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In the current era of miniaturization for complex, ubiquitous, and
energy efficient systems, micromanufacturing had become one of
the most popular fields for engineering development. This paper
introduces a modular robust cross-coupled controller design
structure applied to a three axis micromachining system that can
be extended to more axis systems and configurations. In order to
develop a robust controller that can withstand the disturbances
due to tool–workpiece interactions, a dynamic model of the whole
system is needed. Developing control-oriented models for micro-
machining systems can be challenging. Using the sum of sines
identification input, essential nonlinearities including the effects
of assembly and slider orientation are included. Verification data
show that these transfer function models represent the physical
system satisfactorily while avoiding an over-fit. Using the transfer
functions from the identified model, a controller structure with
robust axis controllers with cross-coupled control (CCC) are
developed and fine-tuned with simulations. Machining experi-
ments are also done in order to compare the performance of the
proportional-integral-derivative control design, an adaptive
robust controller (ARC, both from earlier work in the literature)
and the new H1 robust controller. According to results of experi-
ments, the new robust controller showed the best tracking and
contouring performance with improved surface quality due to
reduced oscillations. [DOI: 10.1115/1.4040443]

1 Introduction

Starting from the early 1960s, the most prominent trend in engi-
neering for the search of more efficient, powerful, and cheaper
devices is the miniaturization [1]. Thus, manufacturing of micro-
devices had become one of the most widely studied topics in the
past fifty years. Even though there are new and promising meth-
ods such as laser sintering and additive manufacturing, conven-
tional, cutting-based methods continue to hold a unique and
irreplaceable position due to the desired mechanical properties of
the end products. In order to successfully manufacture microscale
parts, the machining system needs to be precise, due to the nature
of the required features and robust, due to the nonlinearity of the
cutting process with the possibility of chatter vibrations and other
environmental disturbances such as electrical noise and ground
vibration. Figure 1 shows the experimental machining setup used
in this research. The system consists of two parts: a cast holder

that houses the spindle (and the cutting tool) and a three-
dimensional positioning system that (Fig. 1(b)) moves the work-
piece. In this configuration, motion in each axis is provided by a
slider (Fig. 1(c)) powered by a controlled linear motor. The pre-
cise and rigid positioning of the workpiece by the sliders during
the machining (milling) operation to generate a mechanical fea-
ture is considered to be a robust tracking problem.

In this application, the primary objective for the tracking con-
trol is to move the end-effector tool (the workpiece) to a predeter-
mined point in machining space following a desired trajectory.
Although almost all systems employ feedback control, consider-
able improvement in tracking performance can be achieved with
the addition of feed-forward control to the algorithm. Several
feed-forward control approaches are developed in the literature to
improve tracking accuracy such as zero-phase error tracking con-
trol [2,3], feedforward friction compensation [4,5], and iterative
learning control [6–8].

For many applications, the tracking error is defined as the dif-
ference between the desired position and the actual position for
each slider (axis). For multidimensional operations, a contour
error can be calculated using geometrical relations of error vec-
tors. This vectorial approach can be explained using the geometri-
cal relations in Fig. 2. Here, e is the tracking error vector, ê is the
estimated contour error vector, e is the contour error vector, t is
the normalized tangential vector, n is the normalized normal vec-
tor, P is the actual position, and R is the reference (desired) posi-
tion at an instant. Then, the contouring error e can be defined as
the vector from the actual position to the nearest point on the line
which passes through the reference position tangentially with
direction t [9].

Generally, improving tracking accuracy of an individual motion
axis (i.e., X, Y, or Z axis) also increases the contouring accuracy
of a multi-axis positioning system. However, in some cases, it is
reported that decreasing the tracking error may not result in
decreased contour error [10]. Hence, the control algorithm should
be designed considering not only the tracking error but also the
contour error. In Ref. [10], an improved cross-coupled control
(CCC) structure that focuses on eliminating the contour error
rather than the tracking error in individual axis is introduced. This
method is proven to reduce contour error significantly. Since the
introduction of the CCC, it has been modified and combined with
different control techniques. Some examples can be given as the
observer-based CCC [11], cross-coupled model reference adaptive
control [12], CCC with disturbance observer and zero-phase error
tracking control [3], CCC with friction compensation [5], and
CCC with iterative learning control [7,8,13]. In Ref. [14], a
proportional-integral-derivative (PID)-based robust CCC is used.
The robustness of the controller is obtained by adjusting gain and
phase margin of the resulting systems.

