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1. INTRODUCTION

This article is a continuation of our investigations from [4] and [5] on operator theory
on locally Hilbert spaces. This research is motivated, partially, by the theory of certain
locally convex ∗-algebras that was initiated by G. Allan [1], C. Apostol [2], A. Inoue
in [6], and K. Schmüdgen [10], and continued by N.C. Phillips [9]. The interest for this
research got bigger when combined with the theory of Hilbert modules over locally
convex ∗-algebras that grew up from the works of A. Mallios [8] and D.V. Voiculescu
[14]. This motivated our interest in obtaining an operator model for locally Hilbert
C∗-modules in [5] and then in studying locally Hilbert spaces from the topological
point of view in [4].

In this article we obtain the spectral theorem for locally normal operators in terms
of a spectral measure. In order to do this, we first continue our investigations on locally
Hilbert spaces, then we investigate the geometry of local projections on locally Hilbert
spaces and obtain a model for locally spectral measures.

Some of the basic tools in this enterprise are the concepts of inductive and projective
limits and that of coherent transformations of linear maps, between appropriate
inductive or projective limits, that have been carefully reviewed in [4] and we do not
repeat them here. Subsection 2.1 starts by recalling a few basic things about locally
Hilbert spaces and their topological and geometrical properties from [4] and then

c© Wydawnictwa AGH, Krakow 2018 597



598 Aurelian Gheondea

in Subsection 2.2 we review the basic definitions and facts on locally bounded operators.
This concept originates in A. Inoue’s [6] proof of the generalisation of Gelfand-Naimark
Theorem for locally C∗-algebras and was formalised in this way in [4]. One of the most
useful facts that we get here are Proposition 2.12 which shows when and how we can
assemble a locally bounded operator from its many pieces and Proposition 2.14 that
provides a block-matrix characterisation of locally bounded operators in terms of any
fixed component. Then we briefly review the locally C∗-algebra Bloc(H) and two of its
weak topologies, the weak operatorial and the strong operatorial topologies.

In Section 3 we consider the basic concepts, like spectrum and resolvent sets,
associated to locally bounded operators and then move to a careful investigation on
local projections and their geometry. Subsection 3.3 is dedicated to a first encounter of
locally normal operators and their basic properties. The main results of this article are
contained in Section 4. Our first objective is to get the appropriate concept of a locally
spectral measure and then to show that it can be lifted to a well-behaved spectral
measure, which is performed in two steps: firstly, in Lemma 4.2 we extend the locally
spectral measure to the σ-algebra Ω̃ that is generated by the locally σ-algebra Ω
and then, in Proposition 4.3 we extend its codomain to B(H̃), where H̃ denotes
the Hilbert space completion of the inductive limit H. We reach the goal of this article
in Subsection 4.3 where we prove in Theorem 4.7 that any locally normal operator
has a locally spectral measure, uniquely determined by usual additional properties.

The results we obtained in this article raise the question on obtaining a functional
model for locally normal operators. In order to do this, we first have to obtain a func-
tional model for locally Hilbert spaces. All these will be the contents of a forthcoming
article.

The locally bounded operators that we consider in this article are, when viewed
from the perspective of operator theory on Hilbert spaces, examples of closable and
densely defined operators that share a common core, and hence have useful algebraic
properties. As a conclusion, from this point of view, what we do here is a special type
of spectral theory for unbounded normal operators. We intend to clarify these aspects
and apply to concrete operators in future research.

2. LINEAR OPERATORS ON LOCALLY HILBERT SPACES

2.1. LOCALLY HILBERT SPACES

In this subsection, we assume the notation and the facts on inductive limits as in
Subsection 2.2 in [4]. A locally Hilbert space is an inductive limit

H = lim−→
λ∈Λ
Hλ =

⋃

λ∈Λ
Hλ,

of a strictly inductive system of Hilbert spaces {Hλ}λ∈Λ, that is,
(lhs1) (Λ,≤) is a directed poset,
(lhs2) {Hλ, 〈·, ·〉Hλ

}λ∈Λ is a net of Hilbert spaces,
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(lhs3) for each λ, µ ∈ Λ with λ ≤ µ we have Hλ ⊆ Hµ,
(lhs4) for each λ, µ ∈ Λ with λ ≤ µ the inclusion map Jµ,λ : Hλ → Hµ is isometric,

that is,
〈x, y〉Hλ

= 〈x, y〉Hµ
, for all x, y ∈ Hλ. (2.1)

For each λ ∈ Λ, letting Jλ : Hλ → H be the inclusion of Hλ in
⋃
λ∈Λ
Hλ, the inductive

limit topology on H is the strongest that makes the linear maps Jλ continuous for all
λ ∈ Λ.

On H a canonical inner product 〈·, ·〉H can be defined as follows:

〈h, k〉H = 〈h, k〉Hλ
, h, k ∈ H, (2.2)

where λ ∈ Λ is any index for which h, k ∈ Hλ.
Remark 2.1. With notation as before, it follows that the definition of the inner
product as in (2.2) is correct and, for each λ ∈ Λ, the inclusion map

Jλ : (Hλ, 〈·, ·〉Hλ
)→ (H, 〈·, ·〉H)

is isometric. This implies that, letting ‖ · ‖H denote the norm induced by the inner
product 〈·, ·〉H on H, the norm topology on H is weaker than the inductive limit
topology of H. Since the norm topology is Hausdorff, it follows that the inductive
limit topology onH is Hausdorff as well. In the following we let H̃ denote the completion
of the inner product space (H, 〈·, ·〉) to a Hilbert space.

In addition, on the locally Hilbert spaceH we consider the weak topology as well, that
is, the locally convex topology induced by the family of seminorms H 3 h→ |〈h, k〉|,
indexed by k ∈ H.
Remark 2.2. Clearly, the weak topology on any locally Hilbert space is Hausdorff
separated as well. On the other hand, there is a weak topology on the Hilbert space
H̃, determined by all linear functionals H̃ 3 h 7→ 〈h, k〉, for k ∈ H̃, and this induces
a topology on H, determined by all linear functionals H 3 h 7→ 〈h, k〉, for k ∈ H̃,
different than the weak topology on H; in general, the weak topology of H is weaker
than the topology induced by the weak topology of H̃ on H.

For an arbitrary nonempty subset S of a locally Hilbert space H we denote, as
usually, the orthogonal companion of S by S⊥ = {k ∈ H | 〈h, k〉 = 0 for all h ∈ H}.
Remark 2.3. Clearly, if S is a subset of the locally Hilbert space H, it follows that
S⊥ is always a weakly closed subspace of H. In addition, the weak topology provides
a characterisation of those linear manifolds L in H such that L = L⊥⊥. More precisely,
if L is a subspace of H and we denote by Lw its weak closure, then L⊥ is weakly
closed and L⊥ = Lw⊥, cf. Lemma 2.2 in [4]. In particular, a subspace L of the inner
product space H is weakly closed if and only if L = L⊥⊥, cf. Proposition 2.3 in [4].

For two linear subspaces S and L of H, that are mutually orthogonal, denoted
S ⊥ L, we denote by S ⊕ L their algebraic sum. Also, a linear operator T : H → H
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is called projection if T 2 = T and Hermitian if 〈Th, k〉 = 〈h, Tk〉 for all h, k ∈ H.
It is easy to see that any Hermitian projection T is positive in the sense 〈Th, h〉 ≥ 0
for all h ∈ H and that T is a Hermitian projection if and only if I − T is the same.

For an arbitrary subspace S of the locally Hilbert space H, the weak topology of
S is defined as the locally convex topology generated by the family of seminorms
S 3 h 7→ |〈h, k〉|, indexed on k ∈ S.

Remark 2.4. With notation as before, it is clear that the weak topology of S is weaker
than the topology on S induced by the weak topology of H.

On the other hand, as a consequence of the fact that the weak topology of S is
induced by the family of linear functionals {fk}k∈S , which is a linear space, where
fk(h) = 〈h, k〉, for h ∈ S, as a consequence of a general fact from duality theory, e.g.
see Theorem 1.3.1 in [7], it follows that a linear functional ϕ : S → C is continuous
with respect to the weak topology of S if and only if there exists a unique kϕ ∈ S such
that ϕ(h) = 〈h, kϕ〉 for all h ∈ S, cf. Proposition 2.1 in [4].

