
218 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 12, NO. 1, FEBRUARY 2018

Generalized Global Bandit and Its Application in
Cellular Coverage Optimization

Cong Shen , Senior Member, IEEE, Ruida Zhou, Cem Tekin , Member, IEEE,
and Mihaela van der Schaar, Fellow, IEEE

Abstract—Motivated by the engineering problem of cellular cov-
erage optimization, we propose a novel multiarmed bandit model
called generalized global bandit. We develop a series of greedy
algorithms that have the capability to handle nonmonotonic but
decomposable reward functions, multidimensional global param-
eters, and switching costs. The proposed algorithms are rigorously
analyzed under the multiarmed bandit framework, where we show
that they achieve bounded regret, and hence, they are guaranteed to
converge to the optimal arm in finite time. The algorithms are then
applied to the cellular coverage optimization problem to achieve
the optimal tradeoff between sufficient small cell coverage and
limited macroleakage without prior knowledge of the deployment
environment. The performance advantage of the new algorithms
over existing bandits solutions is revealed analytically and further
confirmed via numerical simulations. The key element behind the
performance improvement is a more efficient “trial and error”
mechanism, in which any trial will help improve the knowledge of
all candidate power levels.

Index Terms—Multi-armed bandit, online learning, regret anal-
ysis, coverage optimization.

I. INTRODUCTION

R ECENT years have witnessed a significant growth of small
base stations (SBS), such as pico and femto, that are mas-

sively deployed to address the capacity and coverage challenge
of wireless networks [1]. In practice, SBSs may be deployed
in drastically different scenarios, with different target coverage
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objectives. In addition, the radio frequency (RF) conditions may
vary significantly from one deployment to another. Due to the
heterogeneous nature of these deployments, setting an appro-
priate transmit power of each deployed SBS, which effectively
determines the coverage, becomes an important task that must
be decided based on the specific deployment scenario. If the
transmit power is too small, the resulting coverage may not
sufficiently cover the intended area. On the other hand, if the
transmit power is too large, the SBS coverage will leak into
macrocells and cause unnecessary interference, especially if the
SBS operates in a close-access mode.

Traditional approaches to cell coverage optimization rely on
RF engineers to carry out on-the-spot field measurements to ef-
fectively “learn” the specific deployment environment, and op-
timize the coverage and leakage using RF planning tools. This
approach, however, becomes increasingly infeasible for SBS de-
ployment as it does not scale with the significant increase of net-
work nodes (high density), multiple layers of nodes (heterogene-
ity), and multiple radio access technologies (3G/4G/Wifi) [2].
Furthermore, non-stationarity of the environment, such as dy-
namic user behavior and RF footprint variations, may cause the
previously optimal configuration to become highly sub-optimal
and lead to performance degradation [3].

Applying online learning algorithms to cellular coverage
optimization is an important means to address the aforemen-
tioned challenges, as they allow for adaptive, automated and
autonomous coverage adjustment while minimizing the planned
human involvement. A good coverage learning solution has to
balance the immediate gains (selecting a coverage that is the
best based on current knowledge) and long-term performance
(evaluating other coverage levels). We thus resort to the the-
ory of multi-armed bandit (MAB) [4] to address the resulting
exploration and exploitation tradeoff. It is worth noting that
MAB-inspired algorithms have been adopted in various other
similar tasks, such as power calibration [5], mobility manage-
ment [6]–[8], and channel selection [9].

However, a direct application of standard MAB algorithms
(such as UCB [10]1) to the coverage optimization problem, al-
beit feasible, ignores the inherent structure and hence cannot
fully exploit the characteristics of the underlying communica-
tion model. First, unlike the standard MAB model where dif-
ferent arms are independent, coverage performances of similar
transmit power levels are often very similar, which means that

1Throughout this paper, UCB specifically refers to UCB1 in [10].
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if we adopt the MAB model, nearby arms are highly correlated.
Intuitively, such correlation can be used to accelerate the con-
vergence to the optimal selection, because any sampling of one
arm not only reveals information about itself, but also nearby
arms that are highly correlated. Second, the correlated coverage
performance of different power levels fundamentally originates
from the fact that they all follow the same physical RF propa-
gation law, which has been captured in various standard models
(e.g., 3GPP model [11]).

In this work, motivated by this engineering problem, we first
propose a novel MAB model, called Generalized Global Bandit
(GGB), that is a non-trivial extension of Global Bandit (GB) in
[12], [13]. In GB, the expected reward of each arm is a (possibly
non-linear) function of a single parameter, and different arms
are correlated through this global parameter. Furthermore, this
function is required to be monotonic. As we will see, the orig-
inal GB model and the resulting algorithms cannot be directly
applied to coverage optimization due to three unique features.
First, cellular coverage optimization needs to balance sufficient
coverage within the intended area and limited leakage to out-
side macro users. As a result, the reward function will not be
monotonic.2 Second, the reward function may have multiple
unknown parameters. The GB model in [12], however, cannot
be trivially extended to handle more than one global parameter.
Lastly, a practical coverage optimization solution needs to avoid
frequent power changes, as it may cause frequent variation of the
coverage area and result in uneven user experience. Hence, the
solution should explicitly consider switching cost to discourage
frequent changes to the coverage area.

We address these three new challenges in the GGB model.
The reward function of each arm is allowed to be non-monotonic
but decomposable, which fits well with the considered cover-
age optimization problem. Multi-dimensional global parameters
and switching cost are also considered in the GGB model. We
then present the ad-greedy policy, which can simultaneously
maximize the accumulated rewards and estimate the unknown
parameters via an updated weight average on different arms.
Rigorous regret analysis is carried out for the proposed policy
and its variants, where we show that bounded regret is achiev-
able, and hence, the policy is guaranteed to converge to the
optimal arm in finite time. In other words, the one-step regret
approaches zero asymptotically. The algorithms are then applied
to the cell coverage optimization problem to achieve the opti-
mal tradeoff between sufficient SBS coverage and limited macro
leakage without prior knowledge of the deployment. Numerical
simulation results are provided to demonstrate the performance
advantage of the new algorithms over the existing bandit solu-
tions.

The main contributions of this work are summarized as fol-
lows.

� Motivated by the practical constraints of the cellular cov-
erage optimization problem, we propose a generalized
global bandit model, which can handle non-monotonic but

2It is worth noting that the monotonicity requirement is fundamental to the
WAGP algorithm in [12], which is one of the two key assumptions in [12,
Sec. III].

decomposable reward functions, multi-dimensional global
parameters, and switching costs.

� We develop the ad-greedy policy for the considered GGB
model, and rigorously analyze its regret. We show that the
(total) regret is bounded, and hence, the one-step regret
diminishes asymptotically.

� We apply the GGB model and the ad-greedy policy and
its variants to the cellular coverage optimization problem,
and illustrate how the proposed variants fit to this engi-
neering problem. We further verify the advantages of the
new algorithms via numerical simulations. Furthermore,
we also numerically evaluate the algorithm performance
in a non-stationary environment, when the MBS signal
strength slowly changes over time.

The rest of the paper is organized as follows. Related liter-
ature is discussed in Section II. The GGB formulation, the ad-
greedy policies, and the corresponding regret analysis are given
in Section III. In Section IV, we describe how the GGB model
can be applied to the cellular coverage optimization problem,
and present the numerical simulation results. Finally, Section V
concludes the paper.

II. RELATED WORK

A. MAB With Arm Correlations

MAB is a powerful tool to model sequential decision prob-
lems with an intrinsic exploration-exploitation tradeoff. In the
classic stochastic MAB model, each arm, if played, generates
an instantaneous reward that is independently and identically
(i.i.d.) drawn from a fixed distribution, which is unknown to the
forecaster a priori. The design objective is to maximize the total
expected reward accumulated through a sequence of T plays,
which can be equivalently formulated as to minimize the regret
between the total expected reward from always playing the arm
with the highest expected reward and that from the learning
algorithm.