In the literature, there are studies and applications of different
robust controller algorithms such as l synthesis or adaptive robust
control (ARC) to the manufacturing systems such as milling
machines in macroscale. Stephans and Knospe showed that l syn-
thesis could be used in order to synthesize a robust controller for
machining spindles [15]. Lee and Tomizuka showed that robust
controllers could be used in high accuracy motion positioning sys-
tems [16]. In their work, the proposed controller have four compo-
nents, a friction compensator either in the feed-forward or
feedback loop, a disturbance observer in the velocity loop, a feed-
back controller in the position loop, and a feed-forward controller.
The paper also asserts that the robustness comes from the disturb-
ance observer portion of the proposed controller structure. Tsao
and Tomizuka also showed that robust adaptive controllers could
be used for noncircular machining [17]. Moradi et al. showed that
by using a H1 controller, chatter vibration can be significantly
reduced [18]. Moreover, it is shown that, as the parameter var-
iance increases, the effort needed to suppress the chatter vibration
also increases. Also, the difference between the actual system and
the modeled system greatly affects the performance of the robust
controller.
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This paper presents our work on designing a H1 robust CC
control algorithm that is suitable for micromachining applications.
There are two main contributions of this work: first contribution is
a mathematical model for an orthogonal three axis positioning
system that includes the effect of assembly and device nonlinear-
ities rather than using individual slider models for each axis based
on ideal laws. This is a challenging task considering the short
stroke (only 110 mm) of the axis sliders and typical identification
inputs cannot work efficiently. Second contribution is a H1 based
robust controller design structure that utilizes cross-coupled

control to include the effects of other axis dynamics. To the best
of our knowledge, this is the first comparative study in the litera-
ture that combines an optimal robust controller with CCC for a
micromachining system with experimental results. In Sec. 2, mod-
eling and identification of the positioning system from its axis
modules will be discussed. In Sec. 3, a method to design the con-
trol algorithm for tracking and robustness will be discussed with
simulations. The machining experiments performed to validate
the functionality of the designed system will be presented in
Sec. 4. In Sec. 5, our current results and future work will be discussed.

2 Modeling and Identification

In order to synthesize a position tracking controller, a mathe-
matical model for the workpiece positioning system should be
developed. The first approach can be a physics-based system mod-
eling approach using lumped parameters. However, due to the
complex nature of the electromechanical positioning system this
cannot be enough for precision and robustness. In the following
section, the development of the baseline model and then the iden-
tification of the system are explained.

2.1 Physics Based Modeling. Figure 1 shows the experimen-
tal machining setup used in this research. The axis sliders are
operated by linear motors, and the displacement is measured using
optical encoders as shown in Fig. 1(c). One approach to model
this orthogonal XYZ positioning configuration is to assume the
system as a perfect assembly of three separate but identical single
axis subsystems.

A physics-based lumped parameter model developed for nano-
positioning (nonmachining) applications were explained in

Fig. 1 Micromachining using a three axis orthogonal positioning system

Fig. 2 Contour error versus tracking error
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Ref. [8]. Using this approach, a second-order transfer function can
be obtained as shown in the following equation where X(s) is the
slider displacement, and E(s) is the voltage command to the
system

X sð Þ
E sð Þ

¼ kM

Lmis3 þ Rmi þ biLð Þs2 þ Rbi þ k2
M

� �
s

(1)

In Eq. (1), L, R, kM, are the linear motor inductance, resistance,
and motor constant, respectively. mi and bi represent the inertia of
the slider i and the viscous friction experienced by the linear bear-
ings. Even though the sliders are assembled from identical compo-
nents, due to the configuration of the positioning system, the value
of the inertia and friction constant may change. For example in
our system, the X-axis slider carries Y-axis and Z-axis system as
well requiring different mass and viscous friction parameters.
This model could be used to calculate a theoretical robust control-
ler using the experimental values from Ref. [8]. However, during
the actual implementation, this model is known to have various
problems under the influence of moderate disturbance. First of all,
the model presented in Eq. (1) uses a viscous friction model,
whereas the micromachining system shows stick–slip like behav-
ior [6]. Furthermore, the single axis slider model with the transfer
function given in Eq. (1) assumes X, Y, and Z axes sliders are
identical and have exactly the same contribution to the position of
the end effector (in different directions) given the same input.
This, however, is observed to be deceiving based on the actual
experiments and sensor data due to the slider manufacturing and
assembly conditions. Finally, unmodeled dynamics, especially for
the linear motor electronics, could have significant contributions
on the system response. Therefore, an identification procedure
where the tests are performed on the complete assembly rather
than the axis sliders is preferred. Based on the physical model
given in Eq. (1), at least second-order transfer functions will be
assumed for system dynamics.

