
K. D. Cole1

Mechanical and Materials Engineering,

University of Nebraska–Lincoln,

W342 Nebraska Hall,

Lincoln, NE 65588-0656

e-mail: kcole1@unl.edu

B. Cetin
Mechanical Engineering,

Bilkent University,

Bilkent, Ankara 06800, Turkey

Y. Demirel
Chemical and Biomolecular Engineering,

University of Nebraska–Lincoln,

Lincoln, NE 68588-0643

Semi-Analytical Source Method
for Reaction–Diffusion Problems
Estimation of thermal properties, diffusion properties, or chemical–reaction rates from
transient data requires that a model is available that is physically meaningful and suit-
ably precise. The model must also produce numerical values rapidly enough to accommo-
date iterative regression, inverse methods, or other estimation procedures during which
the model is evaluated again and again. Applications that motivate the present work
include process control of microreactors, measurement of diffusion properties in micro-
fuel cells, and measurement of reaction kinetics in biological systems. This study introdu-
ces a solution method for nonisothermal reaction–diffusion (RD) problems that provides
numerical results at high precision and low computation time, especially for calculations
of a repetitive nature. Here, the coupled heat and mass balance equations are solved by
treating the coupling terms as source terms, so that the solution for concentration
and temperature may be cast as integral equations using Green’s functions (GF). This
new method requires far fewer discretization elements in space and time than fully
numeric methods at comparable accuracy. The method is validated by comparison with a
benchmark heat transfer solution and a commercial code. Results are presented for a
first-order chemical reaction that represents synthesis of vinyl chloride.
[DOI: 10.1115/1.4038987]

Keywords: heat transfer, mass transfer, nonlinear partial differential equation, cross-
dependence, exact Green’s function, piecewise-constant source

1 Introduction

Nonisothermal reaction–diffusion (RD) systems describe many
transport and rate processes in physical, chemical, and biological
systems [1]. Although the motivation is the RD problem, the pri-
mary thrust of this paper is to introduce the semi-analytical source
(SAS) method for such problems. In this approach, the cross-
dependence and nonlinear terms in the differential equations
describing the RD problem are treated as source terms, and the
boundary value problem is recast into an integral equation using
Green’s functions (GF) for diffusion. There are several distinct
advantages to this approach. GF are analytical expressions that
exactly satisfy the boundary conditions for concentration and tem-
perature. These GF then serve as physics-based spline functions
that exactly fit the problem of interest. In this way, results of com-
parable accuracy may be attained with far fewer discretization ele-
ments in time and space than with a fully numeric solution (such
as finite difference (FD) and finite element). As the computation
cost for fully numeric solutions scales as the cube of the spatial
mesh (order M3), the potential for computational savings is sub-
stantial. The GF may be computed ahead of time and stored for
rapid retrieval, a particular advantage for computations of a repeti-
tive nature, for example in control of industrial processes and for
inverse problems associated with indirect measurements.

Next, the pertinent literature will be discussed in two parts—
first that of reaction–diffusion problems in general and then that
of semi-analytical methods for solving such problems. Much has
been published on mathematically coupled nonlinear differential
equations of chemical reaction and diffusion systems by neglect-
ing the possible thermodynamic couplings among heat and mass
fluxes, and reaction velocities. Here, thermodynamic coupling
refers to induced effects of Soret and Dufour [1–5] that may be
considerable in small scale systems due to the presence of large
gradients of temperature and concentration. A coupled RD system

may require a thorough analysis that takes into account the
induced cross effects especially in small-scale structures [4–6].
One of the approaches to describe such a thermodynamically
coupled RD system is the nonequilibrium thermodynamic model,
which does not require the detailed mechanism of coupling [7].

Some of the well-known RD systems include spread of an epi-
demic, Lotka–Volterra type of competition-diffusion, Belousov–
Zhabotinskii reaction, and three-component models of quadratic
solutions [8]. As Turing [9] showed, a RD system with appropri-
ate nonlinear kinetics can generate stable concentration patterns.
Serna et al. [10] studied Turing patterns under nonisothermal
RD conditions using the Gray–Scott model. Such patterns may be
stationary or oscillatory and may have potential applications in
biological morphogenesis; for example, blood clotting can be
considered as the formation of localized patterns [11,12]. The
respiratory electron transport chain in the inner membrane of
mitochondria creates a proton motive force across the membrane,
which is used in the endothermic reaction synthesis of adenosine
triphosphate. Consequently, the hydrolysis of adenosine triphos-
phate releases energy used in osmotic work of primary active
transport and other mechanical work [13–15].

Modeling the evolution dynamics of infectious diseases
requires the mechanism of transmission of the contagion. Mathe-
matical modeling can describe a finite number of subpopulations
with spatial densities, whose evolution in time requires nonlinear
partial differential equations of RD systems [16]. Elias and Clair-
ambault [17] solved the nonlinear partial differential equations of
RD systems for spatio-temporal intracellular protein networks by
using semi-implicit Rothe method with the Kedem-Katchalsky
boundary conditions. Some exact solution for RD systems also
exist [8,18]. Tuncer et al. [19] used finite element method to solve
RD systems on stationary spheroidal surfaces with possible appli-
cations such as in wound healing, tissue regeneration, and cell
mobility.

The literature of semi-analytical solutions applied to heat trans-
fer is discussed next. The concept of treating nonlinear terms in
the differential equation as source terms is not new, as it was men-
tioned in 1979 by Stakgold [20]. Taigbenu [21] used the steady-
spatial GF as the spatial shape function for a finite element
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solution to a transient heat transfer problem, and the nonlinear
portion of the equation was treated as a source term. Jones and
Solovjov [22] studied the transient response of a radiation ther-
mometer in which the radiation boundary was modeled as a non-
linear source in their Green’s function formulation of the problem.
Flint et al. [23] used a GF formulation for a moving volumetric
heat source in a parallelepiped to simulate electron-beam welding.

