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Abstract
Graph partitioning is an essential task for scalable data management and analysis. The current partitioning methods utilize the
structure of the graph, and the query log if available. Some queries performed on the database may trigger further operations.
For example, the query workload of a social network application may contain re-sharing operations in the form of cascades.
It is beneficial to include the potential cascades in the graph partitioning objectives. In this paper, we introduce the problem of
cascade-aware graph partitioning that aims tominimize the overall cost of communication among parts/servers during cascade
processes. We develop a randomized solution that estimates the underlying cascades, and use it as an input for partitioning of
large-scale graphs. Experiments on 17 real social networks demonstrate the effectiveness of the proposed solution in terms
of the partitioning objectives.

Keywords Graph partitioning · Propagation models · Information cascade · Social networks · Randomized algorithms ·
Scalability

1 Introduction

Distributed graph databases employ partitioning methods to
provide data locality for queries and to keep the load bal-
anced among servers [1–5]. Online social networks (OSNs)
are common applications of graph databases where users
are represented by vertices and their connections are rep-
resented by edges/hyperedges. Partitioning tools (e.g., Metis
[6], Patoh [7]) and community detection algorithms (e.g., [8])
are used for assigning users to servers. The contents gener-
ated by a user are typically stored on the server that the user
is assigned.

Graph partitioning methods are designed using the graph
structure, and the query workload (i.e., logs of queries exe-
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cuted on the database), if available [9–14]. Some queries
performed on the database may trigger further operations.
For example, users in OSNs frequently share contents gen-
erated by others, which leads to a propagation/cascade of
re-shares (cascades occur when users are influenced by oth-
ers and then perform the same acts) [15–17]. The database
needs to copy the re-shared contents to the servers that con-
tain the users who will eventually need to access this content
(i.e., at least a record id of the original content needs to be
transferred).

Many users in a cascade process are not necessarily the
neighbors of the originator. Hence, the graph structure, even
with the influence probabilities, would not directly capture
the underlying cascading behavior, if the link activities are
considered independently. We first aim to estimate the cas-
cade traffic on the edges. For this purpose, we present the
concept of random propagation trees/forests that encodes the
information of propagation traces through users. We then
develop a cascade-aware partitioning that aims to optimize
the load balance and reduce the amount of propagation traf-
fic between servers. We discuss the relationship between
the cascade-aware partitioning and other graph partitioning
objectives.

Toget insights into the cascade traffic,we analyzed a query
workload from Digg, a news sharing-based social network
[18]. The data include cascades with a depth of up to six
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links, i.e., the maximum path length from the initiator of the
content to the users who eventually get the content. When we
partitioned the graph by just minimizing the number of links
straddling between 32 balanced partitions (using Metis [6]),
the majority of the traffic remained between the servers, as
opposed to staying local. This traffic goes over a relatively
small fraction of the links. Only 0.01% of the links occur
in 20% of the cascades, and these links carry 80% of the
traffic observed in these cascades. It is important to identify
the highly active edges and avoid placing them crossing the
partitions.

Wedraw an equivalence betweenminimizing the expected
number of cut edges in a random propagation tree/forest
and minimizing communication during a random propaga-
tion process starting from any subset of users. A probability
distribution is defined over the edges of a graph, which cor-
responds to the frequency of these edges being involved in
a random propagation process. #P-Hardness of the compu-
tation of this distribution is discussed, and a sampling-based
method, which enables estimation of this distribution within
a desired level of accuracy and confidence interval, is pro-
posed along with its theoretical analysis.

Experimentation has been performed both with theoreti-
cal cascade models and with real logs of user interactions.
The experimental results show that the proposed solution per-
forms significantly better than the alternatives in reducing the
amount of communication between servers during a cascade
process. While the propagation of content was studied in the
literature from the perspective of data modeling, to the best
of our knowledge, thesemodels have not been integrated into
database partitioning for efficiency and scalability.

The rest of the paper is organized as follows. Table 1
displays the notation used throughout the paper. Section 2
provides the backgroundmaterial and summarizes the related
work. Section 3 presents a formal definition for the proposed
problem. Section 4 describes the proposed solution for the
problem, gives a theoretical analysis and explains how it
achieves its objectives. Section 5 presents a discussion for
some of the limitations and extensions of the cascade-aware
graph partitioning algorithm. Section 6 presents the results
of experiments on real-world datasets and demonstrates the
effectiveness of the proposed solution. Section 7 concludes
the paper.

2 Background

2.1 Graph partitioning

LetG = (V , E) be an undirected graph such that each vertex
vi ∈ V has weight wi and each undirected edge ei j ∈ E
connecting vertices vi and v j has cost ci j . Generally, a K-
waypartitionΠ = {V1, V2 . . . VK }ofG is defined as follows:

Table 1 Notations used

Variable Description

Π = {V1, . . . , Vk} A K -way partition of a graph G = (V , E)

Vk Part k of partition Π

χ(Π) Cut size under partition Π

Ig(v) Random propagation tree

λΠ
g (v) Communication operations induced by

propagation tree Ig(v) under Π

g∼G Unweighted directed graph g drawn from
the distribution induced by G

Ev,g∼G [λΠ
g (v)] Expected number of communication

operations during a propagation process

wi j Propagation probability along edge ei j
pi j Probability of edge ei j being involved in a

random propagation process

I The set of random propagation trees
generated by the estimation technique

FI (ei j ) The number of trees in I that contains
edge ei j

N The size of set I (i.e., N = |I |)

Each part Vk ∈ Π is a non-empty subset of V , all parts are
mutually exclusive (i.e., Vk ∩ Vm = ∅ for k �= m), and the
union of all parts is V (i.e.,

⋃
Vk∈Π Vk = V ).

Given a partition Π , weight Wk of a part Vk is defined as
the sum of the weights of vertices belonging to that part (i.e.,
Wk = ∑

vi∈Vk wi ). The partition Π is said to be balanced if
all parts Vk ∈ Π satisfy the following balancing constraint:

Wk ≤ Wavg(1 + ε), for 1 ≤ k ≤ K (1)

Here, Wavg is the average part weight (i.e., Wavg =∑
vi∈V wi/K ) and ε is the maximum imbalance ratio of a

partition.
An edge is called cut if its endpoints belong to different

parts and uncut otherwise. The cut and uncut edges are also
referred to as external and internal edges, respectively. The
cut size χ(Π) of a partition Π is defined as

χ(Π) =
∑

ei j∈EΠ
cut

ci j (2)

where EΠ
cut denotes the set of cut edges.

In the multi-constraint extension of the graph partitioning
problem, each vertex vi is associated with multiple weights
wc
i for c = 1, . . . ,C . For a given partition Π , Wc

k denotes
the weight of part Vk on constraint c (i.e.,Wc

k = ∑
vi∈Vk wc

i ).
Then, Π is said to be balanced if each part Vk satisfiesWc

k ≤
Wc

avg(1+ ε), whereWc
avg denotes the average part weight on

constraint c.
The graph partitioning problem, which is an NP-Hard

problem [19], seeks to compute a partition Π∗ of G that
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minimizes the cut size χ(·) in Eq. (2) while satisfying the
balancing constraint in Eq. (1) defined on part weights.

2.2 Related work

2.2.1 Graph partitioning and replication

Graph partitioning has been studied to improve scalability
and query processing performances of the distributed data
management systems. It has been widely used in the context
of social networks. Pujol et al. [10] propose a social net-
work partitioning solution that reduces the number of edges
crossing different parts and provides a balanced distribution
of vertices. They aim to reduce the amount of communica-
tion operations between servers. It is later extended in [9] by
considering replication of some users across different parts.
SPAR [11] is developed as a social network partitioning and
replication middleware.

Yuan et al. [13] propose a partitioning scheme to process
time-dependent social network queries more efficiently. The
proposed scheme considers not only the spatial network of
social relations but also the time dimension in such away that
users that have communicated in a timewindoware tried to be
grouped together.Additionally, the social graph is partitioned
by considering two-hop neighborhoods of users instead of
just considering directly connected users. Turk et al. [14]
propose a hypergraph model built from logs of temporal
user interactions. The proposed hypergraph model correctly
encapsulates multi-user queries and is partitioned under load
balance and replication constraints. Partitions obtained by
this approach effectively reduces the number of communica-
tions operations needed during executions of multicast and
gather type of queries.

Sedge [3] is a distributed graph management environment
based on Pregel [20] and designed to minimize communi-
cation among servers during graph query processing. Sedge
adopts a two-level partition management system: In the first
level, complementary graph partitions are computed via the
graph partitioning tool Metis [6]. In the second level, on-
demand partitioning and replication strategies are employed.
To determine cross-partition hotspots in the second level, the
ratio of number of cut edges to uncut edges of each part is
computed. This ratio approximates the probability of observ-
ing a cross-partition query and later is compared against
the ratio of the number of cross-partition queries to internal
queries in a workload. This estimation technique differs from
our approach, since we estimate an edge being included in a
cascade process, whereas this approach estimates the proba-
bility of observing a cross-partition query in a part and does
not consider propagation processes.

Leopard is a graph partitioning and replication algorithm
to manage large-scale dynamic graphs [1]. This algorithm
incrementally maintains the quality of an initial parti-

tion via dynamically replicating and reassigning vertices.
Nicoara et al. [21] propose Hermes, a lightweight graph
repartitioner algorithm for dynamic social network graphs.
In this approach, the initial partitioning is obtained via Metis
and as the graph structure changes in time, an incremental
algorithm is executed tomaintain the quality of the partitions.

