
1334 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

Context-Aware Hierarchical Online Learning
for Performance Maximization in

Mobile Crowdsourcing
Sabrina Klos née Müller , Student Member, IEEE, Cem Tekin, Member, IEEE,

Mihaela van der Schaar, Fellow, IEEE, and Anja Klein, Member, IEEE

Abstract— In mobile crowdsourcing (MCS), mobile users
accomplish outsourced human intelligence tasks. MCS requires
an appropriate task assignment strategy, since different workers
may have different performance in terms of acceptance rate
and quality. Task assignment is challenging, since a worker’s
performance 1) may fluctuate, depending on both the worker’s
current personal context and the task context and 2) is not
known a priori, but has to be learned over time. Moreover,
learning context-specific worker performance requires access to
context information, which may not be available at a central
entity due to communication overhead or privacy concerns.
In addition, evaluating worker performance might require costly
quality assessments. In this paper, we propose a context-aware
hierarchical online learning algorithm addressing the problem of
performance maximization in MCS. In our algorithm, a local con-
troller (LC) in the mobile device of a worker regularly observes
the worker’s context, her/his decisions to accept or decline tasks
and the quality in completing tasks. Based on these observa-
tions, the LC regularly estimates the worker’s context-specific
performance. The mobile crowdsourcing platform (MCSP) then
selects workers based on performance estimates received from
the LCs. This hierarchical approach enables the LCs to learn
context-specific worker performance and it enables the MCSP
to select suitable workers. In addition, our algorithm preserves
worker context locally, and it keeps the number of required
quality assessments low. We prove that our algorithm converges
to the optimal task assignment strategy. Moreover, the algorithm
outperforms simpler task assignment strategies in experiments
based on synthetic and real data.

Index Terms— Crowdsourcing, task assignment, online learn-
ing, contextual multi-armed bandits.

Manuscript received May 8, 2017; revised November 6, 2017 and
March 10, 2018; accepted March 29, 2018; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor J. Huang. Date of publication
May 2, 2018; date of current version June 14, 2018. The work of
S. Klos née Müller and A. Klein was supported by the German Research
Foundation (DFG) under Project B3 within the Collaborative Research Center
1053–MAKI. The work of C. Tekin was supported by the Scientific and
Technological Research Council of Turkey under 3501 Program under Grant
116E229. The work of M. van der Schaar was supported in part by ONR Math-
ematical Data Sciences Grant and in part by the NSF under Grant 1524417 and
Grant 1462245. (Corresponding author: Sabrina Klos née Müller.)

S. Klos née Müller and A. Klein are with the Communications Engineering
Laboratory, Technische Universität Darmstadt, 64289 Darmstadt, Germany
(e-mail: s.klos@nt.tu-darmstadt.de; a.klein@nt.tu-darmstadt.de).

C. Tekin is with the Electrical and Electronics Engineering Depart-
ment, Bilkent University, 06800 Ankara, Turkey (e-mail: cemtekin@
ee.bilkent.edu.tr).

M. van der Schaar is with the Department of Electrical Engineering,
University of California at Los Angeles, Los Angeles, CA 90095 USA,
and also with the Department of Engineering Science, University of Oxford,
Oxford OX1 2JD, U.K. (e-mail: mihaela@ee.ucla.edu).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/TNET.2018.2828415

I. INTRODUCTION

CROWDSOURCING (CS) is a popular way to outsource
human intelligence tasks, prominent examples being

conventional web-based systems like Amazon Mechanical
Turk1 and Crowdflower.2 More recently, mobile crowdsourc-
ing (MCS) has evolved as a powerful tool to leverage the
workforce of mobile users to accomplish tasks in a distributed
manner [1]. This may be due to the fact that the number
of mobile devices is growing rapidly and at the same time,
people spend a considerable amount of their daily time using
these devices. For example, between 2015 and 2016, the global
number of mobile devices grew from 7.6 to 8 billion [2].
Moreover, the daily time US adults spend using mobile devices
is estimated to be more than 3 hours in 2017, which is an
increase by more than 45% compared to 2013 [3].

In MCS, task owners outsource their tasks via an inter-
mediary mobile crowdsourcing platform (MCSP) to a set
of workers, i.e., mobile users, who may complete these
tasks. An MCS task may require the worker to interact with
her/his mobile device in the physical world (e.g., photography
tasks) or to complete some virtual task via the mobile device
(e.g., image annotation, sentiment analysis). Some MCS tasks,
subsumed under the term spatial CS [4], are spatially con-
strained (e.g., photography task at point of interest), or require
high spatial resolution (e.g., air pollution map of a city).
In spatial CS, tasks typically require workers to travel to cer-
tain locations. However, recently emerging MCS applications
are also concerned with location-independent tasks. For exam-
ple, MapSwipe3 lets mobile users annotate satellite imagery
to find inhabitated regions around the world. The GalaxyZoo
app4 lets mobile users classify galaxies. The latter project is
an example of the more general trend of citizen science [5].
On the commercial side, Spare55 or Crowdee6 outsource
micro-tasks (e.g., image annotation, sentiment analysis, and
opinion polls) to mobile users in return for small pay-
ments. While location-independent tasks could as well be
completed by users of static devices as in web-based CS,
emerging MCS applications for location-independent tasks
exploit that online mobile users complete such tasks on
the go.

MCS – be it spatial or location-independent – requires an
appropriate task assignment strategy, since not all workers

1https://www.mturk.com
2https://www.crowdflower.com/
3https://mapswipe.org/
4https://www.galaxyzoo.org/
5https://app.spare5.com/fives
6https://www.crowdee.de/

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4125-212X

KLOS NÉE MÜLLER et al.: CONTEXT-AWARE HIERARCHICAL ONLINE LEARNING FOR PERFORMANCE MAXIMIZATION 1335

may be equally suitable for a given task. First, different
workers may have different task preferences and hence dif-
ferent acceptance rates. Secondly, different workers may have
different skills, and hence provide different quality when
completing a task. Two assignment modes considered in the
CS literature are the server assigned tasks (SAT) mode and
the worker selected tasks (WST) mode [6]. In SAT mode,
the MCSP tries to match workers and tasks in an optimal way,
e.g., to maximize the number of task assignments, possibly
under a given task budget. For this purpose, the MCSP
typically gathers task and worker information to decide on
task assignment. This sophisticated strategy may require a
large communication overhead and a privacy concern for
workers since the MCSP has to be regularly informed about
the current worker contexts (e.g., their current positions).
Moreover, previous work on the SAT mode often either
assumed that workers always accept a task once assigned to
it or that workers’ acceptance rates and quality are known
in advance. However, in reality, acceptance rates and quality
are usually not known beforehand and therefore have to be
learned by the MCSP. In addition, a worker’s acceptance rate
and the quality of completed tasks might depend not only on
the specific task, but also on the worker’s current context,
e.g., the worker’s location or the time of day [7]. This
context may change quickly, especially in MCS with location-
independent tasks, since workers can complete such tasks
anytime and anywhere.

In contrast, in WST mode, workers autonomously select
tasks from a list. This rather simple mode is often used in
practice (e.g., on Amazon Mechanical Turk) since it has the
advantage that workers automatically select tasks they are
interested in. However, the WST mode can lead to suboptimal
task assignments since first, finding suitable tasks is not as
easy as it seems (e.g., time-consuming searches within a long
list of tasks are needed and workers might simply select from
the first displayed tasks [8]) and secondly, workers might
leave unpopular tasks unassigned. Therefore, in WST mode,
the MCSP might additionally provide personalized task recom-
mendation (TR) to workers such that workers find appropriate
tasks [7]. However, personalized TR typically requires workers
to share their current context with the MCSP, which again may
mean a communication overhead and a privacy concern for
workers.

We argue that a task assignment strategy is needed which
combines the advantages of the above modes: The MCSP
should centrally coordinate task assignment to ensure that
appropriate workers are selected, as in SAT mode. At the
same time, the workers’ personal contexts should be kept
locally, as in WST mode, in order to keep the communication
overhead small and to protect the workers’ privacy. Moreover,
task assignment should take into account that workers may
decline tasks, and hence, the assignment should fit to the
workers’ preferences, as in WST mode with personalized TR.
In addition, task assignment should be based both on accep-
tance rates and on the quality with which a task is completed.
Since quality assessments (e.g., a manual quality rating from
a task owner, or an automatic quality assessment using either
local software in a mobile device or the resources of a cloud)
may be costly, the number of quality assessments should be
kept low. Finally, workers’ acceptance rates and quality have
to be learned over time.

Our contribution therefore is as follows: We propose
a context-aware hierarchical online learning algorithm for

performance maximization in MCS for location-independent
tasks. Our algorithm for the first time jointly takes the follow-
ing aspects into account: (i) Our algorithm learns worker per-
formance online without requiring a training phase. Since our
algorithm learns in an online fashion, it adapts and improves
the worker selection over time and can hence achieve good
results already during run time. By establishing regret bounds,
we provide performance guarantees for the learned task assign-
ment strategy and prove that our algorithm converges to the
optimal task assignment strategy. (ii) We allow different task
types to occur. We use the concept of task context to describe
the features of a task, such as its required skills or equipment.
(iii) We model that the worker performance depends (in a
possibly non-linear fashion) on both the task context and
the worker context, such as the worker’s current location,
activity, or device status. Our proposed algorithm learns this
context-specific worker performance. (iv) Our algorithm is
split into two parts, one part executed by the MCSP, the other
part by local controllers (LCs) located in each of the work-
ers’ mobile devices. An LC learns its worker’s performance
in terms of acceptance rate and quality online over time,
by observing the worker’s personal contexts, her/his decisions
to accept or decline tasks and the quality in completing these
tasks. The LC learns from its worker’s context only locally,
and personal context is not shared with the MCSP. Each LC
regularly sends performance estimates to the MCSP. Based on
these estimates, the MCSP takes care of the worker selection.
This hierarchical (in the sense of the coordination between
the MCSP and the LCs) approach enables the MCSP to select
suitable workers for each task under its budget based on
what the LCs have previously learned. Moreover, workers
receive personalized task requests based on their interests and
skills, while keeping the number of (possibly costly) quality
assessments low.