Johansson and Lesnic [24] applied the method of fundamental
solutions to the one-dimensional heat equation. In this method,
infinite-space GF are placed outside the physical domain with
source strengths chosen by collocation to satisfy the boundary
conditions. Regularization is needed to compute the source
strengths as the matrix solution for source strengths is ill-posed,
and the level of ill-posedness depends on the distance between the
source points and the boundary. Dong [25] extended the method
of fundamental solutions to the heat equation to irregularly shaped
two-dimensional domains with internal sources by placing addi-
tional source points inside the domain. A weakness of the method
is that the results are sensitive to the source-point locations, and
the source strength calculation is ill-posed, requiring regulariza-
tion for numerical stability. Yan et al. [26] extended this method
to the three dimensional parallelepiped. Tikhonov regularization
was used in the inverse problem for finding the source strengths.

There has been some work involving finite-body diffusion GF
that satisfy boundary conditions. Axelsson et al. [27] solved a
steady convective–diffusion problem in a rectangular domain
using GF which satisfy Dirichlet boundary conditions and have
the form of a series. The series coefficients for the GF are found
using a Galerkin scheme with matching carried out at grid loca-
tions in the domain. Mandaliya et al. [28] treated rectangular and
cylindrical geometries for a steady reaction–diffusion problem
using GF that satisfy type 3 boundary conditions. In contrast, the
present work addresses transient problems.

Lugo-Mendez et al. [29] used effective properties to describe
the microscale contribution of pores to mesoscale nonlinear diffu-
sion. The problem formulation involves nonlinear terms in the dif-
ferential equation which are simulated by treating them as source
terms. Using commercial software, computational results are
given for the method applied to unit-cell geometries in two and
three dimensions. The authors also formulate the problem with
GF that satisfy Dirichlet boundary conditions; however, no com-
putations are carried out with this. The authors anticipate that this
approach carries a computational burden if the GF is computed
fully numerically.

In contrast to Lugo-Mendez et al. [29], in the present work the
GF are computed analytically from algorithms that have been
verified for high accuracy and optimized for computational effi-
ciency [30]. Nonlinear terms in the differential equation are
treated as source terms distributed throughout the domain.
Because the boundary conditions are exactly satisfied, no matrix
solution is needed for determining source strengths.

A brief outline of the paper is given next. Section 2 describes
the mass and energy balances for the reaction–diffusion problem
with thermodynamic coupling. Section 3 introduces the semi-
analytical source method. Section 4 describes a comparison
with an available analytic solution to validate the new method.
Section 5 gives numerical results for a specific reaction–diffusion
problem. Section 6 discusses the scope of additional problems to
which the semi-analytical source method may apply, and Sec. 7
contains the summary and conclusions.

2 Problem Statement

Assuming that the RD problem is not far from global equilib-
rium, the following relations for mass flux J and heat flux Jq

include the effect of thermodynamic coupling:

�J ¼ DerCþ DSrT

�Jq ¼ DDrCþ krT
(1)

Here, C is concentration and T is temperature. Quantities De and k
are the diffusivity and thermal conductivity, respectively. Ther-
modynamic coupling is represented by quantities DD (Dufour
effect) and DS (Soret effect), which allow for additional mass flux
associated with temperature gradient and additional heat flux
associated with concentration gradient. The reaction–diffusion
problem under discussion is found by combining the above flux
expressions with mass and energy balances [31]

@C

@s
¼ De

@2C

@n2
þ DS

@2T

@n2
� A0Ce�E= RTð Þ (2)

qcp
@T

@s
¼ k

@2T

@n2
þ DD

@2C

@n2
þ �DHð ÞA0Ce�E= RTð Þ (3)

on domain ð0 < n < LÞ. The boundary conditions for concentra-
tion and temperature are given by

at n ¼ 0;
@C

@n
¼ 0;

@T

@n
¼ 0

at n ¼ L� De
@C

@n
¼ k C� Csð Þ; �k

@T

@n
¼ h T � Tsð Þ

at s ¼ 0; C ¼ Cs; T ¼ Ts

(4)

Here, the boundary at n¼ 0 is a no-flux boundary (type 2) and
the boundary at n ¼ L is a convection boundary (type 3). It is con-
venient to create a nondimensional form of the above equations,
using the following dimensionless variables:

h ¼ C� Cs

Cs
; / ¼ T � Ts

Ts

t ¼ Des
L2

; z ¼ n
L

; Le ¼ k
qcpDe

b ¼ CsDe
�DHð Þ
Tsk

; w ¼ L2A0

De
e�E= RTsð Þ

c ¼ E= RTsð Þ; � ¼ DSTs

DeCs
; x ¼ DDCs

kTs

(5)

Here, h is (unitless) concentration and / is (unitless) temperature.
Then, Eqs. (2) and (3) may be written

@h
@t
¼ @

2h
@z2
þ � @

2/
@z2
� w 1þ hð Þexp c� c

1þ /ð Þ

� �
(6)

1

Le

@/
@t
¼ @

2/
@z2
þ x

@2h
@z2
þ bw 1þ hð Þexp c� c

1þ /ð Þ

� �
(7)

The cross coefficient � controls the induced mass fluxes that occur
due to a temperature gradient without a corresponding concentra-
tion gradient. The cross coefficient x controls the induced heat
flux by chemical potential gradient of substance without tempera-
ture gradient. The induced effects controlled by � and x show the
impact of thermodynamic coupling on the transient heat and
mass transfer. The boundary conditions and initial conditions are
given by

at z ¼ 0;
@h
@z
¼ 0;

@/
@z
¼ 0

at z ¼ 1;
@h
@z
þ Bch ¼ 0;

@/
@z
þ BT/ ¼ 0

at t ¼ 0; h ¼ 0; / ¼ 0

(8)

The purpose of this normalization is to simplify the initial condi-
tions by setting them to zero and to make the boundary conditions
homogeneous. At the z¼ 1 boundary, Bc ¼ kL=De is the mass-
transfer Biot number and BT ¼ hL=k is thermal Biot number. We
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view the boundary condition at z¼ 1 as a generalized boundary
condition, because it can provide boundaries of type 1 (Bc !1
and BT !1 produces h ¼ / ¼ 0 there) or type 2 (Bc¼ 0 and
Bt¼ 0 produces the zero-flux boundary) or type 3 (Biot numbers
neither infinite nor zero). See Ref. [32] for further discussion of
the generalized boundary condition.