For efficient processing of distributed transactions, Curino
et al. [4] propose SCHISM,which is a workload-aware graph
model that makes use of past query patterns. In this model,
data items are represented by vertices and if two items are
accessed by the same transaction, an edge is put between
the respective pair of vertices. In order to reduce the number
of distributed transactions, the proposed model is split into
balanced partitions using a replication strategy in such a way
that the number of cut edges is minimized.

Hash-based graph partitioning and selective replication
schemes are also employed formanaging large-scale dynamic
graphs [2]. Instead of utilizing graph partitioning techniques,
a replication strategy is used to perform cross-partition graph
queries locally on servers. This method makes use of past
query workloads in order to decide which vertices should be
replicated among servers.

2.2.2 Multi-query optimization

Le et al. [22] propose a multi-query optimization algo-
rithm which partitions a set of graph queries into groups
where queries in the same group have similar query patterns.
Their partitioning algorithm is based on k-means cluster-
ing algorithm. Queries assigned to each cluster are rewritten
to their cost-efficient versions. Our work diverges from this
approach, since we make use of propagation traces to esti-
mate a probability distribution over edges in a graph and
partition this graph, whereas this approach clusters queries
based on their similarities.

2.2.3 Influence propagation

Propagation of influence [15] is commonly modeled using
a probabilistic model [23,24] learnt over user interactions
[25,26]. Influence maximization problem is first studied by
Domingos and Richardson [27]. Kempe et al. [28] proved
that the influence maximization problem is NP-Hard under
two influence propagation models such as Independent Cas-
cade (IC) and Linear Threshold (LT) models. The Influence
spread function defined in [28] has an important property
called submodularity, which enables a greedy algorithm to
achieve (1− 1/e) approximation guarantee for the influence
maximization problem. However, computing this influence
spread function is proven to be #P-Hard [17], which makes
the greedy approximation algorithm proposed in [28] infea-
sible for larger social networks. Therefore, more efficient
heuristic algorithms are targeted in the literature [17,29–32].
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More recently, algorithms that run nearly in optimal linear
time and provide (1− 1/e) approximation guarantee for the
influence maximization problem are proposed in [33–35].

The notion of influence and its propagation processes have
also been used to detect communities in social networks.
Zhou et al. [36] find community structure of a social network
by grouping users that have high influence-based similarity
scores. Similarly, Lu et al. [37] andGhosh et al. [38] consider
finding community partition of a social network that maxi-
mizes different influence-based metrics within communities.
Barbieri et al. [39] propose a network-oblivious algorithm
making use of influence propagation traces available in their
datasets to detect community structures.

3 Problem definition

In this section, we present the graph partitioning problem
within the context of content propagation in a social net-
workwhere the link structure and the propagation probability
values associated with these links are given. Let an edge-
weighted directed graph G = (V , E, w) represent a social
network where each user is represented by a vertex vi ∈ V ,
each directed edge ei j ∈ E represents the direction of content
propagation from user vi to v j and each edge ei j is associ-
ated with a content propagation probability wi j ∈ [0, 1].
We assume that the wi j probabilities associated with the
edges are known beforehand as in the case of Influence
Maximization domain [28,29,34]. Methods for learning the
influence/content propagation probabilities between users
in a social network are previously studied in the literature
[25,26]. In this setting, a partition Π of G refers to a user-
to-server assignment in such a way that a vertex vi assigned
to a part Vk ∈ Π denotes that the user represented by vi is
stored in the server represented by part Vk .

We adopt a widely used propagation model, the ICmodel,
with propagation processes starting from a single user for
ease of exposition.Aswediscuss later, this can be extended to
other popular models such as the LT model and propagation
processes starting from multiple users as well. Under the IC
model, a content propagation process proceeds in discrete
time steps as follows: Let a subset S ⊆ V consist of initially
active users who share a specific content for the first time in
a social network (we assume |S| = 1 for ease of exposition).
For each discrete time step t , let set St consists of users that
are activated in time step t ≥ 0, which indicates that S0 = S
(i.e., a user becomes activated meaning that this user has just
received the content). Once activated in time step t , each
user vi ∈ St is given a single chance of activating each of
its inactive neighbor v j with a probability wi j (i.e., user vi
activates user v j meaning that the content propagates from
vi to v j ). If an inactive neighbor v j is activated in time step
t (i.e., v j has received the content), then it becomes active in

the next time step t + 1 and added to the set St+1. The same
process continues until there are no new activations (i.e., until
St = ∅).

Kempe et al. [28] define an equivalent process for the IC
model by generating an unweighted directed graph g from
G by independently realizing each edge ei j ∈ E with prob-
ability wi j . In the realized graph g, vertices reachable by a
directed path from the vertices in S can be considered as
active at the end of an execution of the IC model propagation
process starting with the initially active users in S. As a result
of the equivalent process of the IC model, the original graph
G induces a distribution over unweighted directed graphs.
Therefore, we use the notation g ∼ G to indicate that we
draw an unweighted directed graph g from the distribution
induced by G by using the equivalent process of IC model.
That is, we generate a directed graph g via realizing each
edge ei j ∈ G with probability wi j .

3.1 Propagation trees

Given a vertex v, we define the propagation tree Ig(v) to
denote a directed tree rooted on vertex v in graph g. The
tree Ig(v) corresponds to an IC model propagation process,
when v is used as the initially active vertex, in such a way
that each edge ei j ∈ Ig(v) encodes the information that the
content propagated to v j from vi during this process. Here,
there can be more than one possible propagation trees for v

on g, since g may not be a tree itself. One of the possible
trees can be computed by performing a breadth-first search
(BFS) on g starting from vertex v, since IC model does not
prescribe an order for activating inactive neighbors of the
newly activated vertices. Note that generating a graph g and
performing a BFS on a vertex v are equivalent to performing
a randomized BFS algorithm starting from the vertex v. The
difference between the randomized BFS algorithm and usual
BFS algorithm is that each edge ei j ∈ E is searched with
probability wi j in the randomized case. That is, during an
iteration of BFS, if a vertex vi is extracted from the queue,
each of its outgoing edge(s) ei j to an unvisited vertex v j is
examined and added to the queue with a probability wi j .

Here, we also define a fundamental concept called ran-
dom propagation tree which is used throughout the text. A
random propagation tree is a propagation tree that is gener-
ated by two levels of randomness: First, a graph g is drawn
from the distribution induced by G, then a vertex v ∈ V
is chosen randomly, and its propagation tree Ig(v) on g is
computed. It is important to note that a random propagation
tree is equivalent to an ICmodel propagation process starting
from a randomly chosen vertex. Here, the concept of random
propagation trees has similarities to reverse-reachable sets
previously proposed in [33,34]. Reverse-reachable sets are
built on transpose GT of directed graph G by performing
a randomized BFS starting from a vertex v and including
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Fig. 1 An IC model propagation instance starting with initially active user u7. Dotted lines denote edges that are not involved in the propagation
process, and straight lines denote edges activated in the propagation process. a, b Display the same social network under two different partitions
{S1 = {u0, u1, u2}, S2 = {u6, u7, u8, u9}, S3 = {u3, u4, u5}} and {S1 = {u0, u1, u2, u6}, S2 = {u7, u8, u9}, S3 = {u3, u4, u5}}, respectively

all BFS edges. Hence, reverse-reachable sets are different
from propagation trees in the ways that they do not consti-
tute directed trees and they are built on the structure of GT

instead of G.
From a systems perspective, if a content propagation

occurs between two users located on different servers, we
assume this causes a communication operation. This is
depicted in Fig. 1which displays a graphwith its edges denot-
ing directions of content propagations between users. In this
figure, two different partitionings of the same social network
are given in Fig. 1a, b. In Fig. 1a, users are partitioned among
three servers as S1 = {u0, u1, u2}, S2 = {u6, u7, u8, u9}
and S3 = {u3, u4, u5}. In Fig. 1b, user u6 is moved from
S2 to S1 where S3 remains the same. In the figure, a con-
tent shared by user u7 propagates through four users u6,
u1, u2 and u3 under the IC model. Here, the straight lines
denote the edges along which propagation events occurred
and these lines constitute the propagation tree formed by this
propagation process (probability values associated with the
edges will be discussed later in the next section). The dotted
lines denote the edges that are not involved in this propaga-
tion process. Therefore, in accordance with our assumption,
straight lines crossing different parts necessitate communi-
cation operations. For instance, in Fig. 1a, the propagation of
the content from u7 to u6 does not incur any communication
operation, whereas the propagation of the same content from
u6 to u1 and u2 incurs two communication operations. For
the whole propagation process initiated by user u7, the total
number of communication operations are equal to 3 and 2
under the partitions in Fig. 1a, b , respectively.

Given a partition Π of G and a propagation tree Ig(v) of
vertex v on a directed graph g∼G, we define the number of

communication operations λΠ
g (v) induced by the propaga-

tion tree Ig(v) under the partition Π as

λΠ
g (v) = |{ei j ∈ Ig(v) | ei j ∈ EΠ

cut}|. (3)

That is, the number of communication operations performed
is equal to the number of edges in Ig(v) that are crossing
different parts in Π . It can be observed that each different
partition Π of G induces a different communication pattern
between servers for the same propagation process.