The fundamental regret lower bound for stochastic MAB was
developed by Lai and Robbins in [14], and a matching upper
bound is achieved by the celebrated Upper Confidence Bound
(UCB) algorithm [10]. Using UCB, at each round the player
simply pulls the arm that has the highest sample mean reward
plus an uncertainty term that is inversely proportional to the
number of times the arm has been played. There is a rich body of
literature on MABs, which we will not survey comprehensively.
Interested readers are referred to [4] and the references therein.

In the MAB literature, the most relevant work to our GGB
model is the study on MAB with arm correlations. Existing re-
search on this topic can be divided into two categories: Bayesian
model [15], [16] and parameterized model [17]–[19]. In the
Bayesian model, arm correlation is captured by stochastic mea-
sures such as mean and covariance matrix. This approach and the
corresponding bandit algorithms have been studied in [15], [16].
The authors of [15] propose bandit algorithms with a Bayesian
prior on the mean reward that is based on a human decision-
making model. The authors of [16] further extend the algorithm
to focus on the correlation among arms. Linear bandit [17] is
a primary example of the parameterized model, in which the
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expected reward of each arm is a linear function of a global pa-
rameter. For this model, [18] proves a regret bound that scales
linearly with the dimension of the parameter. The authors of
[19] establish a lower bound for an arbitrary policy for the
multi-dimensional linear bandit, and then provide a matching
upper bound through a policy that alternates between explo-
ration and exploitation. The GGB setting is more general than
these above models as it allows for non-linear non-monotonic
reward functions with multi-dimensional parameters. For the
special case when the expected sub-function rewards are all lin-
ear in multi-dimensional parameters, our setting reduces to the
linear bandit model.

B. Non-Linear Parameter Estimation

Another line of relevant work is in the area of non-linear
parameter estimation [20]–[22]. In [21], the author studies the
non-linear parameter estimation problem with additive Gaussian
noise. The authors of [20] prove that the nonlinear least-square
estimator is able to asymptotically attain the Cramer-Rao lower
bound under additive Gaussian noise, even when there is a mis-
match of noise distribution. The authors of [22] focus on the
impact of compressed sensing on Fisher information and the
Cramer-Rao bound. The main difference to our work is that
these papers do not need to consider the exploration and ex-
ploitation tradeoff that is fundamental to the MAB problems.
They only care about estimating the parameter as accurately as
possible, while we aim at maximizing the long-term reward of
a bandit policy.

C. Cellular Coverage Optimization

Coverage optimization is an important task in cellular net-
work deployment. Under the self-organizing networking (SON)
framework, this task is captured in the Capacity and Coverage
Optimization (CCO) feature, which is part of the 3GPP SON
deliverables [23]. In practice, coverage optimization has been
implemented and deployed in commercial SON products such
as Cisco SON [24] and Qualcomm UltraSON [25]. In academia,
coverage optimization is an active research topic [26], [27]. Ex-
isting studies have focused on optimizing different system pa-
rameters, such as antenna tilt [28]–[30], and downlink transmit
power [5], [31], [32].

In [28], the impact of half-power beamwidths and downtilt
antenna angle to the overall network performance is studied. A
cell coverage optimization problem for uplink massive MIMO is
studied in [29], which is based on optimizing the tilt-adjustable
antennas at SBS. A general framework incorporating both down-
link and uplink coverage, while requiring very sparse system
knowledge, is proposed in [30].

Besides antenna parameter optimization, another line of study
focuses on adjusting the SBS transmit power so that the result-
ing coverage balances maximizing intended coverage and min-
imizing undesirable leakage. Our application of coverage opti-
mization also falls into this category. Claussen et al. [31] have
proposed a method that uses information on mobility events of
outdoor and indoor users to optimize the transmit power. This
approach is further enhanced in [32], where a systematic study

of indoor enterprise SBS networks is carried out. Both of these
works require knowledge of the deployment, such as intended
area and co-channel macrocell footprint, which is not assumed
in this work. Alternatively, adjusting the SBS transmit power
without deployment knowledge has recently been considered
in [5], where the MAB model is applied and the correlation
of different power levels is captured using a Bayesian frame-
work. However, it does not fully utilize the available structural
information of the system.

III. GENERALIZED GLOBAL BANDIT MODEL AND

GREEDY POLICIES

In this section, we first present the common baseline formu-
lation, and then discuss three generalizations to the underlying
model: non-monotonic decomposable reward functions, multi-
dimensional global parameters, and switching costs. For each
of these generalizations, we will present the greedy policies and
analyze their regrets.

A. The Baseline GGB Formulation

We consider a stochastic MAB formulation with K arms,
indexed by K = {1, . . . , K}. A forecaster can choose and play
exactly one arm at each time slot. Arm k ∈ K, if played, will
offer a bounded reward that is drawn from a distribution νk

with a finite support, and we denote its mean as μk . We use
Xk,t to denote the random reward of arm k at time slot t,
which is independently drawn from other arms. Without loss
of generality, we assume that the rewards are bounded within
the unit interval [0, 1]. The forecaster has no prior knowledge of
either νk or μk , ∀k ∈ K. The forecaster’s goal is to design an
arm selection policy that maximizes the total reward it obtains
over time.

Within the framework of global bandits [12], there exists a
global parameter θ∗, which is associated to the expected rewards
of all arms μk = μk (θ∗) = Eνk

[Xk,t ], where Eνk
[·] denotes

expectation with respect to distribution νk . The parameter θ∗,
unknown to the forecaster, belongs to a parameter set Θ, which
again is normalized to be the unit interval for simplicity.

The forecaster knows the reward function μk (θ) for each
k ∈ K, but not the true global parameter θ∗. At each time slot,
the forecaster only observes the random reward from the cho-
sen arm, and her goal is to maximize the cumulative reward
up to any given time T . Obviously, if the global parameter is
perfectly known to the forecaster, she will always select the opti-
mal arm k∗(θ∗) = arg maxk∈K μk (θ∗), with the corresponding
optimal expected reward μ∗(θ∗) = maxk∈K μk (θ∗). When θ∗ is
clear from the context, we use k∗ and μ∗ instead of k∗(θ∗) and
μ∗(θ∗). For simplicity of exposition and without loss of general-
ity, throughout the paper it is assumed that there exists a unique
best arm for θ∗. We define the one-step (pseudo) regret at time t
as rIt

(θ∗)
.= μ∗(θ∗) − μIt

(θ∗), where It is the selected arm by
the forecaster’s policy at time t. The total regret [4] by time T
is given as

Reg(T ) = E

[
T∑

t=1

rIt
(θ∗)

]
. (1)
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B. Non-Monotonic Decomposable Reward Functions

1) Model and Algorithm: A significant constraint of [12] is
that μk (θ) must be an invertible function of θ. Hence the reward
function must be monotonic. If the monotonicity condition is
totally removed, the GB problem becomes difficult to study. Our
approach in this work, nevertheless, is to exploit the structure
of the cellular coverage optimization problem and relax the
monotonicity constraint to a certain degree such that it not only
fits our problem setting but also is tractable.

Fortunately, for the cellular coverage optimization problem,
the objective function is generally defined as a linear combina-
tion of two (or more) conflicting functions (see [5, eq. (3)] for an
example). As a result, the overall function is not monotonic with
respect to θ, but the individual sub-functions are, and they are
monotonic in the opposite direction. For instance, the specific
Performance Indication Function (PIF) fk (θ) of [5] (equivalent
to the expected reward function μk (θ) in GB), can be decom-
posed into the linear combination of two sub-functions. One of
them denotes the coverage, which increases monotonically with
the coverage radius d, while the other one denotes the leakage,
which decreases monotonically with d.

Formally, the expected reward function μk (θ) can be decom-
posed into J continuous sub-functions:

μk (θ) =
J∑

j=1

αjμj,k (θ). (2)

These sub-functions and their weights are assumed to be
known to the forecaster, but not the true parameter θ∗. For
each j ∈ J = {1, . . . , J} and k ∈ K = {1, . . . , K}, the sub-
function μj,k (θ) satisfies the Hölder continuity and monotonic-
ity assumptions as [12, Assumption 1]. More specifically, the
following assumptions are made.