3 Semi-Analytical Source Method

The solution method introduced in this paper treats the cross-
dependent terms in the above differential equations as source
terms. That is, Eqs. (6) and (7) may be written

@h
@t
¼ @

2h
@z2
þ g1 (9)

1

Le

@/
@t
¼ @

2/
@z2
þ g2 (10)

Quantities g1 and g2 are source terms, the full details of which
will be discussed presently. But for the moment, the above equa-
tions appear to have the form of linear diffusion equations, driven
by source terms. If this were true, and further, if the source terms
were known, then classic analytic methods, such as the method of
GF, would apply to this problem. The GF method would allow the
problem to be recast as integrals of the product of Green’s func-
tion and the (assumed known) source terms, as follows [33]:

hðz; tÞ ¼
ðt

t0¼0

ðL

z0¼0

g1ðz0; t0Þ G1ðz; tjz0; t0Þdz0dt0 (11)

/ðz; tÞ ¼
ðt

t0¼0

ðL

z0¼0

g2ðz0; t0Þ G2ðz; tjz0; t0Þdz0dt0 (12)

The GF depends on observation location (z, t) and source location
ðz0; t0Þ, while the source functions g1 and g2 depend only on source
location ðz0; t0Þ. The above integral statement of the solution is not
formally correct, as the source terms are not actually known; how-
ever, it suggests an algorithm for a solution if the source terms
can found approximately.

The source terms are given by

g1 ¼ � @
2/
@z2
� w 1þ hð Þexp c� c

1þ /ð Þ

� �
(13)

g2 ¼ x
@2h
@z2
þ bw 1þ hð Þexp c� c

1þ /ð Þ

� �
(14)

We treat parameters w, b, c, Le, �, and x as known values. The
source terms depend directly on concentration h and temperature
/, both of which are functions of space and time, and they also
contain a nonlinear reaction-kinetics term.

The solution algorithm based on the above integral expressions
involves stepping through time, starting by constructing the first
value of sources g1 and g2 from the initial condition. At each suc-
cessive timestep, sources g1 and g2 will be evaluated numerically
from the previous timestep, and then values of h and / at the next
timestep will be found from the above integral description. The
level of approximation for this approach depends upon the size of
the timesteps and on the rate at which the source terms change
over time.

3.1 Discretization Into Subintervals. As part of the solution
method, time is discretized into N equal-spaced intervals
ðt1; t2;…; tNÞ, and space is discretized into M equal-sized intervals
of size Dz. The source terms are approximated as piecewise
constant in each time interval and in each spatial interval. The
concentration and temperature functions are evaluated at the end

of each time interval and in the center of each spatial interval. By
this procedure, each integral in Eqs. (11) and (12) may be replaced
by a sum of smaller integrals, where each smaller integral covers
one subinterval in time or space, as follows:

hðzi; tNÞ ¼
XN

k¼1

XM

j¼1

g1
kj

ðtk

tk�1

ðzjþDz=2

zj�Dz=2

G1ðzi; tN jz0; t0Þdz0dt0 (15)

/ðzi; tNÞ ¼
XN

k¼1

XM

j¼1

g2
kj

ðtk

tk�1

ðzjþDz=2

zj�Dz=2

G2ðzi; tN jz0; t0Þdz0dt0 (16)

Because source terms g1 and g2 are piecewise constant in each
subinterval, these have been moved outside the integrals. The
remaining integrals over the subregions involve only Green’s
function. The required integrals can be tabulated beforehand in
the form

DIpðzi; tN jzj; tkÞ ¼
ðtk

tk�1

ðzjþDz=2

zj�Dz=2

Gpðzi; tN jz0; t0Þdz0dt0 (17)

where p¼ 1 or 2 indicates concentration or temperature. Influence
function DIp is the response at (zi, tN) to an internal source of unit
size occurring over time interval tk�1 < t < tk and over spatial
interval of size Dz centered at location zj. More information on
how influence function DIp is evaluated is given in the Appendix.
Then the concentration and temperature may be written as

hðzi; tNÞ ¼
XN

k¼1

XM

j¼1

g1
kj DI1ðzi; tN jzj; tkÞ (18)

/ðzi; tNÞ ¼
XN

k¼1

XM

j¼1

g2
kj DI2ðzi; tN jzj; tkÞ (19)

3.2 Construction of Source Terms. One computational
challenge in this problem is that the source terms depend on con-
centration h and temperature /. In the present embodiment of the
problem, this challenge is met by stepping through time and eval-
uating the source terms at the previous timestep, that is, when the
values of h and / are known. Iteration can be used to improve the
value of the source terms.

Another challenge is that the source terms contain spatial deriv-
atives @2h=@z2 and @2/=@z2. Specifically, the needed spatial
derivatives are given by:

@2h
@z2

zi; tNð Þ ¼
XN

k¼1

XM

j¼1

g1
jk DS1 zi; tN jzj; tk

� �
(20)

@2/
@z2

zi; tNð Þ ¼
XN

k¼1

XM

j¼1

g2
jk DS2 zi; tN jzj; tk

� �
(21)

where

DSp zi; tN jzj; tk
� �

¼
ðtk

tk�1

ðzjþDz=2

zj�Dz=2

@2Gp

@z2
zi; tN jz0; t0
� �

dz0dt0 (22)

for p¼ 1 or 2. It is important to note that because the derivative is
carried out with respect to observation location z, the derivative
bypasses the source term and falls only on Green’s function.
For this reason, influence function DSp may be evaluated before-
hand to high precision and stored for rapid computation. More
information on evaluating influence function DSp is given in the
Appendix.
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3.3 Timestepping Solution. In this section, the timestepping
solution procedure is described. Briefly, the method involves
evaluating the source terms at the present time, assuming the
source terms are constant over the next timestep, and evaluating
the concentration and temperature using Eqs. (18) and (19) at one
timestep into the future. To demonstrate the method, the calcula-
tion will be explicitly written out for the first two timesteps.