3.2 Cascade-aware graph partitioning

In the cascade-aware graph partitioning problem, we seek to
compute a partition Π∗ of G that achieves the following two
objectives:

(i) Under the IC model, the expected number of commu-
nication operations to be performed between servers
during a propagation process starting from a randomly
chosen user should be minimized.

(ii) The partition should distribute the users to servers as
evenly as possible in order to ensure a balance of work-
load among them.

The first objective reflects the fact that many different con-
tent propagations, starting from different users or subsets
of users, may simultaneously occur during any time inter-
val in a social network and in order to minimize the total
communication between servers, the expected number of
communication operations in a random propagation process
can be minimized. It is worth to mention that, due to the
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equivalence between random propagation trees and random-
ized BFS algorithm, the first objective is also equivalent to
minimizing the expected number of cross-partition edges tra-
versed during a randomized BFS execution starting from a
randomly chosen vertex.

To give a formal definition for the proposed problem, we
redefine the first objective in terms of the equivalent pro-
cess of the IC model. For a given partition Π of G, we
write the expected number of communication operations to
be performed during a propagation process starting from a
randomly chosen user as Ev,g∼G[λΠ

g (v)]. Here, subscripts
v and g ∼ G of the expectation function denote the two
levels of randomness in the process of generating a random
propagation tree. Asmentioned above, a randompropagation
tree Ig(v) is equivalent to a propagation process that starts
from a randomly chosen user in the network. Therefore, the
expected value ofλΠ

g (v), which denotes the expected number
of cut edges included in a random propagation tree, is equiv-
alent to the expected number of communication operations
to be performed. Due to this correspondence, computing a
partition Π∗ that minimizes the expectation Ev,g∼G[λΠ

g (v)]
achieves the first objective (i) of the proposed problem. Con-
sequently, the proposed problem can be defined as a special
type of graphpartitioning inwhich the objective is to compute
a K-way partition Π∗ of G that minimizes the expectation
Ev,g∼G[λΠ

g (v)] subject to the balancing constraint in Eq. (1).
That is,

Π∗ = argmin
Π

Ev,g∼G[λΠ
g (v)] (4)

subject to Wk ≤ Wavg(1 + ε) for all Vk ∈ Π . Here, we des-
ignate weight wi = 1 of each vertex vi ∈ V and define the
weight Wk of a partition Vk ∈ Π as the number of vertices
assigned to that part (i.e., Wk = |Vk |). Therefore, this bal-
ancing constraint ensures that the objective (ii) is achieved
by the partition Π∗.

4 Solution

The proposed approach is to first estimate a probability distri-
bution for modeling the propagation and use it as an input to
map the problem into a graph partitioning problem. Given
an edge-weighted directed graph G = (V , E, w) repre-
senting an underlying social network, the first stage of the
proposed solution consists of estimating a probability dis-
tribution defined over all edges of G. For that purpose, we
define a probability value pi j for each edge ei j ∈ E apart
from its content propagation probability wi j . The value pi j
of an edge ei j is defined to be the probability that the edge
ei j is involved in a propagation process that starts from a
randomly selected user. Equivalently, when a random prop-

agation tree Ig(v) is generated by the process described in
Sect. 3, the probability that the edge ei j is included in the
propagation tree Ig(v) is equal to pi j . It is important to note
that the value wi j of an edge ei j corresponds to the probabil-
ity that the edge ei j is included in a graph g ∼ G, whereas the
value pi j is defined to be the probability that ei j is included
in a random propagation tree Ig(v) rooted on a randomly
selected vertex v in graph g. For now, we delay the discus-
sion on the computation of pi j values for ease of exposition
and assume that we are provided with the pi j values. Later
in this section, we provide an efficient method that estimates
these values.

The function Ev,g∼G [λΠ
g (v)] corresponds to the expected

number of cut edges in a random propagation tree Ig(v)

under a partition Π . In other words, if we draw a graph g
from the distribution induced by G and randomly choose a
vertex v and compute its propagation tree Ig(v), then the
expected number of cut edges included in Ig(v) is equal to
Ev,g∼G[λΠ

g (v)]. On the other hand, the value pi j of an edge
ei j is defined to be the probability that the edge ei j is included
in a random propagation tree Ig(v). Therefore, given a par-
tition Π of G, the function Ev,g∼G[λΠ

g (v)] can be written in
terms of pi j values of all cut edges in EΠ

cut as follows:

Ev,g∼G[λΠ
g (v)] =

∑

ei j∈EΠ
cut

pi j (5)

In Eq. (5), the expected number of cut edges in a random
propagation tree is computed by summing the pi j value of
each edge ei j ∈ EΠ

cut, where the value pi j of an edge ei j is
defined to be the probability that the edge ei j is included in a
randompropagation tree. Hence, themain objective becomes
to compute a partition Π∗ that minimizes the total pi j val-
ues of edges crossing different parts in Π∗ and satisfies the
balancing constraint defined over the part weights. That is,

Π∗ = argmin
Π

∑

ei j∈EΠ
cut

pi j (6)

subject to the balancing constraint defined in the original
problem. As mentioned earlier, each vertex vi is associated
with a weight wi = 1 and part weight Wi of a part Vi is
defined to be the number of vertices assigned to Vi (i.e.,
Wi = |Vi |).

As a result of Eq. (6), the problem can be formulated as a
graph partitioning problem for which successful tools exist
[6,40]. However, the graph partitioning problem is usually
defined for undirected graphs, whereas G is a directed graph
and pi j values are associated with the directed edges of G.
To that end, we build an undirected graph G ′ = (V , E ′) by
symmetrizing directed graph G through computing the cost
of each edge e′

i j ∈ E ′ as ci j = pi j + p ji .
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Let Π be a partition of G ′. Since G ′ and G consist of the
same vertex set V , Π induces a set EΠ

cut of cut edges for the
original graph G. Due to the cost definitions of edges in E ′,
the cut size χ(Π) of G ′ under partitionΠ is equal to the sum
of the pi j values of cut edges in EΠ

cut which is shown to be
equal to the value of the main objective function in Eq. (4).
That is,

χ(Π) =
∑

ei j∈EΠ
cut

pi j = Ev,g∼G[λΠ
g (v)] (7)

Hence, a partition Π∗ that minimizes the cut size χ(·) of G ′
also minimizes the expectation Ev,g∼G[λΠ

g (v)] in the origi-
nal social network partitioning problem. In otherwords, if the
partitionΠ∗ forG ′ is an optimal solution for the partitioning
of G ′, it is also an optimal solution for Eq. (4) in the orig-
inal problem. Additionally, the equivalence drawn between
the graph partitioning problem and the cascade-aware graph
partitioning problem also proves that the proposed problem
is NP-Hard even the pi j values were given beforehand.

In Fig. 1, the main objective of cascade-aware graph par-
titioning is depicted as follows: Each edge in the figure is
associated with a content propagation probability along with
its computed pi j value (i.e., each edge ei j is associated with
“wi j | pi j”). The partitioning in Fig. 1a provides a better
cut size in terms of both number of cut edges and the total
propagation probabilities of edges crossing different parts.
However, we assert that the partitioning in Fig. 1b provides a
better partition for objective function 4, at the expense of pro-
viding worse cut size in terms of other cut size metrics (i.e.,
the sum of pi j values of cut edges is less in the second par-
tition).

4.1 Computation of the pij values

Wenow return to the discussion on the computation of the pi j
values defined over all edges ofG and start with the following
theorem indicating the hardness of this computation:

Theorem 1 Computation of the pi j value for an edge ei j of
G is a #P-Hard problem.

Proof Let function σ(vk, vi ) denote the probability of there
being a directed path from vertex vk to vertex vi on a directed
graph g drawn from the distribution induced by G. Assume
that the only path goes from vk to v j is through vi on each
possible g. That is v j is only connected to vi in G. (This
simplifying assumption does not affect the conclusion we
draw for the theorem.) Hence, the probability of vi included
in a propagation tree Ig(vk) is σ(vk, vi ). Let pki j denote the

probability of ei j is included in Ig(vk). We can compute pki j
as

pki j = wi j · σ(vk, vi ) (8)

since inclusion of ei j in g and formation of a directed path
from vk to vi on g are two independent events; therefore,
their respective probability values wi j and σ(vk, vi ) can be
multiplied. As mentioned earlier, the value pi j of an edge
ei j is defined to be the probability of edge ei j included in
a random propagation tree. Therefore, we can compute the
value pi j of an edge ei j as follows:

pi j = 1

|V |
∑

vk∈V
pki j (9)

Here, to compute the pi j value of edge ei j , we sum the
conditional probability 1

|V | · pki j for all vk ∈ V . Due to the
definition of random propagation trees, selections of vk in
a graph g ∼ G are all mutually exclusive events with equal
probability 1

|V | . Therefore, we can sum the terms 1
|V | · pki j for

each vk ∈ V to compute the total probability pi j .
In order to prove the theorem, we present an equivalence

between the computation of function σ(·, ·) and the s,t-
connectedness problem [41], since the pi j valueof an edge ei j
depends on the computation of σ(vk, vi ) for all vk ∈ V . The
input to the s,t-connectedness problem is a directed graph
G = (V , E), where each edge ei j ∈ E may fail randomly
and independently fromeachother. The problemasks to com-
pute the total probability of there being an operational path
from a specified source vertex s to a target vertex t on the
input graph. However, computing this probability value is
proven to be a #P-Hard problem [41]. On the other hand, the
function σ(vk, vi ) denotes the probability of there being a
directed path from vk to vi in a g∼G, where each edge in g
is realized with probability wi j randomly and independently
from other edges. It is obvious to see that the computation
of function σ(vk, vi ) is equivalent to the computation of the
s,t-connectedness probability. (We refer the reader to [17]
for a more formal description for the reduction of σ(vk, vi )

to s,t-connectedness problem). This equivalence implies that
the computation of function σ(vk, vi ) is #P-Hard even for a
single vertex vk and therefore implies that the computation
of pi j value for any edge ei j is also #P-Hard. �


Theorem 1 states that it is unlikely to devise a polyno-
mial time algorithm which exactly computes pi j values for
all edges in G. Therefore, we employ an efficient method
that can estimate these pi j values for all edges in G at once.
These estimations can bemadewithin a desired level of accu-
racy and confidence interval, but there is a trade-off between
the runtime and the estimation accuracy of the proposed
approach. On the other hand, the quality of the results pro-
duced by the overall solution is expected to increase with
increasing accuracy of the pi j values.