Assumption 1:
1) (Hölder continuity) For each j ∈ J , k ∈ K and θ, θ′ ∈

Θ, there exists D2,j,k > 0 and 0 < γ2,j,k ≤ 1, such that:

|μj,k (θ) − μj,k (θ′)| ≤ D2,j,k |θ − θ′|γ2 , j , k . (3)

2) (Sub-function monotonicity) For each j ∈ J , k ∈ K and
θ, θ′ ∈ Θ, there exists D1,j,k > 0 and 1 < γ1,j,k , such
that:

|μj,k (θ) − μj,k (θ′)| ≥ D1,j,k |θ − θ′|γ1 , j , k . (4)

We want to emphasize that Assumption 1 is mild. For the
application of cellular coverage optimization, the sub-function
monotonicity has been discussed, and the Hölder continuity
condition can also be met when the coverage/leakage function
changes smoothly with the intended coverage area. This point
will become more clear when we discuss the application of GGB
to the cellular coverage problem in Section IV.

We further assume that whenever an arm k is played, the fore-
caster receives the sub-function reward realizations {Xj

k,t}j∈J .
Sub-function reward realizations are independent between arms,
and i.i.d. over time. Receiving {Xj

k,t}j∈J is a reasonable as-
sumption for some practical scenarios, such as the considered
coverage optimization problem where the coverage events are

reported by SBS users through the measurement reports and mo-
bility protocols, and the leakage events are reported by macro
users through registration attempts, respectively. Such approach
has been adopted in previous papers, e.g., [32], [33], and has
been successfully adopted in practical transmit power assign-
ment solution, e.g., [25].

With Assumption 1, we have the following proposition.
Proposition 1: Define

D2 = max{D2,j,k |j ∈ J , k ∈ K},
γ1 = max{γ1,j,k |j ∈ J , k ∈ K},
γ2 = min{γ2,j,k |j ∈ J , k ∈ K},

μ
j,k

= min
θ∈Θ

μj,k (θ), μj,k = max
θ∈Θ

μj,k (θ)

and

γ̄1 =
1
γ1

,

D̄1 = max

{(
1

D1,j,k

) 1
γ 1 , j , k |j ∈ J , k ∈ K

}
.

The following statements hold:
1) For each j ∈ J , k ∈ K and θ, θ′ ∈ Θ,

|μj,k (θ) − μj,k (θ′)| ≤ D2 |θ − θ′|γ2 . (5)

2) For each j ∈ J , k ∈ K and y, y′ ∈ [μ
j,k

, μj,k ],

|μ−1
j,k (y) − μ−1

j,k (y′)| ≤ D̄1 |y − y′|γ̄1 . (6)

Proof: Inequality (5) is a direct application of (3) of
Assumption 1 and the definitions of D2 and γ2 . For the proof
of inequality (6), we first note that the reward sub-functions
are invertible due to the sub-function monotonicity part of
Assumption 1. Then, inequality (6) is directly obtained by plug-
ging the inverse functions in (4) and applying the definitions of
γ̄1 and D̄1 . �

We present a greedy policy, called the ad-greedy policy, which
can effectively handle non-monotonic decomposable reward
functions. The pseudocode of the ad-greedy policy is given
in Algorithm 1.

As the name suggests, the ad-greedy policy is a greedy pro-
cedure at its core, with the capability to adaptively update the
parameter estimate using all the observed reward realizations
from sub-functions. Other than the initial time slot where no
prior information is available, where an arm I1 is uniformly
chosen among all arms, the arm selection always chooses It

with the highest estimated reward:

It = arg max
k∈K

μk (θ̂t−1).

This is the same as the greedy policy for classic MAB problems,
which is well-known [4], [10] to be strictly sub-optimal and
cannot achieve log(t) order of regret. However, as we will see
later in the regret analysis, this simple greedy policy suffices
to achieve bounded regret in our GGB model due to the global
informativeness.

In addition to the greedy arm selection, the policy also car-
ries out an update on the global parameter estimation using
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estimates from individual sub-functions of individual arms, and
weighing them differently. The weights are updated according
to the number of times the arm is played.

2) Regret Analysis: The optimality region Θk for any arm k
is defined as

Θk = {θ ∈ Θ|k ∈ k∗(θ)} . (7)

We then define δ as the smallest Euclidean distance between θ∗
and the boundary of Θk ∗ . Since there is a unique best arm for
θ∗ and since the reward functions are continuous in θ, we have
δ > 0. The total regret up to time T can be written as the sum
of one-step regrets Reg(T ) = E[

∑T
t=1 rIt

(θ∗)]. Thanks to the
normalization, the one-step regret for t > 1 can be bounded by

E[rIt
(θ∗)] ≤ 1 · Pr {It �= k∗(θ∗)} = Pr

{
θ̂t−1 ∈ Θ\Θk ∗

}
.

Theorem 1: The regret of the ad-greedy policy for a finite
time horizon T is upper bounded by

Reg(T ) ≤ 1 + 2JK
e−α − Te−αT + (T − 1)e−α(T +1)

(1 − e−α )2 ,

where α = 2( δ
K D̄1

)2γ1 > 0. Furthermore, the infinite time hori-
zon regret of the ad-greedy policy is finite, i.e.,

Reg(∞) ≤ 1 + 2JK
e−α

(1 − e−α )2 .

Proof: Before deriving a bound of the gap between the pa-
rameter estimate at time slot t and the true parameter, we
let μ̃−1

j,k (y) .= arg minθ∈Θ |μj,k (θ) − y| for y ∈ [0, 1]. By the
monotonicity of μj,k (·) and Proposition 1, we have |μ̃−1

j,k (y) −

μ̃−1
j,k (y′)| ≤ D̄1 |y − y′|γ̄1 for all y, y′ ∈ [0, 1]. Then, we have

|θ̂t − θ∗|

=

∣∣∣∣∣
∑
k∈K

ωk (t)

∑
j∈J θ̂j

k ,t

J
− θ∗

∣∣∣∣∣
≤ 1

J

∑
j∈J

∑
k∈K

∣∣∣ωk (t)θ̂j
k ,t − ωk (t)θ∗

∣∣∣
≤ 1

J

∑
j∈J

∑
k∈K

ωk (t)
∣∣∣μ̃−1

j,k (X̂j
k,t) − μ̃−1

j,k (μj,k (θ∗))
∣∣∣

≤ 1
J

∑
j∈J

∑
k∈K

ωk (t)D̄1 |X̂j
k,t − μj,k (θ∗)|γ̄1 .

Next, we analyze the event that the gap |θ̂t − θ∗| is no smaller
than δ. Note that when the gap is smaller than δ, It+1 = k∗. This
may not hold when the gap is larger than or equal to δ.