At time t¼ 0, the initial conditions are h¼ 0 and / ¼ 0 every-
where in the body. The source terms at the initial condition may
be evaluated from Eqs. (13) and (14) to be

g1
1i ¼ � � 0� w 1þ 0ð Þexp c� c

1þ 0ð Þ

� �
(23)

g2
1i ¼ x � 0þ bw 1þ 0ð Þexp c� c

1þ 0ð Þ

� �
(24)

That is, initially the source terms are spatially uniform. Then,
Eqs. (18) and (19) are evaluated at N ¼ k ¼ 1

hðzi; t1Þ ¼
XM

j¼1

g1
1j DI1ðzi; t1jzj; t1Þ (25)

/ðzi; t1Þ ¼
XM

j¼1

g2
1j DI2ðzi; t1jzj; t1Þ (26)

To carry out the next timestep, the source functions for the second
timestep are evaluated using concentration and temperature at
time t1

g1
2i ¼ �

@2/
@z2

����
zi;t1ð Þ
� w 1þ h zi; t1ð Þ

� �
exp c� c

1þ / zi; t1ð Þ
� �� �

(27)

g2
2i ¼ x

@2h
@z2

����
zi;t1ð Þ
þ bw 1þ h zi; t1ð Þ

� �
exp c� c

1þ / zi; t1ð Þ
� �� �

(28)

Then, Eqs. (18) and (19) are evaluated at N¼ 2 and k¼ 1, 2

hðzi; t2Þ ¼
XM

j¼1

g1
1j DI1ðzi; t2jzj; t1Þ þ

XM

j¼1

g1
2j DI1ðzi; t2jzj; t2Þ (29)

/ðzi; t2Þ ¼
XM

j¼1

g2
1j DI2ðzi; t2jzj; t1Þ þ

XM

j¼1

g2
2j DI2ðzi; t2jzj; t2Þ (30)

This procedure is repeated for all successive timesteps, with three
spatial sums needed at N¼ 3, four spatial sums needed at N¼ 4,
and so on as required by the k-summation in Eqs. (18) and (19).
This behavior arises because the summation over time index k is a
convolution sum. In the above description, no iterative improve-
ment is applied to the source terms, which can be important in
highly nonlinear problems. In Sec. 3.4, the incorporation of itera-
tive improvement is described.

3.4 Iterative Improvement. Iterative improvement for the
source terms at each timestep can be carried out with little addi-
tional computational cost. The reason is that the convolution sum,
which is the computation-intensive part of the method, needs to
be carried out only once per timestep.

A detailed description of the iteration procedure is given next.
At the start of a new timestep, in preparation for iteration, the con-
volution sums (one each for concentration and temperature) are
truncated by computing over previous timesteps only, that is,

over k ¼ 1; 2;…;N � 1. The truncated convolution sums do not
include the effect of the present timestep. Also, the first guess for
the source terms are computed using known values of concentra-
tion and temperature, from the previous timestep. Then the tem-
perature and concentration are updated by adding the effect of the
present-timestep source terms gp

Nj to the truncated convolution
sums as follows:

hðzi; tNÞ ¼
XN�1

k¼1

XM

j¼1

g1
kj DI1ðzi; tN jzj; tkÞ þ

XM

j¼1

g1
Nj DI1ðzi; tN jzj; tNÞ

/ðzi; tNÞ ¼
XN�1

k¼1

XM

j¼1

g2
kj DI2ðzi; tN jzj; tkÞ þ

XM

j¼1

g2
Nj DI2ðzi; tN jzj; tNÞ

(31)

In the above expressions, the double sum is the truncated convolu-
tion sum which gives the effect of previous sources, and the single
sum is the effect of the present timestep sources evaluated at tN.
Note that only one matrix multiplication is required to update h
and /, and no matrix inversion is required. For the next iteration,
the updated h and / values are used to update the source terms,
and then h and / are themselves updated using the above expres-
sions. Again, as sources at time tN are updated, the convolution
sum does not have to be recomputed. Iteration stops when the rel-
ative changes in both h and / are sufficiently small; specifically,
if r is the index of iteration and /r

i and hr
i are the temperature and

concentration values at spatial node i after r iterations, then itera-
tion stops when

XM

i¼1

jð/r
i � /r�1

i Þ=/
r
i j þ

XM

i¼1

jðhr
i � hr�1

i Þ=h
r
i j < tol (32)

When this condition is satisfied, the calculation proceeds to the
next timestep. For numerical results presented in this paper, a rela-
tive change of less than tol ¼ 0:001 is achieved after three itera-
tions and a relative change of less than tol ¼ 10�6 is achieved
after six iterations.

4 Comparison With Benchmark Case

To quantify the utility and accuracy of the method, a compari-
son was made with a benchmark problem for which an exact solu-
tion could be found. Consider the transient heat transfer in a
finite-length fin that satisfies the following boundary value
problem:

@T

@t
¼ @

2T

@z2
� m2 T � Tsð Þ; 0 < z < 1; t > 0

at z ¼ 0;
@T

@z
¼ 0

at z ¼ 1; T ¼ T0

at t ¼ 0; T ¼ T0

(33)

Here, Ts is the surrounding fluid temperature, T0 is the initial tem-
perature, and m is the dimensionless fin parameter. To apply the
present method, the source term is set to

g2 ¼ �m2ðT � TsÞ (34)

and the temperature is normalized as / ¼ T � T0. The influence
functions already discussed were used to produce numerical
results by taking BT ¼ 1010 which provides the type 1 boundary
condition at z¼ 1.