The proposed estimation technique employs a sampling
approach that starts with generating a certain number of ran-
dom propagation trees. Recall that a random propagation tree
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is generated by first drawing a directed graph g ∼ G and
then computing a propagation tree Ig(v) on g for a randomly
selected vertex v ∈ V . Let I be the set of all random propa-
gation trees generated for estimation and let N be the size of
this set (i.e., N = |I |). After forming the set I , the value pi j
of an edge ei j can be estimated by the frequency of that edge’s
appearance in random propagation trees in I as follows: Let
function FI (ei j ) denote the number of random propagation
trees in I that contains edge ei j . That is,

FI (ei j ) = |{Ig(v) ∈ I | ei j ∈ Ig(v)}| (10)

Due to the definition of pi j , the appearance of edge ei j in a
random propagation tree Ig(v) ∈ I can be considered as
a Bernoulli trial with success probability pi j . Hence, the
function FI (ei j ) can be considered as the number of total
successes in N Bernoulli trials with success probability pi j ,
which implies that FI (ei j ) is Binomially distributed with
parameters N and pi j (i.e., FI (ei j ) ∼ Binomial(pi j , N )).
Therefore, the expected value of the function FI (ei j ) is equal
to pi j N , which also implies that

pi j = E[FI (ei j )/N ] (11)

As a result of Eq. (11), if an adequate number of random
propagation trees are generated to form the set I , the value
FI (ei j )/N can be an estimation for the value of pi j . There-
fore, the estimation method consists of generating N random
propagation trees that together form the set I , and comput-
ing the function FI (ei j ) according to Eq. (10) for each edge
ei j ∈ E . After computing the function FI (ei j ) for each edge
ei j , we use FI (ei j )/N as an estimation for the pi j value.

4.2 Implementation of the estimationmethod

We seek an efficient implementation for the proposed estima-
tion method. The main computation of the method consists
of generating N random propagation trees. A random prop-
agation tree can be efficiently generated by performing a
randomized BFS, starting from a randomly chosen vertex,
in G. It is important to note that the randomized BFS algo-
rithm starting from a vertex v is equivalent to drawing a graph
g ∼ G and performing a BFS starting from the vertex v on
g. That is, the randomized BFS algorithm is equivalent to
the method introduced in Sect. 3 to generate a propagation
tree Ig(v) rooted on v. Therefore, forming the set I can be
accomplished by performing N randomized BFS algorithms
on G starting from randomly chosen vertices. Moreover, the
computation of the function FI (·) for all edges in E can be
performed while forming the set I with a slight modification
to the randomized BFS algorithm. For this purpose, a counter
for each ei j ∈ E can be kept in such a way that its value is
incremented each time the corresponding edge is traversed

during a randomized BFS execution. This counter denotes
the number of times an edge is traversed during the perfor-
mance of all randomized BFS algorithms. Therefore, after
N randomized BFS executions, the function FI (ei j ) for an
edge ei j is equal to the value of the counter maintained for
that edge.

4.3 Algorithm

The overall cascade-aware graph partitioning algorithm is
described in Algorithm 1. In the first line, the set I is formed
by performing N randomized BFS algorithms, where the
function FI (ei j ) is computed for each edge ei j ∈ E dur-
ing these randomized BFS executions. In lines 2 and 3, an
undirected graph G ′ = (V , E ′) is built via composing a
new set E ′ of undirected edges, where each undirected edge
e′
i j ∈ E ′ is associated with a cost of ci j using the estimations
computed in the first step. In line 4, each vertex vi ∈ V is
associated with a weight wi = 1 in order to ensure that the
weight of a part is equal to the number of vertices assigned to
that part. Lastly, a K-way partitionΠ of the undirected graph
G ′ is obtained using an existing graph partitioning algorithm
and returned as a solution for the original problem. Here,
the graph partitioning algorithm is executed with the same
imbalance ratio as with the original problem.

4.4 Determining the size of set I

As mentioned earlier, the accurate estimation of the pi j val-
ues is a crucial step to compute “good” solutions for the
proposed problem, since the graph partitioning algorithm
used in the second step makes use of these pi j values to
compute the costs of edges in G ′. The total cost of cut edges

Algorithm 1 Cascade-Aware Graph Partitioning
Input: G = (V , E, w), K , ε
Output: Π

1: Form a set I of N random propagation trees by performing random-
ized BFS algorithms on G and compute FI (ei j ) for each ei j ∈ E
according to Eq. (10)

2: Build an undirected graph G ′ = (V , E ′) where edge set E ′ is com-
posed as follows:

E ′ = {e′
i j | ei j ∈ E ∨ e ji ∈ E} (12)

3: Associate a cost ci j with each e′
i j ∈ E ′ as follows:

ci j =

⎧
⎪⎨

⎪⎩

FI (ei j )/N + FI (e ji )/N , if ei j ∈ E ∧ e ji ∈ E

FI (ei j )/N , if ei j ∈ E ∧ e ji /∈ E

FI (e ji )/N , if ei j /∈ E ∧ e ji ∈ E

(13)

4: Associate each vertex vi ∈ V with weight wi = 1.
5: Compute a K -Way partition Π of G ′ using an existing graph parti-

tioning algorithm (using the same imbalance ration ε).
6: return Π
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inG ′ represents the value of the objective function in Eq. (4).
Therefore, the pi j values need to be accurately estimated so
that the graph partitioning algorithm correctly optimizes the
objective function.

Estimation accuracies of the pi j values depend on the
number of randompropagation trees forming the set I . As the
size of the set I increases, more accurate estimations can be
obtained. However, we want to compute the minimum value
of N to get a specific accuracy within a specific confidence
interval. More formally, let p̂i j be the estimation computed
for the pi j value of an edge ei j ∈ E (i.e., p̂i j = FI (ei j )/N ),
and we want to compute the minimum value of N to achieve
the following inequality:

Pr [| p̂i j − pi j | ≤ θ ,∀ei j ∈ E] ≥ 1 − δ. (14)

That is, with a probability of at least 1 − δ, we want the
estimation p̂i j to be within θ of pi j for each edge ei j ∈
E . For that purpose, we make use of well-known Chernoff
[42] and Union bounds from probability theory. Chernoff
bound can be used to find an upper bound for the probability
that a sum of many independent random variables deviates a
certain amount from their expected mean. In this regard, due
to the function FI (·) being Binomial, Chernoff bound can
guarantee the following inequality:

Pr
[|FI (ei j ) − pi j N | ≥ ξ pi j N

] ≤ 2 exp

(

− ξ2

2 + ξ
· pi j N

)

(15)

for each edge ei j ∈ E . Here, ξ denotes the distance from the
expected mean in the context of Chernoff bound.

In Eq. (15), dividing both sides of the inequality |FI (ei j )−
pi j N | ≥ ξ pi j N in the function Pr [·] by N and taking ξ =
θ/pi j yields

Pr [| p̂i j − pi j | ≥ θ ] ≤ 2 exp

(

− θ2

2pi j + θ
· N

)

≤ 2 exp

(

− θ2

2 + θ
· N

)

(16)

which denotes the upper bound for the probability that the
accuracy θ is not achieved for a single edge ei j (the last
inequality in Eq. (16) follows, since pi j ≤ 1). Moreover,
RHS of Eq. (16) is independent from the value of pi j and
its value is the same for all edges in E , which enables us to
apply the same bound for all of them. However, our objective
is to find the minimum value of N to achieve accuracy θ for
all edges simultaneously with a probability at least 1 − δ.
For that purpose, we need to find an upper bound for the
probability that there exists at least one edge in E for which
the accuracy θ is not achieved. We can compute this upper

bound using Union bound as follows:

Pr [| p̂i j − pi j | ≥ θ , ∃ei j ∈ E] ≤ 2|E | exp
(

− θ2

2 + θ
· N

)

(17)

Here, we simply multiply RHS of Eq. (16) by |E |, since for
each edge in E , the accuracy θ is not achieved with a proba-
bility at most 2 exp(− θ2

2+θ
· N ). In order to achieve Eq. (14),

RHS of Eq. (17) needs to be at most δ. That is,

2|E | exp
(

− θ2

2 + θ
· N

)

≤ δ (18)

Solving this equation for N yields

N ≥ 2 + θ

θ2
· ln 2|E |

δ
(19)

which indicates the minimum value of N to achieve θ accu-
racy for all edges in E with a probability at least 1 − δ.

