandit with a dominant objective
(CMAB-DO). In CMAB-DO, the goal of the learner is to maxi-
mize its total reward in the non-dominant objective while ensuring
that it maximizes its total reward in the dominant objective. In
this case, the optimal arm given the context is the one that maxi-
mizes the expected reward in the non-dominant objective among
all arms that maximize the expected reward in the dominant ob-
jective. First, we show that the optimal arm lies in the Pareto front.
Then, we propose the multi-objective contextual multi-armed ban-
dit algorithm (MOC-MAB), and define two performance measures:
the 2-dimensional (2D) regret and the Pareto regret. We show
that both the 2D regret and the Pareto regret of MOC-MAB are
sublinear in the number of rounds. We also compare the perfor-
mance of the proposed algorithm with other state-of-the-art meth-
ods in synthetic and real-world datasets. The proposed model and
the algorithm have a wide range of real-world applications that
involve multiple and possibly conflicting objectives ranging from
wireless communication to medical diagnosis and recommender
systems.

Index Terms—Online learning, contextual MAB, multi-objective
MAB, dominant objective, multi-dimensional regret, Pareto regret.

I. INTRODUCTION

W ITH the rapid increase in the generation speed of the
streaming data, online learning methods are becom-

ing increasingly valuable for sequential decision making prob-
lems. Many of these problems, including recommender systems
[2], [3], medical screening [4], cognitive radio networks [5],
[6] and wireless network monitoring [7] may involve multiple
and possibly conflicting objectives. In this work, we propose a
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multi-objective contextual MAB problem with dominant and
non-dominant objectives. For this problem, we construct a multi-
objective contextual MAB algorithm named MOC-MAB, which
maximizes the long-term reward of the non-dominant objective
conditioned on the fact that it maximizes the long-term reward
of the dominant objective.

In this problem, the learner observes a multi-dimensional
context in the beginning of each round. Then, it selects one of
the available arms and receives a random reward vector, which
is drawn from a fixed distribution that depends on the context
and the selected arm. No statistical assumptions are made on
the way the contexts arrive, and the learner does not have any
a priori information on the reward distributions. The optimal
arm for a given context is defined as the one that maximizes the
expected reward of the non-dominant objective among all arms
that maximize the expected reward of the dominant objective.

The learner’s performance is measured in terms of its regret,
which measures the loss that the learner accumulates due to
not knowing the reward distributions beforehand. We introduce
two new notions of regret: the 2D regret and the Pareto regret.
The 2D regret is a vector whose ith component corresponds to
the difference between the expected total reward of an oracle
in objective i that selects the optimal arm for each context and
that of the learner by time T . On the other hand, the Pareto
regret measures sum of the distances of the arms selected by
the learner to the Pareto front. For this, we extend the Pareto
regret proposed in [8] to take into account the dependence of
the Pareto front on the context.

We prove that MOC-MAB achieves Õ(T (2α+d)/(3α+d)) 2D
regret, where d is the dimension of the context and α is a con-
stant that depends on the similarity information that relates the
distances between contexts to the distances between expected
rewards of an arm. This shows that MOC-MAB is average-
reward optimal in the limit T →∞ in both objectives. We also
show that the optimal arm lies in the Pareto front, and MOC-
MAB also achieves Õ(T (2α+d)/(3α+d)) Pareto regret. Then, we
argue that it is possible to make the Pareto regret of MOC-MAB
Õ(T (α+d)/(2α+d)) by adjusting its parameters, such that the
Pareto regret becomes order optimal up to a logarithmic factor
[9], but this comes at an expense of making the regret in the
non-dominant objective of MOC-MAB linear in the number of
rounds.

To the best of our knowledge, our work is the first to formulate
a contextual multi-objective MAB problem and prove sublinear
bounds on the 2D regret and the Pareto regret. Different from
the conference version [1], in this paper we (i) consider the
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TABLE I
COMPARISON OF THE REGRET BOUNDS AND ASSUMPTIONS IN OUR WORK WITH THE RELATED WORKS

Pareto regret in addition to the 2D regret, (ii) connect our
notion of optimality with lexicographic optimality, (iii) provide
a high probability bound on the 2D regret, (iv) show how
MOC-MAB can be extended to deal with periodically changing
expected arm rewards, (v) discuss how CMAB-DO can be
extended for more than two objectives, (vi) provide numerical
results on multichannel communication and display advertising
applications. Our results show that MOC-MAB outperforms its
competitors, which are not specifically designed to deal with
problems involving dominant and non-dominant objectives.
Moreover, the journal version includes all the proofs.

The rest of the paper is organized as follows. Related work
is given in Section II. Problem formulation, definitions of the
2D regret and the Pareto regret, and possible applications of
CMAB-DO are given in Section III. MOC-MAB is introduced in
Section IV, and its regrets are analyzed in Section V. How MOC-
MAB can be extended to work under dynamically changing
reward distributions and how CMAB-DO can be extended to
capture more than two objectives are discussed in Section VI.
Illustrative results are presented in Section VII, and concluding
remarks are provided in Section VIII.

II. RELATED WORK

In the past decade, many variants of the classical MAB have
been introduced (see [12] for a comprehensive discussion). Two
notable examples are contextual MAB [10], [13], [14] and multi-
objective MAB [8]. While these examples have been studied
separately in prior works, in this paper we aim to fuse contextual
MAB and multi-objective MAB together. Below, we discuss the
related work on the classical MAB, contextual MAB and multi-
objective MAB. The differences between our work and related
works are summarized in Table I.

A. The Classical MAB

The classical MAB involves K arms with unknown reward
distributions. The learner sequentially selects arms and observes
noisy reward samples from the selected arms. The goal of the
learner is to use the knowledge it obtains through these obser-
vations to maximize its long-term reward. For this, the learner
needs to identify arms with high rewards without wasting too
much time on arms with low rewards. In conclusion, it needs to
strike the balance between exploration and exploitation.

A thorough technical analysis of the classical MAB is given in
[15], where it is shown that O(log T ) regret is achieved asymp-
totically by index policies that use upper confidence bounds
(UCBs) for the rewards. This result is tight in the sense that
there is a matching asymptotic lower bound. Later on, it is
shown in [16] that it is possible to achieve O(log T ) regret by
using index policies constructed using the sample means of the
arm rewards. The first finite-time logarithmic regret bound is
given in [17]. Strikingly, the algorithm that achieves this bound
computes the arm indices using only the information about the
current round, the sample mean arm rewards and the number of
times each arm is selected. This line of research has been fol-
lowed by many others, and new algorithms with tighter regret
bounds have been proposed [18].

B. The Contextual MAB

In the contextual MAB, different from the classical MAB, the
learner observes a context (side information) at the beginning of
each round, which gives a hint about the expected arm rewards
in that round. The context naturally arises in many practical
applications such as social recommender systems [19], medical
diagnosis [20] and big data stream mining [21]. Existing work
on contextual MAB can be categorized into three based on how
the contexts arrive and how they are related to the arm rewards.

The first category assumes the existence of similarity infor-
mation (usually provided in terms of a metric) that relates the
variation in the expected reward of an arm as a function of the
context to the distance between the contexts. For this category,
no statistical assumptions are made on how the contexts arrive.
However, given a particular context, the arm rewards come from
a fixed distribution parameterized by the context.

This problem is considered in [9], and the Query-Ad-
Clustering algorithm that achieves O(T 1−1/(2+dc )+ε) regret
for any ε > 0 is proposed, where dc is the covering dimension
of the similarity space. In addition, Ω(T 1−1/(2+dp )−ε) lower
bound on the regret, where dp is the packing dimension of the
similarity space, is also proposed in this work. The main idea
behind Query-Ad-Clustering is to partition the context set into
disjoint sets and to estimate the expected arm rewards for each
set in the partition separately. A parallel work [10] proposes the
contextual zooming algorithm which partitions the similarity
space non-uniformly, according to both sampling frequency and
rewards obtained from different regions of the similarity space.
It is shown that contextual zooming achieves Õ(T 1−1/(2+dz ))
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regret, where dz is the zooming dimension of the similarity
space, which is an optimistic version of the covering dimension
that depends on the size of the set of near-optimal arms.

In this contextual MAB category, reward estimates are accu-
rate as long as the contexts that lie in the same set of the context
set partition are similar to each other. However, when dimension
of the context is high, the regret bound becomes almost linear.
This issue is addressed in [22], where it is assumed that the arm
rewards depend on an unknown subset of the contexts, and it is
shown that the regret in this case only depends on the number
of relevant context dimensions.

The second category assumes that the expected reward of an
arm is a linear combination of the elements of the context. For
this model, LinUCB algorithm is proposed in [2]. A modified
version of this algorithm, named SupLinUCB, is studied in [11],
and is shown to achieve Õ(

√
Td) regret, where d is the dimen-

sion of the context. Another work [23] considers LinUCB and
SupLinUCB with kernel functions and proposes an algorithm

with Õ(
√

T d̃) regret, where d̃ is the effective dimension of the
kernel feature space.