The exact solution of the above transient fin problem is found
from a transformation [33] and Green’s function method. The
solution is
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T z; tð Þ � T0

Ts � T0

¼ 1� cosh z

cosh m

þ2
X1
n¼1

�1ð Þn cos bnzð Þ 1

bn

� bn

b2
n þ m2

" #
e� b2

nþm2ð Þt

where bn ¼ n� 1=2ð Þp (35)

A comparison of the exact solution with the present method is
given in Fig. 1. Figure 1(a) shows the dimensionless fin tempera-
ture versus time at three locations, and Fig. 1(b) shows the relative
error between the present method and the exact solution. Table 1
shows values of the relative error at x¼ 0 at different values of the

time, different values of the fin parameter m2, and different values
of the discretization parameters M (spatial elements) and N (time-
steps). Location x¼ 0 was chosen because it has the largest error
in the body at any instant. The relative error is computed as

err ¼ ðTexact � TSASÞ=Texact (36)

The purpose of Table 1 is to explore how the discretization
parameters M and N affect the precision of the SAS method under
different conditions, and also to determine the impact of iterative
improvement in this benchmark case. Table 1 shows that the rela-
tive error is everywhere less than 0.0012 without iteration and is
smaller when iteration is added. The error decreases as the number
of spatial elements M increases, decreases as the number of time-
steps N increases, is somewhat sensitive to time tmax, and is some-
what sensitive to fin parameter m2. A unifying theme is that the
error is larger when temperature changes rapidly (small time,
small fin parameter) and is smaller when the temperature is steady
or nearly steady (large time, large fin parameter).

5 Results

In this section, the results are given for the reaction–diffusion
problem for a specific case to represent synthesis of vinyl chloride
with parameter values taken from Demirel [31]. The parameter
values used here are given in Table 2. Note that BT ¼ Bc ¼ 1010,
a floating-point version of infinity, produces a homogeneous type
1 boundary condition at z¼ 1, that is, / ¼ h ¼ 0 there. Although
other boundary conditions (type 2 or 3) could be explored with
other values of BT and Bc, we present a few results with one
boundary condition as a brief demonstration of the SAS method.
All of the SAS-method results presented in this section have been
calculated with iterative improvement, which is needed to address
the inherently nonlinear behavior in the chemical reaction term,
that is, term e�E=ðRTÞ in Eqs. (2) and (3).

Numerical results for the reaction–diffusion problem were
checked in two ways. First, a FD code was written using finite
volume method of Patankar [34], and the results were compared
with the present method. Some numerical values for this compari-
son are given in Table 3 for the SAS method, the FD method, and

Fig. 1 (a) Temperature versus time in transient fin at three
locations and (b) error between exact solution (Eq. (35)) and
SAS method at three locations, for conditions M 5 N 5 40 and
m2 5 0:1

Table 1 Verification of SAS method by comparison with an exact fin solution, Eq. (35). Each row gives the relative error for SAS
method twice, once with and without iterative improvement, at several values of the time t, fin parameter m2, spatial discretization
M and time discretization N. The fractional change between the two error columns is also listed.

t m2 M N Error, no iteration Error with iteration Error change

0.2 0.001 10 10 0.000008519823 0.000008122093 0.046682895
0.2 0.1 10 10 0.000844178999 0.000802962581 0.048824264
0.2 0.001 40 10 0.000008473749 0.000008204894 0.031727987
0.2 0.1 40 10 0.000839578099 0.000811178586 0.033825934
1.0 0.001 10 10 0.000013156311 0.000010575162 0.196190938
1.0 0.1 10 10 0.001231825174 0.000987102654 0.198666601
1.0 0.001 40 10 0.000012879672 0.000010888886 0.154568067
1.0 0.1 40 10 0.001204548950 0.001017670195 0.155144177

0.2 0.001 10 40 0.000002156944 0.000002003159 0.071297632
0.2 0.1 10 40 0.000213568274 0.000198162267 0.072136215
0.2 0.001 40 40 0.000002097093 0.000002072203 0.011868811
0.2 0.1 40 40 0.000207608332 0.000205027107 0.012433147
1.0 0.001 10 40 0.000003329616 0.000002575192 0.226579882
1.0 0.1 10 40 0.000312698854 0.000239309527 0.234696501
1.0 0.001 40 40 0.000003037638 0.000002876399 0.053080387
1.0 0.1 40 40 0.000284060776 0.000268766415 0.053841862

0.2 0.001 10 160 0.000000589273 0.000000450743 0.235086284
0.2 0.1 10 160 0.000058361167 0.000044574467 0.236230711
0.2 0.001 40 160 0.000000525984 0.000000516331 0.018352269
0.2 0.1 40 160 0.000052062587 0.000051099301 0.018502461
1.0 0.001 10 160 0.000001058215 0.000000417535 0.605434623
1.0 0.1 10 160 0.000100337130 0.000037628041 0.624983882
1.0 0.001 40 160 0.000000762691 0.000000715365 0.062051342
1.0 0.1 40 160 0.000071384407 0.000066785421 0.064425639
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the fractional error between them. The values in this table were
computed for specific case � ¼ x ¼ 0 for verification purposes.
That is, the cross-dependency terms associated with the Dufour
and Soret effects are not present in Table 3. The SAS methods
given were carried out with discretization at 20 timesteps and 20
spatial nodes, and the finite difference method was carried out
with discretization at 1000 timesteps and 100 spatial nodes. The
results in Table 3 show that the two solution methods agree very
closely, with fractional error everywhere less than 0.0001 in con-
centration and less than 0.000028 in temperature. The error in
concentration between the two methods decreases slightly with
time and location, but the difference in temperature has trends that
are less clear. This comparison demonstrates verification of the
SAS method because it agrees within one part in ten thousand
with an independent numerical method carried out with many
more timesteps and more spatial nodes.

A second method of checking the results was a comparison
with a commercial finite element software COMSOL MULTIPHYSICS.
Some numerical values at dimensionless time t¼ 1.0 are given in
Table 4. The results shown in Table 4 are carried out with
� ¼ x ¼ 0:001, that is, for nonzero cross dependency of the con-
centration and temperature associated the Dufour effect and the
Soret effect, at levels suggested by Demirel [30]. For this compar-
ison, the present method was carried out with discretization values
N ¼ M ¼ 20 and the COMSOL code used 100 quadratic elements
and 1000 timesteps. Table 3 shows values for concentration ðhþ
1Þ ¼ C=Cs and temperature ð/þ 1Þ ¼ T=Ts and the relative error
between the two methods. The relative error is defined in a

manner similar to Eq. (36). The results agree within 0.5% for con-
centration and within 0.4% for temperature, that is, the present
method agrees with an independent solution of the problem.

