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Aurelian Gheondea

Abstract. We unify recent Noether-type theorems on the equivalence of
symmetries with conservation laws for dynamical systems of Markov pro-
cesses, of quantum operations, and of quantum stochastic maps, by means
of some abstract results on propagation of fixed points for completely pos-
itive maps on C∗-algebras. We extend most of the existing results with
characterisations in terms of dual infinitesimal generators of the corre-
sponding strongly continuous one-parameter semigroups. By means of an
ergodic theorem for dynamical systems of completely positive maps on
von Neumann algebras, we show the consistency of the condition on the
standard deviation for dynamical systems of quantum operations, and
hence of quantum stochastic maps as well, in case the underlying Hilbert
space is infinite dimensional.

1. Introduction

In view of the celebrated theorem of Noether [30] on the equivalence of symme-
tries and conservation laws for physical systems, Baez and Fong [7] considered
similar questions within the framework of “stochastic mechanics”, in the sense
of [6], for the dynamics of Markov processes. Letting {U(t)}t≥0 be a (classical)
dynamical stochastic system (this is called a Markov semigroup in [7]), they
show that the operator of multiplication with an observable O commutes with
Ut for all t ≥ 0, an analogue for a symmetry, if and only if both its expected
value 〈O,Utf〉 and the expected value of its square 〈O2, Utf〉 are constant in
time for every state f (probability distribution), an analogue for a conserva-
tion law. Considering the variance 〈O2, f〉−〈O, f〉2, for f an arbitrary state,
the latter condition is equivalent with both its expected value and its variance
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(or standard deviation) are constant in time for every state. The approach uses
an older idea of realising Markov processes in terms of closed (Hamiltonian)
semigroup and is classical probability theory by its nature. The appearance
of the variance makes a difference when compared to the classical Noether’s
theorem. Some important questions are left unanswered, among which, how is
this reflected in terms of the infinitesimal generator of the semigroup.

On the other hand, questions related to Noether-type theorems have been
recently considered in the context of open quantum systems in connection to
adiabatic response of quantum systems undergoing unitary evolution to open
quantum systems governed by Lindblad evolutions, see (1.1) from below, as
seen at Avron et al. [5]. However, we are particularly interested by the setting of
irreversible open quantum dynamical systems as considered by Gough et al. in
[21] which explicitly refers to a point of view analogue to that considered in [7].
More precisely, let T = {Tt}t≥0 denote a dynamical system in the Schrödinger
picture, that is, a norm continuous semigroup of completely positive (see the
definition in Sect. 2.1) trace-preserving linear maps on the trace-class B1(H)
for some fixed Hilbert space H, for which the infinitesimal generator M takes
the form, cf. [20,29],

M(S) =
∑

k

(
LkSL∗

k − 1
2
SL∗

kLk − 1
2
L∗

kLkS

)
+ i[S,H], S ∈ B1(H), (1.1)

for a collection of operators Lk ∈ B(H), k = 1, 2, . . . , and a selfadjoint oper-
ator H ∈ B(H). The constants of T are the operators A ∈ B(H) such that
tr((Ttρ)A) = tr(ρA) for all density operators ρ ∈ D(H) and all t ≥ 0. Transfer-
ring to the Heisenberg picture, one considers the dual semigroup {Jt}t≥0 acting
in B(H) whose set of fixed points, that is, all A ∈ B(H) such that Jt(A) = A for
all t ≥ 0, coincides with the set of constants of T . The main result in [21] says
that, under the technical assumption of existence of a stationary strictly pos-
itive density operator, the set of constants of the quantum dynamical system
{Tt}t≥0, which coincides with the set of fixed points of {Jt}t≥0, is a von Neu-
mann algebra and it coincides with the commutant {H,Lk, L∗

k | k = 1, 2, . . .}′.
In their formulation, an analogue of the second condition on the square of the
observable as in [7] does not show up and one aim of our article is to show that
this happens because it is obscured by the technical assumption of existence of
a stationary strictly positive density operator. In addition, the question on how
are these results related to the results in [7] on dynamical stochastic systems
is left unanswered and it is another aim of our article to clarify this question.