The accuracy θ determines howmuch error is made by the
graph partitioning algorithm while it performs the optimiza-
tion. As shown in Eq. (7), for a partitionΠ of G ′ obtained by
the graph partitioning algorithm, the cut size χ(Π) is equal
to the value of main objective function (4). However, the cost
values associatedwith the edges ofG ′ are estimations of their
exact values, and therefore, the partition cost χ(Π)might be
different from the exact value of the objective function. In this
regard, the difference between the objective function and the
partition cost can be expressed as follows:

Ev,g∼G[λΠ
g (v)] − χ(Π) ≤ θ · |EΠ

cut| (20)

Here, the error is computed by multiplying the accuracy θ

by the number of cut edges of G under the partition Π , since
for each edge in EΠ

cut, at most θ error can be made with a
probability at least 1−δ. Therefore, even if it were possible to
solve the graph partitioning problem optimally, the solution
returned by Algorithm 1 would be within θ · |EΠ

cut| of the
optimal solution for the original problem with a probability
at least 1 − δ. Consequently, as the value of θ decreases,
the partition obtained by Algorithm 1 will incur less error
for the main objective function, which will enable the graph
partitioning algorithm to perform a better optimization for
the original problem.

4.5 Complexity analysis

The proposed algorithm consists of two main computa-
tional phases. In the first phase, for an accuracy θ with
confidence δ, the set I is generated via performing at least
N = 2+θ

θ2
· ln 2|E |

δ
randomized BFS algorithms and each of
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these BFS executions takes Θ(V + E) time. The second
phase of the algorithm performs the partitioning of the undi-
rected graph G ′ which is constructed from the directed
graph G by using FI (ei j ) values computed in the first
phase. The construction of the graph G ′ can be performed
in Θ(V + E) time. The partitioning complexity of the graph
G ′, however, depends on the partitioning tool used. In our
implementation, we preferred Metis which has a complexity
ofΘ(V +E+K log K ), where K is the number of partitions.
Therefore, if θ and δ are assumed to be constants, the overall
complexity of Algorithm 1 to obtain a K -way partition can
be formulated as follows:

Θ

(
2 + θ

θ2
ln

2|E |
δ

(V + E)

)

+ Θ(V + E + K log K )

= Θ((V + E) log E + K log K ). (21)

Equation (21) denotes serial execution complexity of
Algorithm 1. The proposed algorithm’s scalability can be
improved even further via parallel processing, since the esti-
mation technique is embarrassingly parallel.Given P parallel
processors, N propagation trees in I canbe computedwithout
necessitating any communication or synchronization (i.e.,
each processor can generate N/P trees by separate BFS exe-
cutions). The only synchronization point is needed in the
reduction of FI (ei j ) values computed by these processors.
This reduction operation, however, can be efficiently per-
formed in log P synchronization phases. Additionally, there
exist parallel graph partitioning tools (e.g., ParMetis [43])
which can improve the scalability of the graph partitioning
phase.

4.6 Extension to the LTmodel

Even though we have illustrated the problem and solution
for the IC model, both our problem definition and proposed
solution can be easily extended to other models such as the
LT (linear threshold) model. It is worth to mention that the
proposed solution does not depend on the IC model or the
probability distribution defined over edges (i.e., wi j prob-
abilities). As long as the random propagation trees can be
generated, the proposed solution does not require any mod-
ification for the use of any different cascade model or the
probability distribution defined over edges.

We skip the description for the LT model and just provide
the equivalent process of LT model proposed in [28]. In the
equivalent process of the LT model, an unweighted directed
graph g is generated from G by realizing only one incoming
edge of each vertex in V . That is, for each vertex vi ∈ V ,
each incoming edge e ji of vertex vi has probability w j i of
being selected and only the selected edge is realized in g.
Given a directed graph g generated by this equivalent pro-
cess, a propagation tree Ig(v) rooted on vertex v again can

be computed by performing a BFS starting from v on g. Dif-
ferent from the equivalent process of IC model, there can be
only one propagation tree for each vertex, since all vertices
have only one incoming edge to these vertices. However, a
propagation tree Ig(v) under LTmodel still encodes the same
information as in IC model; that is, each edge ei j ∈ Ig(v)

encodes the information that a content propagates from vi to
v j .

In the problem definition part, we make use of the notion
of propagation trees in such a way that edges in a propa-
gation tree that are crossing different parts are assumed to
necessitate communication operations between servers. This
assumption also holds for the LT model, since propagation
trees generated by the equivalent processes of ICandLTmod-
els encode the same information. Therefore, minimizing the
expected number of communication operations during an LT
propagation process starting from a randomly chosen user
still corresponds to minimizing the expected number of cut
edges in a random propagation tree. In this regard, we do
not need any modification for the objective function (4) and
we still want to compute a partition Π∗ that minimizes the
expected number of cut edges in a random propagation tree.
(The only difference is in the process of computing a random
propagation tree under LT model.)

In the solution part, we generate a certain number of
random propagation trees in order to estimate a probabil-
ity distribution defined over all edges in E . The estimated
probability distribution associates each edge with a proba-
bility value denoting how likely an edge is included in a
random propagation tree under the IC model. The associated
probability values are also later used as costs in the graph par-
titioning phase. However, both the estimation method and
the overall solution do not depend on anything specific to
the IC model and only require a method for generating ran-
dom propagation trees which is mentioned above. Moreover,
concentration bounds attained for the estimation of the prob-
ability distribution still holds under the LT model and the
number of random propagation trees forming the set I in
Algorithm 1 should satisfy Eq. (19).

4.7 Processes starting frommultiple users

The method proposed for the propagation processes starting
from a single user can be generalized for propagation pro-
cesses that start from multiple users as follows: Instead of
the definition of random propagation trees, we define ran-
dom propagation forest Ig(S) for a randomly selected subset
of users S ⊆ V . The only difference between the two defini-
tions is that a random propagation forest consists of multiple
propagation trees that are rooted on the vertices in S. How-
ever, these propagation trees must be edge-disjoint and if
a vertex is reachable from two different vertices in S, this
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vertex can be arbitrarily included in one of the propagation
trees rooted on these vertices. As noted earlier, the IC model
does not prescribe an order for activating inactive neighbors;
therefore, a random propagation forest over the set S can be
computed by first drawing a graph g∼G and then perform-
ing a multi-source BFS on g starting from the vertices in S.
The order of execution of multi-source BFS determines the
form of propagation trees in the propagation forest Ig(S).

In a partitionΠ of propagation forest Ig(S), each cut edge
incurs one communication operation. So, the total number of
communication operations induced byΠ is defined to be the
number of cut edges which we denote as λΠ

g (S). These new
definitions do not require anymajormodification for the opti-
mization problem introduced in Eq. (4), and we just replace
the expectation function with Ev,g∼G[λΠ

g (S)]. That is, our
objective becomes computing a partition that minimizes the
expected number of cut edges in a random propagation
forest.

To generalize the proposed solution, we redefine pi j value
of an edge ei j as the probability of edge ei j included in a
random propagation forest instead of a random propagation
tree. With this new definition of pi j values, Eqs. (5) and (6)
can still be satisfied; hence, a partition Π∗ that minimizes
the sum of pi j values of edges crossing different parts also
minimizes the expectation Ev,g∼G[λΠ

g (S)].
The new definition of pi j values necessitates some modi-

fications to the estimation method proposed earlier. Recall
that, for the previous definition of pi j values, we gener-
ate a set I of random propagation trees and compute the
function FI (·) for each edge ei j . For the new definition of
pi j values, the estimations can be obtained with a similar
approach; however, the set I must now consist of random
propagation forests and FI (·) must denote frequencies of
edges to appear in these random propagation forests. There-
fore, the only modification required for Algorithm 1 is to
replace the step that the set I is generated by performing N
randomized BFS algorithms. The new set I of random prop-
agation forests can be obtained with a similar approach such
that instead of performing randomized single-source BFS
algorithms, we perform randomized multi-source BFS algo-
rithms. These two BFS algorithms are essentially the same
except that multi-source BFS starts execution with its queue
containing a randomly selected subset of vertices instead of
a single vertex. The new definitions together with the modi-
fications performed on the overall solution do not affect the
concentration bounds obtained in Eq. (19).

5 Extensions and limitations

Here, we show how the proposed cascade-aware graph parti-
tioning algorithm (CAP) can be incorporated into other graph
partitioning objectives.

5.1 Non-cascading queries

Queries such as “reading-friend’s-posts” and “read-all-posts-
from-friends” can be observed more frequently than cascad-
ing (i.e., re-share) operations in a typical OSN application.
The number of communication operations for such non-
cascading queries may require minimizing the number of
cut edges if query workload is highly changing or not avail-
able, or minimizing the total traffic crossing different parts
if it can be estimated. The cascade-aware graph partition-
ing aims at reducing the cut edges that have high probability
of being involved in a random propagation process under
a specific cascade model. Assigning unit weights to all
edges (i.e., ci j = 1 for each edge ei j ) makes the objective
same as minimizing the number of cut edges. A combination
of objectives can be achieved by assigning each edge cost
ci j = 1 + α(pi j + p ji ), where α determines the relative
weight of traffic/cascade-awareness.