{
δ ≤ |θ̂t − θ∗|

}

⊂
⎧⎨
⎩δ ≤ 1

J

∑
j∈J

∑
k∈K

ωk (t)D̄1 |X̂j
k,t − μj,k (θ∗)|γ̄1

⎫⎬
⎭

=

⎧⎨
⎩
∑
j∈J

∑
k∈K

δ

JK
≤
∑
j∈J

∑
k∈K

ωk (t)D̄1

J
|X̂j

k,t − μj,k (θ∗)|γ̄1

⎫⎬
⎭

⊂
⋃
k∈K

⋃
j∈J

{
δ

JK
≤ ωk (t)D̄1

J
|X̂j

k,t − μj,k (θ∗)|γ̄1

}

=
⋃
k∈K

⋃
j∈J

{(
δ

KD̄1ωk (t)

)γ1

≤ |X̂j
k,t − μj,k (θ∗)|

}
. (8)

Define X̄j
k,s as the empirical mean of the first s observations of

sub-reward j of arm k, which are i.i.d. based on the assumption
that sub-rewards of the same arm are i.i.d. over time. The one-
step regret is bounded as follows:

Pr {It+1 �= k∗} = Pr
{

θ̂t ∈ Θ\Θk ∗
}

≤ Pr
{

δ ≤ |θ̂t − θ∗|
}

(a)
≤
∑
j∈J

∑
k∈K

Pr

{( δ

KD̄1ωk (t)

)γ1 ≤ |X̂j
k,t − μj,k (θ∗)|

}

=
∑
j∈J

∑
k∈K

E
[
1
{( δt

KD̄1Nk (t)

)γ1 ≤ |X̂j
k,t − μj,k (θ∗)|

}]

(b)
≤
∑
j∈J

∑
k∈K

E

[
1

{
∃s ∈ {1, 2, . . . , t},

(
δt

KD̄1s

)γ1

≤ |X̄j
k,s − μj,k (θ∗)|

}]
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(c)
≤
∑
j∈J

∑
k∈K

t∑
s=1

E

[
1

{(
δt

KD̄1s

)γ1

≤ |X̄j
k,s − μj,k (θ∗)|

}]

(d)
≤
∑
j∈J

∑
k∈K

t∑
s=1

2

[
exp

(
−2
(

δt

KD̄1s

)2γ1

s

)]

= 2JK

t∑
s=1

[
exp

(
−2
(

δ

KD̄1

)2γ1 (s

t

)1−2γ1

t

)]

(e)
≤ 2JKt exp

(
−2
(

δ

KD̄1

)2γ1

t

)
, (9)

where (a) is from (8) and the union bound, (b) follows from the
fact that{

(
δt

KD̄1Nk (t)
)γ1 ≤ |X̂j

k,t − μj,k (θ∗)|
}

⊂
{
∃s ∈ {1, 2, . . . , t},

(
δt

KD̄1s

)γ1

≤ |X̄j
k,s − μj,k (θ∗)|

}
,

(c) is again from the union bound, (d) is obtained via Hoeffding’s
inequality, and (e) is based on the fact that

(
s
t

)1−2γ1 ≥ 1, which
is true by Assumption 1 and Proposition 1.

Finally, with the one-step regret bound (9), the total regret
Reg(T ) can be bounded by summing (9) over t = 1, . . . , T as
follows:

Reg(T ) ≤
T∑

t=1

Pr {It �= k∗(θ∗)}

≤ 1 +
T −1∑
t=1

2JKt exp
(
− 2(

δ

KD̄1
)2γ1 t
)

= 1 + 2JK
e−α − Te−αT + (T − 1)e−α(T +1)

(1 − e−α )2 .

Letting T go to infinity gives

Reg(∞) ≤ 1 + 2JK
e−α

(1 − e−α )2 .

�
Theorem 1 is important as it states that the regret of the ad-

greedy policy is bounded. This also implies that the ad-greedy
policy converges to the optimal arm k∗ with probability one.

C. Multi-Dimensional Global Parameters

1) Model and Algorithm: The model in Section III-B and
the original GB model of [12] only consider a scalar parameter
θ. In this section, the GB model and the ad-greedy policy are
extended to the multi-dimensional case for �θ. In reality, practical
problems often have multiple parameters that affect the system
performance. For example, cellular coverage optimization is de-
pendent on many environmental variables, such as deployment
area, macrocell footprints, target SINR, etc.

Increasing the parameter dimension brings non-trivial tech-
nical difficulty to the GGB model. To highlight the contribution
and for the ease of illustration, we study the case where the

global parameter is 2-dimensional. Extensions to higher dimen-
sions can be done with the same philosophy, but the resulting
analysis is much more complicated. Furthermore, we note that
this section still considers the non-monotonic reward functions
as in Section III-B.

To accommodate for the vector form of GGB, we re-define
some of the previous notations and introduce new notations.

� �θ∗ = [θ1∗, θ2∗] denotes the true unknown 2-dimensional
global parameter. �θ = [θ1 , θ2 ] ∈ Θ denotes any parameter
vector that is in the parameter set Θ. We normalize Θ such
that ||�θ − �θ′|| ≤ 1 for any �θ, �θ′ ∈ Θ, where || · || denotes
the Euclidean norm.

� k∗ = k∗(�θ∗) denotes the true best arm. k∗(�θ) denotes the
set of best arm(s) when the global parameter is �θ.

� Θk = {�θ ∈ Θ|k∈k∗(�θ)}.
� δ is the Euclidean distance between �θ∗ and the boundary

of Θk ∗ .
� μk (�θ) ∈ [0, 1] is the reward function that is composed of

J sub-functions:

μk (�θ) =
J∑

j=1

αjμj,k (�θ).

� Ψj,k (X) ⊂ Θ, is the contour of μj,k (�θ) to X , i.e.,

Ψj,k (X) =
{

�θ ∈ Θ|μj,k (�θ) = X
}

. (10)

Furthermore, the following assumptions are imposed for the
multi-dimensional GGB problem.

Assumption 2:
1) J ≥ 2.
2) For �θ∗ ∈ Θ and k ∈ K, there exists a J-dimensional

cube with center (μ1,k (�θ∗), μ2,k (�θ∗), . . . , μJ,k (�θ∗)) and
the edge length 2λk (�θ∗) such that, for any j, j′ ∈ J ,
j �= j′, X ∈ [μj,k (�θ∗) − λk (�θ∗), μj,k (�θ∗) + λk (�θ∗)], and
X ′ ∈ [μj ′,k (�θ∗) − λk (�θ∗), μj ′,k (�θ∗) + λk (�θ∗)], two con-
tours Ψj,k (X) and Ψj ′,k (X ′) have exactly one intersec-
tion. Denote λ = mink∈K(λk (�θ∗)).

3) For j, j′ ∈ J , j′ �= j, k ∈ K, and �θ, �θ′ ∈ Ψj,k (X),
there exists D1,j,j ′,k ,X > 0 and 0 < γ1,j,j ′,k ,X ≤ 1,
D2,j,j ′,k ,X > 0 and 1 < γ2,j,j ′,k ,X , such that:

|μj ′,k (�θ) − μj ′,k (�θ′)| ≥ D1,j,j ′,k ,X ||�θ − �θ′||γ1 , j , j ′ , k , X

j,k ,X

|μj ′,k (�θ) − μj ′,k (�θ′)| ≤ D2,j,j ′,k ,X ||�θ − �θ′||γ2 , j , j ′ , k , X

j,k ,X

where ||�θ − �θ′||j,k ,X is the rectification of contour Ψj,k (X)
between �θ and �θ′.

The first assumption is made so that the forecaster can esti-
mate �θ∗ by using pairs of Ψj,l(X̂

j
l,t), j ∈ J sets at each play.

The second assumption guarantees that as the estimation of X
is sufficiently close to the true value, contours of different sub-
functions intersect exactly once. This is similar to the Hölder
continuity and monotonicity conditions for the scalar parameter
case. As we will see in Section IV-A, the objective function
in coverage optimization satisfies this requirement. The last as-
sumption is the 2-dimensional counterpart to Assumption 1.
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While these assumptions are necessary in the regret analysis,
the proposed policy works well in practice, even when these
assumptions do not hold exactly.

With these assumptions, we have the following proposition.
The proof is similar to that of Proposition 1 and is omitted.

Proposition 2: For any k ∈ K, j, j′ ∈ J , j �= j′, and X ∈
[0, 1], define γ = 1

max(γ1 , j , j ′ , k , X ) and D = 2( 1
min(D1 , j , j ′ , k , X ) )

γ .

Then for any �θ, �θ′ ∈ Ψj,k (X), we have

||�θ − �θ′|| ≤ D

2
|Xj ′,k − X ′

j ′,k |γ

with Xj ′,k = μj ′,k (�θ) and X ′
j ′,k = μj ′,k (�θ′).

Now, we are in the position to present the ad-greedy-2D
policy in Algorithm 2, which enhances the ad-greedy policy to
handle the 2-dimensional �θ. Nevertheless, the basic principle
remains the same: choose the best arm at time t based on the
highest estimated reward, and update the estimated parameter
by using the parameter estimates from all sub-functions and all

arms. A naive approach would be to estimate the parameter for
each dimension separately, but this method ignores the intrinsic
relationship between the dimensions. The ad-greedy-2D policy
jointly estimates the parameter over all dimensions.