Within the same circle of ideas as in [7] and [21], Bartoszek and Bartoszek
[8] recently considered a noncommutative version of dynamical stochastic sys-
tem, more precisely, a strongly continuous semigroup {St}t≥0 of stochastic
maps with respect to some Hilbert space H, that is, trace-preserving positive
linear maps on the trace-class B1(H), and a one-element measurement operator
MA1/2 , for some positive operator A ∈ B(H), where MA1/2(T ) = A1/2TA1/2.
In this setting, they obtain several equivalent characterisations to the com-
patibility (commutation) of the dynamical stochastic system {St}t≥0 with the



Vol. 19 (2018) Symmetries Versus Conservation Laws 1789

quantum measurement MA1/2 : for example, one of these equivalent character-
isations refers to A and A2 being fixed by the dual semigroup {S�

t}t≥0 and
a second one refers to the commutation of the infinitesimal generator s of
{St}t≥0 with MA1/2 . The approach used in [8] combines the probability theory
methods as in [7] with operator theoretical methods. There are some impor-
tant questions left unanswered in [8]: for example, how are these related to the
results in [7] and [21] and to what extent is the additional condition that A2

be fixed by the dual semigroup {S�
t}t≥0 really necessary? It is another aim of

our article to provide an answer to these questions.
In this article, we show that all the results in [7,21], and [8] can be uni-

fied by means of an abstract approach within dilation theory in C∗-algebras
for completely positive maps in the sense of Stinespring [34], more precisely,
through the concepts of bimodule domains and multiplication domains of Choi
[11]. For example, we show that the abstract results on propagation of fixed
points for completely positive maps on C∗-algebras that we get in Theorem 2.2
and Corollary 2.3 short cut completely the probabilistic tools in the proofs of
the main results in [7] and [8]. Also, although the results in [8] apparently refer
to a more general case of positive maps that may not be completely positive,
our Corollary 2.3 shows that it is exactly the complete positivity that lies be-
hind them. In addition, in the case studied in [21], we reveal what happens if
the technical assumption of existence of a stationary strictly positive density
operator is removed. More precisely, we first obtain an ergodic theorem for
dynamical systems of completely positive maps on von Neumann algebras, see
Theorem 2.5. Then, using this theorem in combination with some techniques
of injectivity of operator systems and the von Neumann algebra generated by
the free group on two generators, we show the consistency of the condition
on the standard deviation for dynamical systems of quantum operations, and
hence for dynamical systems of quantum stochastic maps as well, in case the
underlying Hilbert space is infinite dimensional. From a broader perspective,
we put all these problems in the framework of analysis of quantum operations
as in [2] and in closely related mathematical problems on irreversible dynam-
ical quantum systems, e.g. as in Albeverio and Høegh-Krohn [1], Davies [14],
Evans [16], Frigerio and Verri [19], Fagnola and Rebolledo [17], and Størmer
[35], to quote a few. Finally, we extend most of the existing results with charac-
terisations in terms of duals of strongly continuous one-parameter semigroups
and their w∗-infinitesimal generators by a general result as in Theorem 2.4.

A few words about terminology. We have used the same names “stochas-
tic” and, respectively, “Markov” for both the commutative (classical) case as
in Sect. 3 and the noncommutative (quantum) case as in Sect. 6, hoping that
there will be no danger of confusion. This way, we left the notions of quantum
stochastic and, respectively, quantum Markov referring to the case of quan-
tum operations in the Schrödinger picture and, respectively, in the Heisenberg
picture, following the terminology already established in quantum physics, see
[18] and [21].
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We thank Marius Dădârlat for drawing our attention to the proof of
Choi’s Theorem in [10] obtainable solely from the Stinespring’s Dilation The-
orem and for many other useful discussions on these topics, to Radu Purice
for clarifying some aspects from [21], and to Carlo Beenakker for indicating
[13] and [25] as sources on the significance of the transpose map in quantum
information theory. Last but not least, we thank the referees for a careful and
critical reading of the manuscript and for providing corrections and recom-
mendations that improved the presentation of this article.