The next proposition provides equivalent characterisations for orthocomplemen-
tarity of subspaces of a locally Hilbert space and it is actually more general, in the
context of inner product spaces, cf. Proposition 2.4 in [4]. However, we state it as it is,
since this is the only case when we use it.

Proposition 2.5. Let S be a linear subspace of H. The following assertions are
equivalent:

(i) the weak topology of S coincides with the topology induced on S by the weak
topology of H, in particular S is weakly closed in H,

(ii) for each h ∈ H the functional S 3 y 7→ 〈y, h〉 is continuous with respect to
the weak topology of S,

(iii) H = S ⊕ S⊥,
(iv) there exists a Hermitian projection P : H → H such that Ran(P ) = S.

For a given locally Hilbert space H = lim−→λ∈ΛHλ, it is important to understand
the geometry of the components Hλ and their orthogonal complements H⊥λ within H.
For the proof of the next lemma we refer to Lemma 3.1 in [4].

Lemma 2.6. For each λ ∈ Λ we have H = Hλ ⊕ H⊥λ , in particular there exists
a unique Hermitian projection Pλ : H → H such that Ran(Pλ) = Hλ.

With respect to the decomposition provided by Lemma 2.6, the underlying locally
Hilbert space structure of H⊥λ can be explicitly described. For the proof of the next
proposition we refer to Proposition 3.2 in [4].

Proposition 2.7. Let H = lim−→
λ∈Λ
Hλ and, for a fixed but arbitrary λ ∈ Λ, let us denote

by Λλ = {µ ∈ Λ | λ ≤ µ} the branch of Λ defined by λ. Then, with respect to the induced
order relation ≤, Λλ is a directed poset, {Hµ 	Hλ | µ ∈ Λλ} is a strictly inductive
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system of Hilbert spaces and, modulo a canonical identification of lim−→
µ∈Λλ

(Hµ 	Hλ) with

a subspace of H, we have
H⊥λ = lim−→

µ∈Λλ

(Hµ 	Hλ). (2.3)

2.2. LOCALLY BOUNDED OPERATORS

With notation as in Subsection 2.1, let H = lim−→λ∈AHλ and K = lim−→λ∈AKλ
be two locally Hilbert spaces generated by strictly inductive systems of Hilbert
spaces ({Hλ}λ∈Λ, {JHν,λ}λ≤ν) and, respectively, ({Kλ}λ∈Λ, {JKν,λ}λ≤ν), indexed on the
same directed poset Λ. For each λ, ν ∈ Λ with λ ≤ ν, consider the linear map
πλ,ν : B(Hν ,Kν)→ B(Hλ,Kλ) defined by

πλ,ν(T ) = JKν,λ
∗
TJHν,λ, T ∈ B(Hν ,Kν). (2.4)

For each λ ∈ Λ, let JHλ denote the embedding of Hλ in H and, similarly JKλ denote the
embedding of Kλ in K. By Lemma 2.6, for each λ ∈ Λ let PHλ : H → Hλ be the canonical
Hermitian projection on Hλ, and similarly PKλ : K → Kλ. By inspection, it follows that
the axioms (ps1)–(ps4) from the definition of projective systems, see Subsection 2.1
in [4], are fulfilled by the system ({B(Hλ,Kλ)}λ∈Λ, {πλ,ν}λ≤ν). Then, proceeding as in
the construction of the projective limit described as in (2.2)–(2.5) in Subsection 2.1
of [4], it follows that the projective limit lim←−λ∈Λ B(Hλ,Kλ) is canonically embedded
in L(H,K), the vector space of all linear operators T : H → K in the following way:
an operator T ∈ L(H,K) belongs to lim←−λ∈Λ B(Hλ,Kλ) if and only if, for each λ ∈ Λ
the operator

Tλ := PKλ TJ
H
λ : Hλ → Kλ (2.5)

is bounded and then T = lim←−λ∈Λ Tλ in the sense made precise in the formulae (2.3)
and (2.4) in [4]. We summarise these considerations in the following

Proposition 2.8. With notation as before, ({B(Hλ,Kλ)}λ∈Λ, {πλ,ν}λ≤ν) is a projec-
tive system of Banach spaces and its projective limit lim←−λ∈Λ B(Hλ,Kλ) is canonically
embedded in L(H,K).

Remarks 2.9. (a) With notation as before, there is a natural adjoint operation defined
for operators T ∈ lim←−λ∈Λ B(Hλ,Kλ), more precisely, considering the net (Tλ)λ∈Λ, with
Tλ ∈ B(Hλ,Kλ) defined as in (2.5), then it is easy to see that the net (T ∗λ )λ∈Λ yields
a unique operator denoted by T ∗ : K → H, such that,

T ∗λ = PHλ T
∗JKλ , λ ∈ Λ,

hence, we have T ∗ = lim←−λ∈Λ T
∗
λ , that is, T ∗ ∈ lim←−λ∈Λ B(Kλ,Hλ). Thus, we have

an involution
lim←−
λ∈Λ
B(Hλ,Kλ) 3 T 7→ T ∗ ∈ lim←−

λ∈Λ
B(Kλ,Hλ).
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In addition, it is easy to see that the operators T and its adjoint T ∗ satisfy the usual
duality with respect to the inner products on H and K,

〈Th, k〉K = 〈h, T ∗k〉H, h ∈ H, k ∈ K, (2.6)

and that, T ∗ ∈ L(K,H) is the unique operator that satisfies (2.6).
(b) Let us observe that, the canonical injections JHλ and the canonical projections

PHλ belong to lim←−λ∈Λ B(Hλ) and that, with respect to the involution defined at item (a)
we have

(JHλ )∗ = PHλ , (PHλ )∗ = JHλ , λ ∈ Λ.

This can be obtained in many different ways: one simple way is to use (2.6).

One of the deficiencies of the locally convex space lim←−λ∈Λ B(Hλ,Kλ) is that it has
poor properties with respect to composition of operators. In this respect, a much
smaller locally convex projective limit space is considered.

A linear map T : H → K is called a locally bounded operator if it is a continuous
double coherent linear map, in the sense defined in Subsection 2.3 in [4], more precisely,

(lbo1) there exists a net of operators {Tλ}λ∈Λ, with Tλ ∈ B(Hλ,Kλ) such that
TJHλ = JKλ Tλ for all λ ∈ Λ,

(lbo2) the net of operators {T ∗λ}λ∈Λ is coherent as well, that is, T ∗ν JKν,λ = JHν,λT
∗
λ , for

all λ, ν ∈ Λ such that λ ≤ ν.

We denote by Bloc(H,K) the collection of all locally bounded operators T : H → K.

Remarks 2.10. (a) It is easy to see that Bloc(H,K) is a vector space. Actually, there
is a canonical embedding

Bloc(H,K) ⊆ lim←−
λ∈Λ
B(Hλ,Kλ). (2.7)

(b) We can make even more explicit the embedding as in (2.7): the correspondence
between T ∈ Bloc(H,K) and the net of operators {Tλ}λ∈Λ as in (lbo1) and (lbo2) is
unique. Given T ∈ Bloc(H,K), for arbitrary λ ∈ Λ we have Tλh = Th, for all h ∈ Hλ,
with the observation that Th ∈ Kλ. Conversely, if {Tλ}λ∈Λ is a net of operators
Tλ ∈ B(Hλ,Kλ) satisfying (lbo2), then letting Th = Tλh for arbitrary h ∈ H, where
λ ∈ Λ is such that h ∈ Hλ, it follows that T is a locally bounded operator: this
definition is correct by (lbo2). In accordance with Subsection 2.3 in [4], we will use
the notation

T = lim←−
λ∈Λ

Tλ.

We first record an equivalent characterisation of locally bounded operators within
the class of all linear operators between two locally Hilbert spaces. The proof is
straightforward and we omit it.
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Proposition 2.11. Let T : H → K be a linear operator. Then T is locally bounded
if and only if:

(i) for all λ ∈ Λ we have THλ ⊆ Kλ and, letting Tλ := PKλ T |Hλ : Hλ → Kλ, where
PKλ is the Hermitian projection of K onto Kλ as in Lemma 2.6, Tλ is bounded,

(ii) for all λ, ν ∈ Λ with λ ≤ ν, we have TνHλ ⊆ Kλ and T ∗νKλ ⊆ Hλ.
On the other hand, in order to perform operator theory with locally bounded

operators, we will need to assemble a net of bounded operators acting between
component spaces into a locally bounded operator acting between the corresponding
locally Hilbert spaces. The following result tells us which additional properties this
net of bounded operators must have in order to produce a locally bounded operator.