Figure 2 shows the spatial distribution of the solution at dimen-
sionless times t ¼ 0:0; 0:25; 0:5; 1:0. Figures 2(a) and 2(b) show
concentration ðhþ 1Þ ¼ C=Cs and temperature ð/þ 1Þ ¼ T=Ts,
Figs. 2(c) and 2(d) show source terms g1 and g2 under the same
conditions. Note that the C=Cs curves in Fig. 2(a) have a curved
shape as time evolves, but that the T=Ts curves have a flat region
at small z at early time. This shape difference indicates that the
concentration quickly reaches a quasi-steady behavior, but that
temperature is far from steady. This is a consequence of the value
Le¼ 0.1 which causes temperature to evolve more slowly than
concentration.

Figure 3 shows the same information at later times,
t ¼ 0:0; 0:75; 1:5; 3:0. The concentration (C=Cs in Fig. 3(a)) is
approaching steady-state (the curves are close together) while
temperature (T=Ts) is still changing. However, the temperature
curves are no longer flat near z¼ 0. The shape of the source terms
in Figs. 3(c) and 3(d) contain inflection points at time t¼ 3.0, in
contrast to earlier time when the source terms are monotonic. The
inflection in the shape of the source terms is caused by the time
evolution of the source terms—the source values near x¼ 0 first
move away from the initial values during time t¼ 0 to about

Table 3 Temperature ð/11Þ5T=Ts and concentration ðh11Þ5C=Cs for the reaction–diffusion problem by the SAS method (M 5 20,
N 5 20) and by a finite difference code (timestep 0.001, spatial step 0.01). The fractional error between them is also listed, as a verifi-
cation of the SAS method. The parameters used in the calculation are given in Table 2, except here �5x50, that is, the cross-
dependency terms are zero.

SAS Method FD Method Fractional error

t x T=Ts C=Cs T=Ts C=Cs T=Ts C=Cs

0.50 0.15 1.00323275 0.91136032 1.00323089 0.91144578 0.00000185 �0.00009377
0.25 1.00323060 0.91460112 1.00322877 0.91468156 0.00000182 �0.00008795
0.35 1.00321890 0.91952802 1.00321710 0.91960111 0.00000179 �0.00007949
0.45 1.00318236 0.92621848 1.00318067 0.92628210 0.00000168 �0.00006869
0.55 1.00309195 0.93477341 1.00309049 0.93482566 0.00000146 �0.00005590
0.65 1.00289773 0.94531493 1.00289674 0.94535425 0.00000099 �0.00004159
0.75 1.00252206 0.95798348 1.00252189 0.95800861 0.00000017 �0.00002623
0.85 1.00185568 0.97293399 1.00185669 0.97294405 �0.00000101 �0.00001034
0.95 1.00075925 0.99033115 1.00076174 0.99032561 �0.00000249 0.00000559

1.00 0.15 1.00627105 0.88649332 1.00626905 0.88652411 0.00000199 �0.00003473
0.25 1.00620686 0.89096515 1.00620496 0.89099369 0.00000189 �0.00003203
0.35 1.00608375 0.89770285 1.00608204 0.89772810 0.00000170 �0.00002813
0.45 1.00586717 0.90674157 1.00586577 0.90676257 0.00000139 �0.00002316
0.55 1.00550785 0.91812675 1.00550691 0.91814265 0.00000093 �0.00001732
0.65 1.00494035 0.93191283 1.00494007 0.93192294 0.00000028 �0.00001085
0.75 1.00408266 0.94816150 1.00408323 0.94816526 �0.00000057 �0.00000397
0.85 1.00283735 0.96693951 1.00283894 0.96693652 �0.00000159 0.00000309
0.95 1.00109455 0.98831592 1.00109728 0.98830597 �0.00000273 0.00001007

Table 4 Temperature (/11)5T=Ts and concentration ðh11Þ
5C=Cs from the SAS method (M 5 20, N 5 20) and the error
when these values are compared with commercial software COM-

SOL (M 5 100, N 5 1000) at time t 5 1.0. Here, cross2dependency
effects are included by �5 x 5 0:001:

z T=Ts C=Cs T=Ts�error C=Cs�error

0.15 1.00626256 0.88655192 �0.00333566 �0.003967174
0.25 1.00619887 0.89102061 �0.00349582 �0.003926474
0.35 1.00607647 0.89775375 �0.00372704 �0.003866266
0.45 1.00586078 0.90678666 �0.00400572 �0.003787671
0.55 1.00550249 0.91816498 �0.00429279 �0.003691874
0.65 1.00493611 0.93194337 �0.00454452 �0.003580322
0.75 1.00407960 0.94818374 �0.00471966 �0.003454612
0.85 1.00283550 0.96695301 �0.00479614 �0.003316126
0.95 1.00109393 0.98832045 �0.00477611 �0.003166669

Table 2 Parameters for numerical results

Parameter Value

w 0.27
b 0.25
Le 0.10
c 6.50
� (varies)
x (varies)
BT 1010

Bc 1010
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Fig. 2 Results from SAS method at dimensionless times t 5 0:0;0:25;0:5;1:0: (a) concentration C/Cs , (b)
temperature T /Ts , (c) source g1, and (d) source g2

Fig. 3 Results from SAS method at dimensionless times t 5 0:0;0:75; 1:5; 3:0: (a) concentration C/Cs , (b)
temperature T /Ts , (c) source g1, and (d) source g2
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t¼ 0.8, and then relax gradually back toward the initial values
thereafter. That the shape of the source terms plotted in Figs. 2
and 3 is nonuniform in space is due almost entirely to the reaction
term in the differential equation (that is, the term multiplied by
ð1þ hÞe�E=ðRTÞ in Eqs. (6) and (7)). There is a very small impact
from the Dufour effect and Soret effect, as discussed below.