2. Preliminary Results

2.1. Propagation of Fixed Points in C∗-Algebras

Let A and B be C∗-algebras with unit. A linear map Φ: A → B is positive
if Φ(a) ≥ 0 for all a ∈ A+, where A+ = {x∗x | x ∈ A} denotes the cone
of positive elements in A. Any positive map is selfadjoint, in the sense that
Φ(a∗) = Φ(a)∗ for all a ∈ A, and bounded, more precisely, according to the
Russo–Dye Theorem, ‖Φ‖ = ‖Φ(e)‖, where by e we denote the unit of A.

Given an arbitrary natural number n, we consider the C∗-algebra Mn(A)
of all n×n matrices with entries in A, organised as a C∗-algebra in a canonical
way, e.g. by identifying it with the C∗-algebra A ⊗ Mn. This gives rise to the
nth-order amplification map Φ(n) : Mn(A) → Mn(B) defined by

Φ(n)(A) = [Φ(ai,j)]
n
i,j=1 , A = [ai,j ]ni,j=1 ∈ Mn(A). (2.1)

Φ is called n-positive if Φ(n) is positive. Φ is called completely positive if it is
n-positive for all n ∈ N.

Given A a C∗-algebra with unit, a closed linear subspace S of A is called
an operator system if it is stable under the adjoint operation a 	→ a∗ and
contains the unit of A. Note that any operator system is linearly generated
by the cone of all its positive elements. Also, for any linear map Ψ: S → B,
for B an arbitrary C∗-algebra, the definitions of positive map, n-positive map,
and completely positive map, as defined before, make perfectly sense. More
generally, these definitions make sense if S is assumed to be stable under the
adjoint operation only.

For an arbitrary linear map Φ: A → B, the set

MΦ = {a ∈ A | Φ(a∗a) = Φ(a)∗Φ(a) and Φ(aa∗) = Φ(a)Φ(a∗)} (2.2)

is called the multiplicative domain of Φ. If Φ is unital, then MΦ contains the
unit of A.

We start with the following theorem, due to Choi [11]; it is worth observ-
ing that assertion (2) is actually a property of propagation of multiplicativity
which motivates the name of MΦ. The Schwarz Inequality was first obtained
in a special case by Kadison in [26], that’s why sometimes it is called the
Kadison–Schwarz Inequality. A modern and short proof is available in [10],
which also points out its dilation theory substance, as a consequence of the
Stinespring’s Dilation Theorem [34].
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Theorem 2.1. Let Φ: A → B be a contractive completely positive map. Then:
(1) (The Schwarz Inequality) Φ(a)∗Φ(a) ≤ Φ(a∗a) for all a ∈ A.
(2) (The Multiplicativity Property) Let a ∈ A. Then:

(i) Φ(a∗a) = Φ(a)∗Φ(a) if and only if Φ(ba) = Φ(b)Φ(a) for all b ∈ A.
(ii) Φ(aa∗) = Φ(a)Φ(a)∗ if and only if Φ(ab) = Φ(a)Φ(b) for all b ∈ A.

Consequently,

MΦ = {a ∈ A | Φ(ab) = Φ(a)Φ(b), Φ(ba) = Φ(b)Φ(a), for all b ∈ A}. (2.3)

(3) The multiplicative domain MΦ defined at (2.2) is a C∗-subalgebra of A
and it coincides with the largest C∗-subalgebra C of A such that Φ|C : C →
B is a ∗-homomorphism.