The third category assumes that the contexts and arm rewards
are jointly drawn from a fixed but unknown distribution. For
this case, the Epoch-Greedy algorithm with O(T 2/3) regret is
proposed in [13], and more efficient learning algorithms with
Õ(T 1/2) regret are developed in [14] and [24].

Our problem is similar to the problems in the first category
in terms of the context arrivals and existence of the similarity
information.

C. The Multi-objective MAB

In the multi-objective MAB, the learner receives a multi-
dimensional reward in each round. Since the rewards are no
longer scalar, the definition of a benchmark to compare the
learner against becomes obscure. Existing work on multi-
objective MAB can be categorized into two: the Pareto approach
and the scalarized approach.

In the Pareto approach, the main idea is to estimate the Pareto
front set which consists of the arms that are not dominated by
any other arm. Dominance relationship is defined such that if
the expected reward of an arm a∗ is greater than the expected
reward of another arm a in at least one objective, and the ex-
pected reward of the arm a is not greater than the expected
reward of the arm a∗ in any objective, then the arm a∗ domi-
nates the arm a. This approach is proposed in [8], and a learning
algorithm called Pareto-UCB1 that achieves O(log T ) Pareto
regret is proposed. Essentially, this algorithm computes UCB
indices for each objective-arm pair, and then, uses these indices
to estimate the Pareto front arm set, after which it selects an
arm randomly from the Pareto front set. A modified version of
this algorithm where the indices depend on both the estimated
mean and the estimated standard deviation is proposed in [25].
Numerous other variants are also considered in prior works, in-
cluding the Pareto Thompson sampling algorithm in [26] and
the Annealing Pareto algorithm in [27].

On the other hand, in the scalarized approach [8], [28], a
random weight is assigned to each objective at each round,

from which for each arm a weighted sum of the indices of
the objectives are calculated. In short, this method turns the
multi-objective MAB into a single-objective MAB. For instance,
Scalarized UCB1 in [8] achieves O(S ′ log(T/S ′)) scalarized
regret where S ′ is the number of scalarization functions used by
the algorithm.

The regret notion used in the Pareto and the scalarized ap-
proaches are very different from our 2D regret notion. In the
Pareto approach, the regret at round t is defined as the min-
imum distance that should be added to the expected reward
vector of the chosen arm at round t to move the chosen arm
to the Pareto front. On the other hand, scalarized regret is the
difference between scalarized expected rewards of the optimal
arm and the chosen arm. Different from these definitions, which
define the regret as a scalar quantity, we define the 2D regret
as a two-dimensional vector. Hence, our goal is to minimize a
multi-dimensional regret measure conditioned on the fact that
we minimize the regret in the dominant objective. We show that
by achieving this, we also minimize the Pareto regret.

In addition to the works mentioned above, several other works
consider multi-criteria reinforcement learning problems, where
the rewards are vector-valued [29], [30].

III. PROBLEM DESCRIPTION

A. System Model

The system operates in a sequence of rounds indexed by
t ∈ {1, 2, . . .}. At the beginning of round t, the learner observes
a d-dimensional context denoted by xt . Without loss of gen-
erality, we assume that xt lies in the context set X := [0, 1]d .
After observing xt the learner selects an arm at from a finite
set A, and then, observes a two dimensional random reward
rt = (r1

t , r2
t ) that depends both on xt and at . Here, r1

t and
r2
t denote the rewards in the dominant and the non-dominant

objectives, respectively, and are given by r1
t = μ1

at
(xt) + κ1

t

and r2
t = μ2

at
(xt) + κ2

t , where μi
a(x), i ∈ {1, 2} denotes the

expected reward of arm a in objective i given context x, and the
noise process {(κ1

t , κ
2
t )} is such that the marginal distribution

of κi
t , i ∈ {1, 2} is conditionally 1-sub-Gaussian,1 i.e.,

∀λ ∈ R E[eλκi
t |a1:t ,x1:t ,κ

1
1:t−1 ,κ

2
1:t−1 ] ≤ exp(λ2/2)

where b1:t := (b1 , . . . , bt). The expected reward vector for
context-arm pair (x, a) is denoted by μa(x) := (μ1

a(x), μ2
a(x)).

The set of arms that maximize the expected reward for
the dominant objective for context x is given as A∗(x) :=
arg maxa∈Aμ1

a(x). Let μ1
∗(x) := maxa∈A μ1

a(x) denote the ex-
pected reward of an arm in A∗(x) in the dominant objective.
The set of optimal arms is given as the set of arms inA∗(x) with
the highest expected rewards for the non-dominant objective.
Let μ2

∗(x) := maxa∈A∗(x) μ2
a(x) denote the expected reward of

an optimal arm in the non-dominant objective. We use a∗(x) to
refer to an optimal arm for context x. The notion of optimality

1Examples of 1-sub-Gaussian distributions include the Gaussian distribution
with zero mean and unit variance, and any distribution defined over an interval
of length 2 with zero mean [31]. Moreover, our results generalize to the case
when κi

t is conditionally R-sub-Gaussian for R ≥ 1. This only changes the
constant terms that appear in our regret bounds.



3802 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 14, JULY 15, 2018

that is defined above coincides with lexicographic optimality
[32], which is widely used in multicriteria optimization, and has
been considered in numerous applications such as achieving
fairness in multirate multicast networks [33] and bit allocation
for MPEG video coding [34].

We assume that the expected rewards are Hölder continuous
in the context, which is a common assumption in the contextual
MAB literature [9], [20], [21].

Assumption 1: There exists L > 0, 0 < α ≤ 1 such that for
all i ∈ {1, 2} , a ∈ A and x, x′ ∈ X , we have

|μi
a(x)− μi

a(x′)| ≤ L ‖x− x′‖α .

Since Hölder continuity implies continuity, for any non-trivial
contextual MAB in which the sets of optimal arms in the first
objective are different for at least two contexts, there exists at
least one context x ∈ X for whichA∗(x) is not a singleton. Let
X∗ denote the set of contexts for whichA∗(x) is not a singleton.
Since we make no assumptions on how contexts arrive, it is
possible that majority of contexts that arrive by round T are in
set X∗. This implies that contextual MAB algorithms that only
aim at maximizing the rewards in the first objective cannot learn
the optimal arms for each context.

Another common way to compare arms when the rewards
are multi-dimensional is to use the notion of Pareto optimality,
which is described below.

Definition 1 (Pareto Optimality): (i) An arm a is weakly
dominated by arm a′ given context x, denoted by μa(x) �
μa ′(x) or μa ′(x) 
 μa(x), if μi

a(x) ≤ μi
a ′(x),∀i ∈ {1, 2}.

(ii) An arm a is dominated by arm a′ given context x, de-
noted by μa(x) ≺ μa ′(x) or μa ′(x) � μa(x), if it is weakly
dominated and ∃i ∈ {1, 2} such that μi

a(x) < μi
a ′(x).

(iii) Two arms a and a′ are incomparable given context x,
denoted by μa(x)||μa ′(x), if neither arm dominates the other.

(iv) An arm is Pareto optimal given context x if it is not
dominated by any other arm given context x. Given a particular
context x, the set of all Pareto optimal arms is called the Pareto
front, and is denoted by O(x).

In the following remark, we explain the connection between
lexicographic optimality and Pareto optimality.

Remark 1: Note that a∗(x) ∈ O(x) for all x ∈ X since a∗(x)
is not dominated by any other arm. For all a ∈ A, we have
μ1
∗(x) ≥ μ1

a(x). By definition of a∗(x) if there exists an arm a
for which μ2

a(x) > μ2
∗(x), then we must have μ1

a(x) < μ1
∗(x).

Such an arm will be incomparable with a∗(x).

B. Definitions of the 2D Regret and the Pareto Regret

Initially, the learner does not know the expected rewards; it
learns them over time. The goal of the learner is to compete
with an oracle, which knows the expected rewards of the arms
for every context and chooses the optimal arm given the current
context. Hence, the 2D regret of the learner by round T is defined
as the tuple (Reg1(T ), Reg2(T )), where

Regi(T ) :=
T∑

t=1

μi
∗(xt)−

T∑

t=1

μi
at

(xt), i ∈ {1, 2} (1)

for an arbitrary sequence of contexts x1 , . . . , xT . When Reg1

(T ) = O(Tγ1 ) and Reg2(T ) = O(Tγ2 ) we say that the 2D re-
gret is O(Tmax(γ1 ,γ2 )).

Another interesting performance measure is the Pareto regret
[8], which measures the loss of the learner with respect to arms
in the Pareto front. To define the Pareto regret, we first define
the Pareto suboptimality gap (PSG).