The remainder of this paper is organized as follows. Sec. II
gives an overview on related work. Sec. III describes the
system model. In Sec. IV, we propose a context-aware hierar-
chical online learning algorithm for performance maximization
in MCS. In Sec. V, we theoretically analyze our algorithm in
terms of its regret, as well as its requirements with respect to
local storage, communication and worker quality assessment.
Sec. VI contains a numerical evaluation based on synthetic
and real data. Sec. VII concludes the paper.

II. RELATED WORK

Research has put some effort in theoretically defining and
classifying CS systems, such as web-based [9], mobile [1] and
spatial [4] CS. Below, we give an overview on related work
on task assignment in general, mobile and spatial CS systems
(see Table I), as relevant for our scenario. Note that strategic
behavior of workers and task owners in CS systems, e.g.,
concerning pricing and effort spent in task completion [10]
is out of the scope of this paper. Also note that we assume
that it is possible to assess the quality of a completed task.
A different line of work on CS deals with quality estimation
in case of missing ground truth, recently also using online
learning [11].

Due to the dynamic nature of CS, with tasks and/or workers
typically arriving dynamically over time, task assignment is
often modeled as an online decision making problem [12].
For general CS systems, [13] proposed a competitive online
task assignment algorithm for maximizing the utility of a task
owner on a given set of task types, with finite number of

1336 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

TABLE I

COMPARISON WITH RELATED WORK ON TASK ASSIGNMENT IN CROWDSOURCING

tasks per type, by learning the skills of sequentially appearing
workers. While [13] considers sequentially arriving workers
and their algorithm decides which task to assign to a worker,
we consider sequentially arriving tasks and our algorithm
decides which workers to assign to a task. Therefore, our
algorithm can be applied to an infinite number of task types by
describing a task using its context. In addition, our algorithm
takes worker context into account, which may affect worker
performance in MCS. In [14], a bounded multi-armed bandit
model for expert CS is presented and a task assignment
algorithm with sublinear regret is derived which maximizes the
utility of a budget-constrained task owner under uncertainty
about the skills of a finite set of workers with (known) different
prices and limited working time. While in [14], the average
skill of a worker is learned, our algorithm takes context
into account, and thereby learns context-specific performance.
In [15], a real-time algorithm for finding the top-k workers
for sequentially arriving tasks is presented. First, tasks are
categorized offline into different types and the similarity
between a worker’s profile and each task type is computed.
Then, in real time, the top-k workers are selected for a task
based on a matching score, which takes into account the sim-
ilarity and historic worker performance. The authors propose
to periodically update the performance estimates offline in
batches, but no guarantees on the learning process are given.
In contrast, we additionally take into account worker context,
learn context-specific performance and derive guarantees on
the learning speed. In [16], methods for learning a worker
preference model are proposed for personalized TR in WST
mode. These methods use the history of worker preferences
for different tasks, but they do not take into account worker
context.

For MCS systems, [17] proposes algorithms for optimal TR
in WST mode that take into account the trade-off between the
privacy of worker context, the utility to recommend the best
tasks and the efficiency in terms of communication and compu-
tation overhead. TR is performed by a server based on a gener-
alized context shared by the worker. The statistics used for TR
are gathered offline via a proxy that ensures differential privacy
guarantees. While [17] allows to flexibly adjust the shared
generalized context and makes TRs based on offline statistics
and generalized worker context, our approach keeps worker
context locally and learns each worker’s individual statistics
online. In [18], an online learning algorithm for mobile crowd-
sensing is presented to maximize the revenue of a budget-
constrained task owner by learning the sensing values of
workers with known prices. While [18] considers a total budget
and each crowdsensing task requires a minimum number of
workers, we consider a separate budget per task, which

translates to a maximum number of required workers, and we
additionally take task and worker context into account.

A taxonomy for spatial CS was first introduced in [6].
The authors present a location-entropy based algorithm for
SAT mode to maximize the number of task assignments
under uncertainty about task and worker arrival processes. The
server decides on task assignment based on centrally gathered
knowledge about the workers’ current locations. Shahabi and
Kazemi [19] extend this framework to maximize the quality
of assignments under varying worker skills for different task
types. However, in contrast to our work, [6] and [19] assume
that worker context is centrally gathered, that workers always
accept assigned tasks within certain known bounds and that
worker skills are known a priori. In [20], an online task
assignment algorithm is proposed for spatial CS with SAT
mode for maximizing the expected number of accepted tasks.
The problem is modeled as a contextual multi-armed bandit
problem, and workers are selected for sequentially arriving
tasks. The authors adapt the LinUCB algorithm by assuming
that the acceptance rate is a linear function of the worker’s
distance to the task and the task type. However, such a linearity
assumption is restrictive and it especially may not hold in MCS
with location-independent tasks. In contrast, our algorithm
works for more general relationships between context and
performance. In [21], an algorithm for privacy-preserving
spatial CS in SAT mode is proposed. Using differential pri-
vacy and geocasting, the algorithm preserves worker locations
(i.e., their contexts) while optimizing the expected number of
accepted tasks. However, the authors assume that the workers’
acceptance rates are identical and known, whereas our algo-
rithm learns context-specific acceptance rates. In [22], exact
and approximation algorithms for acceptance maximization in
spatial CS with SAT mode are proposed. The algorithms are
performed offline for given sets of available workers and tasks
based on a probability of interest for each pair of worker and
task. The probabilities of interest are computed beforehand
using maximum likelihood estimation. On the contrary, our
algorithm learns acceptance rates online and we provide an
upper bound on the regret of this learning.

We model the problem formally as a contextual multi-armed
bandit (contextual MAB) problem [23]–[33]. MABs are a type
of reinforcement learning (RL). In general, RL, which has
been used to solve various problems in networking [34], [35],
deals with agents learning to take actions based on rewards.
Specifically, in contextual MAB, an agent sequentially chooses
among a set of actions with unknown expected rewards.
In each round, the agent first observes some context infor-
mation, which he may use to determine the action to select.
After selecting an action, the agent receives a reward, which

KLOS NÉE MÜLLER et al.: CONTEXT-AWARE HIERARCHICAL ONLINE LEARNING FOR PERFORMANCE MAXIMIZATION 1337

may depend on the context. The agent tries to learn which
action has the highest reward in which context, to maximize
his expected reward over time.

In the related literature on contextual MAB, different algo-
rithms make different assumptions on how context is generated
and on how rewards are formed. For general contextual MAB
with no further assumptions on how rewards are formed,
[23] proposes the epoch-greedy algorithm. Also [24] for
general contextual MAB with resource constraints and policy
sets makes no further assumptions on how rewards are formed,
except that they assume that the marginal distribution over the
contexts is known. However, the algorithms in [23] and [24]
work only for a finite set of actions and they assume that at
each time step the tuples (context, rewards) are sampled from
a fixed but unknown distribution (i.e., contexts are generated
in an i.i.d. fashion). Other algorithms have stronger assump-
tions on how rewards are formed. For example, the LinUCB
algorithm [25], [26], assumes that the expected reward is
linear in the context. Such a linearity assumption is also
used in the Thompson-sampling based algorithm in [27], and
in the clustering algorithm in [28], where a clustering is
performed on top of a contextual MAB setting. There are
also works which assume a known similarity metric over
the contexts. These algorithms group the contexts into sets
of similar contexts by partitioning the context space. Then,
they estimate the reward of an action under a given context
based on previous rewards for that action in the set of similar
contexts. For example, the contextual zooming algorithm [29]
proposes a non-uniform adaptive partition of the context
space. Moreover, [30], [31] use uniform and non-uniform
adaptive partitions of the context space. In [32] and [33], these
algorithms are applied to a wireless communication scenario.
While the algorithms in [25]–[33] are more restrictive with
respect to how rewards are formed, they are more general
than [23], [24] in the sense that they do not require the contexts
to be generated i.i.d. over time. Moreover, the algorithms
in [29]–[33] also work for an infinite set of actions.

Algorithms for contextual MAB also differ with respect
to their approach to balance the exploration vs. exploitation
trade-off. While the epoch-greedy algorithm [23] and the
algorithms in [30]–[33] explicitly distinguish between explo-
ration and exploitation steps, the LinUCB [25], [26] algorithm,
the clustering algorithm in [28] and the contextual zooming
algorithm [29] follow an index-based approach, in which in
any round, the action with the highest index is selected. Other
algorithms, like the one for contextual MAB with resource
constraints in [24], draw samples from a distribution to find a
policy which is then used to select the action. Finally, algo-
rithms like the Thompson-sampling based algorithm in [27]
draw samples from a distribution to build a belief, and select
the action which maximizes the expected reward based on this
belief.

Our proposed algorithm extends [30]–[33] as follows:
(i) While in [30]–[33], a learner observes some contexts and
selects a subset of actions based on these contexts, our algo-
rithm is decoupled to several learning entities, each observing
the context of one particular action and learning the rewards
of this action, and a coordinating entity, which selects a subset
of actions based on the learning entities’ estimates. In the
MCS scenario, an action corresponds to a worker, the learning
entities correspond to the LCs which learn the performance
of their workers, and the coordinating entity corresponds to
the MCSP, which selects workers based on the performance

estimates from the LCs. (ii) While in [30]–[33], the same
number of actions is selected per round, we allow differ-
ent numbers of actions to be selected per round. In the
MCS scenario, this corresponds to allowing different numbers
of required workers for different tasks. Hence, in contrast
to [30]–[33], the learning speed of our algorithm is affected
by the arrival process of the numbers of actions to be
selected. (iii) While in [30]–[33], each action has the same
context space, we allow each action to have an individual
context space of an individual dimension. In the MCS sce-
nario, this corresponds to allowing workers to give access to
individual sets of context dimensions. Therefore, in contrast
to [30]–[33], the granularity of learning may be different for
different actions. (iv) Finally, while in [30]–[33], all actions
are available in any round, we allow actions to be unavailable
in arbitrary rounds. In the MCS scenario, this corresponds to
allowing that workers may be unavailable. Hence, in contrast
to [30]–[33], the best subset of actions in a certain round
depends on the specific set of available actions in this round.