Actually, the Schwarz Inequality is true under the more general condition
that Φ is 2-positive, while the Multiplicativity Property holds for 4-positive
maps: see also [31].

We are interested in fixed points of positive maps between C∗-algebras.
Given a C∗-algebra A with unit e, let Φ: A → A be a linear map that is unital
and positive. We consider the set of the fixed points of Φ

AΦ = {a ∈ A | Φ(a) = a}, (2.4)

of all fixed points of Φ and it is easy to see that AΦ is an operator system.
Another set of interest is the bimodule domain

I(Φ) = {a ∈ A | Φ(ab) = aΦ(b), Φ(ba) = Φ(b)a, for all b ∈ A}, (2.5)

which is a C∗-subalgebra of A containing the unit e. Clearly,

I(Φ) ⊆ AΦ ∩ MΦ. (2.6)

On the other hand, if Φ is completely positive and contractive, by Theo-
rem 2.1.(2) we have

AΦ ∩ MΦ = IΦ. (2.7)
As shown in [2], even for the very particular case of a Lüders operation

Φ on B(H), where B(H) denotes the von Neumann algebra of all bounded
operators on a Hilbert space H, in general we cannot expect that the set of
fixed points of Φ coincides with its bimodule domain. In the following, we
consider a related question: given a unital positive map Φ: A → A, we want
to see whether the quality of an element a ∈ A of being fixed by Φ propagates
to the whole C∗-algebra generated by e and a, denoted by C∗(e, a). This
question is related to the concept of multiplicative domain, that is, imposing
a∗a, aa∗ ∈ AΦ and a certain “locally complete positivity” condition on Φ as
well.

Theorem 2.2. Let A be a C∗-algebra with unit e, let Φ: A → A be a unital
linear map, and let a ∈ A and a C∗-subalgebra C of A be such that a, e ∈ C and
Φ|C : C → A is completely positive. The following assertions are equivalent:

(i) a, a∗a, aa∗ ∈ AΦ, that is, Φ(a) = a, Φ(a∗a) = a∗a, and Φ(aa∗) = aa∗.
(ii) a ∈ AΦ ∩ MΦ, that is, Φ(a) = a, Φ(a∗a) = Φ(a)∗Φ(a), and Φ(aa∗)

= Φ(a)Φ(a)∗.
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(iii) Φ|C has the Bimodule Property, that is, Φ(ba) = Φ(b)a and Φ(ab) = aΦ(b)
for all b ∈ C.

(iv) C∗(e, a) ⊆ AΦ, that is, Φ(b) = b for all b ∈ C∗(e, a).

Proof. Let us first note that, since a, e ∈ C it follows that C∗(a, e) ⊆ C.
(i)⇒(ii). By assumptions, it follows

Φ(a∗a) = a∗a = Φ(a)∗Φ(a), Φ(aa∗) = aa∗ = Φ(a)Φ(a)∗,

hence, a ∈ AΦ ∩ MΦ.
(ii)⇒(iii). Since Φ|C is unital and completely positive, by Russo-Dye

Theorem it is (completely) contractive hence, by Theorem 2.1.(2), Φ|C has
the Bimodule Property and consequently Φ(ba) = Φ(b)Φ(a) = Φ(b)a and
Φ(ab) = Φ(a)Φ(b) = aΦ(b) for all b ∈ C.