2) Regret Analysis: We analyze the regret of the ad-
greedy-2D for a 2-dimensional GGB model. Let lt =
arg maxk∈K Nk (t). We will drop the subscript in lt , when the
time slot is clear from the context. Also let

Gt =
⋂
j∈J

{X̂j
l,t ∈ [μj,l(�θ∗) − λl(�θ∗), μj,l(�θ∗) + λl(�θ∗)]}

denote the good event in which the sub-function reward es-
timates of arm lt are accurate. By Assumption 2-(2), At = 1
when Gt happens.

First we establish two lemmas that will be used in the proof
of the main result in Theorem 2.

Lemma 1: 1(Gt)||�̂θl
t − �θ∗|| ≤ 1

J

∑
j∈J D|X̂j

l,t − Xj,l |γ ,

where Xj,l = μj,l(�θ∗).
Proof: The inequality is trivial if 1(Gt) = 0, so we only

consider 1(Gt) = 1 in the following. Note that a unique
�θl
i,j = Ψi,l(X̂i

l,t) ∩ Ψj,l(X̂
j
l,t) exists when Gt is true. On the

other hand, �θ∗ = Ψj,l(μj,l(�θ∗)) ∩ Ψi,l(μi,l(�θ∗)) because of
Assumption 2-(2). Define �θl,∗

i,j = Ψj,l(μj,l(�θ∗)) ∩ Ψi,l(X̂i
l,t).

Note that the uniqueness of �θl,∗
i,j is also guaranteed due to

Assumption 2-(2) when 1(Gt) = 1. Thus, when 1(Gt) = 1,
the following series of inequalities can be proven using the
triangle inequality and Hölder continuity condition given in
Proposition 2.

||�θl
i,j − �θ∗|| ≤ ||�θl

i,j − �θl,∗
i,j || + ||�θl,∗

i,j − �θ∗||

≤ D

2
|X̂j

l,t − Xj,l |γ +
D

2
|X̂i

l,t − Xi,l |γ . (11)

With (11), further derivation leads to

1(Gt)||�̂θt − �θ∗||

≤ 1
J(J − 1)

∑
i �=j∈J

|�θl
i,j (t) − �θ∗|

≤ 1
J(J − 1)

∑
i �=j∈J

[
D

2
|X̂i

l,t − Xi,l |γ +
D

2
|X̂j

l,t − Xj,l |γ
]

=
1
J

∑
j∈J

D|X̂j
l,t − Xj,l |γ . (12)

�
Lemma 2:

{δ ≤ ||�̂θl
t − �θ∗||} ⊂

⋃
j∈J

{
σ ≤ |X̂j

l,t − Xj,l |
}

(13)

where σ = min(( δ
D )

1
γ , λ) and Xj,l = μj,l(�θ∗).

Proof:

{δ ≤ ||�̂θl
t − �θ∗||}

=
{
Gt

⋂
{δ ≤ ||�̂θl

t − �θ∗||}
}⋃{

Ḡt

⋂
{δ ≤ ||�̂θl

t − �θ∗||}
}
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⊂
{
Gt

⋂
{δ ≤ ||�̂θl

t − �θ∗||}
}⋃

Ḡt

⊂
{

δ ≤ 1(Gt)||�̂θl
t − �θ∗||

}⋃
Ḡt

⊂
⎧⎨
⎩δ ≤ 1

J

∑
j∈J

D|X̂j
l,t − Xj,l |γ

⎫⎬
⎭
⋃
j∈J

{
λ ≤ |X̂j

l,t − Xj,l |
}

⊂
⋃
j∈J

{
δ

J
≤ 1

J
D|X̂j

l,t − Xj,l |γ
} ⋃

j∈J

{
λ ≤ |X̂j

l,t − Xj,l |
}

=
⋃
j∈J

{
min

((
δ

D

) 1
γ

, λ

)
≤ |X̂j

l,t − Xj,l |
}

.

�
The regret bound for the ad-greedy-2D policy is given in the

following theorem.
Theorem 2: The regret of the ad-greedy-2D policy for a finite

time horizon T is upper bounded by

Reg(T ) ≤ 1 + 2J(K − 1)
e−β − Te−βT + (T − 1)e−β (T +1)

(1 − e−β )2 ,

(14)
where β = 2σ 2

K . Furthermore, the infinite time horizon regret is
upper bounded by a constant:

Reg(∞) ≤ 1 + 2J(K − 1)
e−β

(1 − e−β )2 . (15)

Proof: Similar to the previous proof of Theorem 1, the one-
step regret is analyzed first, and then the (total) regret is bounded.
Using Lemma 1 and 2, and Hoeffing’s inequality, the one-step
regret is bounded as follows:

Pr
{

It+1 �= k∗(�θ∗)
}

= Pr
{

�̂θl
t ∈ Θ\Θk ∗

}
≤ Pr

{
δ ≤ |�̂θl

t − θ∗|
}

(f )
≤
∑
j∈J

Pr
{
σ ≤ |X̂j

l,t − Xj,l |
}

=
∑
j∈J

E
[
1
(
σ ≤ |X̂j

l,t − Xj,l |
)]

(g)
≤
∑
j∈J

E
[
1
{
∃s ∈ {t/K�, . . . , t}, ∃k ∈ K,

σ ≤ |X̄j
k,s − Xj,k |

}]

(h)
≤
∑
j∈J

∑
k∈K

t∑
s=∗t/K �

E
[
1
{

σ ≤ |X̄j
k,s − Xj,k |

}]

(i)
≤
∑
j∈J

∑
k∈K

t∑
s=t/K �

2 exp
(−2σ2s

)

(j )
≤ 2J(K − 1)t exp

(
−2σ2 t

K

)
(16)

where (f) is from Lemma 2 and the union bound, (g) is from the
fact that{

σ ≤ |X̂j
l,t − Xj,l |

}
⊂
{
∃s ∈ {t/K�, . . . , t}, ∃k ∈ K, σ ≤ |X̄j

k,s − Xj,k |
}

,

(h) is again from the union bound, (i) is obtained via Hoeffding’s
inequality, and (j) is based on the fact that s ≥ t

K .
Finally, with the one-step regret bound (16), the total regret

Reg(T ) can be bounded by summing (16) over t = 1, . . . , T as
follows:

Reg(T ) ≤ 1 +
T∑

t=2

Pr {It �= k∗(θ∗)}

≤ 1 +
T −1∑
t=1

2J(K − 1)t exp
(
− 2σ2 t

K

)

= 1 + 2J(K − 1)
e−β − Te−βT + (T − 1)e−β (T +1)

(1 − e−β )2 .

Letting T go to infinity gives

Reg(∞) ≤ 1 + 2J(K − 1)
e−β

(1 − e−β )2 .

�

D. Switching Costs

1) Model and Algorithm: One of the important challenges
in practice is how to learn the environment without frequent arm
changes. This is especially critical for the coverage optimization
problem, as changing coverage frequently may cause unneces-
sary service interruptions such as call drop or temporary service
outage. As a result, it is desirable to have a learning policy for
coverage optimization that minimizes the changes over time. In
the bandit setting, this requirement can be captured by imposing
a switching cost. More specifically, if the selected arm changes
from time t to t + 1, a switching cost Ct+1 will be subtracted
from the observed reward in t + 1.