III. SYSTEM MODEL

A. Mobile Crowdsourcing Platform

We consider an MCSP, to which a fixed set W of W := |W|
workers belongs. A worker is a user equipped with a mobile
device, in which the MCS application is installed. Workers can
be in two modes: A worker is called available, if the MCS
application on the device is running. In this case, the MCSP
may request the worker to complete a task, which the worker
may then accept or decline. A worker is called unavailable,
if the MCS application on the device is turned off.

Task owners can place location-independent tasks of differ-
ent types into the MCSP and select a task budget. A task t is
defined by a tuple (bt, ct), where bt > 0 denotes the budget
that the task owner is willing to pay for this task and ct ∈ C
denotes the task context. The task context is taken from a
bounded C-dimensional task context space C := [0, 1]C and
captures feature information about the task.7 Possible features
could be the skills or equipment required to complete a task
(e.g., the required levels of creativity or analytical skills may
be translated to continuous values between 0 and 1; whether
a camera or a specific application is needed may be encoded
as 0 or 1). The task owner has to pay the MCSP for each
worker that completes the task after being requested by the
MCSP. Specifically, we assume that the MCSP charges the
task owner a fixed price et ∈ [emin, emax] per worker that
completes task t, where emin > 0 and emax ≥ emin correspond
to lower and upper price limits, respectively. The price et

depends on the task context ct and is determined by the
MCSP’s fixed context-specific price list. We assume that for
each task t, the budget bt satisfies bt ∈ [et, Wet], so that
the budget is sufficient to pay at least one and at most W
workers for completing the task. Based on the budget bt

and the price et, the MCSP computes the maximum number
mt := � bt

et
� ∈ {1, . . . , W} of workers that should complete

the task.
Following [13], [14], and [18], we assume that each task

has the following properties: (i) As determined by budget
and price, the task owner would like to receive replies from
possibly several workers. (ii) It is possible to assess the quality

7We assume that tasks are described by C context dimensions. In each of
the C context dimensions, a task is classified via a value between [0, 1]. Then,
ct ∈ [0, 1]C is a vector describing task t’s overall context.

1338 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

Fig. 1. System model. A task arrives at the MCSP. The MCSP has to select
an appropriate subset of available workers for the task.

of a single worker’s reply. (iii) The qualities of different
workers’ replies are independent. (iv) The qualities of the
workers’ replies are additive, i.e., if workers 1 and 2 complete
the task with qualities A and B, the task owner receives
a total quality of A + B. Such tasks belong to the class
of crowd solving tasks [7], examples being translation and
retrieval tasks [13].

We assume that tasks arrive at the MCSP sequentially and
we denote the sequentially arriving tasks by t = 1, . . . , T .
For each arriving task t, if sufficient workers are available,
the MCSP will request mt workers to complete the task.8

However, due to the dynamics in worker availability over
time, the MCSP can only select workers from the set Wt ⊆
W of currently available workers for task t, as defined by
Wt := {i : worker i is available at arrival time of t}, where
the number of available workers9 is denoted by Wt :=
|Wt| ∈ {1, . . . , W}. Hence, since the MCSP can select at
most all available workers, it aims at selecting min{mt, Wt}
workers for task t.10 The goal of the MCSP is to select a
subset of min{mt, Wt} workers which maximizes the worker
performance for that task (see Fig. 1 for an illustration).

B. Context-Specific Worker Performance
The performance of a worker depends on (i) the worker’s

willingness to accept the task and (ii) the worker’s quality in
completing the task, where we assume that the quality can take
values in a range [qmin, qmax] ⊆ R0,+. Both the willingness
to accept the task and the quality may depend on the worker’s
current context and on the task context. Let xt,i denote the
personal context of worker i ∈ Wt at the arrival time of task t,
coming from a bounded Xi-dimensional personal context
space Xi := [0, 1]Xi . Here, we allow each worker i to have
an individual personal context space Xi, since each worker
may allow access to an individual set of context dimensions
(e.g., the worker allows access to a certain set of sensors of
the mobile device that are used to derive her/his context).
Possible personal context dimensions could be the worker’s
current location (in terms of geographic coordinates), the type
of location (e.g., at home, in a coffee shop), the worker’s
current activity (e.g., commuting, working) or the current
device status (e.g., battery state, type of wireless connection).
We further call the concatenation (xt,i, ct) ∈ Xi × C the joint
(personal and task) context of worker i. For worker i, this joint
context is hence a vector of dimension Di := Xi +C. We call
Xi × C = [0, 1]Xi × [0, 1]C ≡ [0, 1]Di the joint (personal and

8Note that each task is only processed once by the MCSP, even if not all
mt requested workers complete the task. In this case, the MCSP charges the
task owner only for the actual number of workers that completed the task
since only these workers are compensated. The task owner may submit the
task to the MCSP again if she/he wishes more workers to complete the task.

9We assume that for each arriving task, at least one worker is available.
10If fewer than mt workers are available, the MCSP will request all available

workers to complete the task.

task) context space of worker i. The reason for considering the
joint context is that the performance of worker i may depend
on both the current context xt,i and the task context ct – in
other words, the performance depends jointly on (xt,i, ct).

Let pi(xt,i, ct) denote the performance of worker i with cur-
rent personal context xt,i for task context ct. The performance
can be decomposed into (i) worker i’s decision di(xt,i, ct) to
accept (di(xt,i, ct) = 1) or reject (di(xt,i, ct) = 0) the task
and, in case the worker accepts the task, also on (ii) worker i’s
quality qi(xt,i, ct) when completing the task. Hence, we can
write

pi(xt,i, ct) :=
{

qi(xt,i, ct), if di(xt,i, ct) = 1,

0, if di(xt,i, ct) = 0.

The performance is a random variable whose distribu-
tion depends on the distributions of the random variables
di(xt,i, ct) and qi(xt,i, ct). Since the decision di(xt,i, ct)
is binary, it is drawn from the Bernoulli distribution with
unknown parameter ri(xt,i, ct) ∈ [0, 1]. Hence, ri(xt,i, ct)
represents worker i’s acceptance rate given the joint con-
text (xt,i, ct). The quality qi(xt,i, ct) is a random variable
conditioned on di(xt,i, ct) = 1 (i.e., task acceptance) with
unknown distribution and we denote its expected value by
νi(xt,i, ct) := E[qi(xt,i, ct)]. Hence, νi(xt,i, ct) represents the
average quality of worker i with personal context xt,i when
completing a task of context ct. Therefore, the performance
pi(xt,i, ct) of worker i given the joint context (xt,i, ct) has
unknown distribution, takes values in [0, qmax] and its expected
value satisfies

E[pi(xt,i, ct)] = θi(xt,i, ct),

where θi(xt,i, ct) := ri(xt,i, ct)νi(xt,i, ct).

C. Problem Formulation
Consider an arbitrary sequence of task and worker arrivals.11

Let yt,i denote a binary variable which is 1 if worker i is
requested to complete task t and 0 otherwise. Then, the prob-
lem of selecting, for each task, a subset of workers which
maximizes the sum of expected performances given the task
budget is given by

max
{yt,i}i∈Wt,t=1,...,T

T∑
t=1

∑
i∈Wt

θi(xt,i, ct)yt,i

s.t.
∑

i∈Wt

yt,i ≤ mt ∀t = 1, . . . , T

yt,i ∈ {0, 1} ∀i ∈ Wt, ∀t = 1, . . . , T. (1)

First, we analyze problem (1) assuming full knowledge about
worker performance. Therefore, assume that there was an
entity that (i) was an omniscient oracle, which knows the
expected performance of each worker in each context for
each task context a priori and (ii) for each arriving task,
this entity is centrally informed about the current contexts of
all available workers. For such an entity, problem (1) is an
integer linear programming problem, which can be decoupled
to an independent sub-problem per arriving task. For a task t,
if fewer workers are available than required, i.e., Wt ≤ mt,

11In the following, by “an arbitrary sequence of task and worker
arrivals”, we mean, given arbitrary sequences of task budgets {bt}t=1,...,T ,
task contexts {ct}t=1,...,T , task prices {et}t=1,...,T , worker availability
{Wt}t=1,...,T and worker contexts {xt,i}i∈Wt,t=1,...,T .

KLOS NÉE MÜLLER et al.: CONTEXT-AWARE HIERARCHICAL ONLINE LEARNING FOR PERFORMANCE MAXIMIZATION 1339

the optimal solution is to request all available workers to
complete the task. However, if Wt > mt, the corresponding
sub-problem is a special case of a knapsack problem with
a knapsack of size mt and with items of identical size and
non-negative profit. Therefore, the optimal solution can be
easily computed in at most O(W log(W)) by ranking the
available workers according to their context-specific expected
performance and selecting the mt highest ranked workers.
By S∗

t := {s∗t,1, . . . , s∗t,min{mt,Wt}}, we denote the optimal
subset of workers to select for task t. Formally, these workers
satisfy

s∗t,j ∈ argmax
i∈Wt\

�j−1
k=1{s∗

t,k}
θi(xt,i, ct) for j=1, . . . , min{mt, Wt},

where
⋃0

k=1{s∗t,k} := ∅. Note that S∗
t depends on the

task budget bt, context ct, price et, the set Wt of available
workers and their personal contexts {xt,i}i∈Wt , but we write
S∗

t instead of S∗
t (bt, ct, et,Wt, {xt,i}i∈Wt) for brevity. Let

S∗ := {S∗
t }t=1,...,T be the collection of optimal subsets of

workers for the collection {1, . . . , T} of tasks. We call this
collection the solution achieved by a centralized oracle, since
it requires an entity with a priori knowledge about expected
performances and with access to worker contexts to make
optimal decisions.

However, we assume that the MCSP does not have
a priori knowledge about expected performances, but it
still has to select workers for arriving tasks. Let St :=
{st,1, . . . , st,min{mt,Wt}} denote the set of workers that the
MCSP selects and requests to complete task t. If for an arriving
task, fewer workers are available than required, i.e., Wt ≤ mt,
by simply requesting all available workers (i.e., St = Wt) to
complete the task, the MCSP automatically selects the optimal
subset of workers. Otherwise, for Wt > mt, the MCSP
cannot simply solve problem (1) like an omniscient oracle,
since it does not know the expected performances θi(xt,i, ct).
Moreover, we assume that a worker’s current personal context
is only locally available in the mobile device. We call the
software of the MCS application, which is installed in the
mobile device, a local controller (LC) and we denote by LC i
the LC of worker i. Depending on the requirements of the
specific MCS application, such as, concerning communication
overhead and worker privacy, the LCs may be owned by either
the MCSP, the workers, or a trusted third party [17], [21].
In any case, each LC has access to its corresponding worker’s
personal context, but it does not share this information with
the MCSP.