Definition 2 (PSG of an arm): The PSG of an arm a ∈ A
given context x, denoted by Δa(x), is defined as the minimum
scalar ε ≥ 0 that needs to be added to all entries of μa(x) such
that a becomes a member of the Pareto front. Formally,

Δa(x) := inf
ε≥0

ε s.t. (μa(x) + ε) || μa ′(x),∀a′ ∈ O(x)

where ε is a 2-dimensional vector, whose entries are ε.
Based on the above definition, the Pareto regret of the learner

by round T is given by

PR(T ) :=
T∑

t=1

Δat
(xt). (2)

Our goal is to design a learning algorithm whose 2D and
Pareto regrets are sublinear functions of T with high probability.
This ensures that the average regrets diminish as T →∞, and
hence, enables the learner to perform on par with an oracle that
always selects the optimal arms in terms of the average reward.

C. Applications of CMAB-DO

In this subsection we describe four possible applications of
CMAB-DO.

1) Multichannel Communication: Consider a multichannel
communication application in which a user chooses a channel
Q ∈ Q and a transmission rate R ∈ R in each round after receiv-
ing context xt := {SNRQ,t}Q∈Q, where SNRQ,t is the transmit
signal to noise ratio of channel Q in round t. For instance, if
each channel is also allocated to a primary user, then SNRQ,t

can change from round to round due to time varying transmit
power constraint in order not to cause outage to the primary user
on channel Q.

In this setup, each arm corresponds to a transmission rate-
channel pair (R,Q) denoted by aR,Q . Hence, the set of
arms is A = R×Q. When the user completes its transmis-
sion at the end of round t, it receives a 2-dimensional re-
ward where the dominant one is related to throughput and the
non-dominant one is related to reliability. Here, r2

t ∈ {0, 1}
where 0 and 1 correspond to failed and successful trans-
mission, respectively. Moreover, the success rate of aR,Q is
equal to μ2

aR , Q
(xt) = 1− pout(R,Q, xt), where pout(·) denotes

the outage probability. Here, pout(R,Q, xt) also depends on
the gain on channel Q whose distribution is unknown to the
user. On the other hand, for aR,Q , r1

t ∈ {0, R/Rmax} and
μ1

aR , Q
(xt) = R(1− pout(R,Q, xt))/Rmax , where Rmax is the

maximum rate. It is usually the case that the outage probability
increases with R, so maximizing the throughput and reliability
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are usually conflicting objectives.2 Illustrative results on this
application are given in Section VII-B.

2) Online Binary Classification: Consider a medical diagno-
sis problem where a patient with context xt (including features
such as age, gender, medical test results etc.) arrives in round
t. Then, this patient is assigned to one of the experts in A who
will diagnose the patient. In reality, these experts can either be
clinical decision support systems or humans, but the classifi-
cation performance of these experts are context dependent and
unknown a priori. In this problem, the dominant objective can
correspond to accuracy while the non-dominant objective can
correspond to false negative rate. For this case, the rewards in
both objectives are binary, and depend on whether the classifi-
cation is correct and a positive case is correctly identified.

3) Recommender System: Recommender systems involve
optimization of multiple metrics like novelty and diversity in
addition to accuracy [35], [36]. Below, we describe how a rec-
ommender system with accuracy and diversity metrics can be
modeled using CMAB-DO.

At the beginning of round t a user with context xt arrives to the
recommender system. Then, an item from setA is recommended
to the user along with a novelty rating box which the user can
use to rate the item as novel or not novel.3 The recommendation
is considered to be accurate when the user clicks to the item,
and is considered to be novel when the user rates the item
as novel.4 Thus, r1

t = 1 if the user clicks to the item and 0
otherwise. Similarly, r2

t = 1 if the user rates the item as novel
and 0 otherwise. The distribution of (r1

t , r2
t ) depends on xt and

is unknown to the recommender system.
Another closely related application is display advertising

[37], where an advertiser can place an ad to the publisher’s
website for the user currently visiting the website through a
payment mechanism. The goal of the advertiser is to maximize
its click through rate while keeping the costs incurred through
payments at a low level. Thus, it aims at placing an ad only
when the current user with context xt has positive probability
of clicking to the ad. Illustrative results on this application are
given in Section VII-C.

4) Network Routing: Packet routing in a communication
network commonly involves multiple paths. Adaptive packet
routing can improve the performance by avoiding congested
and faulty links. In many networking problems, it is desirable
to minimize energy consumption as well as the delay due to the
energy constraints of sensor nodes. For instance, lexicographic
optimality is used in [38] to obtain routing flows in a wireless
sensor network with energy limited nodes. Moreover, [39] stud-
ies a communication network with elastic and inelastic flows,
and proposes load-balancing and rate-control algorithms that
prioritize satisfying the rate demanded by inelastic traffic.

2Note that in this example, given that arm aR ,Q is selected, we have κ1
t =

r1
t − μ1

aR , Q
(xt ) and κ2

t = r2
t − μ2

aR , Q
(xt ). Clearly, both κ1

t and κ2
t are zero

mean with support in [−1, 1]. Hence, they are 1-sub-Gaussian.
3An example recommender system that uses this kind of feedback is given in

[36].
4In reality, it is possible that some users may not provide the novelty rating.

These users can be discarded from the calculation of the regret.

Algorithm 1: MOC-MAB.
1: Input: T , d, L, α, m, β
2: Initialize sets: Create partition P of X into md identical

hypercubes
3: Initialize counters: Na,p = 0, ∀a ∈ A, ∀p ∈ P , t = 1
4: Initialize estimates: μ̂1

a,p = μ̂2
a,p = 0, ∀a ∈ A, ∀p ∈ P

5: while 1 ≤ t ≤ T do
6: Find p∗ ∈ P such that xt ∈ p∗

7: Compute gi
a,p∗ for a ∈ A, i ∈ {1, 2} as given in (3)

8: Set a∗1 = arg maxa∈Ag1
a,p∗ (break ties randomly)

9: if ua∗1 ,p∗ > βv then
10: Select arm at = a∗1
11: else
12: Find set of candidate optimal arms Â∗ as given in

(4)
13: Select arm at = arg maxa∈Â∗g

2
a,p∗ (break ties

randomly)
14: end if
15: Observe rt = (r1

t , r2
t )

16: μ̂i
at ,p∗ ← (μ̂i

at ,p∗Nat ,p∗+ri
t)/(Nat ,p∗+1), i ∈ {1, 2}

17: Nat ,p∗ ← Nat ,p∗ + 1
18: t← t + 1
19: end while

Given a source destination pair (src, dst) in an energy con-
strained wireless sensor network, we can formulate routing of
the flow from node src to node dst using CMAB-DO. At the
beginning of each round, the network manager observes the
network state xt , which can be the normalized round-trip time
on some measurement paths. Then, it selects a path from the
set of available paths A and observes the normalized random
energy consumption c1

t and delay c2
t over the selected path.

These costs are converted to rewards by setting r1
t = 1− c1

t and
r2
t = 1− c2

t .

IV. THE LEARNING ALGORITHM

We introduce MOC-MAB in this section. Its pseudocode is
given in Algorithm 1.

MOC-MAB uniformly partitionsX into md hypercubes with
edge lengths 1/m. This partition is denoted by P . For each
p ∈ P and a ∈ A it keeps: (i) a counter Na,p that counts the
number of times the context was in p and arm a was selected
before the current round, (ii) the sample mean of the rewards
obtained from rounds prior to the current round in which the
context was in p and arm a was selected, i.e., μ̂1

a,p and μ̂2
a,p for

the dominant and non-dominant objectives, respectively. The
idea behind partitioning is to utilize the similarity of arm rewards
given in Assumption 1 to learn together for groups of similar
contexts. Basically, when the number of sets in the partition is
small, the number of past samples that fall into a specific set is
large; however, the similarity of the past samples that fall into
the same set is small. The optimal partitioning should balance
the inaccuracy in arm reward estimates that results form these
two conflicting facts.
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At round t, MOC-MAB first identifies the hypercube in P
that contains xt , which is denoted by p∗.5 Then, it calculates
the following indices for the rewards in the dominant and the
non-dominant objectives:

gi
a,p∗ := μ̂i

a,p∗ + ua,p∗ , i ∈ {1, 2} (3)

where the uncertainty level ua,p :=
√

2Am,T /Na,p , Am,T :=
(1 + 2 log(4|A|mdT 3/2)) represents the uncertainty over the
sample mean estimate of the reward due to the number of in-
stances that are used to compute μ̂i

a,p∗ .
6 Hence, a UCB for μi

a(x)
is gi

a,p + v for x ∈ p, where v := Ldα/2m−α denotes the non-
vanishing uncertainty term due to context set partitioning. Since
this term is non-vanishing, we also name it the margin of tol-
erance. The main learning principle in such a setting is called
optimism under the face of uncertainty. The idea is to inflate
the reward estimates from arms that are not selected often by a
certain level, such that the inflated reward estimate becomes an
upper confidence bound for the true expected reward with a very
high probability. This way, arms that are not selected frequently
are explored, and this exploration potentially helps the learner
to discover arms that are better than the arm with the highest
estimated reward. As expected, the uncertainty level vanishes
as an arm gets selected more often.