A central motivation of this paper is to provide a solution
method that can treat reaction–diffusion problems that include the
cross dependency effects of Dufour and Soret, the size of which is
determined by dimensionless parameters � and x. Numerical
results already presented provide an opportunity to see the size of
the cross dependency effects on the temperature and concentra-
tion. Recall that Table 3 contains SAS method results for � ¼ x ¼
0 and Table 4 contains SAS method results with � ¼ x ¼ 0:001.
An examination of numerical values at t¼ 1.0 for the SAS method
results in Tables 3 and 4 shows that the results differ by less than
0.0004 for concentration and about 0.000009 for temperature at
x¼ 0.15; the difference is less at larger x values. Results for this
comparison (that is, results with and without cross dependencies)
are not plotted because the difference is too small to be visible on
the scale used for Figs. 2 and 3.

An informed application of a numerical method requires
identifying what values of the discretization parameters provide
sufficiently accurate results. Based on the comparison with
COMSOL, N ¼ M ¼ 20 appear adequate for results accurate within
0.5%. A further exploration of a range of discretization parameters
was carried out, and the results were compared to “best” results at
N¼ 160 and M¼ 162 at a specific point in time and space
ðz ¼ 1=12; t ¼ 0:5Þ. Values of relative error in concentration (h)in
the form ðh� hbestÞ=hbest are plotted in Fig. 4 versus the number
of timesteps. The relative error in temperature (/, not shown) has
similar trends. Figure 4 shows that discretization N¼ 6, M¼ 6 is
sufficient for results accurate within 0.4%. Discretization with
N � 25 timesteps provides results within 0.1%. These discretiza-
tion values are extremely small compared to fully numeric meth-
ods, for example, COMSOL required M¼ 100 N¼ 1000 for
comparably precise results. The shape of the curves in Fig. 4 is
important, as the curves change rapidly for N< 25 and changes
more slowly for N> 25. That is, adding timesteps beyond N¼ 25
has a very small impact on the results. The new method gives
high precision with a very coarse mesh, suggesting that the
method will be computationally parsimonious, especially for
repetitive calculations needed for inverse problems and process-

monitoring problems, when the influence functions can be com-
puted once and stored for re-use.

Some finer points of Fig. 4 will be discussed next. Values of
M¼ 6, 18, 54 (tripled each time) were chosen so that the z¼ 1/
12 observation location was conveniently located at the center
of a spatial element. The M¼ 6 curve is limited to few timesteps
(small N) because at higher N the error becomes negative and
could not be included in a semi-log plot. Also, the error appears
to be slightly smaller for lowering M alone, an unexpected
effect which is partly explained by the change of sign in the
error when M is small. That is, at small M, the values are biased
to one side (positive error) for few timesteps (small N) and are
biased to the other side (negative error) for more timesteps
(larger N). Although this unexpected effect at small M is a point
for future investigation, this effect fades away for the range of
values (M> 18) used for numerical results presented in this
paper. Further, the size of this unexpected variation in error
with M is vanishingly small compared with that for fully
numeric methods. Again, the takeaway message from Fig. 4 is
that the error is sensitive to the number of timesteps and insensi-
tive to the number of spatial elements.

6 Discussion

A full exploration of this reaction–diffusion problem could
include the sensitivity of the results to variations in the input val-
ues. Such an exploration has not been included because the oper-
ating conditions presented here are located in the vicinity of
equilibrium where the behavior is nearly linear. Evidence for this
viewpoint is visible in the source terms plotted in Figs. 2 and 3
which are spatially uniform at t¼ 0 and then evolve into nonuni-
form shapes that vary at most 9% from the initial values. In this
near-linear regime, small variations in the operating conditions
will produce only small variations in the output results. Future
work will include exploration of strongly nonlinear regimes along
with appropriate sensitivity studies.

Next, the scope of additional problems to which the SAS
method may be applied is discussed. In the present paper, the SAS
method is based on fundamental solutions constructed from exact
Green’s functions. For an exact analytical solution to exist, one
limitation is that the body shape must be aligned with the coordi-
nate system so that boundaries are specified by a constant value of
one coordinate; that is, it must be an orthogonal body. Generally
this means that the body surfaces must be simple shapes such as
planes, cylinders, or spheres. For such body shapes, the exact
Green’s functions are available for a variety of boundary condi-
tions [35,36]. Although exact Green’s functions are desirable for
their precision and computational efficiency, they are not the only
tool for constructing influence functions. Galerkin-based Green’s
functions have been demonstrated for non-orthogonal bodies and
heterogeneous bodies; see for example Ref. [37].

Another limitation for the SAS method is that the boundary
conditions and the differential equation (diffusion equation) must
be linear. Linearity is required for superposition, the principle that
adding solutions produces new solutions, which is an essential ele-
ment of the SAS method. Linear boundary conditions are those in
which the diffusion variable (concentration or temperature) appear
only to the first power. Linear boundary conditions include types
1, 2, or 3 as discussed in this paper. A counter-example in heat
transfer is the radiation boundary condition, in which temperature
appears to the fourth power. For the differential equation to be lin-
ear, the material properties in the differential equation must not be
functions of the temperature (or concentration in the case of mass
transfer). It is important to note, however, that the limitation of
linearity may be surmountable, by the fact that the SAS method
as presented here uses iteration to deal with the nonlinear
reactive-source terms in Eqs. (2) and (3). From this example, there
is reason to suppose that some level of nonlinear effects in the
boundaries and in the material properties could also be treated
through iteration.