Hence, the MCSP and the LCs should cooperate in order
to learn expected performances over time and in order to
select an appropriate subset of workers for each task. For
this purpose, over time, the system of MCSP and LCs has
to find a trade-off between exploration and exploitation, by,
on the one hand, selecting workers about whose performance
only little information is available and, on the other hand,
selecting workers which are likely to have high performance.
For each arriving task, the selection of workers depends on the
history of previously selected workers and their observed per-
formances. However, observing worker performance requires
quality assessments (e.g., in form of a manual quality rat-
ing from a task owner, or an automatic quality assessment
using either local software in the battery-constrained mobile
device or the resources of a cloud), which may be costly. Our
model and algorithm are agnostic to the specific type of quality
assessment, as long as the LCs do have access to the quality

assessments. In any case, we aim at limiting the number of
performance observations in order to keep the cost for quality
assessment low.

Next, we present a context-aware hierarchical online learn-
ing algorithm, which maps the history of previously selected
workers and observed performances to the next selection of
workers. The performance of this algorithm can be evaluated
by comparing its loss with respect to the centralized oracle.
This loss is called the regret of learning. For an arbitrary
sequence of task and worker arrivals, the regret is formally
defined as

R(T) = E

⎡
⎣ T∑

t=1

min{mt,Wt}∑
j=1

(
ps∗

t,j
(xt,s∗

t,j
, ct)

− pst,j (xt,st,j , ct)
)]

, (2)

which is equivalent to

R(T)=
T∑

t=1

min{mt,Wt}∑
j=1

(
θs∗

t,j
(xt,s∗

t,j
, ct)−E[θst,j (xt,st,j , ct)]

)
.

(3)

Here, the expectation is taken with respect to the selections
made by the learning algorithm and the randomness of the
workers’ performances.

IV. A CONTEXT-AWARE HIERARCHICAL ONLINE

LEARNING ALGORITHM FOR PERFORMANCE

MAXIMIZATION IN MOBILE CROWDSOURCING

The goal of the MCSP is to select, for each arriving task,
a set of workers that maximizes the sum of expected perfor-
mances for that task given the task budget. Since the expected
performances are not known a priori by neither MCSP nor
the LCs, they have to be learned over time. Moreover, since
only the LCs have access to the personal worker contexts,
a coordination is needed between the MCSP and the LCs.
Below, we propose a hierarchical contextual online learning
algorithm, which is based on algorithms [30]–[33] for the
contextual multi-armed bandit problem. The algorithm is based
on the assumption that a worker’s expected performance is
similar in similar joint personal and task contexts. Therefore,
by observing the task context, a worker’s personal context
and her/his performance when requested to complete a task,
the worker’s context-specific expected performances can be
learned and exploited for future worker selection.

We call the proposed algorithm Hierarchical Context-aware
Learning (HCL). Fig. 2 shows an overview of HCL’s oper-
ation. In HCL, the MCSP broadcasts the context of each
arriving task to the LCs. Upon receiving information about
a task, an LC first observes its worker’s personal context.
If the worker’s performance has been observed sufficiently
often before given the current joint personal and task context,
the LC relies on previous observations to estimate its worker’s
performance and sends an estimate to the MCSP. If its worker’s
performance has not been observed sufficiently often before,
the LC informs the MCSP that its worker has to be explored.
Based on the messages received from the LCs, the MCSP
selects a subset of workers. The LC of a selected worker
requests its worker to complete the task and observes if the
worker accepts or declines the task. If a worker was selected

1340 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

Fig. 2. Overview of operation of HCL algorithm for task t.

for exploration purposes and accepts the task, the LC addition-
ally observes the quality of the completed task, i.e., depending
on the type of quality assessment, the LC gets a quality
rating from the task owner or it generates an automatic quality
assessment using either local software or the resources of a
cloud. The reason for only making a quality assessment when
a worker was selected for exploration purposes is that quality
assessment may be costly.12 Hence, in this way, HCL keeps
the number of costly quality assessments low.

In HCL, a worker’s personal contexts, decisions and qual-
ities are only locally stored at the LC. Thereby, (i) personal
context is kept locally, (ii) the required storage space for
worker information at the MCSP is kept low, (iii) if neces-
sary, task completion and result transmission may be directly
handled between the LC and the task owner, (iv) workers
receive requests for tasks that are interesting for them and
which they are good at, but without the need to share their
context information, (v) even though an LC has to keep
track of its worker’s personal context, decision and quality,
the computation and storage overhead for each LC is small.

In more detail, LC i operates as follows, as given in Alg. 1.
First, for synchronization purposes, LC i receives the finite
number T of tasks to be considered, the task context space C
and its dimension C from the MCSP. Moreover, LC i checks
to which of worker i’s context dimensions it has access. This
defines the personal context space Xi and its dimension Xi.
Then, LC i sets the joint context space to Xi × C with size
Di = Xi + C. In addition, LC i has to set a parameter
hT,i ∈ N and a control function Ki : {1, . . . , T} → R+, which
are both described below. Next, LC i initializes a uniform
partition QT,i of worker i’s joint context space [0, 1]Di , which
consists of (hT,i)Di Di-dimensional hypercubes of equal size

1
hT,i

× . . . × 1
hT,i

. Hence, the parameter hT,i ∈ N determines
the granularity of the partition of the context space. Moreover,
LC i initializes a counter Ni,q(t) for each hypercube q ∈ QT,i.
The counter Ni,q(t) represents the number of times before
(i.e., up to, but not including) task t, in which worker i was
selected to complete a task for exploration purposes when
her/his joint context belonged to hypercube q. Additionally, for
each hypercube q ∈ QT,i, LC i initializes the estimate θ̂i,q(t),
which represents the estimated performance of worker i for
contexts in hypercube q before task t.

Then, LC i executes the following steps for each of the tasks
t = 1, . . . , T . For an arriving task t, LC i only takes actions
if its worker i is currently available (i.e., i ∈ Wt). If this is
the case, LC i first receives the task context ct sent by the

12If quality assessment is cheap, HCL can be adapted to always observe
worker quality. This may increase the learning speed.

Algorithm 1 HCL@LC: Local Controller i of Worker i

1: Receive input from MCSP: T , C, C
2: Receive input from worker i: Xi, Xi

3: Set joint context space Xi × C, set Di = Xi + C
4: Set parameter hT,i ∈ N and control function Ki :

{1, . . . , T} → R+

5: Initialize context partition: Create partition QT,i of [0, 1]Di

into (hT,i)Di hypercubes of identical size
6: Initialize counters: For all q ∈ QT,i, set Ni,q = 0
7: Initialize estimated performance: For all q ∈ QT,i, set

θ̂i,q = 0
8: for each t = 1, . . . , T do
9: if i ∈ Wt then

10: Receive task context ct

11: Observe worker i’s personal context xt,i

12: Find the set qt,i ∈ QT,i such that (xt,i, ct) ∈ qt,i

13: if Ni,qt,i > Ki(t) then
14: Send messagei := θ̂i,qt,i to MCSP
15: else
16: Send messagei := “explore” to MCSP
17: end if
18: Wait for MCSP’s worker selection
19: if MCSP selects worker i then
20: Give task context ct to worker i
21: Request worker i to complete task t
22: Observe worker i’s decision d
23: if messagei == “explore” then
24: if d == 1 then
25: Observe worker i’s quality q, set p := q
26: else
27: Set p := 0
28: end if
29: θ̂i,qt,i =

θ̂i,qt,i
Ni,qt,i

+p

Ni,qt,i
+1

30: Ni,qt,i = Ni,qt,i + 1
31: end if
32: end if
33: end if
34: end for

MCSP.13 Moreover, LC i observes worker i’s current personal
context xt,i and determines the hypercube from QT,i to which
the joint context (xt,i, ct) belongs.14 We denote this hypercube
by qt,i ∈ QT,i. It satisfies (xt,i, ct) ∈ qt,i. Then, LC i checks
if worker i has not been selected sufficiently often before
when worker i’s joint personal and task context belonged to
hypercube qt,i. For this purpose, LC i compares the counter
Ni,qt,i(t) with Ki(t), where Ki : {1, . . . , T} → R+ is a
deterministic, monotonically increasing control function, set in
the beginning of the algorithm. On the one hand, if worker i
has been selected sufficiently often before (Ni,qt,i(t) > Ki(t)),
LC i relies on the estimated performance θ̂i,qt,i (t), and sends
it to the MCSP. On the other hand, if worker i has not been
selected sufficiently often before (Ni,qt,i(t) ≤ Ki(t)), LC i

13A worker being unavailable may mean that she/he is offline. Therefore,
we here consider the LC to only take actions if its worker is available.

14If there are multiple such hypercubes, then, one of them is randomly
selected.

KLOS NÉE MÜLLER et al.: CONTEXT-AWARE HIERARCHICAL ONLINE LEARNING FOR PERFORMANCE MAXIMIZATION 1341

sends an “explore” message to the MCSP. The control function
Ki(t) is hence needed to distinguish when a worker should be
selected for exploration (to achieve reliable estimates) or when
the worker’s performance estimates are already reliable and
can be exploited. Therefore, the choice of control function is
essential to ensure a good result of the learning algorithm,
since it determines the trade-off between exploration and
exploitation. Then, LC i waits for the MCSP to take care of the
worker selection. If worker i is not selected, LC i does not take
further actions. However, if the MCSP selects worker i, LC i
gives the task context information ct to worker i via the appli-
cation’s user interface and requests worker i to complete the
task. Then, LC i observes whether worker i declines or accepts
the task. If worker i was selected for exploration purposes,
LC i makes an additional counter update. For this, if worker i
accepted the task, LC i additionally observes worker i’s quality
in completing the task (e.g., by receiving a quality rating
from the task owner or by generating an automatic quality
assessment) and sets the observed performance to the observed
quality. If worker i declined the task, LC i sets the observed
performance to 0. Then, based on the observed performance,
LC i computes the estimated performance θ̂i,qt,i(t + 1) for
hypercube qt,i and the counter Ni,qt,i(t + 1). Note that in
Alg. 1, the argument t is omitted from counters Ni,q(t)
and estimates θ̂i,q(t) since it is not necessary to store their
respective previous values.