After calculating the UCBs, MOC-MAB judiciously deter-
mines the arm to select based on these UCBs. It is important to
note that the choice a∗1 := arg maxa∈Ag1

a,p∗ can be highly sub-
optimal for the non-dominant objective. To see this, consider a
very simple setting, where A = {a, b}, μ1

a(x) = μ1
b (x) = 0.5,

μ2
a(x) = 1 and μ2

b (x) = 0 for all x ∈ X . For an algorithm that
always selects at = a∗1 and that randomly chooses one of the
arms with the highest index in the dominant objective in case of
a tie, both arms will be equally selected in expectation. Hence,
due to the noisy rewards, there are sample paths in which arm 2
is selected more than half of the time. For these sample paths,
the expected regret in the non-dominant objective is at least T/2.
MOC-MAB overcomes the effect of the noise mentioned above
due to the randomness in the rewards and the partitioning of
X by creating a safety margin below the maximal index g1

a∗1 ,p∗

for the dominant objective, when its confidence for a∗1 is high,
i.e., when ua∗1 ,p∗ ≤ βv, where β > 0 is a constant. For this, it
calculates the set of candidate optimal arms given as

Â∗ :=
{

a ∈ A : g1
a,p∗ ≥ μ̂1

a∗1 ,p∗ − ua∗1 ,p∗ − 2v
}

=
{

a ∈ A : μ̂1
a,p∗ ≥ μ̂1

a∗1 ,p∗ − ua∗1 ,p∗ − ua,p∗ − 2v
}

. (4)

Here, the term −ua∗1 ,p∗ − ua,p∗ − 2v accounts for the joint un-
certainty over the sample mean rewards of arms a and a∗1 . Then,
MOC-MAB selects at = arg maxa∈Â∗g

2
a,p∗ .

On the other hand, when its confidence for a∗1 is low, i.e., when
ua∗1 ,p∗ > βv, it has a little hope even in selecting an optimal arm
for the dominant objective. In this case it just selects at = a∗1 to

5If the context arrives to the boundary of multiple hypercubes, then it is
randomly assigned to one of them.

6Although MOC-MAB requires T as input, it can run without the knowledge
of T beforehand by applying a method called the doubling-trick. See [40] and
[20] for a discussion on the doubling-trick.

improve its confidence for a∗1 . After its arm selection, it receives
the random reward vector rt , which is then used to update the
counters and the sample mean rewards for p∗.

Remark 2: At each round, finding the set in P that xt be-
longs to requires O(d) computations. Moreover, each of the
following processes requires O(|A|) computations: (i) finding
maximum value among the indices of the dominant objective,
(ii) creating a candidate set and finding maximum value among
the indices of the non-dominant objective. Hence, MOC-MAB
requires O(dT ) + O(|A|T ) computations in T rounds. In addi-
tion, the memory complexity of MOC-MAB is O(md |A|).

Remark 3: MOC-MAB allows the sample mean reward of
the selected arm to be less than the sample mean reward of a∗1
by at most ua∗1 ,p∗ + ua,p∗ + 2v. Here, 2v term does not vanish
as arms get selected since it results from the partitioning of the
context set. While setting v based on the time horizon allows
the learner to control the regret due to partitioning, in some
settings having this non-vanishing term allows MOC-MAB to
achieve reward that is much higher than the reward of the oracle
in the non-dominant objective. Such an example is given in
Section VII-C.

V. REGRET ANALYSIS

In this section we prove that both the 2D regret and the
Pareto regret of MOC-MAB are sublinear functions of T . Hence,
MOC-MAB is average reward optimal in both regrets. First, we
introduce the following as preliminaries.

For an event F , let F c denote the complement of that event.
For all the parameters defined in Section IV, we explicitly use
the round index t, when referring to the value of that parameter at
the beginning of round t. For instance, Na,p(t) denotes the value
of Na,p at the beginning of round t. Let Np(t) denote the number
of context arrivals to p ∈ P by the end of round t, τp(t) denote
the round in which a context arrives to p ∈ P for the tth time,
and Ri

a(t) denote the random reward of arm a in objective i in
round t. Let x̃p(t) := xτp (t) , R̃i

a,p(t) := Ri
a(τp(t)), Ña,p(t) :=

Na,p(τp(t)), μ̃i
a,p(t) := μ̂i

a,p(τp(t)), ãp(t) := aτp (t) , κ̃i
p(t) :=

κi
τp (t) and ũa,p(t) := ua,p(τp(t)). Let Tp := {t ∈ {1, . . . , T} :

xt ∈ p} denote the set of rounds for which the context is in
p ∈ P .

Next, we define the following lower and upper bounds:
Li

a,p(t) := μ̃i
a,p(t)− ũa,p(t) and Ui

a,p(t) := μ̃i
a,p(t) + ũa,p(t)

for i ∈ {1, 2}. Let

UCi
a,p :=

Np (T )⋃

t=1

{μi
a(x̃p(t)) /∈ [Li

a,p(t)− v, Ui
a,p(t) + v]}

denote the event that the learner is not confident about its reward
estimate in objective i for at least once in rounds in which the
context is in p by time T . Here Li

a,p(t)− v and Ui
a,p(t) + v are

the lower confidence bound (LCB) and UCB for μi
a(x̃p(t)), re-

spectively. Also, let UCi
p := ∪a∈AUCi

a,p , UCp := ∪i∈{1,2}UCi
p

and UC := ∪p∈PUCp , and for each i ∈ {1, 2}, p ∈ P and
a ∈ A, let

μi
a,p = sup

x∈p
μi

a(x) and μi
a,p

= inf
x∈p

μi
a(x).
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Let

Regi
p(T ) :=

Np (T )∑

t=1

μi
∗(x̃p(t))−

Np (T )∑

t=1

μi
ãp (t)(x̃p(t))

denote the regret incurred in objective i for rounds in Tp (regret
incurred in p ∈ P). Then, the total regret in objective i can be
written as

Regi(T ) =
∑

p∈P
Regi

p(T ). (5)

Thus, the expected regret in objective i becomes

E[Regi(T )] =
∑

p∈P
E[Regi

p(T )]. (6)

In the following analysis, we will bound both Regi(T ) under
the event UCc and E[Regi(T )]. For the latter, we will use the
following decomposition:

E[Regi
p(T )]

= E[Regi
p(T )|UC] Pr(UC) + E[Regi

p(T )|UCc ] Pr(UCc)

≤ Ci
maxNp(T ) Pr(UC) + E[Regi

p(T )|UCc ] (7)

where Ci
max is the maximum difference in the expected reward

of an optimal arm and any other arm for objective i.
Having obtained the decomposition in (7), we proceed by

bounding the terms in (7). For this, we first bound Pr(UCp) in
the next lemma.

Lemma 1: For any p ∈ P , we have Pr(UCp) ≤ 1/(mdT ).
Proof: The proof is given in Appendix A. �
Using the result of Lemma 1, we obtain

Pr(UC) ≤ 1/T and Pr(UCc) ≥ 1− 1/T. (8)

To prove the lemma above, we use the concentration inequality
given in Lemma 6 in [31] to bound the probability of UCi

a,p .
However, a direct application of this inequality is not possi-
ble to our problem, due to the fact that the context sequence
x̃p(1), . . . , x̃p(Np(t)) does not have identical elements, which
makes the mean values of R̃i

a,p(1), . . . , R̃i
a,p(Np(t)) different.

To overcome this problem, we use the sandwich technique pro-
posed in [20] in order to bound the rewards sampled from actual
context arrivals between the rewards sampled from two specific
processes that are related to the original process, where each
process has a fixed mean value.

After bounding the probability of the event Pr(UCp), we
bound the instantaneous (single round) regret on event Pr(UCc).
For simplicity of notation, in the following lemmas we use
a∗(t) := a∗(x̃p(t)) to denote the optimal arm, ã(t) := ãp(t) to
denote the arm selected at round τp(t) and â∗1(t) to denote the
arm whose first index is highest at round τp(t), when the set
p ∈ P that the context belongs to is obvious.

The following lemma shows that on event UCc
p the regret

incurred in a round τp(t) for the dominant objective can be
bounded as function of the difference between the upper and
lower confidence bounds plus the margin of tolerance.