Proposition 2.12. Let (Tλ)λ∈Λ be a net with Tλ ∈ B(Hλ,Kλ) for all λ ∈ Λ.
The following assertions are equivalent:

(1) for every λ, ν ∈ Λ such that λ ≤ ν we have:

Tν |Hλ = JKν,λTλ, and TνPHλ,ν = PKλ,νTν , (2.8)

where PHλ,ν is the orthogonal projection of Hν onto its subspace Hλ,
(2) for every λ, ν ∈ Λ such that λ ≤ ν, with respect to the decompositions

Hν = Hλ ⊕ (Hν 	Hλ), Kν = Kλ ⊕ (Kν 	Kλ),

the operator Tν has the following block matrix representation

Tν =
[
Tλ 0
0 Tλ,ν

]
, (2.9)

for some bounded linear operator Tλ,ν : Hν 	Hλ → Kν 	Kλ,
(3) there exists an operator T ∈ Bloc(H,K) such that T |Hλ = JKλ Tλ for all λ ∈ Λ.

In addition, if any of these assertions holds (hence all of them hold), the operator
T ∈ Bloc(H,K) as in (3) is uniquely determined by {Tλ}λ∈Λ.

Proof. (1)⇒(2). Let λ, ν ∈ H with λ ≤ ν and such that both conditions in (2.8) hold.
Since Hλ ⊆ Hν , the first condition in (2.8) means that Hλ is invariant under Tν while
the latter means that Hλ is invariant under T ∗ν as well. Therefore, the representation
(2.9) holds.

(2)⇒(3). Assume now that, for every λ, ν ∈ Λ with λ ≤ ν, the representation
(2.9) holds. We define an operator T : H → K in the following way: for any h ∈ H,
there exists λ ∈ Λ such that h ∈ Hλ and let Th = JKλ Tλh. We have to show that this
definition is correct, that is, it does not depend on λ. To see this, let ν ∈ Λ be such
that h ∈ Hν as well. Since Λ is directed, there exists η ∈ Λ such that λ, ν ≤ η. By
assumption, the representation (2.9) holds and, with respect to the decompositions

Hη = Hη ⊕ (Hη 	Hη), Kη = Kη ⊕ (Kη 	Kη),
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the operator Tη has the following block matrix representation

Tη =
[
Tν 0
0 Tν,η

]
, (2.10)

for some bounded linear operator Tν,η : Hη 	Hν → Kη 	Kν . Since h ∈ Hλ ∩ Hν ⊆
Hη, from (2.9) and (2.10) it follows that Tλh = Tηh = Tνh, hence the definition
of the operator T is correct. After a moment of thought we see, e.g. by means of
Proposition 2.11, that T ∈ Bloc(H,K). Clearly, the operator T is uniquely determined
by the net (Tλ)λ∈Λ.

(3)⇒(1). Let us assume that there exists an operator T ∈ Bloc(H,K) such that
T |Hλ = JKλ Tλ for all λ ∈ Λ. This implies that the operators Tλ are exactly those
induced by T as in Proposition 2.11 and, since T is assumed to be locally bounded,
a straightforward argument shows that both properties as in (2.8) hold.

As a consequence of the previous proposition, we can introduce the adjoint operation
on Bloc(H,K). Let T = lim←−λ∈Λ Tλ ∈ Bloc(H,K) and hence the net (Tλ)λ∈Λ satisfies the
conditions (2.8). Then, consider the net of bounded operators (T ∗λ )λ∈Λ, T ∗λ ∈ B(Hλ,Kλ)
for all λ ∈ Λ and observe that, for all λ, ν ∈ Λ with ν ≥ λ, we have

T ∗ν |Kλ = JHν,λT
∗
λ , and T ∗ν PKλ,ν = PHλ,νT

∗
ν , (2.11)

hence, by Proposition 2.12 there exists a unique operator T ∗ ∈ Bloc(K,H) such that

T ∗ = lim←−
λ∈Λ

T ∗λ . (2.12)

Remarks 2.13. (a) It is easy to see that, with respect to the embedding Bloc(H,K)
into lim←−λ∈Λ B(Hλ,Kλ), the adjoint operation on Bloc(H,K), see Remarks 2.9, is just
a particular case of the adjoint operation on lim←−λ∈Λ B(Hλ,Kλ), in particular the
adjoint operation is conjugate linear, involutive, and (2.6) holds.

(b) Given three locally Hilbert spaces H = lim−→λ∈ΛHλ, K = lim−→λ∈ΛKλ, and
G = lim−→λ∈Λ Gλ, indexed on the same poset Λ, let observe that the composition of
locally compact operators yields locally compact operators, more precisely, whenever
T ∈ Bloc(H,K) and S ∈ Bloc(K,G) it follows that ST ∈ Bloc(H,G) and usual algebraic
properties as associativity and distributivity with respect to addition and multiplication
with scalars hold. Moreover, for each λ ∈ Λ we have

(ST )λ = SλTλ

and hence
ST = lim←−

λ∈Λ
SλTλ. (2.13)

In addition, composition of locally bounded operators behaves as usually with
respect to the adjoint operation, that is,

(ST )∗ = T ∗S∗, T ∈ Bloc(H,K), S ∈ Bloc(K,G).
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(c) With respect to the pre-Hilbert spaces H and K, a locally bounded operator
T ∈ Bloc(H,K) is not, in general, a bounded operator. However, when considering H
and K as dense linear subspaces of its Hilbert space completions H̃ and, respectively,
K̃, it follows that both T and its adjoint T ∗ are densely defined hence, they are closable
and, letting T̃ denote the closure of T then the closure of T ∗ is exactly T̃ ∗, the closure
of T ∗. So, when dealing with locally bounded operators we deal with a collection of
closed and densely defined operators that have a common core for them, and a common
core of all their adjoint operators.

In the following we point out an operator theoretic characterisation of locally
bounded operators. Let T : H → K be a linear operator and, for arbitrary λ ∈ Λ, by
Lemma 2.6, with respect to the decompositions,

H = Hλ ⊕H⊥λ , K = Kλ ⊕K⊥λ ,
T has the following block matrix representation

T =
[
T11 T12
T21 T22

]
. (2.14)

Proposition 2.14. A linear operator T : H → K is locally bounded if and only if, for
every λ ∈ Λ, its matrix representation (2.14) is diagonal, i.e. T12 = 0 and T21 = 0,
and T11 is bounded. In addition, if T = lim←−ν∈Λ Tν ∈ Bloc(H,K) then, for every λ ∈ Λ,
with respect to the block matrix representation (2.14), we have T11 = Tλ and, with
respect to the locally Hilbert spaces H⊥λ and K⊥λ as in (2.3), T22 ∈ Bloc(H⊥λ ,K⊥λ ).
Proof. Assume that T ∈ Bloc(H,K) and let T = lim←−ν∈Λ Tν . Then, for every λ, ν ∈ Λ
with λ ≤ ν we have the block matrix representation (2.10) for some bounded linear
operator Tλ,ν : Hν 	 Hλ → Kν 	 Kλ. Then we observe that, for any fixed λ ∈ Λ,
{Tλ,ν}ν∈Λλ

is a projective system as in (2.8), with respect to the partially ordered set
Λλ = {ν ∈ Λ | ν ≥ λ} and hence, by Proposition 2.12 there exists uniquely an operator
Tλ ∈ Bloc(H⊥λ ,K⊥λ ) such that

T =
[
Tλ 0
0 Tλ

]
.

Conversely, let us assume that T : H → K has the property that for every λ ∈ Λ
the matrix representation (2.14) is diagonal and T11 is bounded. Then, letting Tλ := T11,
it follows that {Tλ}λ∈Λ satisfies the condition (1) as in Proposition 2.12 and hence
T ∈ Bloc(H,K).

Remarks 2.15. (a) As a consequence of coherence, see Subsection 2.3 in [4], any
locally bounded operator T : H → K is continuous with respect to the inductive limit
topologies of H and K.