By definition of HCL, the estimated performance θ̂i,q(t)
corresponds to the product of (i) the relative frequency with
which worker i accepted tasks when the joint context belonged
to hypercube q and (ii) the average quality in completing these
tasks. Formally, θ̂i,q(t) is computed as follows. Let Ei,q(t) be
the set of observed performances of worker i before task t
when worker i was selected for a task and the joint context was
in hypercube q. If before task t, worker i’s performance has
never been observed before for a joint context in hypercube q,
we have Ei,q(t) = ∅ and θ̂i,q(t) := 0. Otherwise, the esti-
mated performance is given by θ̂i,q(t) := 1

|Ei,q(t)|
∑

p∈Ei,q(t) p.
However, in HCL, the set Ei,q(t) does not appear, since
the estimated performance θ̂i,q(t) can be computed based on
θ̂i,q(t− 1), Ni,q(t− 1) and on the performance for task t− 1.

In HCL, the MCSP is responsible for the worker selection,
which it executes according to Alg. 2. First, for synchroniza-
tion purposes, the MCSP sends the finite number T of tasks to
be considered, the task context space C and its dimension C to
the LCs. Then, for each arriving task t = (bt, ct), the MCSP
computes the maximum number mt of workers, based on the
budget bt and the price et per worker. In addition, the MCSP
initializes two sets. The set Wt represents the set of available
workers when task t arrives, while Wue

t is the so-called set of
under-explored workers, which contains all available workers
that have not been selected sufficiently often before. After
broadcasting the task context ct, the MCSP waits for messages
from the LCs. If the MCSP receives a message from an LC,
it adds the corresponding worker to the set Wt of available
workers. Moreover, in this case the MCSP additionally checks
if the received message is an “explore” message. If this
is the case, the MCSP adds the corresponding worker to
the set Wue

t of under-explored workers. Note that according
to Alg. 1 and Alg. 2, the set of under-explored workers is hence
given by

Wue
t = {i ∈ Wt : Ni,qt,i(t) ≤ Ki(t)}. (4)

Algorithm 2 HCL@MCSP: Worker Selection at MCSP
1: Send input to LCs: T , C, C
2: for each t = 1, . . . , T do
3: Receive task t = (bt, ct)
4: Compute mt = � bt

et
�

5: Set Wt = ∅
6: Set Wue

t = ∅
7: Broadcast task context ct

8: for each i = 1, . . . , W do
9: if Receive messagei from LC i then

10: Wt = Wt ∪ {i}
11: if messagei == “explore” then
12: Wue

t = Wue
t ∪ {i}

13: end if
14: end if
15: end for
16: Compute Wt = |Wt|
17: if Wt ≤ mt then � SELECT ALL
18: Select all Wt workers from Wt

19: else
20: Compute nue,t = |Wue

t |
21: if nue,t == 0 then � EXPLOITATION
22: Rank workers in Wt according to estimates from

(messagei)i∈Wt

23: Select the mt highest ranked workers
24: else � EXPLORATION
25: if nue,t ≥ mt then
26: Select mt workers randomly from Wue

t

27: else
28: Select the nue,t workers from Wue

t

29: Rank workers in Wt \ Wue
t according to esti-

mates from (messagei)i∈Wt\Wue
t

30: Select the (mt −nue,t) highest ranked workers
31: end if
32: end if
33: end if
34: Inform LCs of selected workers
35: end for

Next, the MCSP calculates the number Wt of available
workers. If Wt ≤ mt, i.e., at most the required number of
workers are available, the MCSP enters a select-all-workers
phase and selects all available workers to complete the task.
Otherwise, the MCSP continues by calculating the number
nue,t := |Wue

t | of under-explored workers. If there is no under-
explored worker, the MCSP enters an exploitation phase.
It ranks the available workers in Wt according to the estimated
performances, which it received from their respective LCs.
Then, the MCSP selects the mt highest ranked workers.
By this procedure, the MCSP is able to use context-specific
estimated performances without actually observing the work-
ers’ personal contexts. If there are under-explored workers,
the MCSP enters an exploration phase. These phases are
needed, such that all LCs are able to update their estimated
performances sufficiently often. Here, two different cases
may occur, depending on the number nue,t of under-explored
workers. Either the number nue,t of under-explored workers
is at least mt, in which case the MCSP selects mt under-

1342 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

explored workers at random. Or the number nue,t of under-
explored workers is smaller than mt, in which case the MCSP
selects all nue,t under-explored workers. Since it should select
mt − nue,t additional workers, it ranks the available
sufficiently-explored workers according to the estimated per-
formances, which it received from their respective LCs. Then,
the MCSP additionally selects the (mt−nue,t) highest ranked
workers. In this way, additional exploitation is carried out
in exploration phases, when the number of under-explored
workers is small. After worker selection, the MCSP informs
the LCs of selected workers that their workers should be
requested to complete the task. Note that since the MCSP does
not have to keep track of the workers’ decisions, the LCs may
handle the contact to the task owner directly (e.g., the task
owner may send detailed task instructions directly to the LC;
after task completion, the LC may send the result to the task
owner).

V. THEORETICAL ANALYSIS

A. Upper Bound on Regret

The performance of HCL is evaluated by analyzing its
regret, see Eq. (2), with respect to the centralized oracle. In this
section, we derive a sublinear bound on the regret, i.e., we
show that R(T) = O(T γ) with some γ < 1 holds. Hence,
our algorithm converges to the centralized oracle for T → ∞,
since limT→∞

R(T)
T = 0 holds. The regret bound is derived

based on the assumption that under a similar joint personal and
task context, a worker’s expected performance is also similar.
This assumption can be formalized as follows.15

Assumption 1 (Hölder Continuity Assumption): There
exists L > 0, 0 < α ≤ 1 such that for all workers i ∈ W
and for all joint contexts (x, c), (x̃, c̃) ∈ Xi × C ≡ [0, 1]Di ,
it holds that

|θi(x, c) − θi(x̃, c̃)| ≤ L||(x, c) − (x̃, c̃)||αi ,

where || · ||i denotes the Euclidean norm in R
Di .

The theorem given below shows that the regret of HCL is
sublinear in the time horizon T .

Theorem 1 (Bound for R(T)): Given that Assumption 1
holds, when LC i, i ∈ W , runs Alg. 1 with parameters
Ki(t) = t

2α
3α+Di log(t), t = 1, . . . , T , and hT,i = �T 1

3α+Di �,
and the MCSP runs Alg. 2, the regret R(T) is bounded by

R(T) ≤ qmaxW
∑
i∈W

2Di

(
log(T)T

2α+Di
3α+Di + T

Di
3α+Di

)

+
∑
i∈W

2qmax

(2α + Di)/(3α + Di)
T

2α+Di
3α+Di

+ qmaxW
2 π2

3
+ 2

∑
i∈W

LD
α
2
i T

2α+Di
3α+Di .

Hence, the leading order of the regret is
O

(
qmaxW

2 T
2α+Dmax
3α+Dmax log(T)

)
, where Dmax :=

maxi∈W Di.
The proof of Theorem 1 is given in the supplementary material
in Appendix A. Theorem 1 shows that HCL converges to the
centralized oracle in the sense that when the number T of tasks
goes to infinity, the averaged regret R(T)

T diminishes. More-
over, since Theorem 1 is applicable for any finite number T
of tasks, it characterizes HCL’s speed of learning.

15Note that our algorithm can also be applied to data, which does not satisfy
this assumption. In this case, the regret bound may, however, not hold.

B. Local Storage Requirements
The required local storage size in the mobile device of a

worker is determined by the storage size needed when the
LC executes Alg. 1. In Alg. 1, LC i stores the counters Ni,q

and estimates θ̂i,q for each q ∈ QT,i. Using the parameters
from Theorem 1, the number of hypercubes in the partition
QT,i is (hT,i)Di = �T 1

3α+Di �Di ≤ (1 + T
1

3α+Di)Di . Hence,
the number of variables to store in the mobile device of
worker i is upper bounded by 2 · (1 + T

1
3α+Di)Di . Hence,

the required storage depends on the number Di = Xi + C of
context dimensions. If the worker allows access to a high num-
ber Xi of personal context dimensions and/or the number C
of task context dimensions is large, the algorithm learns the
worker’s context-specific performance with finer granularity
and therefore the assigned tasks are more personalized, but
also the required storage size will increase.

C. Communication Requirements
The communication requirements of HCL can be deduced

from its main operation steps. For each task t, the MCSP
broadcasts the task context to the LCs, which is one vector
of dimension C (i.e., C scalars), assuming that the broadcast
reaches all workers in a single transmission. Then, the LCs of
available workers send their workers’ estimated performances
to the MCSP. This corresponds to Wt scalars to be transmitted
(one scalar sent by each LC of an available worker). Finally,
the MCSP informs selected workers about its decision, which
corresponds to mt scalars sent by the MCSP. Hence, for task t,
in sum, C + Wt + mt scalars are transmitted. Among these,
C + mt scalars are transmitted by the MCSP and one scalar
is transmitted by each mobile device of an available worker.

We now compare the communication requirements of HCL
and of its centralized version, called here CCL. In CCL,
for each task, the personal contexts of available workers are
gathered in the MCSP, which then selects workers based on the
task and personal contexts and informs selected workers about
its decision. The communication requirements of CCL are as
follows: For each task t, the LC of each available worker i
sends the current worker context to the MCSP, which is a
vector of dimension Di (i.e., Di scalars). Hence, in sum,∑

i∈Wt
Di scalars are transmitted. After worker selection,

the MCSP requests selected workers to complete the task,
which corresponds to mt scalars sent by the MCSP. Moreover,
the MCSP broadcasts the task context to the selected workers,
which is one vector of dimension C (i.e., C scalars), assuming
that the broadcast reaches all addressed workers in a single
transmission. Hence, in total,

∑
i∈Wt

Di + mt + C scalars
are transmitted for task t. Among these, C + mt scalars are
transmitted by the MCSP and Di scalars are transmitted by
each mobile device of an available worker.