Lemma 2: When MOC-MAB is run, on event UCc
p , we have

μ1
a∗(t)(x̃p(t))− μ1

ã(t)(x̃p(t)) ≤ U 1
ã(t),p(t)− L1

ã(t),p(t)

+ 2(β + 2)v

for all t ∈ {1, . . . , Np(T )}.
Proof: We consider two cases. When ũâ∗1 (t),p(t) ≤ βv, we

have

U 1
ã(t),p(t) ≥ L1

â∗1 (t),p(t)− 2v

≥ U 1
â∗1 (t),p(t)− 2ũâ∗1 (t),p(t)− 2v

≥ U 1
â∗1 (t),p(t)− 2(β + 1)v.

On the other hand, when ũâ∗1 (t),p(t) > βv, the selected arm is
ã(t) = â∗1(t). Hence, we obtain

U 1
ã(t),p(t) = U 1

â∗1 (t),p(t) ≥ U 1
â∗1 (t),p(t)− 2(β + 1)v.

Thus, for both cases, we have

U 1
ã(t),p(t) ≥ U 1

â∗1 (t),p(t)− 2(β + 1)v (9)

and

U 1
â∗1 (t),p(t) ≥ U 1

a∗(t),p(t). (10)

On event UCc
p , we also have

μ1
a∗(t)(x̃p(t)) ≤ U 1

a∗(t),p(t) + v (11)

and

μ1
ã(t)(x̃p(t)) ≥ L1

ã(t),p(t)− v. (12)

By combining (9)–(12), we obtain

μ1
a∗(t)(x̃p(t))− μ1

ã(t)(x̃p(t)) ≤ U 1
ã(t),p(t)− L1

ã(t),p(t)

+ 2(β + 2)v.

�
The lemma below bounds the regret incurred in a round τp(t)

for the non-dominant objective on event UCc
p when the uncer-

tainty level of the arm with the highest index in the dominant
objective is low.

Lemma 3: When MOC-MAB is run, on event UCc
p , for t ∈

{1, . . . , Np(T )} if

ũâ∗1 (t),p(t) ≤ βv

holds, then we have

μ2
a∗(t)(x̃p(t))− μ2

ã(t)(x̃p(t)) ≤ U 2
ã(t),p(t)− L2

ã(t),p + 2v.

Proof: When ũâ∗1 (t),p(t) ≤ βv holds, all arms that are se-
lected as candidate optimal arms have their index for objective
1 in the interval [L1

â∗1 (t),p(t)− 2v, U 1
â∗1 (t),p(t)]. Next, we show

that U 1
a∗(t),p(t) is also in this interval.

On event UCc
p , we have

μ1
a∗(t)(x̃p(t)) ∈ [L1

a∗(t),p(t)− v, U 1
a∗(t),p(t) + v]

μ1
â∗1 (t)(x̃p(t)) ∈ [L1

â∗1 (t),p(t)− v, U 1
â∗1 (t),p(t) + v].
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We also know that

μ1
a∗(t)(x̃p(t)) ≥ μ1

â∗1 (t)(x̃p(t)).

Using the inequalities above, we obtain

U 1
a∗(t),p(t) ≥ μ1

a∗(t)(x̃p(t))− v ≥ μ1
â∗1 (t)(x̃p(t))− v

≥ L1
â∗1 (t),p(t)− 2v.

Since the selected arm has the maximum index for the non-
dominant objective among all arms whose indices for the dom-
inant objective are in [L1

â∗1 (t),p(t)− 2v, U 1
â∗1 (t),p(t)], we have

U 2
ã(t),p(t) ≥ U 2

a∗(t),p(t). Combining this with the fact that UCc
p

holds, we get

μ2
ã(t)(x̃p(t)) ≥ L2

ã(t),p(t)− v (13)

and

μ2
a∗(t)(x̃p(t)) ≤ U 2

a∗(t),p(t) + v ≤ U 2
ã(t),p(t) + v. (14)

Finally, by combining (13) and (14), we obtain

μ2
a∗(t)(x̃p(t))− μ2

ã(t)(x̃p(t)) ≤ U 2
ã(t),p(t)− L2

ã(t),p(t) + 2v.

�
For any p ∈ P , we also need to bound the regret of the non-

dominant objective for rounds in which ũâ∗1 (t),p(t) > βv, t ∈
{1, . . . , Np(T )}.

Lemma 4: When MOC-MAB is run, the number of rounds
in Tp for which ũâ∗1 (t),p(t) > βv happens is bounded above by

|A|
(

2Am,T

β2v2 + 1
)

.

Proof: This event happens when Ñâ∗1 (t),p(t) < 2Am,T /(β2

v2). Every such event will result in an increase in the value
of Nâ∗1 (t),p by one. Hence, for p ∈ P and a ∈ A, the num-
ber of times ũa,p(t) > βv can happen is bounded above by
2Am,T /(β2v2) + 1. The final result is obtained by summing
over all arms. �

In the next lemmas, we bound Reg1
p(t) and Reg2

p(t) given that
UCc holds.

Lemma 5: When MOC-MAB is run, on event UCc , we have
for all p ∈ P

Reg1
p(t) ≤ |A|C1

max + 2Bm,T

√
|A|Np(t) + 2(β + 2)vNp(t).

where Bm,T := 2
√

2Am,T .
Proof: The proof is given in Appendix B. �
Lemma 6: When MOC-MAB is run, on event UCc we have

for all p ∈ P

Reg2
p(t) ≤ C2

max |A|
(

2Am,T

β2v2 + 1
)

+ 2vNp(t)

+ 2Bm,T

√
|A|Np(t).

Proof: The proof is given in Appendix C. �
Next, we use the result of Lemmas 1, 5 and 6 to find a bound

on Regi(t) that holds for all t ≤ T with probability at least
1− 1/T .

Theorem 1: When MOC-MAB is run, we have for any i ∈
{1, 2}

Pr(Regi(t) < εi(t)∀t ∈ {1, . . . , T}) ≥ 1− 1/T

where

ε1(t) = md |A|C1
max + 2Bm,T

√
|A|mdt + 2(β + 2)vt

and

ε2(t) = md |A|C2
max + mdC2

max |A|
(

2Am,T

β2v2

)

+ 2Bm,T

√
|A|mdt + 2vt.

Proof: By (5) and Lemmas 5 and 6, we have on event UCc :

Reg1(t) ≤ md |A|C1
max + 2Bm,T

∑

p∈P

√
|A|Np(t)

+ 2(β + 2)vt

≤ md |A|C1
max + 2Bm,T

√
|A|mdt

+ 2(β + 2)vt

and

Reg2(t) ≤ md |A|C2
max + mdC2

max |A|
(

2Am,T

β2v2

)

+ 2Bm,T

∑

p∈P

√
|A|Np(t) + 2vt

≤ md |A|C2
max + mdC2

max |A|
(

2Am,T

β2v2

)

+ 2Bm,T

√
|A|mdt + 2vt

for all t ≤ T . The result follows from the fact that UCc holds
with probability at least 1− 1/T . �

The following theorem shows that the expected 2D regret of

MOC-MAB by time T is Õ(T
2 α + d
3 α + d ).

Theorem 2: When MOC-MAB is run with inputs m =
�T 1/(3α+d)� and β > 0, we have

E[Reg1(T )] ≤ C1
max + 2d |A|C1

maxT
d

3 α + d

+ 2(β + 2)Ldα/2T
2 α + d
3 α + d

+ 2d/2+1Bm,T

√
|A|T

1 . 5 α + d
3 α + d

and

E[Reg2(T )] ≤ 2d/2+1Bm,T

√
|A|T

1 . 5 α + d
3 α + d + C2

max

+
(

2Ldα/2 +
C2

max |A|21+2α+dAm,T

β2L2dα

)
T

2 α + d
3 α + d

+ 2dC2
max |A|T

d
3 α + d .
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Proof: E[Regi(T )] is bounded by using the result of
Theorem 1 and (7):

E[Regi(T )] ≤ E[Regi(T )|UCc ] +
∑

p∈P
Ci

maxNp(T ) Pr(UC)

≤ E[Regi(T )|UCc ] +
∑

p∈P
Ci

maxNp(T )/T

= E[Regi(T )|UCc ] + Ci
max .

Therefore, we have

E[Reg1(T )] ≤ ε1(T ) + C1
max

E[Reg2(T )] ≤ ε2(T ) + C2
max .

It can be shown that when we set m = �T 1/(2α+d)� regret
bound of the dominant objective becomes Õ(T (α+d)/(2α+d))
and regret bound of the non-dominant objective becomes O(T ).
The optimal value for m that makes both regrets sublinear is
m = �T 1/(3α+d)�. With this value of m, we obtain

E[Reg1(T )] ≤ 2d |A|C1
maxT

d
3 α + d + 2(β + 2)Ldα/2T

2 α + d
3 α + d

+ 2d/2+1Bm,T

√
|A|T

1 . 5 α + d
3 α + d + C1

max

and

E[Reg2(T )] ≤
(

2Ldα/2 +
C2

max |A|21+2α+dAm,T

β2L2dα

)
T

2 α + d
3 α + d

+ C2
max + 2dC2

max |A|T
d

3 α + d

+ 2d/2+1Bm,T

√
|A|T

1 . 5 α + d
3 α + d .