(b) In general, a locally bounded operator T : H → K may not be continuous with
respect to the norm topologies of H and K. An arbitrary linear operator T ∈ Bloc(H,K)
is continuous with respect to the norm topologies of H and K if and only if, with
respect to the notation as in (lbo1) and (lbo2), supλ∈Λ ‖Tλ‖B(Hλ,Kλ) <∞. In this case,
the operator T uniquely extends to an operator T̃ ∈ B(H̃, K̃), where H̃ and K̃ are the
Hilbert space completions of H and, respectively, K, and ‖T̃‖ = supλ∈Λ ‖Tλ‖B(Hλ,Kλ).
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In general, we do not have equality in (2.7) so, it is of interest to have criteria
to distinguish the operators in Bloc(H,K) within lim←−λ∈Λ B(Hλ,Kλ). The following
proposition is a direct consequence of the definition and Proposition 2.11, hence we
omit the proof.
Proposition 2.16. With respect to the embedding in (2.7), for an arbitrary element
T = lim←−λ∈Λ Tλ ∈ lim←−λ∈Λ B(Hλ,Kλ), the following assertions are equivalent:

(i) T ∈ Bloc(H,K),
(ii) the axiom (lbo2 ) holds, that is, T ∗ν JKν,λ = JKν,λT

∗
λ , for all λ, ν ∈ Λ such that λ ≤ ν,

(iii) for all λ, ν ∈ Λ with λ ≤ ν, we have TνHλ ⊆ Kλ and T ∗νKλ ⊆ Hλ.
Remarks 2.17. (a) As a consequence of (2.7), Bloc(H,K) has a natural locally convex
topology induced by the projective limit locally convex topology of lim←−λ∈Λ B(Hλ,Kλ),
more precisely, generated by the seminorms {qλ}λ∈Λ defined by

qν(T ) = ‖Tν‖B(Hν ,Kν), T = {Tλ}λ∈Λ ∈ lim←−
λ∈Λ
B(Hλ,Kλ).

(b) With respect to the embedding (2.7), Bloc(H,K) is closed in lim←−λ∈Λ B(Hλ,Kλ),
hence complete.

(c) The locally convex space Bloc(H,K) can be organised as a projective limit of
locally convex spaces, in view of (2.7), more precisely, letting

πν : lim←−
λ∈Λ
B(Hλ,Kλ)→ B(Hν ,Kν),

for ν ∈ Λ, be the canonical projection, then

Bloc(H,K) = lim←−
λ∈Λ

πλ(Bloc(H,K)).

2.3. THE LOCALLY C∗-ALGEBRA Bloc(H)

If H = lim−→
λ∈Λ
Hλ is a locally Hilbert space then Bloc(H) := Bloc(H,H) has a natural

product and a natural involution ∗, with respect to which it is a ∗-algebra, see
Remark 2.13. For each µ ∈ Λ, consider the C∗-algebra B(Hµ) of all bounded linear
operators in Hµ and πµ : Bloc(H)→ B(Hµ) be the canonical map:

πµ(T ) = Tµ, T = lim←−
λ∈Λ

Tλ ∈ Bloc(H).

Let Bloc(Hµ) denote the range of πµ and note that it is a C∗-subalgebra of B(Hµ).
It follows that πµ : Bloc(H)→ Bloc(Hµ) is a ∗-morphism of ∗-algebras and, for each
λ, µ ∈ Λ with λ ≤ µ, there is a unique ∗-epimorphism of C∗-algebras πλ,µ : Bloc(Hµ)→
Bloc(Hλ), such that πλ = πλ,µπµ. More precisely, compare with (2.4) and the notation
as in Subsection 2.2, πλ,µ is the compression of Hµ to Hλ,

πλ,µ(S) = J∗µ,λSJµ,λ, S ∈ Bloc(Hµ).
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Then ({Bloc(Hλ)}λ∈Λ, {πλ,µ}λ,µ∈Λ, λ≤µ) is a projective system of C∗-algebras,
in the sense that,

πλ,η = πλ,µ ◦ πµ,η, λ, µ, η ∈ Λ, λ ≤ µ ≤ η,

and, in addition,

πµ(S)Pλ,µ = Pλ,µπµ(S), λ, µ ∈ Λ, λ ≤ µ, S ∈ Bloc(Hµ),

such that
Bloc(H) = lim←−

λ∈Λ
Bloc(Hλ),

where, the projective limit is considered in the category of locally convex ∗-algebras.
In particular, Bloc(H) is a locally C∗-algebra.

For each λ ∈ Λ, letting pλ : Bloc(H)→ R be defined by

pλ(T ) = ‖Tλ‖B(Hλ), T = lim←−
ν∈Λ

Tν ∈ Bloc(H), (2.15)

then pλ is a C∗-seminorm on Bloc(H). Then Bloc(H) becomes a unital locally C∗-algebra
with the topology induced by {pλ}λ∈Λ.

The C∗-algebra b(Bloc(H)) is made up of all locally bounded operators T =
lim←−λ∈Λ Tλ such that {Tλ}λ∈Λ is uniformly bounded, in the sense that supλ∈Λ ‖Tλ‖ <∞,
equivalently, those locally bounded operators T : H → H that are bounded with respect
to the canonical norm ‖ · ‖H on the pre-Hilbert space (H, 〈·, ·〉H). In particular b(A) is
a C∗-subalgebra of B(H̃), where H̃ denotes the completion of (H, 〈·, ·〉H) to a Hilbert
space.

As a locally convex space, Bloc(H) has its projective limit topology given by the
family of seminorms {pλ}λ∈Λ defined at (2.15). In this article, we use two other
operator topologies. Briefly, the weak operator topology on Bloc(H) is the locally convex
topology associated to the family of seminorms

Bloc(H) 3 T 7→ 〈Th, k〉H, h, k ∈ H.

On the other hand, for each λ ∈ Λ there is the weak operator topology τλ,wo on
Bloc(Hλ) and {(Bloc(Hλ), τλ,wo)}λ∈Λ is a projective system of locally convex spaces.
The weak operator topology on Bloc(H) coincides with the projective limit topology
of the projective system of locally convex spaces {(Bloc(Hλ), τλ,wo)}λ∈Λ.

The strong operator topology on Bloc(H) is the locally convex topology associated
to the family of seminorms

Bloc(H) 3 T 7→ ‖Th‖H, h ∈ H.

On the other hand, for each λ ∈ Λ there is the strong operator topology τλ,so on
Bloc(Hλ) and {(Bloc(Hλ), τλ,so)}λ∈Λ is a projective system of locally convex spaces.

The strong operator topology on Bloc(H) coincides with the projective limit topology
of the projective system of locally convex spaces {(Bloc(Hλ), τλ,so)}λ∈Λ.
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3. CLASSES OF LOCALLY BOUNDED OPERATORS

3.1. RESOLVENT AND SPECTRUM

With notation as in the previous section, if T ∈ Bloc(H), its resolvent set is

ρ(T ) = {z ∈ C | zI − T is invertible in Bloc(H)},

and its spectrum is

σ(T ) = C \ ρ(T ) = {z ∈ C | zI − T is not invertible in Bloc(H)}.

Lemma 3.1. Let T ∈ Bloc(H) and assume that there exists S : H → H a linear
operator such that TS = ST = IH. Then S ∈ Bloc(H).

Proof. Let λ ∈ Λ be arbitrary. Then, by Proposition 2.14, with respect to the decom-
position

H = Hλ ⊕H⊥λ , (3.1)

T has the following block matrix representation

T =
[
Tλ 0
0 T22

]
,

and Tλ ∈ B(Hλ). Assume that S : H → H is a linear operator such that ST = TS = IH,
and consider its matrix representation with respect to the decomposition (3.1)

S =
[
S11 S12
S21 S22

]
. (3.2)

Then,
TλS11 = S11Tλ = IHλ

, T22S22 = S22T22 = IH⊥
λ
,

hence S11 = T−1
λ and, by the Closed Graph Theorem it is bounded, while

S22 = T−1
22 : H⊥λ → H⊥λ . On the other hand, since TλS12 = 0 and Tλ is invertible it

follows that S12 = 0. Similarly, since T22S21 = 0 and T22 is invertible it follows that
S21 = 0. Thus, the matrix representation (3.2) of S is diagonal and S11 is bounded.
By Proposition 2.14, it follows that S ∈ Bloc(H) and S11 = Sλ for all λ ∈ Λ.