We now compare HCL with CCL. The mobile device of
any worker i ∈ W with Di > 1 has to transmit less
using HCL than using CCL. Moreover, under the assumption
that any broadcast reaches all addressed workers using one
single transmission, if Di ≥ 1 for all i ∈ W (i.e., each
worker gives access to at least one personal context), the sum
communication requirements (for all mobile devices and the
MCSP in sum) of HCL are at most as high as that of CCL.

D. Worker Quality Assessment Requirements
Observing a worker’s quality might be costly. HCL explic-

itly takes this into account by only requesting a quality

KLOS NÉE MÜLLER et al.: CONTEXT-AWARE HIERARCHICAL ONLINE LEARNING FOR PERFORMANCE MAXIMIZATION 1343

assessment if a worker is selected for exploration purposes.
Here, we give an upper bound on the number Ai(T) of quality
assessments per worker up to task T .

Corollary 1 (Bound for Number of Quality Assessments up
to Task T): Given that Assumption 1 holds, when LC i, i ∈ W ,
runs Alg. 1 with the parameters given in Theorem 1, and the
MCSP runs Alg. 2, the number Ai(T) of quality assessments
of each worker i up to task T is upper bounded by

Ai(T) ≤ (1 + T
1

3α+Di)Di

(
1 + log(T)T

2α
3α+Di

)
.

The proof of Corollary 1 is given in the supplementary
material in Appendix B. From Corollary 1, we see that the
number of quality assessments per worker is sublinear in T .
Hence, it holds limT→∞

Ai(T)
T = 0, so that for T → ∞,

the average rate of quality assessments approaches zero.

VI. NUMERICAL RESULTS

We evaluate HCL by comparing its performance with
various algorithms based on synthetic and real data.

A. Reference Algorithms

The following algorithms are used for comparison.
• The (Centralized) Oracle has perfect a priori knowledge

about context-specific expected performances and knows
the current contexts of available workers.

• LinUCB assumes that the expected performance of a
worker is linear in its context [25], [26]. Based on a linear
reward function over contexts and previously observed
context-specific worker performances, for each task,
LinUCB chooses the mt available workers with highest
estimated upper confidence bounds on their expected
performance. LinUCB has an input parameter λLinUCB,
controlling the influence of the confidence bound.
LinUCB is used in [20] for task assignment in spatial CS.

• AUER [36] is an extension of the well-known UCB
algorithm [37] to the sleeping arm case. It learns from
previous observations of worker performances, but with-
out taking into account context information. Based on the
history of previous observations of worker performances,
AUER selects the mt available workers with highest
estimated upper confidence bounds on their expected
performance. AUER has an input parameter λAUER,
which controls the influence of the confidence bound.

• ε-Greedy selects a random subset of available workers
with a probability of ε ∈ (0, 1). With a probability
of (1 − ε), ε-Greedy selects the mt available workers
with highest estimated performance. The estimated per-
formance of a worker is computed based on the history
of previous performances [37], but without taking into
account context.

• Myopic only learns from the last interaction with each
worker. For task 1, it selects a random subset of m1

workers. For each of the following tasks, it checks which
of the available workers have previously accepted a task.
If more than mt of the available workers have accepted
a task when requested the last time, Myopic selects out
of these workers the mt workers with the highest perfor-
mance in their last completed task. Otherwise, Myopic
selects all of these workers and an additional subset of
random workers so that in total mt workers are selected.

• Random selects a random subset of mt available workers
for each task t.

Fig. 3. Statistics of used Gowalla-NY data set. (a) Check-ins. (b) Visited
locations.

Note that, if an algorithm originally would have selected
only one worker per task, we adapted it to select mt workers
per task. Also, above, we described the behavior of the
algorithms for the case mt < Wt. In the case of mt ≥ Wt,
we adapted each algorithm such that it selects all available
workers. Moreover, while we used standard centralized imple-
mentations of the reference algorithms, they could also be
decoupled to a hierarchical setting like HCL.

B. Evaluation Metrics
Each algorithm is run over a sequence of tasks t = 1, . . . , T

and its result is evaluated using the following metrics. We com-
pute the cumulative worker performance at T achieved by an
algorithm, which is the cumulative sum of performances by
all selected workers up to (and including) task T . Formally,
if the set of selected workers of an algorithm A for task t
is {sA

t,j}j=1,...,min{mt,Wt} and psA
t,j

(t) is the observed perfor-

mance of worker sA
t,j , the cumulative worker performance at

T achieved by algorithm A is

ΓT (A) :=
T∑

t=1

min{mt,Wt}∑
j=1

psA
t,j

(t).

As a function of the arriving tasks, we compute the average
worker performance up to t achieved by an algorithm, which
is the average performance of all selected workers up to task t.
Formally, it is defined by

1∑t
t̃=1 min{mt̃, Wt̃}

t∑
t̃=1

min{mt̃,Wt̃}∑
j=1

psA
t̃,j

(t̃).

C. Simulation Setup

We evaluate the algorithms using synthetic and real data.
The difference between the two approaches lies in the arrival
process of workers and their contexts. To produce synthetic
data, we generate workers and their contexts based on some
predefined distributions as described below. In case of real
data, similar to, e.g., [6], [20], [22], we use a data set from
Gowalla [38]. Gowalla is a location-based social network
where users share their location by checking in at “spots”,
i.e., certain places in their vicinity. We use the check-ins
to simulate the arrival process of workers and their con-
texts. The Gowalla data set consists of 6,442,892 check-ins
of 107,092 distinct users over the period of February 2009 to
October 2010. Each entry of the data set consists of the form
(User ID, Check-in Time, Latitude, Longitude, Location ID).
Similar to [22], we first extract the check-ins in New York City,
which leaves a subset of 138,954 check-ins of 7,115 distinct
users at 21,509 distinct locations. This resulting Gowalla-NY
data set is used below. Fig. 3(a) and Fig. 3(b) show the

1344 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

distributions of the number of check-ins and the number of
distinct locations visited by the users in the Gowalla-NY data
set, respectively.

For both synthetic and real data, we simulate an MCSP,
to which a set of W = 100 workers belongs. For synthetic
data, 100 workers are created in the beginning. For real data,
we randomly select 100 users from the Gowalla-NY data set,
which represent the 100 workers of the MCSP. Then we use
this reduced Gowalla-NY data set containing the check-ins of
100 users. On top of this, the simulation is modeled as follows:

1) Task Properties: The task context is assumed to be
uniformly distributed in C = [0, 1] (i.e., C = 1). Task owners
have to pay a fixed price of e = 0.75 or e = 1 per requested
worker that completes the task when the task context lies in
[0, 0.5] or (0.5, 1], respectively. The quality of a completed
task lies in the range qmin = 0 and qmax = 5. The task budget
is sampled from a normal distribution with expected value 20
and standard deviation of 5, truncated between 1 and 100.

2) Worker Availability: For synthetic data, we let each
worker be available with a probability of ρ = 0.7 (default
value) for each arriving task. For the real data, we use a
Binomial distribution with parameters W = 100 and ρ = 0.7
(default value) to sample the number of available workers Wt

for an arriving task.16 Having sampled Wt, we randomly draw
samples from the reduced Gowalla-NY data set (consisting
of the check-ins of 100 users) until these samples contain
Wt distinct users. These Wt sampled users correspond to the
available workers (i.e., users with higher number of check-ins
in the reduced Gowalla-NY data set translate to workers that
are more often available for the MCSP).

3) Worker Context: The personal context space of an avail-
able worker i is set to Xi = [0, 1]2 (i.e., Xi = 2). The
first personal context dimension refers to the worker’s battery
state, which is sampled from a uniform distribution in [0, 1].
The second personal context dimension refers to the worker’s
location, which is sampled differently in case of synthetic and
real data. For synthetic data, the worker’s location is sampled
from 5 different (personal) locations, using a weighted discrete
distribution with probabilities { 1

2 , 1
3 , 1

12 , 1
24 , 1

24} to represent
the fact that workers may use the MCS application different
amounts of time in different places (e.g., at home more often
than at work). For real data, we set the worker’s location to be
the check-in location of the respective user from the sample.17

4) Expected Worker Performance: We use two different
models to generate expected worker performance.

a) Discrete performance model: The joint personal and
task context space Xi × C (of dimension Di = 3) is split
into a uniform grid. For synthetic data, the space is split into
5 identical parts along each of the 3 dimensions, i.e., 5 ·5 ·5 =
125 subsets are created. For real data, along the dimensions
of task context and battery state, the context space is split into
5 identical parts each, but along the dimension of location
context, the context space is split into li identical parts, where
li corresponds to the number of distinct locations visited by
the corresponding user from the reduced Gowalla-NY data set.
Hence, 5·5·li subsets are created. Then, for both synthetic and
real data, in each of the subsets, the expected performance of
a worker is a priori sampled uniformly at random from [0, 5].
Note that for the real data, since the expected performance

16In this way, the number of available workers in our experiments using the
real and the synthetic data are distributed in the same way.

17If a user was sampled several times until we sampled Wt distinct users,
we choose her/his first sampled check-in location.

TABLE II

CHOICE OF PARAMETERS FOR DIFFERENT ALGORITHMS

differs per visited location, workers with higher number of
visited locations have a higher number of different context-
specific performances.

b) Hybrid performance model: We assume a continuous
dependency of the expected performance on two of the context
dimensions. Let x

(1)
i and x

(2)
i be worker i’s battery state and

location, respectively, and let c be the task context. We assume
that the expected performance θi of worker i is given by

θi

(
c, x

(1)
i , x

(2)
i

)
= qmax · wi

(
x

(2)
i

)
· f̄μi,σ2

i
(c) ·

√
x

(1)
i ,

where wi

(
x

(2)
i

)
is a (discrete) location-specific weighting

factor that is a priori sampled uniformly between [0.5, 1]
for each of worker i’s (finitely many) locations. Moreover,
f̄μi,σ2

i
is a Gaussian probability density function with mean μi

and standard deviation σi, which is normalized such that its
maximum value equals 1. For worker i, the mean μi is a priori
sampled uniformly from [0.1, 0.9] and the standard deviation
is set to σi = 0.1 · μi. Hence, the expected performance is
a continuous function of task context and battery state. The
hybrid model has the following intuition: The expected perfor-
mance of a worker is location-specific. Along the task context,
the expected performance varies according to a worker-specific
Gaussian distribution, i.e., each worker performs well at a
specific type of tasks. Finally, the expected performance grows
monotonically with the battery state, i.e., with more battery
available, workers are more likely to perform well at tasks.