�
From the results above we conclude that both regrets are

Õ(T (2α+d)/(3α+d)), where for the first regret bound the constant
that multiplies the highest order of the regret does not depend
onA, while the dependence on this term is linear for the second
regret bound.

Next, we show that the expected value of the Pareto regret of
MOC-MAB given in (2) is also Õ(T (2α+d)/(3α+d)).

Theorem 3: When MOC-MAB is run with inputs m =
�T 1/(3α+d)� and β > 0, we have

Pr(PR(t) < ε1(t)∀t ∈ {1, . . . , T}) ≥ 1− 1/T

where ε1(t) is given in Theorem 1 and

E[PR(T )] ≤ C1
max + 2d |A|C1

maxT
d

3 α + d

+ 2(β + 2)Ldα/2T
2 α + d
3 α + d

+ 2d/2+1Bm,T

√
|A|T

1 . 5 α + d
3 α + d .

Proof: Consider any p ∈ P and t ∈ {1, . . . , Np(T )}. By
definition Δã(t)(x̃p(t)) ≤ μ1

a∗(t)(x̃p(t))− μ1
ã(t)(x̃p(t)). This

holds since for any ε > 0, adding μ1
a∗(t)(x̃p(t))− μ1

ã(t)(x̃p(t))
+ ε to μ1

ã(t)(x̃p(t)) will either make it (i) dominate the arms
in O(x̃p(t)) or (ii) incomparable with the arms in O(x̃p(t)).

Hence, using the result in Lemma 2, we have on event UCc

Δã(t)(x̃p(t)) ≤ U 1
ã(t),p(t)− L1

ã(t),p(t) + 2(β + 2)v.

Let PRp(T ) :=
∑Np (T )

t=1 Δã(t)(x̃p(t)). Hence, PR(T ) =
∑

p∈P
PRp(T ). Due to this, the results derived for Reg1(t) and Reg1

(T ) in Theorems 1 and 2 also hold for PRp(t) and PRp(T ). �
Theorems 2 and 3 show that the regret measures

E[Reg1(T )], E[Reg2(T )] and E[PR(T )] for MOC-MAB are all
Õ(T (2α+d)/(3α+d)) when it is run with m = �T 1/(3α+d)�. This
implies that MOC-MAB is average reward optimal in all re-
gret measures as T →∞. The growth rate of the Pareto regret
can be further decreased by setting m = �T 1/(2α+d)�. This will
make the Pareto regret Õ(T (α+d)/(2α+d)) (which matches with
the lower bound in [9] for the single-objective contextual MAB
with similarity information up to a logaritmic factor) but will
also make the regret in the non-dominant objective linear.

VI. EXTENSIONS

A. Learning Under Periodically Changing Reward
Distributions

In many practical cases, the reward distribution of an arm
changes periodically over time even under the same context.
For instance, in a recommender system the probability that a
user clicks to an ad may change with the time of the day, but
the pattern of change can be periodical on a daily basis and this
can be known by the system. Moreover, this change is usually
gradual over time. In this section, we extend MOC-MAB such
that it can deal with such settings.

For this, let Ts denote the period. For the d-dimensional
context xt = (x1,t , x2,t , ..., xd,t) received at round t let x̂t :=
(x1,t , x2,t , ..., xd+1,t) denote the extended context where
xd+1,t := (t mod Ts)/Ts is the time context. Let X̂ denote the
d + 1 dimensional extended context set constructed by adding
the time dimension to X . It is assumed that the following holds
for the extended contexts.

Assumption 2: Given any x̂, x̂′ ∈ X̂ , there exists L̂ > 0 and
0 < α̂ ≤ 1 such that for all i ∈ {1, 2} and a ∈ A, we have

|μi
a(x̂)− μi

a(x̂′)| ≤ L̂||x̂− x̂′||α̂ .

Note that Assumption 2 implies Assumption 1 with L = L̂
and α = α̂ when x̂d+1 = x̂′d+1 . Moreover, for two contexts
(x1 , . . . , xd , xd+1) and (x1 , . . . , xd , x

′
d+1), we have

|μi
a(x̂)− μi

a(x̂′)| ≤ L̂|xd+1 − x′d+1 |α̂

which implies that the change in the expected rewards is grad-
ual. Under Assumption 2, the performance of MOC-MAB is
bounded as follows.

Corollary 1: When MOC-MAB is run with inputs L̂, α̂, m =
�T 1/(3α̂+d+1)�, and β > 0 by using the extended context set X̂
instead of the original context set X , we have

E[Regi(T )] = Õ(T (2α̂+d+1)/(3α̂+d+1)) for i ∈ {1, 2}.
Proof: The proof simply follows from the proof of

Theorem 2 by extending the dimension of the context set
by one. �



3808 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 14, JULY 15, 2018

B. Lexicographic Optimality for dr > 2 Objectives

Our problem formulation can be generalized to handle dr > 2
objectives as follows. Let rt := (r1

t , . . . , rdr
t ) denote the re-

ward vector in round t and μa(x) := (μ1
a(x), . . . , μdr

a (x)) de-
note the expected reward vector for context-arm pair (x, a).
We say that arm a lexicographically dominates arm a′ in the
first j objectives for context x, denoted by μa(x) >lex,j μa ′(x)
if μi

a(x) > μi
a ′(x), where i := min{k ≤ j : μk

a (x) �= μk
a ′(x)}.7

Then, arm a is defined to be lexicographically optimal for con-
text x if there is no other arm that lexicographically dominates
it in dr objectives.

Let μi
∗(x) denote the expected reward of a lexicographi-

cally optimal arm for context x in objective i. Then, the dr -
dimensional regret is defined as follows:

Reg(T ) := (Reg1(T ), . . . , Regdr (T )) where

Regi(T ) :=
T∑

t=1

μi
∗(xt)−

T∑

t=1

μi
at

(xt), i ∈ {1, . . . , dr}.

Generalizing MOC-MAB to achieve sublinear regret for all ob-
jectives will require construction of a hierarchy of candidate
optimal arm sets similar to the one given in (4). We leave this
interesting research problem as future work, and explain when
lexicographically optimality in the first two objectives indicates
lexicographic optimality in dr objectives and why the number
of cases in which lexicographically optimality in the first two
objectives does not indicate lexicographic optimality in dr ob-
jectives is scarce.

Let A∗j (x) denote the set of lexicographically optimal arms
for context x in the first j objectives. We call the case A∗2(x) =
A∗dr

(x) for all x ∈ X the degenerate case of the dr -objective
contextual MAB. Similarly, we call the case when there exists
some x ∈ X , for whichA∗2(x) �= A∗dr

(x) as the non-degenerate
case of the dr -objective contextual MAB. Next, we argue that
the non-degenerate case is uncommon. SinceA∗j (x) ⊇ A∗j+1(x)
for j ∈ {1, . . . , dr − 1} and there is at least one lexicographi-
cally optimal arm,A∗2(x) �= A∗dr

(x) implies thatA∗2(x) is not a
singleton. This implies existence of two arms a and b such that
μ1

a(x) = μ1
b (x) and μ2

a(x) = μ2
b (x). In contrast, for the contex-

tual MAB to be non-trivial, we only require existence of at least
one context x ∈ X and arms a and b such that μ1

a(x) = μ1
b (x).

VII. ILLUSTRATIVE RESULTS

In order to evaluate the performance of MOC-MAB, we run
three different experiments both with synthetic and real-world
datasets.

We compare MOC-MAB with the following MAB algo-
rithms:

Pareto UCB1 (P-UCB1): This is the Empirical Pareto UCB1
algorithm proposed in [8].

Scalarized UCB1 (S-UCB1): This is the Scalarized Multi-
objective UCB1 algorithm proposed in [8].

7If i does not exist then μk
a (x) = μk

a ′ (x) for all k ∈ {1, . . . , j}, and hence,
arm a does not lexicographically dominate arm a′ in the first j objectives.

Contextual Pareto UCB1 (CP-UCB1): This is the contextual
version of P-UCB1 which partitions the context set in the same
way as MOC-MAB does, and uses a different instance of P-
UCB1 in each set of the partition.

Contextual Scalarized UCB1 (CS-UCB1): This is the contex-
tual version of S-UCB1, which partitions the context set in the
same way as MOC-MAB does, and uses a different instance of
S-UCB1 in each set of the partition.

Contextual Dominant UCB1 (CD-UCB1): This is the contex-
tual version of UCB1 [17], which partitions the context set in
the same way as MOC-MAB does, and uses a different instance
of UCB1 in each set of the partition. This algorithm only uses
the rewards from the dominant objective to update the indices
of the arms.