The converse implication is clear.

Proposition 3.2. Let T = lim←−λ∈Λ Tλ be a locally bounded operator in Bloc(H). Then

ρ(T ) = {z ∈ C | zI − T is invertible in L(H)}, (3.3)

and
ρ(T ) =

⋂

λ∈Λ
ρ(Tλ), σ(T ) =

⋃

λ∈Λ
σ(Tλ). (3.4)
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Proof. Indeed, the equality of (3.3) is a consequence of Lemma 3.1.
In order to prove the first equality in (3.4), we observe that, for every z ∈ ρ(T ), by

Proposition 2.16, it follows that for every λ ∈ Λ the operator zIλ − Tλ is invertible in
B(Hλ), more precisely, (zIλ−Tλ)−1 = PHλ (zI−T )−1JHλ . Conversely, if z ∈ ρ(Tλ) for all
λ ∈ Λ, then we observe that the net (zI−Tλ)−1)λ∈Λ satisfies the conditions in assertion
(1) of Proposition 2.12 and hence, there exists uniquely an operator S ∈ Bloc(H) such
that S|Hλ = JH(zIλ − Tλ)−1, for all λ ∈ Λ, and then S(zI − T ) = (zI − T )S = I,
hence S = (zI − T )−1 and z ∈ ρ(T ). These prove the first equality in (3.4).

The latter equality in (3.4) is clearly a consequence of the first one.

Remark 3.3. As a consequence of the previous proposition, we see that the spectrum
of a locally bounded operator is always non-empty but it may be neither closed nor
bounded.

On the other hand, if Λ is countable, then the resolvent of any operator T ∈ Bloc(H)
is a Gδ-set in C, while its spectrum is always an Fσ-subset of C.

3.2. LOCAL PROJECTIONS

A linear operator E : H → H is called a local projection if E ∈ Bloc(H) and
E2 = E = E∗. Clearly, E is a local projection if and only if I − E is a local
projection. As a consequence of Proposition 2.12 and Remarks 2.13, we have the
following characterisation of local projections.

Lemma 3.4. Given E ∈ Bloc(H), the following assertions are equivalent:

(i) E is a local projection,
(ii) E = lim←−λ∈ΛEλ with Eλ ∈ B(Hλ) projections (that is, E2

λ = E∗λ = Eλ) for all
λ ∈ Λ and, for all λ, ν ∈ Λ with λ ≤ ν we have

Eν |Hλ = Jν,λEλ and EνPλ,ν = Pλ,νEν ,

where Pλ,ν = J∗ν,λ denotes the projection of Hν onto Hλ.

The following proposition provides equivalent characterisations for the ranges of
local projections.

Proposition 3.5. Let L be a subspace of the locally Hilbert space H = lim−→λ∈ΛHλ.
The following assertions are equivalent:

(i) there exists a strictly inductive system of Hilbert spaces {Lλ}λ∈Λ such that, for
each λ ∈ Λ, Lλ is isometrically embedded in Hλ and L = lim−→λ∈Λ Lλ,

(ii) Hλ = (L ∩Hλ)⊕ (L⊥ ∩Hλ) for all λ ∈ Λ,
(iii) there exists a projection E ∈ Bloc(H) such that Ran(E) = L.

Proof. (i)⇒(ii). By assumption, for each λ ∈ Λ we have the decomposition

Hλ = Lλ ⊕ (Hλ 	 Lλ). (3.5)
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Then we consider the net of subspaces (Hλ 	 Lλ)λ∈Λ and observe that it is a strict
inductive limit of Hilbert spaces and that L⊥ = lim−→λ∈Λ(Hλ 	 Lλ), hence

Hλ ∩ L⊥ = Hλ 	 Lλ, λ ∈ Λ. (3.6)

From (3.5) and (3.6) the desired conclusion follows.
(ii)⇒(iii). For arbitrary λ ∈ Λ, sinceHλ = (Hλ∩L)⊕(L⊥∩Hλ) it follows that there

exists a projection Eλ ∈ B(Hλ) such that Ran(Eλ) = L ∩Hλ and Ran(IHλ
− Eλ) =

L⊥ ∩Hλ. We observe that {Eλ}λ∈Λ satisfies the properties (a) and (b) from Proposi-
tion 2.12 and hence the operator E = lim←−λEλ is a local projection with Ran(E) = L.

(ii)⇒(i). If E = lim←−λ∈ΛEλ is a local projection with Ran(E) = L then letting
Lλ = Ran(Eλ), for all λ ∈ Λ, it follows that {Lλ}λ∈Λ is a strictly inductive system
of Hilbert spaces {Lλ}λ∈Λ such that, for each λ ∈ Λ, Lλ is isometrically embedded
in Hλ and L = lim−→λ∈Λ Lλ.

The next proposition shows that the geometry of local projections is close to that
of projections in Hilbert spaces.
Proposition 3.6. Let {Ej}j∈J be a family of local projections on the locally Hilbert
space H = lim−→λ∈ΛHλ.
(a) There exists a unique local projection, denoted

∧
j∈J Ej, on H, subject to the

following conditions:
(i)
∧
j∈J Ej ≤ Ek for all k ∈ J ,

(ii) for any local projection F such that F ≤ Ej for all j ∈ J , it follows
F ≤ ∧j∈J Ej.

(b) There exists a unique local projection, denoted
∨
j∈J Ej, subject to the following

conditions:
(i) Ek ≤

∨
j∈J Ej for all k ∈ J ,

(ii) for any local projection F such that Ej ≤ F for all j ∈ J , it follows∨
j∈J Ej ≤ F .

Proof. (a) For each k ∈ J , according to Proposition 3.5, let {Ek,λ}λ∈Λ be the net
of projections such that Ek = lim←−λ∈ΛEk,λ. For each λ ∈ Λ we consider

∧
k∈J Ek,λ

the projection in Hλ. By definition,
∧
k∈J Ek,λ is the maximal projection in Hλ that

is dominated by Ej,λ for all j ∈ J and such that, for any projection Fλ ≤ Ej,λ for
all j ∈ J it follows that Fλ ≤

∧
j∈J Ek,λ. Then, by Proposition 2.12 it follows that,

the net of operators {∧k∈J Ek,λ}λ∈Λ can be assembled to obtain the locally bounded
operator

∧
k∈J Ek with the desired properties.

(b) Similar to (a).

Recall that for each λ ∈ Λ a Hermitian projection Pλ ∈ L(H) is uniquely defined
such that Ran(Pλ) = Hλ, cf. Lemma 2.6 and the definition thereafter. In the following
proposition we characterise the local projections within the larger class of Hermitian
projections.
Proposition 3.7. Let E be a Hermitian projection in L(H) and S = Ran(E).
The following assertions are equivalent:
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(i) E is a local projection,
(ii) EPλ = PλE for all λ ∈ Λ,
(iii) Hλ = (Hλ ∩ S)⊕ (Hλ ∩ S⊥) for all λ ∈ Λ.

Proof. (i)⇒(ii). This is a consequence of Proposition 2.11.
(ii)⇒(i). Assuming that EPλ = PλE for all λ ∈ Λ it follows that Hλ is invariant

under E for each λ ∈ Λ. Since E is Hermitian it follows that Hλ is invariant under
E∗ = E as well, hence again by Proposition 2.11 it follows that E is a locally bounded
operator.

(i)⇒(iii). If E is a local projection then, in view of (2.13) and (2.12), E = lim←−λ∈ΛEλ
with Eλ ∈ B(Hλ) being an orthogonal projection for each λ ∈ Λ.

3.3. LOCALLY NORMAL OPERATORS

A linear operator T : H → H is called locally normal if T ∈ Bloc(H) and TT ∗ =
T ∗T , respectively, locally selfadjoint if T ∈ Bloc(H) and T = T ∗. In a similar way,
T ∈ Bloc(H) is locally positive, also denoted by T ≥ 0, if 〈Th, h〉 ≥ 0. As usually,
this opens the possibility of introducing an order relation between locally selfadjoint
operators: A ≥ B if A−B ≥ 0.