Since the proposed ad-greedy policy has bounded regret with-
out considering the switching cost, it is easy to see that directly
applying the ad-greedy policy can still result in bounded regret
even with switching cost. This holds because the best arm is
guaranteed to be found in finite time, and thus, the total switch-
ing cost will also be bounded. However, this does not mean that
the ad-greedy policy will have the best performance when fac-
ing switching cost. Typically, due to the additional penalty of
switches, a good bandit algorithm needs to “explore in block”.
This is done by grouping time slots and not switching during
these slots. The proposed block ad-greedy policy that follows
this design philosophy is given in Algorithm 3. In order to focus
on block exploration, here we present a version of the block
ad-greedy policy for the baseline GGB. Later in Section IV-B,
a version extended to handle multi-dimensional global param-
eter is compared against the ad-greedy-2D policy. Thanks to
the block exploration structure, we show that the regret due to
switching cost is smaller for the block ad-greedy policy.
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Another important note regarding the block ad-greedy policy
is the choice of the block length h(b), which has not been
specified. In the classic MAB problem with switching cost, such
as the one considered in [34], the block length is controlled to be
exponentially increasing over time. This is because, as time goes
by, the algorithm has more information about the true values
of arms and hence the “block” size should increase to take
advantage of the better arm. This construction of block sizes
makes sure that the switching cost scales as o(log T ) while
the reward without cost still scales as O(log T ). In our GGB
model, however, an exponentially increasing block size h(b) =
2b may not be necessarily the best choice, as sampling the sub-
optimal arms still provides useful information in estimating the
global parameter and hence helps determine the best arm. In the
following regret analysis, we derive regret upper bound for both
exponentially increasing block length h(b) = 2b and linearly
increasing block length h(b) = bTc , where Tc > 1 is an integer.

For the regret analysis, we consider a constant switch-
ing cost Ct = C for simplicity. We also impose analogues
of Assumption 1 and Proposition 1 for μk (θ): (i) |μk (θ) −
μk (θ′)| ≤ D2,k |θ − θ′|γ2 , k , (ii) |μk (θ) − μk (θ′)| ≥ D1,k |θ −
θ′|γ1 , k for all k ∈ K, which implies that (i) |μk (θ) −
μk (θ′)| ≤ D2 |θ − θ′|γ2 and (ii) |μ−1

k (y) − μ−1
k (y′)| ≤ D|y −

y′|γ̄1 , where D2 = maxk∈K D2,k , γ2 = mink∈K γ2,k , γ̄1 =
1/γ1 , γ1 = maxk∈K γ1,k and D = maxk∈K(1/D1,k )1/γ1 , k .

2) Regret Analysis for the Exponential Block ad-Greedy
Policy (h(b) = 2b ): The total regret from time t = 1 to T =
2B − 1, i.e., the regret incurred in the first B blocks, can be
written as

Reg(T ) =
B−1∑
b=0

E[rIb
(θ∗)] (17)

where E[rIb
(θ∗)] denotes the “one-block” regret incurred in

block b. For b > 0, this can be upper bounded as follows:

E[rIb
(θ∗)] ≤ 2b · 1 · Pr {Ib �= k∗} + C · Pr {Ib+1 �= Ib} .

(18)
We start by bounding the first term in (18). Similar to the proof

of Theorem 1, we let μ̃−1
k (y) .= arg minθ∈Θ |μk (θ) − y| for y ∈

[0, 1], for which we have |μ̃−1
k (y) − μ̃−1

k (y′)| ≤ D|y − y′|γ̄1 for
all y, y′ ∈ [0, 1]. We have

{Ib �= k∗} ⊂
{

δ ≤ |θ̂b−1 − θ∗|
}

=
{

δ ≤ |μ̃−1
kb−1

(X̂kb−1 ) − μ̃−1
kb−1

(μkb−1 (θ∗))|
}

⊂
{

δ ≤ D|X̂kb−1 − μkb−1 (θ∗)|γ̄1

}

=
{(

δ

D

)γ1

≤ |X̂kb−1 − μkb−1 (θ∗)|
}

. (19)

Following steps similar to the proof of Theorem 1 and using
Hoeffding’s inequality, we obtain

Pr {Ib �= k∗} ≤ Pr

{(
δ

D

)γ1

≤ |X̂kb−1 − μkb−1 (θ∗)|
}

≤ 2 exp

(
−2
(

δ

D

)2γ1 2b−1

K

)
(20)

where (20) follows from the fact that Nkb−1 ≥ 2b−1/K.

Let η = 2
(

δ
D

)2γ1
/K. Next, the second item in (18) can be

bounded as follows:

Pr {Ib+1 �= Ib} ≤ Pr {Ib+1 �= k∗} + Pr {Ib �= k∗}
≤ 2 exp

(−η2b
)

+ 2 exp
(−η2b−1) . (21)

Finally, plugging (20) and (21) back to (18) and (17), we
obtain

Reg(T ) ≤ 1 +
B−1∑
b=1

(
2b+1 + 2C

)
exp
(−η2b−1)

+ 2C

B−1∑
b=1

exp
(−η2b

)

≤ 1 + 4(C + 1)
e−η

(1 − e−η )2 .

3) Regret Analysis for the Linear Block ad-Greedy Pol-
icy (h(b) = bTc ): The total regret from time t = 1 to T =
1 + Tc(B − 1)B/2, i.e., the regret incurred in the first B blocks
can be written as

Reg(T ) =
B−1∑
b=0

E[rIb
(θ∗)] (22)

where E[rIb
(θ∗)] denotes the “one-block” regret in block b. This

can be upper bounded as follows:

E[rIb
(θ∗)] ≤ Tc · b · Pr {Ib �= k∗} + C · Pr {Ib+1 �= Ib} (23)

for b > 0.



SHEN et al.: GENERALIZED GLOBAL BANDIT AND ITS APPLICATION IN CELLULAR COVERAGE OPTIMIZATION 227

The first item in (23) can be further bounded as follows. First,
we have

{Ib �= k∗} ⊂
{

δ ≤ |θ̂b−1 − θ∗|
}

=
{

δ ≤ |μ̃−1
kb−1

(X̂kb−1 ) − μ−1
kb−1

(μ̃kb−1 (θ∗))|
}

⊂
{

δ ≤ D|X̂kb−1 − μkb−1 (θ∗)|γ̄1

}

=
{(

δ

D

)γ1

≤ |X̂kb−1 − μkb−1 (θ∗)|
}

. (24)

Applying Hoeffding’s inequality, we obtain

Pr {Ib �= k∗} ≤ Pr

{(
δ

D

)γ1

≤ |X̂kb−1 − μkb−1 (θ∗)|
}

≤ 2 exp

(
−
(

δ

D

)2γ1 (b − 1)2Tc

K

)
(25)

where (25) follows from the fact that Nkb−1 ≥ (b − 1)2Tc/
(2K).

Let κ = ( δ
D )2γ1 Tc

K . Next, the second term in (23) can be
bounded as follows.

Pr {Ib+1 �= Ib} ≤ Pr {Ib+1 �= k∗} + Pr {Ib �= k∗}

≤ 2 exp
(
− κb2

)
+ 2 exp

(
− κ(b − 1)2

)
. (26)

Finally, plugging (25) and (26) back to (23) and (22), the
regret is upper bounded as:

Reg(T ) ≤ 1 +
B−1∑
b=1

(2Tcb + 2C) exp
(−κ(b − 1)2)

+ 2C

B−1∑
b=1

exp
(−κb2)

≤ 1 + 2Tc

B−2∑
b=1

be−κb2
+ (2Tc + 4C)

B−2∑
b=0

e−κb2

≤ 1 + 2Tc
e−

1
2√

2κ
+ 2Tc

∫ B−2

0
ze−κz 2

dz

+ (2Tc + 4C)
B−2∑
b=0

e−κb

≤ 1 + 2Tc
e−

1
2√

2κ
+ Tc

1
κ

+ (2Tc + 4C)
1

eκ − 1
.

Although both linear and exponential block size can achieve
a bounded regret for block ad-greedy with switching cost, the
analysis here only reflects the upper bounds of the regret, not
necessarily the actual performance. We will evaluate their per-
formances in the coverage optimization problems and report the
simulation results in Section IV-B.

Fig. 1. Illustration of a co-channel deployment of MBS and SBS with over-
lapping coverage. MBS causes interference to SBS users (SUE), while SBS
creates leakage to MBS users (MUE) that are close to the SBS coverage but
cannot be served by the SBS.