(iii)⇒(iv). By assumption and using a straightforward induction argu-
ment, it follows that, for any n ∈ N0, we have

Φ(xan) = Φ(x)an, Φ(anx) = anΦ(x), x ∈ C∗(e, a), (2.8)

and, since Φ is selfadjoint, we have Φ(a∗) = Φ(a)∗ = a∗, hence

Φ(xa∗n) = Φ(x)a∗n, Φ(a∗nx) = a∗nΦ(x), x ∈ C∗(e, a). (2.9)

From (2.8) and (2.9), by a straightforward induction argument, it follows that
for any monomial p in two noncommutive variables X and Y

p(X,Y ) = Xi1Y j1 · · · XimY jm , i1, . . . , jm ∈ N0, j1, . . . , jm ∈ N0, m ∈ N,

it follows that
Φ(p(a, a∗)) = p(a, a∗), (2.10)

where p(a, a∗) ∈ A is the element obtained by formally replacing X with a and
Y with a∗. Then, by linearity, it follows that (2.10) is true for any complex
polynomials p in two noncommutative variables X and Y hence, since the
collection of all elements of form p(a, a∗) is dense in C∗(e, a) and Φ|C∗(e,a) is
continuous, assertion (iv) follows.

(iv)⇒(i). This implication is clear. �

As an application of Theorem 2.2, we record the special case of a nor-
mal element a, that is, a∗a = aa∗, when the condition of “locally complete
positivity” follows from the condition of positivity.

Corollary 2.3. Let Φ: A → A be a linear map which is positive and unital, and
let a ∈ A be a normal element. The following assertions are equivalent:

(i) Φ(a) = a and Φ(a∗a) = a∗a.
(ii) Φ(b) = b for all b ∈ C∗(e, a).

Proof. Only the implication (i)⇒(ii) requires a proof. Since a is normal it
follows that C∗(e, a) is a commutative C∗-algebra hence Φ|C∗(e,a) : C∗(e, a) →
A is completely positive, see [34], and we can apply Theorem 2.2. �
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2.2. Fixed Points of w∗-Continuous One-Parameter Semigroups

Let X be a Banach space. We consider a strongly continuous one-parameter
semigroup {Ψt}t≥0 of linear bounded operators on X, that is,

(i) Ψt : X → X is a bounded linear operator for all t ≥ 0.
(ii) ΨsΨt = Ψs+t, for all s, t ≥ 0.
(iii) Ψ0 = I.
(iv) R+ � t 	→ Ψt(x) ∈ X is continuous for each x ∈ X.

Under these assumptions, from the general theory of one-parameter semi-
groups, e.g. see Hille and Phillips [24], Dunford and Schwartz [15], the in-
finitesimal generator ψ exists as a densely defined closed operator on X, with

ψ(x) = lim
t→0+

Ψt(x) − x

t
=

d
dt

Ψt(x)|t=0, x ∈ Dom(ψ), (2.11)

and

Dom(ψ) =
{

x ∈ X | lim
t→0+

Ψt(x) − x

t
exists in X

}
. (2.12)

In addition, e.g. see Corollary VIII.1.5 in [15], the limit

ω = lim
t→∞ log ‖Ψt‖/t = inf

t>0
log ‖Ψt‖/t (2.13)

exists with the growth bound ω < ∞ and, e.g. see Theorem VIII.1.11 in [15],
for any complex number λ with Reλ > ω, the operator λI − ψ has a bounded
inverse. Also, by the proof of the Hille–Yosida–Phillips Theorem, e.g. see The-
orem VIII.1.13 in [15], we have

Ψt(x) = lim
λ→∞

e−λt
∞∑

n=0

(λ2t)n(λI − ψ)−n(x)
n!

, x ∈ Dom(ψ), t ≥ 0. (2.14)

Throughout this article, X� denotes the topological dual space of X. For
every strongly continuous one-parameter semigroup {Ψt}t≥0 of bounded linear
operators on X, the dual one-parameter semigroup {Ψ�

t}t≥0 of bounded linear
operators on X� exists, that is,

〈Ψt(x), f〉 = 〈x,Ψ�
t(f)〉, x ∈ X, f ∈ X�, t ≥ 0, (2.15)

with the following properties

(i) Ψ�
t : X� → X� is a linear bounded and w∗-continuous operator for all

t ≥ 0.
(ii) Ψ�

tΨ�
s = Ψ�

s+t, for all s, t ≥ 0.
(iii) Ψ�

0 = I.
(iv) R+ � t 	→ Ψ�

t(f) ∈ X� is w∗-continuous for each f ∈ X�.