Remark 3.8. Let T ∈ Bloc(H), T = lim←−λ∈Λ Tλ. Then T is locally normal if and only
if Tλ is normal for all λ ∈ Λ. Similarly, T is locally selfadjoint (locally positive) if
and only if Tλ is selfadjoint (positive) for all λ ∈ Λ. In particular, taking into account
of Proposition 3.2, it follows that, if T is a locally normal operator then it is locally
selfadjoint (locally positive) if and only if σ(T ) ⊆ R (σ(T ) ⊆ R+).

The following result is a counter-part of the celebrated Fuglede-Putnam Theorem
for locally normal operators.

Theorem 3.9. Let N ∈ Bloc(H) and M ∈ Bloc(K) be locally normal operators, with
the locally Hilbert spaces H and K modelled on the same poset Λ, and let B ∈ Bloc(K,H)
be such that NB = BM . Then N∗B = BM∗.

Proof. With notation as in Subsection 2.2, we repeatedly use Proposition 2.12 and
Remark 2.13. From the assumption NB = BM it follows that NλBλ = BλMλ for
all λ ∈ Λ. Since both Nλ and Mλ are normal operators in Hλ and, respectively,
Kλ, from the Fuglede-Putnam Theorem, e.g. see Theorem 12.5 in [3], it follows that
N∗λB = BM∗λ for all λ ∈ Λ, hence N∗B = BM∗.

4. MAIN RESULTS

Recall that, letting (X,Σ) be a measurable space and H a Hilbert space, a spectral
measure with respect to the triple (X,Σ,H) is a map E : Σ → B(H) subject to
the following conditions:

(sm1) E(A) = E(A)∗ for all A ∈ Σ,
(sm2) E(∅) = 0 and E(X) = I,
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(sm3) E(A1 ∩A2) = E(A1)E(A2) for all A1, A2 ∈ Σ,
(sm4) for any sequence (An)n of mutually disjoint sets in Σ we have

E

( ∞⋃

n=1
An

)
=
∞∑

n=1
E(An).

As a consequence of (sm1) and (sm3) it follows that E(A) is a projection for all A ∈ Σ.
Also, the convergence of the series in (lsm4) is with respect to the strong operator
topology on B(H). We first single out the concept of a locally spectral measure,
as a generalisation of the concept of spectral measure.

4.1. STRICTLY INDUCTIVE SYSTEMS OF MEASURABLE SPACES

Given a poset (Λ;≤), a net {(Xλ,Ωλ)}λ∈Λ is called a strictly inductive system of
measure spaces if the following conditions hold:

(sim1) for each λ ∈ Λ, (Xλ,Ωλ) is a measurable space,
(sim2) for each λ, ν ∈ Λ with λ ≤ ν we have Xλ ⊆ Xν and

Ωλ = {A ∩Xλ | A ∈ Ων} ⊆ Ων .

Given a strictly inductive system of measurable spaces {(Xλ,Ωλ)}λ∈Λ, we denote

X =
⋃

λ∈Λ
Xλ, Ω =

⋃

λ∈Λ
Ωλ. (4.1)

The pair (X,Ω) is called the inductive limit of the strictly inductive system of measur-
able spaces, and we use the notation

(X,Ω) = lim−→
λ∈Λ

(Xλ,Ωλ).

In general, the inductive limit (X,Ω) of a strictly inductive system of measurable
spaces is not a measurable space, since Ω is not a σ-algebra. Actually, Ω is a ring of
subsets in X, that is, for any A,B ∈ Ω it follows A \ B,A ∩ B,A ∪ B ∈ Ω, but, in
general, not a σ-ring, that is, it may not be closed under countable unions or countable
intersections. Moreover, Ω is a locally σ-ring in the sense that, if (An)n is a sequence
of subsets from Ω such that there exists λ ∈ Λ with the property that An ∈ Ωλ for all
n ∈ N, it follows that

⋃
n∈NAn and

⋂
n∈NAn are in Ω.

In the following we show that Ω has a canonical extension to a σ-algebra. Let

Ω̃ := {A ⊆ X | A ∩Xλ ∈ Ωλ for all λ ∈ Λ}. (4.2)

Proposition 4.1. Ω̃ is a σ-algebra and Ω ⊆ Ω̃.

Proof. We first show that Ω ⊆ Ω̃. Let A ∈ Ω. Then there exists λ0 ∈ Λ such that
A ∈ Ωλ0 . For arbitrary λ ∈ Λ there exists ν ∈ Λ such that λ0, λ ≤ ν hence A ∈ Ων

and, by (sim2), it follows that A ∩Xλ ∈ Ωλ.
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We prove that Ω̃ is a σ-algebra. First observe that X ∈ Ω̃, by definition. Then, let
A,B ∈ Ω̃ be arbitrary. Then, for any λ ∈ Λ we have

(A \B) ∩Xλ = (A ∩Xλ) \ (B ∩Xλ) ∈ Ωλ,

hence A \B ∈ Ω̃. Let now (An)n∈N be a sequence of subsets in Ω̃. Then, for any n ∈ N
and any λ ∈ Λ we have An ∩Xλ ∈ Ωλ and hence

∞⋃

n=1
An ∩Xλ =

∞⋃

n=1
(An ∩Xλ) ∈ Ωλ.

Thus, we proved that Ω̃ is a σ-algebra.

4.2. LOCALLY SPECTRAL MEASURES

Let H = lim−→λ∈ΛHλ be a locally Hilbert space and consider a strictly inductive system
of measurable spaces {(Xλ,Ωλ)}λ∈Λ, see Subsection 4.1. We consider a projective
system of spectral measures {Eλ}λ∈Λ with respect to (Xλ,Ωλ,Hλ)λ∈Λ, that is,

(psm1) for each λ ∈ Λ, Eλ is a spectral measure with respect to (Xλ,Ωλ,Hλ),
(psm2) for any λ, ν ∈ Λ with λ ≤ ν we have

Eν(A)|Hλ = Jν,λEλ(A), A ∈ Ωλ,

and
Eν(A)Pλ,ν = Pλ,νEν(A), A ∈ Ων .

In the following we consider the inductive limit (X,Ω) of the strictly inductive
system of measurable spaces {(Xλ,Ωλ)}λ∈Λ, see (4.1), as well as its extension to
a measurable space (X, Ω̃) as in Proposition 4.1.

Lemma 4.2. There exists a unique mapping E : Ω̃→ Bloc(H) such that

E(A)|Hλ = JHλ Eλ(A ∩Xλ), A ∈ Ω̃, λ ∈ Λ. (4.3)

In addition, the mapping E has the following properties:

(i) E(A) = E(A)∗ for all A ∈ Ω̃,
(ii) E(∅) = 0 and E(X) = I,
(iii) E(A1 ∩A2) = E(A1)E(A2) for all A1, A2 ∈ Ω̃,
(iv) for any sequence (An)n of mutually disjoint sets in Ω̃ we have

E

( ∞⋃

n=1
An

)
=
∞∑

n=1
E(An).

Proof. For each λ ∈ Λ we define

Eλ(A) := Eλ(A ∩Xλ), A ∈ Ω̃,
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which makes perfectly sense since A ∩Xλ ∈ Ωλ. We observe that, for each A ∈ Ω̃, the
net (Eλ(A))λ∈Λ satisfies the conditions (2.8), which follows by the assumption (psm2).
Then, by Proposition 2.12, it follows that there exists E(A) ∈ Bloc(H) such that (4.3)
holds.

In order to prove that E has the properties (i)–(iii), we use its definition, (2.12),
and Remark 2.13.(b). Consequently, for each A ∈ Ω̃ the operator E(A) is a local
projection. Let (An)n∈N be a sequence of mutually disjoint sets in Ω̃. Then, (E(An))n∈N
is a sequence of mutually orthogonal local projections,

E

( ∞⋃

k=1
Ak

)
≥ E

( n⋃

k=1
Ak

)
=

n∑

k=1
E(Ak), n ∈ N,

and hence the sequence (
∑n
k=1E(Ak))n≥1 of local projections is increasing and

bounded above by E(
⋃∞
k=1Ak) hence

∞∑

k=1
E(Ak) ≤ E

( ∞⋃

k=1
Ak

)
,

where the series converges strongly operatorial. Now, for arbitrary h ∈ H there exists
λ ∈ Λ such that h ∈ Hλ and hence

E

( ∞⋃

k=1
Ak

)
h = Eλ

( ∞⋃

k=1
Ak

)
h

= Eλ

( ∞⋃

k=1
Ak ∩Xλ

)
h =

∞∑

k=1
Eλ(Ak ∩Xλ) =

∞∑

k=1
Eλ(Ak)h.