IV. APPLICATION OF GGB TO CELLULAR

COVERAGE OPTIMIZATION

In this section, we describe how to apply the greedy poli-
cies developed in Section III to the cellular coverage optimiza-
tion problem, and evaluate their performances via numerical
simulations.

A. Coverage Optimization Problem Formulation

We focus on the SBS deployment that is co-channel with an
overlaid macro base station (MBS) coverage, as illustrated in
Fig. 1. The design objective is to set the SBS transmit power
such that: (1) it provides sufficient coverage to the intended cov-
erage area (e.g., a warehouse or an office room), which is not
known a priori; and (2) it limits the “leakage” to users outside
the intended coverage area. If coverage area and RF footprints
are known to the algorithm, this problem can be solved by for-
mulating an optimization problem that maximizes the PIF which
balances coverage and leakage [33]. When such information is
entirely unavailable, it can be formulated as an online learning
problem similar to [5], which is a general approach that relies on
limited assumptions about the deployment. However, the lack
of structure to the problem modeling in [5] also sacrifices the
algorithm performance when it is indeed known to the system
designer [33].

For simplicity, the intended SBS coverage area is approxi-
mated by a circle of radius d, which is unknown to the algorithm.
The set of measurement points for SBS coverage is denoted
as Nin with cardinality nin, and the set of measurement points
outside the SBS coverage for SBS leakage is denoted as Nout

with cardinality nout. Both nin and nout are fixed irrespective of
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the deployment. Furthermore, we assume that the measurement
points have uniformly distributed distances to the SBS, for
both inside and outside routes. Such uniform spacing has been
similarly adopted in [35] for evaluation of the area spectral
efficiency. In practice, choosing the measurement points for
coverage estimation and optimization has been studied in [33],
which has argued that uniform sampling of the area offers the
least bias to the algorithm. Practical methods to collect such
measurement reports without repeated measurements have
also been proposed in [33]. Furthermore, we note that this
assumption on measurement point placement is not crucial to
our algorithm because it only affects the specific format of the
objective function. In other words, other reasonable setup for
the measurement points can be adopted and it will only result
in a change of the objective function as described in (27).

We consider maximizing the total spectral efficiency of the
measurement points under a proportional fairness constraint.
This has been proved to be equivalent to maximizing the sum
of logarithms of the user rate [36]. Formally, we have

fk (d, Pm ) = α
∑
i∈N in

g(RSBS,i (d, Pm ))

+ (1 − α)
∑

i∈Nout

g(RMBS,i (d, Pm )), (27)

where d denotes the radius of the intended coverage area, Pm

denotes the average MBS received signal power, RSBS (d, Pm )
and RMBS (d, Pm ) denote the rate function for SBS-served and
MBS-served users, respectively, and α is a weight coefficient
that balances coverage and leakage. A large α suggests that the
design favors having sufficient SBS coverage over leakage that
affects MBS users, and vice versa. Subscript k indicates that SBS
adopts transmit power Pk ∈ {P1 , . . . , PK : P1 < · · · < PK }.
We note that the reward function (27) is defined for each indi-
vidual SBS if a distributed deployment is considered, in which
(27) can be different across SBSs.

For evaluation of the proposed solutions, in the following we
focus on some specific system configurations. Since we have
assumed a uniform placement of measurement points for Nin

and Nout, we can re-write (27) as

fk (d, Pm ) = α

n in∑
i=1

log
(

RSBS

(
i

nin
d, Pm

))

+ (1 − α)
nout∑
i=1

log
(

RMBS

((
1 +

i

nin

)
d, Pm

))

.= αf
(1)
k (d, Pm ) + (1 − α)f (2)

k (d, Pm ). (28)

Denoting the pathloss function as PL(d), the received signal
power at distance d1 from the SBS with transmit power Pk can
be written as

Pr (d1)[dB] = Pk [dB] − PL(d1)[dB] + δ, (29)

where δ denotes the shadowing fading in the dB domain. Note
that PL(d) can be any reasonable pathloss model that fits the

TABLE I
SIMULATION PARAMETERS

Parameters Value

nin 50
nou t 50
Noise density −174 dBm/Hz
Bandwidth 20 MHz
Carrier frequency 2.1 GHz
Time horizon 1000 time slots
Pm [−90, −70] dBm
Lw 5 dB
Pk [−15, 10] dBm
d [10, 50] m
α 0.5
d0 10 m

environment. The corresponding SINR at distance d1 is

SINRSBS(d1 , Pm ) =
Pr (d1)

Pm + N0
, (30)

where N0 denotes the uncontrolled noise and interference. Fi-
nally, we apply the Shannon capacity formula for the SBS and
MBS user rate:

RSBS (d1 , Pm ) = log
(

1 +
Pr (d1)

Pm + N0

)
, (31)

RMBS (d2 , Pm ) = log
(

1 +
Pm

Pr (d2) + N0

)
. (32)

To see that the GGB model can be used in this problem, we
note that each power level Pk can be viewed as an arm. The aver-
age reward of arm k can be written as μk = f̄k (d, Pm ), which is
a function of two parameters, d and Pm . The function f̄k (d, Pm )
can be written as αf̄

(1)
k (d, Pm ) + (1 − α)f̄ (2)

k (d, Pm ). Note
that the first sub-function is decreasing while the second sub-
function is increasing with respect to both d and Pm . Hence the
problem formulation satisfies the prerequisite of GGB, and we
will evaluate the performance of the proposed algorithm in the
next section.

B. Numerical Simulations

We resort to numerical simulations to verify the effectiveness
of the developed ad-greedy policies in the coverage optimiza-
tion problem. The simulated deployment scenario is the same as
in Section IV-A. The objective is to maximize the sum of log-
arithms of the user rates, as in (27). In the simulations, we use
the same feedback mechanism as [33]: at each time slot, UEs
report measured SINRs of their serving BSs at the correspond-
ing measurement points. We adopt the standard 3GPP dual-strip
pathloss model for urban deployment, which has been recom-
mended for system simulations of small cells and heterogeneous
networks [11]:

PL(d)[dB] = 38.46 + 20 log10(d) + 0.7d + Lw , d ≥ d0 .
(33)

Other important simulation parameters are summarized in Ta-
ble I.
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Fig. 2. Accumulative regret comparison of ad-greedy, WAGP and UCB, with
Pm (a) and d (b) as the single global parameter.

In the simulations, we focus on evaluating the developed
ad-greedy policy and compare its performance with two alter-
natives: WAGP algorithm that was proposed for the original GB
in [12], and the celebrated UCB algorithm [10] for stochastic
MAB. Note that UCB is not designed for parametric bandit
models as GB or GGB, and the numerical comparison is only
meant to demonstrate the improvement thanks to exploiting the
structure of GGB. WAGP, on the other hand, is designed only
for single-parameter monotonic reward functions, and the nu-
merical comparison will shed light into its effectiveness in the
considered coverage optimization problem.

In the first set of simulations, we fix either Pm or d, and
let the other parameter be the single global parameter. This
will satisfy the single-parameter requirement of WAGP. Fig. 2
reports the simulation results for both cases. When the single
global parameter is chosen to be Pm (d), the corresponding d
(Pm ) is set as 30 m (−85 dBm). As can be seen from the plots,
the ad-greedy policy significantly outperforms UCB and WAGP.
In addition, WAGP performs even worse compared to UCB,
which does not exploit the parametric structure of the reward
functions. This is because our average reward functions are non-
monotonic, and WAGP is designed only for monotonic reward
functions. This model mismatch results in worse performance
than not exploiting the structure at all.

Fig. 3. Average regret versus time with non-stationary Pm . For the under-
standing purpose, the variation of Pm is also plotted.