Fig. 4 Relative error in concentration (h) at t 5 0.5 as discreti-
zation parameters N and M are varied. A very coarse mesh (18
elements, 6 timesteps) is adequate for 0.4% precision.
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7 Summary and Conclusions

In this paper, the semi-analytical source method is introduced
for a reaction–diffusion problem with thermodynamic coupling
between concentration and temperature. Potential applications
include microreactors and microfuel cells. The method is based
on exact solutions of the diffusion equation where the cross-
dependent terms are treated as source terms which are evaluated
numerically. Nonlinear effects inside the body may be treated
with iterative improvement at small additional computational
cost. The new method provides precise results as evidenced by
comparison with fully numeric solutions. A very coarse grid is
sufficient for precise values (six spatial elements provides accu-
racy within 0.4%), suggesting that the new method has great
potential for saving computer time compared with fully numeric
methods, especially for repetitive calculations. Although the
method was demonstrated with a single geometry, other geome-
tries and other boundary conditions may be treated using appropri-
ate exact solutions which are widely available. Future work will
extend the method to other boundary conditions, other geometries,
and additional mass-diffusion constituents.
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Nomenclature

a ¼ heated region (m), Eqs. (A1) and (A8)
A0 ¼ frequency factor (1/s)
Bc ¼ kL/De, mass-transfer Biot number
BT ¼ hL/k, thermal Biot number
C ¼ concentration (kmol/m3)
cp ¼ specific heat (J/kg/K)

DD ¼ coefficient related to Dufour effect (m2 J/(kmol s))
De ¼ diffusivity (m2/s)
DS ¼ coefficient related to Soret effect (kmol/(m s K))
E ¼ activation energy (kJ/kmol)

gp ¼ source term, Eqs. (11) and (12)
Gp ¼ Green’s function, p¼ 1, 2

h ¼ heat transfer coefficient (W/(m2 K))
J ¼ mass flux (kmol/(m2 s))

Jq ¼ heat flux (W/m2)
k ¼ mass transfer coefficient (m/s)
L ¼ domain thickness (m)

Le ¼ Lewis number, Eq. (5)

M ¼ number of spatial elements
m2 ¼ fin parameter, Eq. (32)
N ¼ number of timesteps
R ¼ gas constant (kJ/(kmol K))
t ¼ time (unitless), Eq. (5)

T ¼ temperature (K)
z ¼ coordinate (unitless), Eq. (5)

DH ¼ heat of reaction (kJ/kmol)
DI ¼ influence function, Eq. (17)
DS ¼ influence function, Eq. (22)

Greek Symbols

b ¼ defined in Eq. (5)
bn ¼ eigenvalue
c ¼ defined in Eq. (5)
d ¼ Dirac delta in Eq. (A1)
� ¼ defined in Eq. (5)
h ¼ concentration ðC� CsÞ=Cs

n ¼ spatial coordinate (m)
q ¼ density (kg/m3)
k ¼ thermal conductivity (W/m/K)
s ¼ time (s)
/ ¼ temperature (T�Ts)/Ts

w ¼ defined in Eq. (5)
x ¼ defined in Eq. (5)

Subscripts

i ¼ observation location
j ¼ heating location
k ¼ heating time
N ¼ observation time
s ¼ ambient value

SAS ¼ semi-analytic source method
0 ¼ initial value, Eq. (33)

Appendix: Influence Functions

In this appendix, the influence functions DIp and DSp are con-
structed using the method of GF. The GF for diffusion associated
with Eq. (9) and (10) are defined by the following auxiliary
problem:

1

Lp
e

@Gp

@t
¼ @

2Gp

@z2
þ 1

Lp
e
d z� z0ð Þd t� t0ð Þ; 0 < z < 1; t > t0

at z ¼ 0;
@Gp

@z
¼ 0

at z ¼ 1;
@Gp

@z
þ BpGp ¼ 0

at t < t0; Gp ¼ 0

(A1)

The boundary conditions for Gp are of the same type as the
original problem, that is, type 2 at z¼ 0 and the generalized
condition at z¼ 1 where Bp is the Biot number for concentration
or temperature as appropriate. Using the heat conduction number
system, this geometry is denoted X23 [33]. The unitless GF is
given by [33]

Gp
X23 z; tjz0; t0
� �

¼ 2
X1
n¼1

cos bnzð Þcos bnz0
� � b2

n þ B2
p

b2
n þ B2

p þ Bp

e�b2
nLp

e t�t0ð Þ

(A2)

where bn are roots of the eigencondition bn tan bn ¼ Bp and where
coefficient Lp

e modifies the time variable. If different boundary
conditions at x¼ 0 were of interest for this problem, the appropri-
ate GF is available with generalized boundary conditions at both
boundaries [36] and the solution may be developed in a similar
fashion.

Function DIp: Influence function DIp is defined by

DIpðzi; tN jzj; tkÞ ¼
ðtk

tk�1

ðzjþDz=2

zj�Dz=2

Gpðzi; tN jz0; t0Þdz0dt0 (A3)

To facilitate numerical computation, the above function can be
constructed from a simpler function defined by

Ipðzi; tN ja; tkÞ ¼
ðtk

0

ða

0

Gpðzi; tN jz0; t0Þdz0dt0 (A4)

Using the above function Ip, four values can be superposed to con-
struct function DIp, as follows:

DIp zi; tN jzj; tk
� �

¼ Ip zi; tN jzj þ
Dz

2
; tk

� �
� Ip zi; tN jzj þ

Dz

2
; tk�1

� �	 


� Ip zi; tN jzj �
Dz

2
; tk

� �
� Ip zi; tN jzj �

Dz

2
; tk�1

� �	 

(A5)
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Function DSp: Influence function DSp is needed for the spatial
derivative of the concentration and temperature which appear in
the source term. Function DSp is defined by

DSp zi; tN jzj; tk
� �

¼
ðtk

tk�1

ðzjþDz=2

zj�Dz=2

@2Gp

@z2

����
z¼zi

dz0dt0 (A6)

As the spatial derivative falls only on the observation location z
and not on integration variable z0, function DSp may be con-
structed by taking the spatial derivative of function DIp. Then
function DSp is given by

DSp zi; tN jzj; tk
� �

¼ Sp zi; tN jzj þ
Dz

2
; tk

� �
� Sp zi; tN jzj þ

Dz

2
; tk�1

� �	 


� Sp zi; tN jzj �
Dz

2
; tk

� �
� Sp zi; tN jzj �

Dz

2
; tk�1

� �	 

(A7)

where

Sp zi; tN ja; tkð Þ ¼
ðtk

0

ða

0

@2Gp

@z2

����
z¼zi

dz0dt0 (A8)
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