This proves the property (iv).

We call the mapping E : Ω̃ → Bloc(H) obtained in Lemma 4.2 a locally spectral
measure. On the other hand, when restricted to the locally σ-ring Ω ⊆ Ω̃, the mapping
E|Ω has the following properties:

(i) E(A) = E(A)∗ for all A ∈ Ω,
(ii) E(∅) = 0,
(iii) E(A1 ∩A2) = E(A1)E(A2) for all A1, A2 ∈ Ω,
(iv) for any sequence (An)n of mutually disjoint sets in Ω such that

⋃∞
n=1An ∈ Ω,

we have

E

( ∞⋃

n=1
An

)
=
∞∑

n=1
E(An).

We call (E,X,Ω,H) the projective limit of the projective system of spectral measures
{(Eλ, Xλ,Ωλ,Hλ)}λ∈Λ and use the notation

(E,X,Ω,H) = lim←−
λ∈Λ

(Eλ, Xλ,Ωλ,Hλ).
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A locally spectral measure E, as we defined it, cannot be considered as a spectral
measure, due to the fact that its codomain is Bloc(H). However, in the following we
show that it can be lifted to a spectral measure. More precisely, taking into account
that any local projection is actually a bounded operator on the pre-Hilbert space H,
the range of E is actually contained in its bounded part bBloc(H) which is canonically
embedded in B(H̃). Therefore, for each A ∈ Ω̃, since E(A) ≤ I, it follows that E(A)
is bounded hence it has a unique extension to an operator Ẽ(A) ∈ B(H̃).

Proposition 4.3. The mapping Ẽ : Ω̃→ B(H̃) is a spectral measure.

Proof. Indeed, the properties (sm1)–(sm3) of Ẽ from the definition of a spectral
measure follow from the properties (i)–(iii) of E as in Lemma 4.2. Let (An)n be
a sequence of mutually disjoint sets in Ω̃ and let h ∈ H̃ be arbitrary, hence there
exists a sequence (hk)k≥1 of vectors in H such that ‖h− hk‖ → 0 as k →∞. Then, in
view of the property (iv) as in Lemma 4.2 we have

Ẽ

( ∞⋃

j=1
Aj

)
hk =

∞∑

j=1
Ẽ(Aj)hk, k ∈ N. (4.4)

For arbitrary n, k ∈ N we have
∥∥∥∥Ẽ
( ∞⋃

j=1
Aj

)
h−

n∑

j=1
Ẽ(Aj)h

∥∥∥∥ ≤
∥∥∥∥Ẽ
( ∞⋃

j=1
Aj

)
(h− hk)

∥∥∥∥

+
∥∥∥∥Ẽ
( ∞⋃

j=1
Aj

)
hk −

n∑

j=1
Ẽ(Aj)hk

∥∥∥∥

+
∥∥∥∥

n∑

j=1
Ẽ(Aj)(hk − h)

∥∥∥∥

≤ 2‖h− hk‖+
∥∥∥∥Ẽ
( ∞⋃

j=1
Aj

)
hk −

n∑

j=1
Ẽ(Aj)hk

∥∥∥∥.

Therefore, for any ε > 0 we first choose k ∈ N sufficiently large such that ‖h−hk‖ < ε/4
and then, in view of (4.4) we choose n ∈ N sufficiently large such that

∥∥∥∥Ẽ
( ∞⋃

j=1
Aj

)
hk −

n∑

j=1
Ẽ(Aj)hk

∥∥∥∥ <
ε

2 ,

and conclude that ∥∥∥∥Ẽ
( ∞⋃

j=1
Aj

)
h−

n∑

j=1
Ẽ(Aj)h

∥∥∥∥ < ε.

This is sufficient to conclude that

Ẽ

( ∞⋃

j=1
Aj

)
h =

∞∑

j=1
Ẽ(Aj)h.
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Since h ∈ H̃ is arbitrary, it follows that Ẽ has the property (sm4) as well and hence is
a spectral measure.

In the following we show how we can produce locally normal operators by integration
of locally bounded Ω̃-measurable functions with respect to a locally spectral measure.
We first clarify the meaning of Ω̃-measurability.
Lemma 4.4. Let ϕ : X → C. The following assertions are equivalent:

(i) ϕ is Ω̃-measurable,
(ii) for each λ ∈ Λ the function ϕ|Xλ is Ωλ-measurable.

Proof. (i)⇒(ii). Assuming that ϕ is Ω̃-measurable, for any λ ∈ Λ and any Borel subset
B in C we have (ϕ|Xλ)−1(B) = Xλ ∩ ϕ−1(B) ∈ Ωλ, by the definition of Ω̃, see (4.2).

(ii)⇒(i). Assume that for each λ ∈ Λ the function ϕ|Xλ is Ωλ measurable. Then,
for any Borel subset B in C and any λ ∈ Λ we have ϕ−1(B) ∩ Xλ = (ϕ|Xλ)−1(B)
hence, again by (4.2) it follows that ϕ−1(B) ∈ Ω̃.

In the following we denote

Bloc(X, Ω̃) := {ϕ : X → C | ϕ|Xλ is bounded and Ωλ-measurable for all λ ∈ Λ}.

It is easy to see that Bloc(X, Ω̃) is a ∗-algebra of complex functions, with usual algebraic
operations and involution. Letting, for each λ ∈ Λ,

pλ(ϕ) = sup
x∈Xλ

|ϕ(x)|, ϕ ∈ Bloc(X, Ω̃),

we obtain a family of C∗-seminorms {pλ}λ∈Λ with respect to which Bloc(X, Ω̃) becomes
a locally C∗-algebra. More precisely, letting B(Xλ,Ωλ) denote the C∗-algebra of all
bounded and Ωλ-measurable functions f : Xλ → C, we have

Bloc(X, Ω̃) = lim←−
λ∈Λ

B(Xλ,Ωλ).

Let now ϕ ∈ Bloc(X, Ω̃) be fixed. By Proposition 9.4 in [3], for each λ ∈ Λ there
exists a unique normal operator Nλ ∈ B(Hλ) such that

Nλ(ϕ) =
∫

Xλ

ϕ(x)dEλ(x),

in the following sense: for each ε > 0 and {A1, . . . , An} an Ωλ-partition of Xλ such
that, sup{|ϕ(x) − ϕ(y)| | x, y ∈ Ak} < ε for all k = 1, . . . , n, and for any choice of
points xk ∈ Ak, for all k = 1, . . . , n, we have

∥∥∥Nλ(ϕ)−
n∑

k=1
ϕ(xk)Eλ(Ak)

∥∥∥ < ε, (4.5)

where ‖ · ‖ denotes the operator norm in B(Hλ).
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Proposition 4.5. For each ϕ ∈ Bloc(X, Ω̃) there exists a unique locally normal
operator N(ϕ) ∈ Bloc(H) such that N(ϕ) = lim←−λ∈ΛNλ(ϕ). In addition, the mapping
Bloc(X, Ω̃) 3 ϕ 7→ N(ϕ) ∈ Bloc(H) is a coherent ∗-representation.
Proof. We first observe that the net of normal bounded operators (Nλ(ϕ))λ satisfies
the condition (2.8) due to the condition (psm2) in the definition of the projective
system of spectral measures {Eλ}λ∈Λ and (4.5). Then, by Proposition 2.12 there
exists uniquely N(ϕ) ∈ Bloc(H) such that N(ϕ)|Hλ = Nλ(ϕ)JHλ for all λ ∈ Λ, that is,
N(ϕ) = lim←−λ∈ΛNλ(ϕ).

Since, by Proposition 9.6 in [3], for each λ ∈ Λ the mapping B(Xλ,Ωλ) 3
f 7→ B(Hλ) is a ∗-representation, it follows that the projective limit of these
∗-representations, which is exactly the mapping Bloc(X, Ω̃) 3 ϕ 7→ Bloc(H), is a coher-
ent ∗-representation, see [5, p. 651].