Next, we evaluate the regret performance of these three algo-
rithms when the parameters are non-stationary. For example, if
the coverage environment experiences some changes, the aver-
age MBS received signal power may be different. Fig. 3 reports
the numerical comparison under non-stationary Pm . In this sim-
ulation, the variation of Pm models the change from a cell edge
(small Pm ) to a cell site (large Pm ). It is worth noting that we
plot the average regret because the reward function is time-
varying. We see from Fig. 3 that the ad-greedy policy initially
suffers from the non-stationarity as the parameter estimation is
not accurate due to both the change of Pm and the insufficient
estimation at the beginning, but gradually converges to the true
estimate and catches up with the non-stationarity, while WAGP
again suffers from the drawback of non-monotonicity of the
reward functions.

Having verified the performance improvement of the ad-
greedy policy with non-monotonic reward functions, we now
turn our attention to the simulations with a 2-dimensional
global parameter setting as in (27). Again, we compare the
proposed ad-greedy-2D policy with WAGP and UCB. Note that
WAGP cannot take 2-dimensional parameters, and thus we ei-
ther fix d or Pm and use the other one as the scalar parameter.
From the simulation results reported in Fig. 4, we can clearly
see the benefit of the ad-greedy-2D policy when dealing with
2-dimensional global parameter (d, Pm ), as it has the lowest
regret throughout the simulations. A closer look at the one-step
regret in Fig. 4(b) further reveals the advantage of ad-greedy-
2D: it only suffers at the beginning and then quickly converges
to the optimal arm, while all other methods have higher one-step
regret. Such “bounded regret” behavior has been theoretically
analyzed in Theorem 2, and is now numerically verified in Fig. 4.

We further plot the individual sub-rewards, i.e., coverage and
leakage, as a function of time slot in Fig. 5(a) and (b), respec-
tively. As expected, both coverage and leakage functions fluctu-
ate around the optimal values during some initial period, when
the ad-greedy-2D algorithm tries to learn the deployment while
simultaneously maintaining good initial performance. The al-
gorithm converges to the optimal coverage and leakage values,
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Fig. 4. Regret comparison of ad-greedy, WAGP and UCB with (d, Pm ) as
the 2-dimensional global parameter. WAGP can be used when we fix either d or
Pm . (a) Accumulative regret vs. time. (b) One-step regret vs. time.

via setting the optimal transmit power, at around 100 time slots.
This is also consistent with the regret performance reported in
Fig. 4.

Finally, we evaluate the proposed algorithm for switching
cost. The results are reported in Fig. 6 for the 2-dimensional
global parameter (d, Pm ). We set C = 25 to penalize the change
of coverage areas, which is significantly higher than the (nor-
malized) one-step regret and hence highlights the importance
of addressing switching cost in the algorithm. We compare the
block ad-greedy policy in Algorithm 3 (using linear block size)
with the ad-greedy policy in Algorithm 2 which does not con-
sider the switching cost, block UCB, and WAGP with either d
or Pm fixed. It is worth noting that in order to compare these
algorithm fairly, we have adopted the same blocking philosophy
for UCB so that it can also handle the switching cost. Clearly,
algorithms that do not consider the severe penalty of switching
cost incur significantly higher regret. Furthermore, we can see
from Fig. 6(b) that both the block ad-greedy policy and block
UCB have very small one-step regret. This is further verified
from Fig. 6(c), where we plot the total number of arm switch-
ings of all algorithms. It is evident that the benefit of both the
block ad-greedy policy and block UCB is due to the blocking
structure that reduces switches, and a careful examination of

Fig. 5. Coverage and leakage sub-function evolution with time slot t.
(a) Coverage vs. time. (b) Leakage vs. time.

the simulation results shows that the block ad-greedy policy
outperforms block UCB. The reason for this performance im-
provement is that even though the block ad-greedy policy may
stuck in sub-optimal arms for certain durations because of the
block structure, such periods are not wasted as it can still es-
timate the global parameter effectively, and as a result when
the block ends, the algorithm will have a more accurate esti-
mation and hence a better choice of the next arm to play. The
ad-greedy policy, on the other hand, suffers from larger initial
regret, because it does not take switching cost into consideration.
However, this loss becomes negligible as times goes by, which
can be seen in Fig. 6(b). This is because the ad-greedy policy is
guaranteed to find the optimal arm in finite time, and once this
happens, there will be no further arm changes. It is worth not-
ing that this behavior is very different to the standard stochastic
MAB with switching cost [34], where the goal is simply to con-
trol the number of arm switches to scale as o(log T ) whereas the
optimal regret scales as O(log T ). In the GGB model, the regret
of Algorithm 2 is already proven to be finite in time, and thus
even the ad-greedy policy, which does not consider switching
cost incurs bounded regret.
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Fig. 6. Regret and switches comparison of block ad-greedy, ad-greedy, WAGP
and block UCB with global parameter (d, Pm ) and switching cost. (a) Accumu-
lative regret vs. time. (b) One-step regret vs. time. (c) Total number of switches
vs. time.

V. CONCLUSION

We have extended the global bandit model to a more general
setting, allowing for non-monotonic decomposable reward func-
tions with multi-dimensional global parameters and switching
costs. Such extensions are technically non-trivial and we have
developed the ad-greedy policies to achieve bounded regret for
the generalized global bandit model. This is intuitively reason-
able because although accumulative reward may suffer when a
sub-optimal arm is played, the algorithm still gains from a better
estimation of the global parameter.

The motivation behind the GGB model was to address the cel-
lular coverage optimization problem, which we used as the case
study and demonstrated the advantages of the ad-greedy policies
over existing solutions via numerical simulations. However,

the GGB model and the proposed algorithms are very general
and can be applied to other problems, such as interference
mitigation [37], load balancing [38], energy-efficient wireless
networks [39], and cognitive radio [40], [41]. Applications of
the GGB model and ad-greedy policies to these engineering
problems are an interesting future research direction.

REFERENCES

[1] Cisco, “Cisco visual networking index: Global mobile data Traffic forecast
update, 2015–2020,” San Jose, CA, USA, Feb. 2016.

[2] T. Quek, G. de la Roche, I. Guvenc, and M. Kountouris, Small Cell
Networks: Deployment, PHY Techniques, and Resource Allocation. Cam-
bridge, U.K.: Cambridge Univ. Press, 2013.

[3] J. Ramiro and K. Hamied, Self-Organizing Networks (SON): Self-
Planning, Self-Optimization and Self-Healing for GSM, UMTS and LTE.
New York, NY, USA: Wiley, Nov. 2011.

[4] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic and non-
stochastic multi-armed bandit problems,” Found. Trends Mach. Learn.,
vol. 5, no. 1, pp. 1–122, 2012.

[5] Z. Wang and C. Shen, “Small cell transmit power assignment based on
correlated bandit learning,” IEEE J. Sel. Areas Commun., vol. 35, no. 4,
pp. 1–16, Apr. 2017.

[6] M. Simsek, M. Bennis, and I. Guvenc, “Context-aware mobility man-
agement in HetNets: A reinforcement learning approach,” in Proc. IEEE
Wireless Commun. Netw. Conf., Mar. 2015, pp. 1536–1541.

[7] C. Shen, C. Tekin, and M. van der Schaar, “A non-stochastic learning
approach to energy efficient mobility management,” IEEE J. Sel. Areas
Commun., vol. 34, no. 12, pp. 3854–3868, Dec. 2016.

[8] C. Shen and M. van der Schaar, “A learning approach to frequent handover
mitigations in 3GPP mobility protocols,” in Proc. IEEE Wireless Commun.
Netw. Conf., Mar. 2017, pp. 1–6.

[9] Y. Gai, B. Krishnamachari, and R. Jain, “Learning multiuser channel allo-
cations in cognitive radio networks: A combinatorial multi-armed bandit
formulation,” in Proc. IEEE Symp. New Frontiers Dyn. Spectr., Apr. 2010,
pp. 1–9.

[10] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2/3, pp. 235–256,
May 2002.

[11] 3GPP, “Evolved universal terrestrial radio access; Further advancements
for E-UTRA physical layer aspects,” 3GPP, Sophia Antipolis, France, TR
36.814, 2010.

[12] O. Atan, C. Tekin, and M. Schaar, “Global multi-armed bandits
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