5.2 Intra-propagation balancing among servers

This paper considers the number of nodes/users as the only
balancing criteria for the proposed cascade-aware partition-
ing. On the other hand, the proposed formulation can be
enhanced to handle balance on multiple workload metrics
via a multi-constraint graph partitioning. For example, a
balanced distribution of the number of content propagation
operations within servers can be attained via the follow-
ing two-constraint formulation. We assign the following two
weights to each vertex vi :

w1
i = 1 and w2

i =
∑

eki∈E
pki . (22)

Here, the summation in the secondweight represents the sum
of p probabilities of the incoming edges of vertex vi . Under
this vertex weight definition, the two-constraint partitioning
maintains balance on both the number of users assigned to
servers and the number of intra-propagation operations to be
performedwithin servers. The latter balancing holds because
of the fact that the expected number of propagations within
a part Vk is

∑

ei j∈E(Vk)

pi j (23)

where E(Vk) denotes the set of edges pointing toward the
vertices in Vk .

5.3 Repartitioning

As graph databases are usually dynamic, i.e., new vertices
and edges are added or removed, etc., repartitioning is nec-
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essary [1–3,21]. Repartitioningmethods aims tomaintain the
quality of an initial partition via reassigning vertices to parts
as the graph structure changes. However, the costs of new
edges should be computed for repartitioning. That is, if a
new direct edge is established in G, then its p value needs
to be computed before repartitioning. The pi j value of a new
edge ei j can be computed using pki value of each incoming
edge eki of vertex vi as follows:

pi j = wi j ×
⎡

⎣1 −
∏

eki∈E
(1 − pki )

⎤

⎦ (24)

That is, the content propagation probabilitywi j is multiplied
by the probability of there being at least one edge eki incom-
ing to vertex vi is activated during a random propagation
process. It is important to note that establishing the new edge
ei j also affects p jk value of each outgoing edge e jk of vertex
v j . If these values also need to be updated during repartition-
ing, Eq.( 24) can be applied for each edge e jk , in succession
for updating the value of pi j . In short, while moving vertices
between parts during repartitioning, the pi j value of any edge
ei j can be updated via applying Eq. (24) in a correct order.
By updating pi j values on demand, the existing repartition-
ing approaches can be adapted for the cascade-aware graph
partitioning problem.

5.4 Replication

Replication strategies need some modifications in order
to be used for the cascade-aware graph partitioning. It
should be noted that, even though the cut size of graph
G ′ can be reduced via replication of some vertices among
multiple parts, this approach also incurs additional commu-
nication operations. This is because, when a replicated vertex
becomes active during a content propagation process, the
content needs to be transferred to each server that the vertex
is replicated.

6 Experimental evaluation

In this section, we experimentally evaluate the perfor-
mance of the proposed solution on social network datasets.
We develop an alternative solution, which produces compet-
itive results, as a baseline algorithm in our experiments. The
baseline algorithm directly makes use of propagation prob-
abilities between users in the partitioning phase (i.e., wi j

values). Additionally, we also test various algorithms previ-
ously studied in the literature [10,13] and compared them
with the proposed solution.

6.1 Experimental setup

6.1.1 Datasets

Table 2 displays the properties of the real-world social net-
works used in our experiments. Many of these datasets
are used in the context of influence maximization research
[34]. The first 13 datasets (Facebook–LiveJournal)
are collected from Stanford Large Network Dataset Col-
lection1 [45], and they contain friendship, communication
or citation relationships between users in various real-
world social network applications. Twitter (large)
is collected from [46], uk-2002 and webbase-2001
are collected from Laboratory for Web Algorithmics2 [47],
and sinaweibo is collected from Network Repository3

[48]. Additionally, we also make use of a synthetic graph,
named as random-social-network, which we gen-
erate by using graph500 [49] power law random graph
generator. The graph500 tool is initialized with two param-
eters, namely as edge-factor and scale, in order to produce
graphs with 2scale vertices and edge-factor×2scale directed
edges. We set both scale and edge-factor to 16 to produce
random-social-network dataset.

All datasets are provided in the form of a graph, where
users are representedbyvertices and relationships bydirected
or undirected edges. To infer the direction of content propa-
gation between users, we interpret these social networks as
follows: For directed graphs, we assume that a propagation
may occur only in the direction of a directed edge, whereas
for undirected graphs, we assume that a propagation may
occur in both directions along an undirected edge. Therefore,
we did not apply any modifications to the directed graphs,
whereaswemodified the undirected graphs by replacing each
undirected edge with two opposite directed edges.

In the datasets in Table 2, the information about the con-
tent propagation probabilities between users is not available.
Therefore, for each dataset, we draw values uniformly at
random from the interval [0, 1] and associate these values
with the edges connecting its pairs of users as the propa-
gation probabilities. We repeat this process five times for
each dataset and obtain five different versions of the same
social network having different propagation probabilities
associated with its edges. Using these versions of the social
network, we performed the same set of experiments on each
different version and reported the averages of the results
obtained for that specific dataset.

Given an underlying social network with its associated
propagation probabilities, our aim is to find a user partition
that minimizes the expected number of communication oper-

1 https://snap.stanford.edu/data.
2 http://law.di.unimi.it.
3 http://networkrepository.com.
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ations during a random propagation process under a specific
cascade model. There have been effective approaches in the
literature to learn the propagation probabilities between users
in a social network [25,26]. Inferring these probability values
using logs of user interactions is out of the scope of this paper.
However, we also work on a real-world dataset, from which
real propagation traces can be deduced, to test the proposed
solution.

6.1.2 Baseline partitioning (BLP) algorithm

One can partition the input graph in such a way that the
edges with high propagation probabilities are removed from
the cut as much as possible. To achieve this, the sum of prop-
agation probabilities of the cut edges can be considered as an
objective function to be minimized in the graph partitioning
problem. The baseline algorithm also builds an undirected
graph from a given social network and makes use of a graph
partitioning tool. Instead of computing a new probability dis-
tribution over all edges (i.e., the pi j values), the baseline
algorithm directly makes use of propagation probabilities
associated with edges (i.e., the wi j values). That is, the cost
ci j of an undirected edge e′

i j of G
′ is determined using wi j

and w j i values instead of pi j and p ji values of edges ei j
and e ji , respectively. By this way, the graph partitioner min-
imizes the sum of propagation probabilities associated with
the edges crossing different parts. The difference between
the baseline algorithm and the proposed solution is the cost
values associated with the edges of the undirected graph pro-
vided to the graph partitioner.

6.1.3 Other tested algorithms

In our experiments, we also test three previously studied
social network partitioning algorithms for comparison pur-
poses. The first of these algorithms (CUT) is given in [10]
and aims to minimize the number of links crossing differ-
ent parts (i.e., basically minimizes the number of cut edges).
The second algorithm (MO+) [10] makes use of a commu-
nity detection algorithm and performs partitioning based on
the community structures inherent to social networks.

As the third algorithm, we consider the social network
partitioning algorithm provided in [13]. The social graph is
partitioned in such away that two-hop neighborhood of a user
is kept in one partition, instead of the one-hop network. For
that purpose, an activity prediction graph (APG) is built and
its edges are associated with weights that are computed using
the number of messages exchanged between users in a time
period. Since the wi j values can not be directly considered
as the number of messages exchanged between users, we
make use of FI (ei j ) values computed by CAP algorithm.
That is, we designate the number of messages exchanged
in a time period between users as FI (ei j ). Additionally, to

compute edge weights, the algorithm uses two parameters
which are the total number of past periods considered and a
scaling constant (these parameters are referred to as K and
C in [13]). We set these parameters to one, since we can not
partition FI (ei j ) values into time periods. Using these values,
we construct the same APG graph and partition this graph.
We refer to this algorithm as 2Hop in our experiments.

6.1.4 Content propagations

To evaluate the qualities of the partitions obtained by the
tested algorithms, we performed a large number of experi-
ments based on both real and IC-based traces of propagation
on real-world social networks. We generated the IC-based
propagation data as follows: First, we generate a randomly
selected subset of users and then execute an IC model prop-
agation process starting from the users in this set. The size
of the set is randomly determined and chosen uniformly at
random from the interval [1, 50]. During this propagation
process, we count the total number of propagation events
that occurred between the users located on different parts. As
mentioned earlier, such propagation events cause communi-
cation operations between servers according to our problem
definition. For each of the datasets, we perform 105 such
experiments and compute the average of the total number
of communication operations performed under a given par-
tition. This average corresponds to an estimation for the
expected number of communication operations during a ran-
dom propagation process.

6.1.5 Partitioning framework

The graphs generated by algorithms, except MO+, are par-
titioned using state-of-the-art multi-level graph partitioning
toolMetis [6] using the following set of parameters:We spec-
ify partitioning method as multi-level k-way partitioning,
type of objective as edge-cut minimization and themaximum
allowed imbalance ratio as 0.10. All the other parameters are
set to their default values. We implemented MO+ algorithm
by using a community detection algorithm4 provided in [50]
with its default parameters.

In order to observe the variation of the relative perfor-
mance of the algorithms, each graph instance is partitioned
K -way for K = 32, 64, 128, 256, 512 and 1024, respec-
tively. In order to observe the performance gain achieved
by intelligent partitioning algorithms, all graph instances are
also partitioned random-wise, which is referred to as random
partitioning (RP) algorithm.