2.2 System Identification. System identification is a proce-
dure that consists of measuring input and output data of any given
system and calculating a mathematical model that emulates the
response of the system based on this data. The identification input
must be carefully selected since it needs to be complex enough to
extract meaningful information (i.e., to achieve persistent excita-
tion) while complying with the limitations on the data acquisition
system. Furthermore, the identified model needs to fit closely to
the actual system while avoiding over-fitting. In this work, the
measurements are taken by using linear optical encoders utilizing
an adaptive correction and look-up table-based interpolation
method discussed in Ref. [19]. Stable resolutions as low as 60 nm
using linear optical encoders and interpolation were obtained for
slider speeds up to 45 mm/s.

During the experiments, all three directions of the system (X, Y,
and Z) are excited by the identification input separately, gathering
X, Y, and Z axis displacement data. The cross-dynamics effects
between the axes are observed to be small and are currently disre-
garded. For each data set (X, Y, and Z axes), the identification tests
are repeated five times with different starting points on the slider.
For transfer function identification and verification, the averaged
data of these repetitions are used.

There are several options for inputs that can be used in system
identification experiments such as sweep, random, or sum of har-
monic signals [20]. Each of these inputs has their own advantages.
When the application is considered, using a sweep signal is not
feasible since the operation range of the sliders is limited. The
random signal input was not preferred since each of the axes is
identified individually making repeatability an important factor.
Therefore, the sum of sines input, which excites the system over
the displacement range, is selected. As a result, the final identifica-
tion signal is a highly complicated periodical signal in time
domain. For verification of the identified model, an input signal

with the same frequency content but with different magnitudes is
used. In Figs. 3(a) and 3(b), the identification and verification sig-
nals used for each axis are given, respectively. The transfer func-
tions calculated from the input signal data are then compared to
the verification signal data.

The magnitude of the identification signal was varied for each
axis to cover all available range while avoiding the limits of the
slider motion. X, Y, and Z axes are excited individually while log-
ging the position data of all axes. Then, using these data, transfer
functions Gxx ¼ XðsÞ=UxðsÞ; Gyy ¼ YðsÞ=UyðsÞ; Gzz ¼ ZðsÞ=UzðsÞ
are identified.

The level of fit of identified transfer functions and the measured
data set is calculated with normalized root-mean-square (RMS)
method. Using the system output of X axis and prepared identifi-
cation input, system model is calculated using MATLAB’s System
Identification Toolbox. In frequency domain, simulated system
output fits to the measured system output with %86.3. Using the
validation data set, simulated system output fits to the measured
system output %84.2. The identified transfer functions are vali-
dated in time domain. As shown in the Fig. 4(a), simulated system
output and measured system output are close to each other with a
%71.9 fit. In comparison, simulated response fit to the measured
verification data fairly well as shown in Fig. 4(b) with a fit of
%68.2.

After completing the experiments and analysis, the identified
transfer function for X-axis, Gxx, is given below:

Gxx ¼
56930sþ 1389

s2 þ 0:2268sþ 0:002058
(2)

As the second and third steps of the identification process, the
input signals are applied to the slider providing motion on the Y-
axis and Z-axis separately, and the motion of all axis sliders was
recorded. Then, the best fit for both Gyy and Gzz were found using
the System Identification Toolbox as shown in Eqs. (3) and (4),
respectively. All the identified transfer functions fit approximately
%70 in the frequency domain, and the results of the verification
tests show around %68 fit for both of the Y and Z axes cases.
Therefore, it was concluded that acceptable fits are obtained while
avoiding over fit without having to use high-order polynomials.
Identified transfer functions are verified in the time domain as pre-
sented in Fig. 4(b)