For S-UCB1 and CS-UCB1, the weights of the linear scalar-
ization functions are chosen as [1, 0], [0.5, 0.5] and [0, 1]. For all
contextual algorithms, the partition of the context set is formed
by choosing m according to Theorem 2, and L and α are taken
as 1. For MOC-MAB, β is chosen as 1 unless stated otherwise.
In addition, we scaled down the uncertainty level (also known as
the confidence term or the inflation term) of all the algorithms by
a constant chosen from {1, 1/5, 1/10, 1/15, 1/20, 1/25, 1/30},
since we observed that the regrets of the algorithms in the domi-
nant objective may become smaller when the uncertainty level is
scaled down. The reported results correspond to runs performed
using the optimal scale factor for each experiment.

A. Experiment 1 - Synthetic Dataset

In this experiment, we compare MOC-MAB with other MAB
algorithms on a synthetic multi-objective dataset. We take
X = [0, 1]2 and assume that the context at each round is cho-
sen uniformly at random from X . We consider 4 arms and the
time horizon is set as T = 105 . The expected arm rewards for
3 of the arms are generated as follows: We generate 3 multi-
variate Gaussian distributions for the dominant objective and 3
multivariate Gaussian distributions for the non-dominant objec-
tive. For the dominant objective, the mean vectors of the first
two distributions are set as [0.3, 0.5], and the mean vector of
the third distribution is set as [0.7, 0.5]. Similarly, for the non-
dominant objective, the mean vectors of the distributions are
set as [0.3, 0.7], [0.3, 0.3] and [0.7, 0.5], respectively. For all the
Gaussian distributions the covariance matrix is given by 0.3 ∗ I
where I is the 2 by 2 identity matrix. Then, each Gaussian distri-
bution is normalized by multiplying it with a constant, such that
its maximum value becomes 1. These normalized distributions
form the expected arm rewards. In addition, the expected reward
of the fourth arm for the dominant objective is set as 0, and its
expected reward for the non-dominant objective is set as the
normalized multivariate Gaussian distribution with mean vector
[0.7, 0.5]. We assume that the reward of an arm in an objective
given a context x is a Bernoulli random variable whose param-
eter is equal to the magnitude of the corresponding normalized
distribution at context x.

Every algorithm is run 100 times and the results are averaged
over these runs. Simulation results given in Fig. 1 show the
change in the regret of the algorithms in both objectives as a
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Fig. 1. Regrets of MOC-MAB and the other algorithms for Experiment 1.

function of time (rounds). As observed from the results, MOC-
MAB beats all other algorithms in both objectives except CD-
UCB1. While the regret of CD-UCB1 in the dominant objective
is slightly better than that of MOC-MAB, its regret is much
worse than MOC-MAB in the non-dominant objective. This
is expected since it only aims to maximize the reward in the
dominant objective without considering the other objective.

B. Experiment 2 - Multichannel Communication

In this experiment, we consider the multichannel commu-
nication application given in Section III-C with Q = {1, 2},
R = {1, 0.5, 0.25, 0.1} and T = 106 . The channel gain for
channel Q in round t, denoted by h2

Q,t is independently sam-
pled from the exponential distribution with parameter λQ , where
[λ1 , λ2 ] = [0.25 0.25]. The type of the distributions and the pa-
rameters are unknown to the user. SNRQ,t is sampled from the
uniform distribution over [0, 5] independently for both channels.
In this case, the outage event for transmission rate-channel pair
(R,Q) in round t is defined as log2(1 + h2

Q,tSNRQ,t) < R.
Every algorithm is run 20 times and the results are averaged

over these runs. Simulation results given in Fig. 2 show the
total reward of the algorithms in both objectives as a function of
rounds. As observed from the results, there is no algorithm that

Fig. 2. Total rewards of MOC-MAB and the other algorithms for
Experiment 2.

beats MOC-MAB in both objectives. In the dominant objective,
the total reward of MOC-MAB is 8.21% higher than that of CP-
UCB1, 10.59% higher than that of CS-UCB1, 21.33% higher
than that of P-UCB1 and 82.94% higher than that of S-UCB1
but 8.52% lower than that of CD-UCB1. Similar to Experiment
1, we expect the total reward of CD-UCB1 to be higher than
MOC-MAB because it neglects the non-dominant objective.
On the other hand, in the non-dominant objective, MOC-MAB
achieves total reward 13.66% higher than that of CD-UCB1.

C. Experiment 3 - Display Advertising

In this experiment, we consider a simplified display advertis-
ing model where in each round t a user with context xusr

t visits
a publisher’s website, an ad with context xad

t arrives to an ad-
vertiser, which together constitute the context xt = (xusr

t , xad
t ).

Then, the advertiser decides whether to display the ad on the
publisher’s website (indicated by action a) or not (indicated by
action b). The advertiser makes a unit payment to the publisher
for each displayed ad (pay-per-view model). The first objective
is related to the click through rate and the second objective is
related to the average payment. Essentially, when action a is
taken in round t, then r2

t = 0, and r1
t = 0 if the user does not
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Fig. 3. Total rewards of MOC-MAB and the other algorithms for
Experiment 3.

click to the ad and r1
t = 1 otherwise. When action b is taken in

round t, the reward is always (r1
t , r2

t ) = (0, 1).
We simulate the model described above by using the Yahoo!

Webscope dataset R6A,8 which consists of over 45 million visits
to the Yahoo! Today module during 10 days. This dataset was
collected from a personalized news recommender system where
articles were displayed to users with a picture, title and a short
summary, and the click events were recorded. In essence, the
dataset only contains a set of continuous features derived from
users and news articles by using conjoint analysis and the click
events [41]. Thus, for our illustrative result, we adopt the feature
of the news article as the feature of the ad and the click event as
the event that the user clicks to the displayed ad.

We consider the data collected in the first day which consists
of around 4.5 million samples. Each user and item is represented
by 6 features, one of which is always 1. We discard the constant
features and apply PCA to produce two-dimensional user and
item contexts. PCA is applied over all user features to obtain the
two-dimensional user contexts xusr

t . To obtain the add contexts
xad

t , we first identify the number of ads with unique features,
and then, apply PCA over these. The total number of clicks on

8http://webscope.sandbox.yahoo.com/

day 1 is only 4.07% of the total number of user-ad pairs. Since
the click events are scarce, the difference between the empirical
rewards of actions a and b in the dominant objective is very
small. Thus, we set β = 0.1 in MOC-MAB in order to further
decrease uncertainty in the first objective.

Simulation results given in Fig. 3 show the total reward of
the algorithms in both objectives as a function of rounds. In the
dominant objective, the total reward of MOC-MAB is 54.5%
higher than that of CP-UCB1, 133.6% higher than that of CS-
UCB1, 54.5% higher than that of P-UCB1 and 131.8% higher
than that of S-UCB1 but 22.3% lower than that of CD-UCB1.
In the non-dominant objective, the total reward of MOC-MAB
is 46.3% lower than that of CP-UCB1, 60% lower than that of
CS-UCB1, 46.3% lower than that of P-UCB1, 59.7% lower than
that of S-UCB1 and 4751.9% higher than that of CD-UCB1. As
seen from these results, there is no algoritm that outperforms
MOC-MAB in both objectives. Although CD-UCB1 outper-
forms MOC-MAB in the first objective, its total reward in the
second objective is much less than the total reward of MOC-
MAB.

VIII. CONCLUSION

In this paper, we propose a new contextual MAB problem
with two objectives in which one objective is dominant and the
other is non-dominant. According to this definition, we pro-
pose two performance metrics: the 2D regret (which is multi-
dimensional) and the Pareto regret (which is scalar). Then, we
propose an online learning algorithm called MOC-MAB and
show that it achieves sublinear 2D regret and Pareto regret. To
the best of our knowledge, our work is the first to consider
a multi-objective contextual MAB problem where the expected
arm rewards and contexts are related through similarity informa-
tion. We also evaluate the performance of MOC-MAB on both
synthetic and real-world datasets and compare it with offline
methods and other MAB algorithms. Our results demonstrate
that MOC-MAB outperforms its competitors, which are not
specifically designed to deal with problems involving dominant
and non-dominant objectives.

APPENDIX A
PROOF OF LEMMA 1

From the definitions of Li
a,p(t), Ui

a,p(t) and UCi
a,p , it can be

observed that the event UCi
a,p happens when μi

a(x̃p(t)) does
not fall into the confidence interval [Li

a,p(t)− v, Ui
a,p(t) + v]

for some t. The probability of this event could be easily bounded
by using the concentration inequality given in Appendix D, if the
expected reward from the same arm did not change over rounds.
However, this is not the case in our model since the elements of
{x̃p(t)}Np (T )

t=1 are not identical which makes the distributions of
R̃i

a,p(t), t ∈ {1, . . . , Np(T )} different.
In order to resolve this issue, we propose the following: Recall

that

R̃i
a,p(t) = μi

a(x̃p(t)) + κ̃i
p(t)
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and

μ̃i
a,p(t) =

∑t−1
l=1 R̃i

a,p(l)I(ãp(l) = a)

Ña,p(t)

when Ña,p(t) > 0. Note that when Ña,p(t) = 0, we have
μ̃i

a,p(t) = 0. We define two new sequences of random variables,
whose sample mean values will lower and upper bound μ̃i

a,p(t).