Then, e.g. see [32], {Ψ�
t}t≥0 is a w∗-continuous semigroup of operators on X�

and hence, the w∗-infinitesimal generator ψ� exists as a w∗-closed operator on
X�, hence a closed operator on X�, with

ψ�(f) = w∗ − lim
t→0+

Ψ�
t(f) − f

t
= w∗ − d

dt
Ψ�

t(f)|t=0, (2.16)
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and

Dom(ψ�) =

{
f ∈ X� | w∗ − lim

t→0+

Ψ�
t(f) − f

t
exists in X�

}
. (2.17)

The notation we use for ψ� looks like an abuse but actually it is not: by
the Phillips’s Theorem in [32],

Dom(ψ�) = {f ∈ X� | X � f 	→ 〈x, ψ(f)〉 is continuous }, (2.18)

and
〈ψ(x), f〉 = 〈x, ψ�(f)〉, x ∈ Dom(ψ), f ∈ Dom(ψ�), (2.19)

hence, the w∗-infinitesimal generator ψ� of the dual w∗-continuous semigroup
{Ψ�

t}t≥0 on X� is indeed the dual operator of the infinitesimal generator ψ
of the strongly continuous semigroup {Ψt}t≥0 on X and, consequently, the
notation for ψ� is fully justified.

In addition, one of the major differences between the two infinitesimal
generators ψ and ψ� is that Dom(ψ�) may not be dense in X�, although it is
always w∗-dense, while Dom(ψ) is always dense in X.

The following theorem shows that joint fixed points of the dual one-
parameter semigroup are exactly the elements of the null space of the dual
infinitesimal generator. We think that this result might be known but we could
not find any reference for it.

Theorem 2.4. Let {Ψt}t≥0 be a strongly continuous semigroup of operators on
a Banach space X, let {Ψ�

t}t≥0 be the associated dual w∗-continuous semigroup
of operators on X�, and ψ and, respectively, ψ�, their infinitesimal generators.
Considering f ∈ X�, the following assertions are equivalent:

(i) Ψ�
t(f) = f for all real t ≥ 0.

(ii) f ∈ Ker(ψ�), that is, f ∈ Dom(ψ�) and ψ�(f) = 0.

Proof. (i)⇒(ii). This is a clear consequence of (2.16) and (2.17).
(ii)⇒(i). Let λ > max{ω, 0}, where ω is defined as in (2.13). Since ψ�

is the dual operator of ψ, as in (2.19) and (2.18), and λI − ψ is boundedly
invertible, it follows that λI −ψ� is boundedly invertible, e.g. see Theorem 1.5
in [32]. Consequently, for any x ∈ Dom(ψ) and any g ∈ X� we have
〈

x, e−λt
∞∑

n=0

(λ2t)(λI − ψ�)−n(g)
n!

〉
=

〈
x, e−λt

( ∞∑

n=0

(λ2t)(λI − ψ)−n

n!
)�(g)

〉

=

〈
e−λt

∞∑

n=0

(λ2t)(λI − ψ)−n(x)
n!

, g

〉

hence, by (2.14) it follows that

lim
λ→∞

〈
x, e−λt

∞∑

n=0

(λ2t)(λI − ψ�)−n(g)
n!

〉
= 〈Ψt(x), g〉. (2.20)
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On the other hand, from ψ�(f) = 0 it follows that (λI − ψ�)(f) = λf
hence (λI − ψ�)−1(f) = 1

λf . By induction we obtain

(λI − ψ�)−n(f) =
1
λn

f, n ≥ 0. (2.21)

Consequently, it follows that
∞∑

n=0

(λ2t)n(λI − ψ�)−n(f)
n!