Gyy ¼
548000sþ 13670

s3 þ 1:644s2 þ 8:198sþ 0:06571
(3)

Gzz ¼
355600sþ 5468000

s3 þ 607:5s2 þ 344sþ 2643
(4)

3 Controller Design and Simulations

In this section, primary feedback controllers for each axis are
designed using the mathematical models obtained in the previous
section. These controllers are then combined with the cross-
coupled controller and performance simulations were performed.
For comparison, the design of a PID-CC [8] and ARC [16] from
Sec. 2 literature is also discussed and simulated.

3.1 H‘ Controller Design. The generic H1 control problem
structure is given in many sources in the literature such as Ref.
[21]. In this standard formulation w, z, u, and y are the external
input, output, control signal, and measured variables, respectively.
A transfer function matrix Fl;iðGii;CiiÞ ¼ Ti

zw can be defined from
external inputs w to output z where Gii is the axis model devel-
oped for X, Y, and Z in Sec. 2 and Cii is the corresponding robust
controller. Then, z can be derived as z ¼ Fl;iðGii;CiiÞw ¼ Ti

zww.
The H1 optimization problem is to find a stabilizing controller K
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that will minimize the infinity norm of the Ti
zw. This can be

expressed mathematically as shown in the below equation:

min
Cii2H1

jjTi
zwjj1 ¼ min

Cii2H1
fsup

ReðsÞ>0

�r½Ti
zwðsÞ�g (5)

The optimal Ti
zw can be tuned to have distinct behaviors on dif-

ferent frequency bands for each axis. Commonly used performance
measures are the sensitivity, S, and complementary sensitivity, T,
functions for the closed-loop system (Sþ T¼ I). The weight func-
tions Wi

s and Wi
t can also be implemented on the system to obtain

the inequality constraint in the following equations:

jjTi
zwjj1 ¼

Wi
sS

Wi
tT

����

���� < c (6)

Wi
s and Wi

t are constructed to achieve desired goals within
desired frequency bands. For instance, for most cases, S is mini-
mized at low frequencies to achieve better tracking and disturb-
ance attenuation, where T is the minimized at high frequencies to
achieve robust stability in the presence of sensor noise, variations
in the system parameters, and unmodeled high-order dynamics. In
order to synthesize a H1 controller for the system, first of all the
weight functions need to be selected. Even though guidelines for
the weight function design exist, fine-tuning using the simulations
is generally necessary. Using a weight function formulation sug-
gested in Ref. [21], we obtain the formulations given in the below
equations to synthesize the axis controllers

Wi
s ¼

s=M þ x0

sþ x0A
(7)

Wi
t ¼

x0=M þ s

Asþ x0

(8)

where x0 is the desired closed-loop bandwidth, M is the noise sen-
sitivity peak, and A is the target steady-state offset. These weight
functions tuned manually using simulations based on the guide-
lines given in Ref. [21] as presented in Table 1.

Using the weight functions, robust H1 controllers are designed
using MATLAB Robust Control Toolbox for each axis. The resulting
H1 axis controllers for the X, Y, and Z axes are shown in the fol-
lowing equations:

Cxx ¼
525630 sþ 16000ð Þ sþ 0:22ð Þ sþ 0:01ð Þ

sþ 56930000ð Þ sþ 52660ð Þ sþ 1:6ð Þ sþ 0:03ð Þ (9)

Cyy ¼
2881 sþ 180000ð Þ sþ 0:01ð Þ s2 þ 1:64sþ 8:12ð Þ

sþ 177300ð Þ sþ 30900ð Þ sþ 420ð Þ sþ 0:15ð Þ sþ 0:03ð Þ
(10)

Czz ¼
1121055000 sþ 12000ð Þ sþ 607ð Þ s2 þ 0:56sþ 4:354ð Þ

sþ 38920ð Þ sþ 15:4ð Þ sþ 1:2ð Þ s2 þ 29570sþ 358500000ð Þ
(11)

Fig. 3 (a) Identification and (b) verification Inputs
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3.2 Proportional Integral Derivative-Cross Coupled Con-
troller. In order to compare the performance of the newly identi-
fied model and the H1 robust controller, various alternatives from
the literature is used. As a first step, the cross-coupled PID controller
from Ref. [8] is used. This controller is extensively used in this sys-
tem per previous research, and the optimized parameters are given in
Table 2 where P, I, D, and N are the proportional, integral, deriva-
tive, and filter constants, respectively.