The best sequence is defined as {Ri
a,p(t)}

Np (T )
t=1 where

R
i
a,p(t) = μi

a,p + κ̃i
p(t)

and the worst sequence is defined as {Ri
a,p(t)}

Np (T )
t=1 where

Ri
a,p(t) = μi

a,p
+ κ̃i

p(t).

Let

μi
a,p(t) :=

t−1∑

l=1

R
i
a,p(l)I(ãp(l) = a)/Ña,p(t)

μi
a,p

(t) :=
t−1∑

l=1

Ri
a,p(l)I(ãp(l) = a)/Ña,p(t)

for Ña,p(t) > 0 and μi
a,p(t) = μi

a,p
(t) = 0 for Ña,p(t) = 0. We

have

μi
a,p

(t) ≤ μ̃i
a,p(t) ≤ μi

a,p(t) ∀t ∈ {1, . . . , Np(T )}

almost surely.
Let

L
i
a,p(t) := μi

a,p(t)− ũa,p(t)

U
i
a,p(t) := μi

a,p(t) + ũa,p(t)

Li
a,p(t) := μi

a,p
(t)− ũa,p(t)

Ui
a,p(t) := μi

a,p
(t) + ũa,p(t).

Note that Pr(μi
a(x̃p(t)) /∈ [Li

a,p(t)− v, Ui
a,p(t) + v]) = 0 for

Na,p(t) = 0 since we have Li
a,p(t) = −∞ and Ui

a,p(t) = +∞
when Na,p(t) = 0. Thus, in the rest of the proof, we focus on
the case when Na,p(t) > 0. It can be shown that

{μi
a(x̃p(t)) /∈ [Li

a,p(t)− v, Ui
a,p(t) + v]}

⊂ {μi
a(x̃p(t)) /∈ [L

i
a,p(t)− v, U

i
a,p(t) + v]}

∪ {μi
a(x̃p(t)) /∈ [Li

a,p(t)− v, Ui
a,p(t) + v]}. (15)

The following inequalities can be obtained from the Hölder
continuity assumption:

μi
a(x̃p(t)) ≤ μi

a,p ≤ μi
a(x̃p(t)) + L

(√
d

m

)α

(16)

μi
a(x̃p(t))− L

(√
d

m

)α

≤ μi
a,p
≤ μi

a(x̃p(t)). (17)

Since v = L(
√

d/m)α , using (16) and (17) it can be shown
that

(i) {μi
a(x̃p(t)) /∈ [L

i
a,p(t)− v, U

i
a,p(t) + v]}

⊂ {μi
a,p /∈ [L

i
a,p(t), U

i
a,p(t)]},

(ii) {μi
a(x̃p(t)) /∈ [Li

a,p(t)− v, Ui
a,p(t) + v]}

⊂ {μi
a,p

/∈ [Li
a,p(t), U

i
a,p(t)]}.

Plugging these into (15), we get

{μi
a(x̃p(t)) /∈ [Li

a,p(t)− v, Ui
a,p(t) + v]}

⊂ {μi
a,p /∈ [L

i
a,p(t), U

i
a,p(t)]} ∪ {μi

a,p
/∈ [Li

a,p(t), U
i
a,p(t)]}.

Then, using the equation above and the union bound, we obtain

Pr(UCi
a,p) ≤ Pr

⎛

⎝
Np (T )⋃

t=1

{μi
a,p /∈ [L

i
a,p(t), U

i
a,p(t)]}

⎞

⎠

+ Pr

⎛

⎝
Np (T )⋃

t=1

{μi
a,p

/∈ [Li
a,p(t), U

i
a,p(t)]}

⎞

⎠ .

Both terms on the right-hand side of the inequality above can
be bounded using the concentration inequality in Appendix D.
Using δ = 1/(4|A|mdT ) in Appendix D gives

Pr(UCi
a,p) ≤

1
2|A|mdT

since 1 + Na,p(T ) ≤ T . Then, using the union bound, we obtain

Pr(UCi
p) ≤

1
2mdT

and

Pr(UCp) ≤
1

mdT
.

APPENDIX B
PROOF OF LEMMA 5

Let Ta,p := {1 ≤ l ≤ Np(t) : ãp(l) = a} and T̃a,p := {l ∈
Ta,p : Ña,p(l) ≥ 1}. By Lemma 2, we have

Reg1
p(t) =

∑

a∈A

∑

l∈Ta , p

(
μ1
∗(x̃p(l))− μ1

ãp (l)(x̃p(l))
)

≤
∑

a∈A

∑

l∈T̃a , p

(
U 1

ãp (l),p(l)− L1
ãp (l),p(l) + 2(β + 2)v

)

+ |A|C1
max

≤
∑

a∈A

∑

l∈T̃a , p

(
U 1

ãp (l),p(l)− L1
ãp (l),p(l)

)

+ 2(β + 2)vNp(t) + |A|C1
max . (18)
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We also have

∑

a∈A

∑

l∈T̃a , p

(
U 1

ãp (l),p(l)− L1
ãp (l),p(l)

)

≤
∑

a∈A

⎛

⎝Bm,T

∑

l∈T̃a , p

√
1

Ña,p(l)

⎞

⎠

≤ Bm,T

∑

a∈A

Na , p (t)−1∑

k=0

√
1

1 + k

≤ 2Bm,T

∑

a∈A

√
Na,p(t) (19)

≤ 2Bm,T

√
|A|Np(t) (20)

where Bm,T = 2
√

2Am,T , and (19) follows from the fact that

Na , p (t)−1∑

k=0

√
1

1 + k
≤
∫ Na , p (t)

x=0

1√
x

dx = 2
√

Na,p(t).

Combining (18) and (20), we obtain that on event UCc

Reg1
p(t) ≤ |A|C1

max + 2Bm,T

√
|A|Np(t) + 2(β + 2)vNp(t).

APPENDIX C
PROOF OF LEMMA 6

Using the result of Lemma 4, the contribution to the regret of
the non-dominant objective in rounds for which ũâ∗1 (t),p(t) >
βv is bounded by

C2
max |A|

(
2Am,T

β2v2 + 1
)

. (21)

Let T 2
a,p := {l ≤ Np(t) : ãp(l)=a and Ña,p(l) ≥ 2Am,T /(β2

v2)}. By Lemma 3, we have

∑

a∈A

∑

l∈T 2
a , p

(
μ2
∗(x̃p(l))− μ2

ãp (l)(x̃p(l))
)

≤
∑

a∈A

∑

l∈T 2
a , p

(
U 2

ãp (l),p(l)− L2
ãp (l),p(l) + 2v

)

≤
∑

a∈A

∑

l∈T 2
a , p

(
U 2

ãp (l),p(l)− L2
ãp (l),p(l)

)
+ 2vNp(t). (22)

We have on event UCc

∑

a∈A

∑

l∈T 2
a , p

(
U 2

ãp (l),p(l)− L2
ãp (l),p(l)

)

≤
∑

a∈A

⎛

⎝Bm,T

∑

l∈T 2
a , p

√
1

Ña,p(l)

⎞

⎠

≤ Bm,T

∑

a∈A

Na , p (t)−1∑

k=0

√
1

1 + k

≤ 2Bm,T

∑

a∈A

√
Na,p(t)

≤ 2Bm,T

√
|A|Np(t). (23)

where Bm,T = 2
√

2Am,T . Combining (21), (22) and (23), we
obtain

Reg2
p(t) ≤ C2

max |A|
(

2Am,T

β2v2 + 1
)

+ 2vNp(t)

+ 2Bm,T

√
|A|Np(t).

APPENDIX D
CONCENTRATION INEQUALITY [31], [42]

Consider an arm a for which the rewards of objective i
are generated by a process {Ri

a(t)}Tt=1 with μi
a = E[Ri

a(t)],
where the noise Ri

a(t)− μi
a is conditionally 1-sub-Gaussian.

Let Na(T ) denote the number of times a is selected by the begin-
ning of round T . Let μ̂a(T ) =

∑T −1
t=1 I(a(t) = a)Ri

a(t)/Na(T )
for Na(T ) > 0 and μ̂a(T ) = 0 for Na(T ) = 0. Then, for any
0 < δ < 1 with probability at least 1− δ we have

|μ̂a(T )− μa |

≤

√
2

Na(T )

(
1 + 2 log

(
(1 + Na(T ))1/2

δ

))
∀T ∈ N.
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