4 http://www.mapequation.org/code.html.
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Fig. 2 The geometric means of the communication operation counts
incurred by the partitions obtained by BLP, CUT [10], CAP, MO+ [10]
and 2Hop [13] normalized with respect to those by RP

6.2 Experimental results

Figure 2 compares the performance of the proposed CAP
algorithm against the existing algorithms 2Hop, MO+, CUT
as well as BLP. In the figure, we display the geometric means
of the ratios of the communication operation counts incurred
by the partitions obtained by CAP, BLP, CUT, MO+ and
2Hop to those by RP, for each different K value. We run
CAP algorithm with accuracy θ = 0.01 and δ = 0.05. As
seen in the figure, BLP performsmuch better than both 2Hop
and MO+, whereas it performs slightly better (6%–9% on
average) than CUT. These experimental results justify the
use of BLP as a baseline algorithm to test the validity of
the proposed CAP algorithm. As also seen in the figure, the
proposed CAP algorithm performs significantly better than
all algorithm.

Table 3 compares the performance of the proposed CAP
algorithm against BLP and RP on each graph for each
K value, in terms of average number of communication
operations during IC model propagation simulations. Here,
partitioning of a graph for each different K value constitutes
a partitioning instance. For each K value, the last column
entitled “%imp” displays the percent improvement of CAP
over BLP for each dataset in terms of the number of commu-
nication operations. For each K value, the last row entitled
“norm avgs wrto RP” displays the geometric means of the
ratios of the communication operation counts incurred by
the partitions obtained by BLP and CAP to those by RP. The
table also contains a “cut” column which displays the ratio
of the number of cut edges to the total number of edges for
each partitioning instance.

As seen in Table 3, BLP performs significantly better than
RP in all partitioning instances. This is because BLP suc-
cessfully reduces the sum of propagation probabilities of cut
edges and reduces the chances for propagation events to occur
between different parts. On average, partitions obtained by
BLP incurs 4.76x, 3.84x, 3.57x, 3.22x, 2.77x and 2.63x less

communications than RP for K = 32, 64, 128, 256, 512 and
1024 servers, respectively. The decrease in the performance
gap between BLP andRPwith increasing K can be attributed
to the performance degradation of the graph partitioning tool
for high K values. In particular, whenever the average num-
ber of vertices assigned to parts (i.e., |V |/K ) decreases below
some certain threshold (e.g., for K = 1024 and K = 512
on Facebook and wiki-Vote datasets), improvements
of Metis significantly degrades as can be seen from Table 3.
However, for the case of web graphs (e.g., uk-2002 and
webbase-2001), Metis provides significantly better parti-
tions, providing cut ratios below 0.1 (i.e., structures of graphs
also have effect on quality of partitions produced by Metis).
As a result, the number of inter-partition communication
operations is significantly less in cases of these graphs as
compared to other cases.

As seen in Table 3, CAP performs significantly better
than BLP in all of the partitioning instances. If the cut ratio
values are closely inspected, partitions obtained by CAP
leave more edges in the cut (i.e., higher cut ratios); but
these partitions incur less communication operations. On
average, CAP achieves 25.16%, 31.82%, 32.04%, 29.97%,
27.36% less communication operations than BLP for K =
32, 64, 128, 256, 512 and 1024 servers, respectively. In par-
ticular, the best improvement is obtained on email-EuAll
social network for K = 64, where the partitions obtained by
CAP achieve 88% less communication operations than those
by BLP. Also in this partitioning instance, CAP achieves a
cut ratio of 0.35 which is significantly less than 0.75 of BLP.
However, as the value of K increases, the improvement of
CAP over BLP decreases for some social networks, espe-
cially forwiki-Talk andwiki-Vote, where 19.11%and
19.70% improvements ofCAPoverBLP for K = 32, respec-
tively, decrease to 1.11% and 1.27% for K = 1024. This can
be attributed to Eq. (20), since as the value of K increases,
the number of cut edges is also expected to increase. As
shown in Eq. (20), the number of cut edges directly affects
the error made by CAP algorithm: the upper bound of the
error made by CAP algorithm is shown to be proportional to
the number of cut edges. Indeed, the performance improve-
ment of CAP over BLP is observed to be the lowest on the
partitioning instances for which CAP incurs the highest cut
ratio. For instance, on datasets Facebook, wiki-Talk
and wiki-Vote for K = 1024, partitions generated by
CAP have cut ratios of 0.97, 0.97 and 0.92, respectively.

The performance decrease of CAP can be alleviated by
making more accurate estimations for the pi j values and
decreasing the value of θ . However, the cut ratio depends on
the graph partitioning tool performance, dataset characteris-
tics and imbalance ratios used during partitioning. In order to
get better cut ratios, the imbalance constraint can be relaxed
and increased to higher values (e.g., we used imbalance ratio
of 0.1 in our experiments).
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Table 4 Results for IC model propagations on
random-social-network. “cut” column denotes the frac-
tion of edges remain in the cut after partitioning, “comm” column
denotes the average number of communication operations and “%imp”
column denotes the percent improvement of CAP over BLP

K RP BLP CAP %imp
cut comm cut comm cut comm

32 0.97 24,690 0.85 20,981 0.91 11,890 43.33

64 0.98 25,119 0.92 18,638 0.93 12,317 33.91

128 0.99 25,328 0.93 18,484 0.94 12,635 31.64

256 0.99 25,378 0.94 18,546 0.94 12,961 30.11

512 0.99 25,400 0.95 19,911 0.95 13,515 32.12

1024 0.99 25,511 0.95 20,279 0.95 14,229 29.83

To observe how the improvement of CAP algorithm
changes with respect to the cut ratio, we perform the same
set of experiments also on random-social-network.
As seen in Table 4, partitions obtained by CAP algorithm
cause 43% less communication operations for K = 32 even
though the fraction of edges are 6% more than that of BLP.
As noted in previous experimental results, the improvement
of CAP over BLP decreases as the value of K and the cut
ratio increases: the percent improvement of CAP over BLP
decreases from 43% to 30% as the fraction of cut edges
increases from 0.91 to 0.95 on K = 32 and K = 1024,
respectively.

6.2.1 Sensitivity analysis

We performed experiments to see how the accuracy param-
eter θ affects the performance of the CAP algorithm. For
different values of θ and K , we compare the performance
of CAP against RP on random-social-network. In
Fig. 3, we designate the size of set I as |I | = 10, 102,
103, 104 and 105, respectively. Experiments are performed
under K -way partitions for K = 32, 64, 128 and 256. We
plot the percent increase in the performance of CAP over
RP on y-axis. The accuracy values are computed for con-
fidence δ = 0.05 and displayed on the right side of the
figure. As seen in the figure, with increasing size of set
I , the value of θ decreases exponentially and the improve-
ment of CAP increases logarithmically. Additionally, as also
observed earlier, the relative performance of CAP decreases
with increasing K . The best performance improvement is
obtained for K = 32 where CAP performs 2x better than
RP. These results can be attributed to the results of Eq. 20,
since for higher values of K , both the cut ratio and the error
made by the CAP algorithm increase. However, as the accu-
racy increases, the error made by CAP decreases and the
overall optimization quality improves.

101 102 103 104 105
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40
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θ K = 32 K = 64 K = 128 K = 256

Fig. 3 Variation in the improvement ofCAPoverRPwithdifferent sizes
of set I . Dashed curve denotes the accuracy θ , whereas solid lines denote
variations in the improvements for random-social-network on
K = 32, 64, 128 and 256 parts/servers

6.2.2 Relationship with minimizing cut edges

We also performed experiments to observe how much the
cascade-based estimation of traffic is related to the perfor-
mance measure of minimizing the number of cut edges.
Previously, we asserted that different objectives can be
encoded in the same cut size definition through assigning
different weights to costs associated with edges by each
objective (i.e., ci j = 1 + α(pi j + p ji )). The parameter α

controls how much the cascade-based estimation of the traf-
fic is considered. Figure 4 displays the average number of
communication operations and ratio of cut edges, by varying
parameterα, obtained byCAP forHepPh dataset on K = 32
parts/servers (i.e., the α value is multiplied by FI (ei j ) value
of each edge). As seen in the figure, with increasing α,
the average number of communication operations decreases,
whereas the ratio of the number of cut edges increases. On
the other hand, the increase in the cut size slows down after
α = 10−2 and cut ratio becomes at most 0.44, since the
cut size also has effect on the average number of commu-
nication operations. Note that for the smallest value of α,
CAP becomes almost equivalent to CUT, providing equally
well partitions in terms of number of cut edges (black-dashed
curve denotes the cut value obtained by CUT algorithm). If
the query workload is dominated by non-cascading queries
and there is comparably small number of cascades, then α

value can be set to smaller values, or vice versa.