3.3 Cross Coupled Adaptive Robust Controller. In Ref.
[16], a widely cited ARC for high accuracy motion positioning

systems is presented. The ARC has four components, a friction
compensator either in the feed-forward or feedback loop, a dis-
turbance observer in the velocity loop, a feedback controller in the
position loop, and a feed-forward controller. As a comparison for
our controller, an ARC controller was developed for each axis.
For the loop controller PID controller from Sec. 3.2 was used.
Then, for the disturbance observer, the inverse of the identified
axis dynamics from the modeling sections were used with a filter
Q(s) as described in the paper with the prescribed values for GdðsÞ
as the friction based feed-forward controller. The cross-coupled
controller structure and parameters from Sec. 3.2 is used for
comparison.

3.4 Simulations. In Fig. 5, the block diagram of the control
structure used in simulations and in the experimental setup is
shown. The axis controllers are used as either PID from Ref. [8],
ARC from Ref. [16], or the robust H1 controller developed in this
paper. These controllers take desired xd, yd, and zd position refer-
ence and determine the linear motor actuation command based on
the error. The ARC controller structure also uses the reference
input for its feed-forward controller. The milling tool operates the
cutting tool at desired angular speed. For this study, a constant
speed is set during cutting experiments.

In order to carry out the simulations, a system model is created
in MATLAB/SIMULINK using the transfer functions identified previ-
ously. The input tracking signals xd, yd, and zd are created using S-
curves [19] with a MATLAB script offline for X, Y, and Z axes,
respectively. For this study, a maximum acceleration of

Fig. 4 Response in time domain: (a) identification and (b) verification

Table 1 Weight function parameters for each axis

Axis A M x0t x0s

X 0.001 2 160 160
Y 0.001 2 150 180
Z 0.01 2 120 120

Table 2 PID parameters (best set)

PID parameters P I D N

X 1 0.01 0.0005 100
Y 1.5 0.01 0.0005 100
Z 1 0.01 0.0005 100
CC 0.4 0.005 0.0005 100
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1:5 mm=s2 and a maximum velocity up to 30 mm=s is applied
when the curves are designed. Generated input signal is fed into
the simulation setup as the reference value, and the output data
are recorded for analysis. In order to measure the performance of
the controllers both axis position errors, e, and contour error, e,
are used. The controller structure presented in Fig. 5 includes an
axis based iterative learning controller. As mentioned in Ref. [8],
the tracking performance of the system generally gets better with
more iterations. For the initial simulation, the desired shape is an
inclined circle with a diameter of 5 mm and an incline angle of
45 deg. For the simulations and experiments presented in this
paper, the first run results are given as the expected worst case
scenario without using the iterative controllers.

To test robustness, the simulations are run using a sinusoidal
disturbance input in each axis. The amplitude of the disturbance is
selected as 100 lm and the frequency is 75 rad/s. This position
disturbance is injected to system after the plant. The results given
in Table 3 show the error obtained for each axis and the contour
error, e.

Based on the error values given in Table 3, all error components
are improved by using a robust controller. The significant
decrease of the RMS errors show that robust controllers (ARC
and H1) disturbance rejection property is far better than the PID
controller. For the simulations, it can be seen that the adaptive
robust controller from Ref. [16] performed better with the new
robust controller not far behind. Also, none of the axis RMS error

values for robust controllers is greater than the amplitude of dis-
turbance signal. According to the simulations results, one can con-
clude that robust controllers are far more suited to a machining
system where many unavoidable disturbance signals are present.

4 Experiments With the Micromachining System

In order to evaluate the real-life performance of the machining
system, several experiments conducted using both the PID-CC,
ARC-CC, and H1-CC controllers. Our experimental microma-
chining system consists of a three-axis orthogonal positioning sys-
tem and micromilling spindle as shown in the Fig. 1(a). As was
done with the simulations, the three axis-positioning system was
controlled using different controllers for each case, and the posi-
tion data were collected. Milling spindle currently has its own
speed controller, which can be set between 1 and 60 krpm (25
krpm for the tests).