In view of Proposition 4.5, for any ϕ ∈ Bloc(X, Ω̃) we denote
∫

σ(N)

ϕ(x)dE(x) := N(ϕ) = lim←−
λ∈Λ

Nλ(ϕ) = lim←−
λ∈Λ

∫

σ(Nλ)

ϕ(x)dEλ(x). (4.6)

4.3. THE SPECTRAL THEOREM

Let N ∈ Bloc(H) be a locally normal operator, for some locally Hilbert space H =
lim−→λ∈ΛHλ. By definition, see Subsection 2.2, there exists uniquely the net (Nλ)λ∈Λ with
N = lim←−λ∈ΛNλ, in the sense of the conditions (lbo1) and (lbo2). By Proposition 3.2 we
have σ(N) =

⋃
λ∈Λ σ(Nλ). For each λ ∈ Λ the spectrum σ(Nλ) is a compact nonempty

subset of C and (σ(Nλ),Bλ) is a measurable space, where Bλ denotes the σ-algebra
of all Borel subsets of σ(Nλ). Then, {(σ(Nλ),Bλ)}λ∈Λ is a strictly inductive system of
measurable spaces, as in Subsection 4.1, and letting (σ(N),B) be its inductive limit in
the sense of (4.1), it is easy to see that, with respect to (4.2), B̃ is the σ-algebra of all
Borel subsets of σ(N).

Further on, by the Spectral Theorem for normal operators in Hilbert spaces, e.g.
see Theorem 10.2 in [3], for each λ ∈ Λ, let Eλ denote the spectral measure of Nλ
with respect to the triple (σ(Nλ),Bλ,Hλ). In particular,

Nλ =
∫

σ(Nλ)

zdEλ(z), Iλ =
∫

σ(Nλ)

dEλ(z), (4.7)

where Iλ denotes the identity operator on Hλ.
Lemma 4.6. {(Eλ, σ(Nλ),Bλ,Hλ)}λ∈Λ is a projective system of spectral measures.

Proof. We have only to show that the axiom (psm2) holds. Let λ, ν ∈ Λ be such that
λ ≤ ν. Then, by Proposition 2.12, with respect to the decomposition

Hν = Hλ ⊕ (Hν 	Hλ),
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we have the block-operator matrix representation

Nν =
[
Nλ 0
0 Nλ,ν

]
, (4.8)

for some normal operator Nλ,ν ∈ B(Hν 	 Hλ). From here, it follows that
σ(Nλ), σ(Nλ,ν) ⊆ σ(Nν) and by functional calculus with bounded Borel functions, e.g.
see Theorem 10.3 in [3], it follows that for any f ∈ B(σ(Nν)), by (4.8), we have

f(Nν) =
[
f(Nλ) 0

0 f(Nλ,ν)

]
. (4.9)

Then, if A is a Borel subset of σ(Nλ), we consider χA ∈ B(σ(Nλ)) ⊆ B(σ(Nν)) and
hence, by (4.9) we get

Eν(A)|Hλ = χA(Nν)|Hλ = Jν,λχA(Nλ) = Jν,λEλ(A).

On the other hand, if now A is a Borel subset of σ(Nν), we consider χA ∈ B(σ(Nν))
hence, again by (4.9), we get

Eν(A)Pλ,ν = χA(Nν)Pλ,ν =
[
χA(Nλ) 0

0 0

]
= Pλ,νχA(Nν) = Pλ,νEν(A).

We have shown that the axiom (psm2) holds as well.

We are now in a position to prove the Spectral Theorem for locally normal operators
in terms of locally spectral measures.
Theorem 4.7. For any locally normal operator N ∈ Bloc(H) there exists a unique
locally spectral measure E, with respect to the Borel measurable space (σ(N), B̃) and
the locally Hilbert space H, with the following properties:
(i) N =

∫
σ(N) zdE(z) and I =

∫
σ(N) dE(z), in the sense of (4.6),

(ii) for any nonempty relatively open subset G of σ(N) we have E(G) 6= 0,
(iii) if T ∈ Bloc(H) then TN = NT if and only if TE(A) = E(A)T for all Borel

subset of σ(A).
Proof. As a consequence of Lemma 4.6 and Lemma 4.2, let E : B(σ(N)) → Bloc(H)
be the locally spectral measure of the projective system of spectral measures
{(Eλ, σ(Nλ),Bλ,Hλ)}λ∈Λ. Property (i) follows by (4.7) and (4.6).

Let G be a nonempty relatively open subset of σ(N). By Proposition 3.2, there
exists λ ∈ Λ such that G ∩ σ(Nλ) is a nonempty relatively open subset of σ(Nλ) and
hence Eλ(G ∩ σ(Nλ)) 6= 0. In view of Lemma 4.2 it follows that E(G) 6= 0.

Let T ∈ Bloc(H) be such that TN = NT . Then, by Theorem 3.9 we have
TN∗ = N∗T as well and hence T commutes with the unital locally C∗-algebra
generated by N . Letting T = lim←−λ∈Λ Tλ it follows that Tλ commutes with the unital
C∗-algebra generated by Nλ for all λ ∈ Λ and hence, e.g. by Theorem 10.2 in [3], it
follows that Tλ commutes with Eλ(A) for all A ∈ σ(Nλ). In view of the definition of
the locally spectral measure E, see Lemma 4.2, it follows that T commutes with E(A)
for any Borel subset A of σ(N). The converse implication follows similarly.
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As a consequence of Theorem 4.7 we can obtain the functional calculus with locally
bounded Borel functions.

Theorem 4.8. Let N ∈ Bloc(H) be a locally normal operator and E its locally spectral
measure. Then the mapping

Bloc(σ(N)) 3 ϕ 7→ ϕ(N) =
∫

σ(N)

ϕ(z)dE(z) ∈ Bloc(H) (4.10)

is a coherent ∗-representation of the locally C∗-algebra Bloc(σ(N)), and it is the unique
coherent ∗-morphism of locally C∗-algebras such that:

(i) ζ(N) = N and 1(N) = I, where ζ(z) = z and 1(z) = 1 for all z ∈ C,
(ii) for any net (ϕj)j∈J such that ϕj → 0 pointwise and

sup
j∈J

sup
x∈σ(Nλ)

|ϕj(x)| < +∞

for each λ ∈ Λ, it follows that ϕj(N)→ 0 strongly operatorial.

Proof. By Theorem 4.7, the existence of the locally spectral measure E = lim←−λ∈ΛEλ
for the locally normal operator N = lim←−λ∈ΛNλ is guaranteed. Then, for any ϕ =
lim←−λ∈Λ ϕλ ∈ Bloc(σ(N)), by Proposition 4.5 we have the locally bounded operator

∫

σ(N)

ϕ(z)dE(z) = lim←−
λ∈Λ

∫

σ(Nλ)

ϕλ(z)dEλ(z), (4.11)

and the mapping (4.10) is a coherent ∗-representation of the locally C∗-algebra
Bloc(σ(N)).

Letting ζ for ϕ in (4.11) it follows that
∫

σ(N)

zdE(z) = lim←−
λ∈Λ

∫

σ(Nλ)

zdEλ(z) = lim←−
λ∈Λ

Nλ = N,

and similarly for the function 1.
Let (ϕj)j∈J be a net of functions in Bloc(σ(N)) such that

sup
j∈J

sup
x∈σ(Nλ)

|ϕj(x)| < +∞

for every λ ∈ Λ and ϕj → 0 pointwise. Then, e.g. see Theorem 2.20 in [12], for each
λ ∈ Λ it follows that ϕj(Nλ)→ 0 strongly operatorial which implies that ϕ(N)→ 0
strongly operatorial.

For the uniqueness part, let π : Bloc(σ(N)) → Bloc(H) be a coherent
∗-representation having the properties (i) and (ii). From (i) it follows that π(ϕ) = ϕ(N)
for any complex polynomial in the variables z and z. Since π is coherent it is au-
tomatically continuous on the locally C∗-algebra C(σ(N)) and then, in view of
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Stone-Weierstrass Theorem, it follows that π(ϕ) = ϕ(N) for any ϕ ∈ C(σ(N)).
In view of Baire’s Theorem, any function ϕ ∈ Bloc(σ(N)) can be approximated by
a net (ϕj)j∈J of functions in C(σ(N)) such that

sup
j∈J

sup
x∈σ(Nλ)

|ϕj(x)| < +∞

for every λ ∈ Λ, hence π(ϕ) = ϕ(N) for all ϕ ∈ Bloc(σ(N)).
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