5) Instantaneous Worker Performance: For each occurring
joint worker and task context, the instantaneous performance
of a worker is sampled by adding noise uniformly sampled
from [−1, 1] to the expected performance in the given context
(the noise interval is truncated to a smaller interval if the
expected performance lies close to either 0 or qmax).

D. Parameter Selection

HCL, LinUCB, AUER and ε-Greedy require input para-
meters. In order to find appropriate parameters, we generate
20 synthetic instances using the discrete performance model.
Each instance consists of a sequence of T = 10, 000 task and
worker arrivals sampled according to Sec. VI-C. Then, we run
each algorithm with different parameters on these instances.
Note that for HCL, we set α = 1, choose hT,i = �T 1

3+Di �,
i ∈ W , as in Theorem 1, and set the control function to
Ki(t) = ft

2α
3α+Di log(t), t = 1, . . . , T , where the factor

f ∈ (0, 1] is included to reduce the number of exploration
phases. Then, we search for an appropriate f . Table II shows
the parameters at which each of the algorithms on average
performed best, respectively. These parameters are used in all
of the following simulations.

E. Results Under the Discrete Performance Model
First, we generate 100 synthetic and 100 real instances,

in both cases using ρ = 0.7 and the discrete performance

KLOS NÉE MÜLLER et al.: CONTEXT-AWARE HIERARCHICAL ONLINE LEARNING FOR PERFORMANCE MAXIMIZATION 1345

TABLE III

COMPARISON OF CUMULATIVE WORKER PERFORMANCE AT T FOR
ρ = 0.7 UNDER THE DISCRETE PERFORMANCE MODEL. FOR

AN ALGORITHM A, THE TABLE SHOWS ΓT (A)/ΓT (HCL)

model. Each instance consists of a sequence of T = 10, 000
task and worker arrivals sampled according to Sec. VI-C.
Then, we run the algorithms on these instances and average
the results.

For both synthetic and real data, Table III compares the
cumulative worker performance at T of an algorithm A
with the one of HCL, by displaying ΓT (A)/ΓT (HCL).
As expected, while Oracle outperforms all other algorithms
due to its a priori knowledge, Random gives a lower bound
on the achievable cumulative performance. HCL clearly out-
performs LinUCB, AUER, ε-Greedy and Myopic, even though
HCL observes worker performance only when requesting a
worker for exploration purposes, while the other algorithms
have access to worker performance whenever a worker is
requested. This is due to the fact that HCL smartly exploits
context. Moreover, HCL reaches a result close to the Oracle.
In contrast, LinUCB, AUER, ε-Greedy and Myopic perform
by far worse and lie close to the result of Random. This
shows that algorithms which either do not take context into
account (i.e., AUER, ε-Greedy and Myopic) or have a linearity
assumption between context and performance (i.e., LinUCB),
cannot cope with the non-linear dependency of expected
worker performance on context. Comparing synthetic and real
data, HCL has a better performance on the synthetic data, but
it still reaches a good result on the real data, even though using
real data, each worker has her/his own diversity in context
arrival and hence in expected performance (since users in the
Gowalla-NY data set have different numbers of visited check-
in locations).

Fig. 4(a) and Fig. 4(b) show the average worker perfor-
mance up to task t as a function of the sequentially arriving
tasks t = 1, . . . , T . We see that over the sequence of tasks,
the average worker performance achieved by Oracle and Ran-
dom stay nearly constant at around 4.1 and 2.5, respectively,
for both synthetic and real data. LinUCB, AUER, ε-Greedy
and Myopic increase the average worker performance slightly,
starting between 2.4 and 2.5 at t = 1 and ending with
average performance of between 2.5 and 2.7 at t = T .
On the contrary, HCL is able to increase the average worker
performance from 2.5 at t = 1 up to 3.9 (3.4) at t = T for
the synthetic (real) data. Hence, HCL learns context-specific
worker performances and selects better workers over time.

Finally, we evaluate the impact of worker availability by
varying the parameter ρ. For each value of ρ, we average
the results over 100 synthetic instances and over 100 real
instances for T = 10, 000, respectively. Fig. 5(a) and 5(b)
show the cumulative worker performance at T achieved by
the algorithms for different ρ. For small ρ = 0.1, all algo-
rithms yield approximately the same performance. This is
as expected since given our modeling of task budget, for

Fig. 4. Average worker performance up to task t for sequence t = 1, . . . , T
for ρ = 0.7 under the discrete performance model. (a) Experiments with
synthetic data. (b) Experiments with real data.

small ρ, the number of available workers is often smaller
than the required number of workers. Since each of the
algorithm enters a select-all-workers phase in this case, each
algorithm performs optimally. For increasing worker avail-
ability ρ, the cumulative performance at T achieved by each
of the algorithm increases. However, the gap between Oracle
and HCL on the one hand, and the remaining algorithms on
the other hand, is increasing for increasing ρ. For example,
at ρ ∈ {0.3, 0.7, 1}, the cumulative performance achieved
by HCL corresponds to {1.16, 1.46, 1.49} ({1.07, 1.29, 1.34})
times the one achieved by the respective next best algorithm
{AUER, LinUCB, LinUCB} ({ε-Greedy, LinUCB, LinUCB})
for the synthetic (real) data. Hence, the more workers are
available, the more severe is the effect of not selecting the
best workers and only HCL is able to cope with the more
difficult worker selection.

F. Results Under the Hybrid Performance Model
First, we run the algorithms on 100 real instances for

T = 10, 000 and ρ = 0.7 using the hybrid performance
model. Fig. 6 shows the average worker performance up
to task t as a function of the sequentially arriving tasks
t = 1, . . . , T .18 The average worker performance achieved
by Oracle and Random stay nearly constant at around 0.88
and 0.29 over the sequence of tasks. AUER, ε-Greedy and
Myopic increase the average worker performance only slightly,

18Note that worker performance is differently distributed in the hybrid than
in the discrete model, so that the absolute values presented in Sec. VI-F are
not comparable to those in Sec. VI-E.

1346 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

Fig. 5. Impact of worker availability on cumulative worker performance at T
for T = 10, 000 tasks under the discrete performance model. (a) Experiments
with synthetic data. (b) Experiments with real data.

Fig. 6. Average worker performance up to task t for sequence t = 1, . . . , T
for ρ = 0.7 under the hybrid performance model using real data.

from between 0.28 and 0.31 at t = 1 to between 0.36 and
0.42 at t = T . LinUCB has a larger increase from 0.37
at t = 1 to 0.55 at t = T . Compared to the discrete
performance model, LinUCB performs better here due to the
monotonic dependency of expected performance on battery
state. Still, HCL has the largest increase from 0.31 at t = 1
up to 0.73 at t = T . Finally, we evaluate the impact of
worker availability ρ. For each value of ρ, we average the
results over 100 real instances for T = 10, 000. Fig. 7 shows
the cumulative worker performance at T achieved by the
algorithms for different ρ. Again, for higher ρ, the algorithms
achieve higher cumulative performances at T . While LinUCB
performs better compared to the results under the discrete
performance model, still, the gap in cumulative performance

Fig. 7. Impact of worker availability on cumulative worker performance at
T for T = 10, 000 tasks under the hybrid performance model using real data.

between HCL and LinUCB is increasing for increasing ρ.
For example, at ρ ∈ {0.3, 0.7, 1}, the cumulative performance
achieved by HCL corresponds to {1.05, 1.32, 1.40} times the
one achieved by LinUCB.

VII. CONCLUSION

In this paper, we presented a context-aware hierarchi-
cal online learning algorithm, which learns context-specific
worker performance online over time in order to maximize
the performance in an MCS system for location-independent
tasks. Our algorithm is split into two parts, one executed by
LCs in the mobile devices of the workers, the other executed
by the central MCSP. While the LCs learn their workers’
performances, the MCSP assigns workers to tasks based on
regular information exchange with the LCs. Our hierarchical
approach ensures that the most suitable workers are requested
by the MCSP. The learning in LCs ensures that personal
worker context can be kept locally, but still workers are
offered those tasks they are interested in the most. We showed
that the requirements of our algorithm in terms of storage,
communication and the number of quality assessments are
small. Moreover, the algorithm converges to the optimal task
assignment strategy.

REFERENCES

[1] J. Ren, Y. Zhang, K. Zhang, and X. Shen, “Exploiting mobile crowd-
sourcing for pervasive cloud services: Challenges and solutions,” IEEE
Commun. Mag., vol. 53, no. 3, pp. 98–105, Mar. 2015.

[2] Cisco Visual Networking Index: Global Mobile Data Traffic Fore-
cast Update, 2016–2021. Accessed: Mar. 21, 2017. [Online]. Avail-
able: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/mobile-white-paper-c11-520862.pdf

[3] eMarketer Report. Accessed: Mar. 21, 2017. [Online]. Available:
https://www.emarketer.com/Report/US-Time-Spent-with-Mobile-Deep-
Dive-Mobile-App-Web-Time/2001835

[4] Y. Zhao and Q. Han, “Spatial crowdsourcing: Current state and future
directions,” IEEE Commun. Mag., vol. 54, no. 7, pp. 102–107, Jul. 2016.

[5] R. Bonney et al., “Next steps for citizen science,” Science, vol. 343,
no. 6178, pp. 1436–1437, Mar. 2014.

[6] L. Kazemi and C. Shahabi, “GeoCrowd: Enabling query answering with
spatial crowdsourcing,” in Proc. 20th ACM Int. Conf. Adv. Geogr. Inf.
Syst. (SIGSPATIAL), 2012, pp. 189–198.

[7] D. Geiger and M. Schader, “Personalized task recommendation in
crowdsourcing information systems—Current state of the art,” Decision
Support Syst., vol. 65, pp. 3–16, Sep. 2014.