Implementation of the controllers is done using the NI LABVIEW

software. For the experiments presented in this section, the first
run results are given as the expected worst case scenario without
using the iterative learning controllers. For the experiments, several
input signals (cutting paths) are generated. These input signals are
generated using S-curves in order to limit the jerk to have a smooth
path for the positioning system. The usage of S-curve also mini-
mizes the effects of cross-coupling due to the inertia of the sliders.

The primary cutting test is the square cutting experiment as
described in Fig. 6. It should be noted that since square shape has
sharp turns at corners, the disturbance caused by the cross axis
effects has a larger effect compared to the circular cutting test
which consists of only sinusoidal motion for each X and Y axis.
The length of a side of the square to be cut is 5 mm. A depth of
200 lm is designed for square cutting test, but because of the
manual homing of the system, final depth of the manufacturing is
error prone.

To compare the performance of each controller, the position
error data are calculated and tabulated in Table 4. Our

Fig. 5 Block diagram of the controller structure used with the micromachining system

Table 3 RMS errors for different controllers in (lm)

PID-CC [8] ARC-CC [16] H1-CC

ex 146.7 35.1 42.1
ey 138.8 42.3 74.7
ez 146.7 51.7 52.1
� 108.3 58.4 69.0
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experimental axis and contour error data show that the PID-CC
controller performed the worst for both axis and contour errors.
The newly developed H1-based robust controller performed the
best in all aspects that also showed similar error magnitude as
compared to simulation results. The ARC-CC controller per-
formed much better than the PID-CC controller and its perform-
ance is comparable with the H1 controller. Although its good
performance is well documented in many sources, we believe the
disturbance observer component (the third-order plant inverse and
compensation with filter Q(s)) may have played a role the lower
performance in this case.

Because of the oscillations, there are several unsuccessful cut-
ting attempts during our experiments. The image in Fig. 7(a)
shows such a drastic case for our circular cut tests where the insta-
bility in the controller, albeit recovered later, caused problems.
The artifacts in the surface quality can be easily seen in the optical
microscopy image.

In our best cutting performance, according to the optical micro-
scope image of the square cut shown in Fig. 7(b), the side lengths
of the square are 4997 lm with the newly developed controller
that performed best among all controllers in the average. Meas-
ured depth is 182 lm. Even with a smooth S-curve, the square cut-
ting test has sharp turns at the edges. The sharp turns, the fact that
the controllers were built directly using the identified plant func-
tions which include the effect of cross-coupling could be the rea-
son of this large decrease in side length error in robust controller.

5 Conclusions

In this paper, a cross-coupled H1 robust controller structure
suitable for micromachining applications was presented for

Fig. 6 (a) Desired square profile, (b) Z-axis, (c) X-axis, and (d) Y-axis motion profiles

Table 4 RMS errors for different controllers in (lm) square cut-
ting experiments

PID-CC [8] ARC-CC [16] H1-CC

ex 257.3 97.1 83.0
ey 242.1 109.2 87.7
ez 211.6 110.7 67.1
� 190.1 102.6 89.3

Fig. 7 Optical microscope images cut samples: (a) PID-CC
controller and (b) H‘-CC controller
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modular orthogonal systems. H1 robust controllers for X, Y, and
Z axis’s are synthesized using both the identified transfer func-
tions and tuned weighting functions. An ARC based on [16] was
also developed and used for comparison. Simulation results
showed both robust controller structures give significant improve-
ments (up to %70), under the effect of disturbance, as compared
to a PID controller with cross-coupling compensation. The con-
trollers are then implemented on the micromachining system to
conduct cutting experiments. A significant performance improve-
ment is obtained with the newly developed controller with good
surface properties. There is a significant decrease in the error in
square (complex due to sharp turn) cutting test with H1 robust
controller which performed the best in accumulated error perform-
ance metrics as well. The adaptive robust controller performed
significantly better than the PID-CC controller; however, we
believe the nonlinear and short range nature of the sliders affected
its final performance. Furthermore, there are significantly less
erroneous features on the manufactured parts when using both
robust controllers. The future work on this topic is to include the
milling tool speed into the controller loop and to improve the
cross-coupled controller algorithm to achieve better machining
performance.
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