6.2.3 Running times

We performed our experiments on a server having 256 GB
main memory and two Intel(R) Xeon(R) CPU E7-8860 v4 @
2.20GHz processors, each ofwhich consists of 18 cores and is
able to run 36 threads concurrently. One of the largest social
networkswe used in our experiments,sinaweibo, consists
of approximately 58 M vertices and 522 M edges. For this

123



Cascade-aware partitioning of large graph databases

0.3

0.35

0.4

0.45

cu
t

10−4 10−3 10−2 10−1 100

3,500

4,000

α

A
vg

.
C
om

m
.

cut comm

Fig. 4 Variation of average number of communication operations and
cut values obtained by CAP for different α values. Experiments are
performed for HepPh dataset on K = 32 parts/servers. Solid curve
denotes communication values, and dashed curve denotes cut values.
(Black-dashed curve denotes the cut value obtained by CUT algorithm)

social network, the estimation of pi j values took approx-
imately 5.9 h and required 59 GB main memory. For the
estimation phase, we employed shared memory parallelism
and generated the set I via using 72 threads. The partition-
ing phase of undirected graph G ′ into K = 1024 parts via
Metis took approximately 1, 25 hours and required 71 GB
main memory. It is worth to mention that partitioning time
of sinaweibo via Pulp [51], which is a label propagation-
based partitioning tool, took approximately 1.1 h in case of
BLP algorithm. Here, both Metis and pulp were run in serial
mode for a fair comparison. Similarly, the biggest graph we
used in our experiments, webbase-2001, has 118 M ver-
tices and 1B edges. For this dataset, the estimation phase
took approximately 2.2 h and required 130GBmainmemory.
However, even though webbase-2001 has more vertices
and edges than sinaweibo, partitioning this graph into
K = 1024parts took approximately 0.5 h and required51GB
main memory. Note that the estimation phase of CAP takes
only 4.7x and 4.4x more time than the partitioning phase on
the two large datasets sinaweibo and webbase-2001,
respectively. These relative runtime comparisons suggest that
cascade-aware graph partitioning, considered as an offline
process thatwill be used in relatively long time intervals, runs
in reasonable time limits for large-scale social networks.

6.3 Experiments on digg social network with real
propagation traces

In this section, we use actual propagation traces collected
from Digg5 [18] social news portal. Digg is an OSN where
users can share and vote for news stories, and designate others
as friends to inform about their activities. Friendships can be
designated as one-way relationships in such a way that if a
uservi declares another user v j as a friend, thenvi is informed
of activities of v j but not vice versa. Users follow activities of

5 www.isi.edu/~lerman/downloads/digg2009.html.

their friends in their news feedswhere the stories their friends
shared or voted for are displayed. With these properties of
Digg social network, a story can propagate through users
once it is shared or voted for. Propagation of news stories
can be considered as propagation of contents in our problem
definition.

The Digg dataset contains a directed graph G = (V , E)

representing the underlying social network which consists of
71,367 users and 1,731,658 friendship links. As friendships
are formed as one-way relationships, they are represented
by directed edges. Each directed edge ei j ∈ E means that
user v j is following the activities of user vi ; therefore, the
content propagation can occur in the direction of vi to v j .
Additionally, the dataset contains log L of past activities of
users over a setN of news stories. Each entry (vi , nk, ti ) ∈ L
means that user vi ∈ V has voted for news story nk ∈ N at
time ti . The dataset contains 3,018,197 votes made on 3,553
news stories (i.e., |L| = 3,018,197 and |N | = 3,553).

In order to deduce the content propagation traces from log
L, we follow the approach proposed in [39]. In this approach,
if user vi votes for the news story nk , then it is assumed that vi
is probably influenced by one of its friends that have voted
for the same story before. However, in order for vi to be
influenced by its friends, the difference between their voting
times should be within a time window tΔ. Let Pk

i denote the
set of users that potentially influence user vi in voting for
news story nk , we define Pk

i as

Pk
i = {v j ∈ V | (v j , vi ) ∈ E ∧ ti − t j ≤ tΔ}. (25)

In our experiments, we set the time window tΔ as onemonth
following the approach in [39]. The set Pk

i induces a subgraph
gk = (V , Ek) of G, where potential influencers of each user
are denoted by the directed edges in Ek as follows:

Ek = {(v j , vi ) ∈ E | v j ∈ Pk
i }. (26)

The subgraph gk is reminiscent of a directed graph g ∼ G,
where each directed edge ei j is associated with a propagation
probability wi j and g is generated by the equivalent process
of the IC model as described in Sect. 3. Note that g is also a
subgraph where each user may have multiple potential influ-
encers and one of them can be arbitrarily selected to generate
a propagation tree/forest. Therefore, we generate a propaga-
tion forest for the news story nk on gk as follows: Let Ik(S)

denote a propagation forest on gk , where propagation trees
are rooted on vertices in S and the set S is composed of ver-
tices that are having no incoming edges (i.e., users in the set
S do not have any potential influencers).

The propagation forest Ik(S) can be computed by per-
forming a multi-source BFS starting from vertices in S on
gk as if a random propagation tree is built from a g ∼G. It
is important to note that multiple propagation forests can be
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Algorithm 2 Generating Propagation Trees/Forests from
logs of past propagation traces
Input: G = (V , E), L, tΔ
Output: I
1: Partition log L based on news stories and obtain Lk for each story

nk ∈ N
2: Initialize an empty set I of propagation forests
3: for each Lk do
4: Sort entries (vi , nk , ti ) ∈ Lk according to their timestamps ti in

increasing order
5: Initialize a directed graph gk = (V , Ek), where Ek = ∅
6: for each entry (vi , nk , ti ) ∈ Lk do
7: Mark vi as activated
8: for each (v j , vi ) ∈ E do
9: if v j is activated and t j − ti ≤ tΔ then
10: Ek = Ek ∪ {(v j , vi )}
11: Initialize set S = {vi | in-degree of vi = 0 in gk}
12: Perform multi-source BFS on gk starting from the vertices in S

and generate a propagation forest Ik
13: I = I ∪ {Ik}
14: return I

generated depending on the execution of multi-source BFS
on gk . Edges in the propagation forest Ik(S) still encode the
information as to propagation traces through users. We gen-
erate propagation trees/forests for all news stories in Log
L and use them instead of performing the IC model prop-
agation simulations. Algorithm 2 presents computations we
performed on logL to deduce the content propagation traces.

After generating the propagation trees/forests for all
news stories available in log L, we sample 90% of these
trees/forests to use in Algorithm 1. That is, instead of ran-
domly generating random propagation forests, we use real
propagations in logL to compute the function FI (·) and esti-
mate pi j values of edges in G. We use the remaining 10% of
the propagation forests to test the qualities of the partitions
returned by Algorithm 1. If an edge in a propagation forest
crosses different parts, we count that edge as one communi-
cation operation.

We compare the qualities of the partitions produced by
CAP algorithm against those of a slightly modified version
of the BLP algorithm presented previously. In the modified
version of BLP, we associate unit cost with each edge of the
undirected graph that is produced from the input social graph.
This modification causes BLP to regard only the friendship
structure of Digg social network and produce partitions that
minimize the number of friendship links crossing different
parts. In this way, BLP and CUT algorithms become equiv-
alent.

In Table 5, we present the results of the experiments on
Digg social network. In addition to CAP and the modified
version of BLP, we also include the results for partitions
generated by RP. For each of these partitions, we compute
the average number of communication operations induced on

Table 5 Experimental results on Digg social network. For each tested
algorithm, average number of communication operations induced dur-
ing propagation of news stories are displayed. “%imp” column denotes
the percent improvement of CAP over BLP

K RP MO+ 2Hop BLP CAP %imp

32 192 189 151 101 40 60.80

64 195 193 160 86 44 48.11

128 196 196 167 119 62 47.97

256 197 197 172 128 77 39.65

512 198 198 174 133 102 23.06

1024 198 198 177 152 131 13.53

the propagation trees that are generated and sampled from 10
percent of log L.

As seen in Table 5, BLP performs much better than 2Hop,
CUT, MO+ and RP algorithms. For K = 32, the partition
generated by BLP incurs approximately 2x less communica-
tion operations than RP. The performance improvements of
BLP is less for higher values of K . For example, BLP per-
forms 2 times better than RP for K = 1024. CAP algorithm,
on the other hand, consistently performs better than BLP for
all values of K . In particular, for K = 32, CAP algorithm
incurs 60% less communication operations. However, as the
value of K increases from 32 to 1024, the overall improve-
ment of CAP over BLP decreases to 13%. This is because
the accuracy obtained by 90% of the propagation trees/forest
sampled from log L remains constant as we increase the
value of K and therefore the error made by CAP algorithm
increases as we have shown in Eq. 20. Additionally, the
performance of the graph partitioning tool is expected to
decrease for higher values of K where the average number
of vertices per part reduces below 100 for K = 1024.

Results displayed in Table 5 illustrates the effectiveness of
the CAP algorithm in a case where actual propagation traces
are used instead of the IC model simulations.

7 Conclusion

We studied the problem of cascade-aware graph partitioning,
where we seek to compute a user-to-server assignment that
minimizes the communication between servers/parts consid-
ering content propagation processes.

We employed a sampling-based method to estimate a
probability distribution by which each edge of a graph is
associated with a probability of being involved in a random
propagation process. We use these estimates as part of the
input of graph partitioning. The proposed solution works
under various cascade models and requires that parameters
of these models are given beforehand. Theoretic results that
show how our solution achieves the stated objectives are also
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derived. To the best of our knowledge, this is the first work
that incorporates themodels of graph cascades into a systems
performance goal.

We performed experiments under the widely used IC
model and evaluated the effectiveness of the proposed solu-
tion in terms of partitioning objectives. We implemented the
solution over real logs of propagation traces among users, in
addition to using their social network structure. Experiments
demonstrate the effectiveness of the proposed solution in both
the presence and absence of actual propagation traces.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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5. Yaşar, A., Gedik, B., Ferhatosmanoğlu, H.: Distributed block
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