=
∞∑

n=0

(λt)n

n!
f = eλtf,

hence, letting g = f in (2.20), it follows that

〈x,Ψ�
t(f)〉 = 〈Ψt(x), f〉 = lim

λ→∞
〈x, e−λteλtf〉 = 〈x, f〉,

and then, since Dom(ψ) is dense in X, it follows that Ψ�
t(f) = f for all

t ≥ 0. �

2.3. An Ergodic Theorem in von Neumann Algebras

We first recall some definitions, in addition to those in Sect. 2.1. For details,
see, e.g. [31]. Let A and B be C∗-algebras and let V ⊆ A and W ⊆ B be
subspaces. For any linear map Φ: V → W and any natural number n, the nth-
order amplification Φ(n) : V ⊗Mn → W ⊗Mn can be defined as Φ(n) = Φ⊗ In,
where In denotes the identity operator on Mn. Explicitly, by means of the
canonical identifications Mn(V) = V ⊗Mn and Mn(W) = W ⊗Mn, this means

Φ(n)([vi,j ]ni,j=1) = [Φ(vi,j)]ni,j=1, [vi,j ]ni,j=1 ∈ Mn(V). (2.22)

Note that, by the embeddings Mn(V) ⊆ Mn(A) and Mn(W) ⊆ Mn(B), it
follows that Mn(V) and, respectively, Mn(W) have canonical norms induced
by the C∗-norms on Mn(A) and Mn(B). Consequently, we can let ‖Φ(n)‖
denote the corresponding operator norm. Clearly,

‖Φ‖ = ‖Φ(1)‖ ≤ ‖Φ(2)‖ ≤ · · · ≤ ‖Φ(n)‖ ≤ ‖Φ(n+1)‖ ≤ · · · . (2.23)

The map Φ is called completely bounded if

‖Φ‖cb = sup
n≥1

‖Φ(n)‖ < ∞. (2.24)

Let CB(V,W) denote the vector space of all completely bounded maps
Φ: V → W. Also, such a map Φ is called completely contractive if ‖Φ‖cb ≤ 1.
A linear map Φ: V → V is called an idempotent if Φ2 = ΦΦ = Φ and, it
is called a projection if it is completely contractive and idempotent. A sub-
space V ⊆ B(H), for some Hilbert space H, is called injective if there exists a
projection Φ: B(H) → B(H) with range equal to V.

A linear map Φ: A → A is called a conditional expectation if it is positive,
idempotent, and it has the following bimodule property: Φ(ar) = Φ(a)r and
Φ(ra) = rΦ(a), for all a ∈ A and all r ∈ Ran(Φ). By a classical result of
Tomyama [36], a C∗-algebra A ⊆ B(H) is injective if and only if there is a
conditional expectation in B(H) with range equal to A.
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For a semigroup Φ = {Φt}t≥0 of unital, completely positive maps on a
C∗-algebra M, we consider MΦ the set of joint fixed points of Φ, that is,

MΦ =
⋂

t≥0

MΦt = {a ∈ M | Φt(a) = a, for all t ≥ 0}, (2.25)

see Sect. 2.1, which is an operator system, and the joint bimodule domain

I(Φ) =
⋂

t≥0

I(Φt)

= {a ∈ M | Φt(ab) = aΦt(b), Φt(ba) = Φt(b)a, for all b ∈ A, t ≥ 0},
(2.26)

which is clearly a C∗-subalgebra of M and included in MΦ. In case M is a
von Neumann algebra and each Φt is w∗-continuous, MΦ is w∗-closed and
I(Φ) is a von Neumann subalgebra of M.

Theorem 2.5. Let M be a von Neumann algebra and Φ = {Φt}t≥0 be a w∗-
continuous semigroup of w∗-continuous, unital, completely positive maps on
M. Then:

(a) There exists a completely positive, unital, idempotent map Ψ: M → M
such that the set of joint fixed points MΦ is the range of Ψ.