[8] L. B. Chilton, J. J. Horton, R. C. Miller, and S. Azenkot, “Task search in
a human computation market,” in Proc. ACM SIGKDD Workshop Hum.
Comput. (HCOMP), 2010, pp. 1–9.

[9] A. Doan, R. Ramakrishnan, and A. Y. Halevy, “Crowdsourcing systems
on the World-Wide Web,” Commun. ACM, vol. 54, no. 4, pp. 86–96,
Apr. 2011.

[10] K. Ahuja and M. van der Schaar. (Sep. 2016). “Dynamic assessments,
matching and allocation of tasks.” [Online]. Available: https://arxiv.org/
abs/1602.02439

KLOS NÉE MÜLLER et al.: CONTEXT-AWARE HIERARCHICAL ONLINE LEARNING FOR PERFORMANCE MAXIMIZATION 1347

[11] Y. Liu and M. Liu, “An online learning approach to improving the
quality of crowd-sourcing,” IEEE/ACM Trans. Netw., vol. 25, no. 4,
pp. 2166–2179, Aug. 2017.

[12] A. Slivkins and J. W. Vaughan, “Online decision making in crowdsourc-
ing markets: Theoretical challenges,” SIGecom Exchanges, vol. 12, no. 2,
pp. 4–23, Dec. 2013.

[13] C.-J. Ho and J. W. Vaughan, “Online task assignment in crowdsourcing
markets,” in Proc. 26th AAAI Conf. Artif. Intell., 2012, pp. 45–51.

[14] L. Tran-Thanh, S. Stein, A. Rogers, and N. R. Jennings, “Efficient
crowdsourcing of unknown experts using bounded multi-armed bandits,”
Artif. Intell., vol. 214, pp. 89–111, Sep. 2014.

[15] M. Safran and D. Che, “Real-time recommendation algorithms for
crowdsourcing systems,” Appl. Comput. Inform., vol. 13, no. 1,
pp. 47–56, Jan. 2017.

[16] V. Ambati, S. Vogel, and J. Carbonell, “Towards task recommendation
in micro-task markets,” in Proc. 11th AAAI Conf. Hum. Comput., 2011,
pp. 80–83.

[17] Y. Gong, L. Wei, Y. Guo, C. Zhang, and Y. Fang, “Optimal task
recommendation for mobile crowdsourcing with privacy control,” IEEE
Internet Things J., vol. 3, no. 5, pp. 745–756, Oct. 2016.

[18] K. Han, C. Zhang, and J. Luo, “Taming the uncertainty: Budget limited
robust crowdsensing through online learning,” IEEE/ACM Trans. Netw.,
vol. 24, no. 3, pp. 1462–1475, Jun. 2016.

[19] H. To, C. Shahabi, and L. Kazemi, “A server-assigned spatial crowd-
sourcing framework,” ACM Trans. Spatial Algorithms Syst., vol. 1, no. 1,
pp. 2:1–2:28, Jul. 2015.

[20] U. Ul Hassan and E. Curry, “A multi-armed bandit approach to online
spatial task assignment,” in Proc. 11th IEEE Int. Conf. Ubiquitous Intell.
Comput. (UTC), Dec. 2014, pp. 212–219.

[21] H. To, G. Ghinita, L. Fan, and C. Shahabi, “Differentially private
location protection for worker datasets in spatial crowdsourcing,” IEEE
Trans. Mobile Comput., vol. 16, no. 4, pp. 934–949, Apr. 2017,

[22] L. Zheng and L. Chen, “Maximizing acceptance in rejection-aware
spatial crowdsourcing,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 9,
pp. 1943–1956, Sep. 2017.

[23] J. Langford and T. Zhang, “The epoch-greedy algorithm for multi-armed
bandits with side information,” in Proc. 20th Int. Conf. Neural Inf.
Process. Syst., 2007, pp. 817–824.

[24] A. Badanidiyuru, J. Langford, and A. Slivkins, “Resourceful contextual
bandits,” in Proc. 27th Conf. Learn. Theory, 2014, pp. 1–26.

[25] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proc. 19th
ACM Int. Conf. World Wide Web (WWW), 2010, pp. 661–670.

[26] W. Chu, L. Li, L. Reyzin, and R. E. Schapire, “Contextual bandits
with linear payoff functions,” in Proc. 14th Int. Conf. Artif. Intell.
Stat. (AISTATS), 2011, pp. 208–214.

[27] S. Agrawal and N. Goyal, “Thompson sampling for contextual bandits
with linear payoffs,” in Proc. 30th Int. Conf. Mach. Learn. (ICML),
vol. 28. 2013, pp. 127–135.

[28] C. Gentile, S. Li, and G. Zappella, “Online clustering of bandits,” in
Proc. 31st Int. Conf. Mach. Learn. (ICML), 2014, pp. 1–9.

[29] A. Slivkins, “Contextual bandits with similarity information,” J. Mach.
Learn. Res., vol. 15, pp. 2533–2568, Jan. 2014.

[30] C. Tekin and M. van der Schaar, “Distributed online learning via
cooperative contextual bandits,” IEEE Trans. Signal Process., vol. 63,
no. 14, pp. 3700–3714, Jul. 2015.

[31] C. Tekin, S. Zhang, and M. van der Schaar, “Distributed online learning
in social recommender systems,” IEEE J. Sel. Topics Signal Process.,
vol. 8, no. 4, pp. 638–652, Aug. 2014.

[32] S. Müller, O. Atan, M. van der Schaar, and A. Klein, “Context-
aware proactive content caching with service differentiation in wire-
less networks,” IEEE Trans. Wireless Commun., vol. 16, no. 2,
pp. 1024–1036, Feb. 2017.

[33] S. Müller, O. Atan, M. van der Schaar, and A. Klein, “Smart caching
in wireless small cell networks via contextual multi-armed bandits,” in
Proc. IEEE Int. Conf. Commun. (ICC), May 2016, pp. 1–7.

[34] H.-P. Shiang and M. van der Schaar, “Delay-sensitive resource manage-
ment in multi-hop cognitive radio networks,” in Proc. 3rd IEEE Symp.
New Frontiers Dyn. Spectr. Access Netw., Oct. 2008, pp. 1–12.

[35] N. Mastronarde and M. van der Schaar, “Fast reinforcement learning for
energy-efficient wireless communication,” IEEE Trans. Signal Process.,
vol. 59, no. 12, pp. 6262–6266, Dec. 2011.

[36] R. Kleinberg, A. Niculescu-Mizil, and Y. Sharma, “Regret bounds
for sleeping experts and bandits,” Mach. Learn., vol. 80, nos. 2–3,
pp. 245–272, 2010.

[37] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2, pp. 235–256,
2002.

[38] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility:
User movement in location-based social networks,” in Proc. 17th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2011,
pp. 1082–1090.

[39] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” J. Amer. Stat. Assoc., vol. 58, no. 301, pp. 13–30, 1963.

[40] E. Chlebus, “An approximate formula for a partial sum of the divergent
p-series,” Appl. Math. Lett., vol. 22, no. 5, pp. 732–737, May 2009.

Sabrina Klos née Müller (S’15) received the B.Sc.
and M.Sc. degrees in mathematics from Technische
Universität Darmstadt, Germany, in 2012 and 2014,
respectively, where she is currently pursuing the
Ph.D. degree in electrical engineering as a member
of the Communications Engineering Laboratory. Her
research interests include machine learning and opti-
mization methods and their applications to wireless
networks.

Cem Tekin (M’13) received the B.Sc. degree in
electrical and electronics engineering from Middle
East Technical University, Ankara, Turkey, in 2008,
and the M.S.E. degree in electrical engineering:
systems, the M.S. degree in mathematics, and the
Ph.D. degree in electrical engineering: systems from
the University of Michigan, Ann Arbor, MI, USA,
in 2010, 2011, and 2013, respectively. He is cur-
rently an Assistant Professor with the Electrical
and Electronics Engineering Department, Bilkent
University, Ankara. His research interests include

machine learning, multiarmed bandit problems, data mining, and multi-agent
systems. He received the University of Michigan Electrical Engineering
Departmental Fellowship in 2008 and the Fred W. Ellersick Award for the
best paper in MILCOM 2009.

Mihaela van der Schaar (M’99–SM’04–F’10) is
currently a Man Professor with the University of
Oxford and a Turing (Faculty) Fellow with The
Alan Turing Institute. Her current research interests
include machine learning, AI, and data science for
medicine. She is also developing machine learning
and data science methods to enable personalized
education of students and professionals. Besides
machine learning and data science, her research
expertise spans signal processing, multimedia, com-
munication networks, network science, game theory,

and distributed systems. Her research work has been widely cited, and several
of her papers received best paper awards, including the prestigious IEEE
Circuits and Systems Society Darlington Award. Her research has also led
to 33 U.S. patents and over 45 contributions to international standards. Her
research has received many recognitions and awards, including the NSF
CAREER award, the Okawa Foundation Award, three IBM Faculty Research
Awards, the Philips Make a Difference Award, and three International
Organization for Standardization Awards.

Anja Klein (M’96) received the Diploma and
Dr.-Ing. (Ph.D.) degrees in electrical engineering
from the University of Kaiserslautern, Germany,
in 1991 and 1996, respectively. In 1996, she joined
Siemens AG, Mobile Networks Division, Munich
and Berlin, Germany. She was the Director of the
Development Department and the Systems Engineer-
ing Department. She was active in the standard-
ization of 3G mobile radio in ETSI and in 3GPP,
for instance leading the TDD Group of RAN1 in
3GPP. In 2004, she joined the Technische Universität

Darmstadt, Germany, as a Full Professor, heading the Communications
Engineering Laboratory. She has authored over 300 refereed papers and has
contributed to 12 books. She is an inventor and a co-inventor of over 45 patents
in the field of mobile radio. Her main research interests are in mobile radio,
including interference management, cross-layer design, relaying and multi-
hop, computation offloading, smart caching, and energy harvesting. In 1999,
she was named the Inventor of the Year by Siemens AG. She is a member of
the Verband Deutscher Elektrotechniker-Informationstechnische Gesellschaft.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