(b) The following assertions are equivalent:
(i) MΦ is stable under multiplication.
(ii) MΦ is a von Neumann algebra.
(iii) MΦ = I(Φ).
(iv) Ψ is a conditional expectation.

(c) If M = B(H), for some Hilbert space H, and B(H)Ψ is stable under
multiplication, then B(H)Ψ is an injective von Neumann algebra.

Proof. (a) For each real number t > 0, let Ψt : M → M be defined by

Ψt =
1
t

∫ t

0

Φsds. (2.27)

The integral converges with respect to the point-w∗-topology, that is, for all
a ∈ M and all f ∈ M∗, we have

〈Ψt(a), f〉 =
1
t

∫ t

0

〈Φs(a), f〉ds.

It is easy to see that Ψt is w∗-continuous, unital, and completely positive and
hence, by Russo–Dye’s Theorem, a completely contractive map for each t > 0.
By Alaoglu’s Theorem, the closed unit ball of M is w∗-compact, hence by
Tychonov’s Theorem the closed unit ball of CB(M) is compact with respect
to the point-w∗-topology. Consequently, considering the sequence {Ψn}n∈N,
there exists a subsequence {Ψkn

}n∈N such that

w∗- lim
n→∞ Ψkn

(a) = Ψ(a), a ∈ M,
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for some linear map Ψ: M → M. Clearly, Ψ is unital and completely positive.
Let t ≥ 0 be an arbitrary real number and n ∈ N be large enough such that
t ≤ n. Then

Ψn − ΦtΨn =
1
n

(∫ n

0

Φsds −
∫ n

0

Φt+sds

)

=
1
n

(∫ n

0

Φsds −
∫ t+n

t

Φsds

)

=
1
n

(∫ t

0

Φsds −
∫ t+n

n

Φsds

)

hence

‖Ψn − ΦtΨn‖ ≤ 1
n

(∫ t

0

‖Φs‖ds +
∫ t+n

n

‖Φs‖ds
)

=
2t

n
−−−−→
n→∞ 0. (2.28)

On the other hand, using the representation

ΦtΨ − Ψ = (ΦtΨ − ΦtΨkn
) + (ΦtΨkn

− Ψkn
) + (Ψkn

− Ψ), n ∈ N, (2.29)

and taking into account that, for all a ∈ M, by the defining property of the
subsequence (Ψkn

)n∈N, we have

(ΦtΨ − ΦtΨkn
)(a) = Φt(Ψ(a) − Ψkn

(a)) w∗
−−−−→
n→∞ 0,

and then of (2.28), it follows that ΦtΨ = Ψ, for all t ≥ 0. Similarly we obtain
ΨΦt = Ψ for all t ≥ 0, hence

ΦtΨ = ΨΦt = Ψ, for all t ≥ 0. (2.30)

From (2.30) we get

Ψkn
(Ψ(a)) =

1
kn

∫ kn

0

Φs(Ψ(a))ds = Ψ(a), a ∈ M, n ∈ N,

and then letting n → ∞ it follows that ΨΨ = Ψ, hence Ψ is an idempotent.
If a ∈ MΦ is arbitrary, then Ψkn

(a) = a for all n ∈ N whence, letting n → ∞
it follows Ψ(a) = a. We have proven that MΦ ⊆ Ran(Ψ). Since, by (2.30),
Ran(Ψ) ⊆ MΦ, we have MΦ = Ran(Ψ).

(b) Only the equivalence of (i) and (iv) requires a proof.
Assume firstly that MΦ is stable under multiplication. By the result at

item (a), it follows that Ran(Ψ) = MΦ is a von Neumann algebra. Then, for
arbitrary a ∈ Ran(Ψ),

Ψ(a)∗Ψ(a) = a∗a = Ψ(a∗a), Ψ(a)Ψ(a)∗ = aa∗ = Ψ(aa∗),

hence, by Theorem 2.1, for any b ∈ M we have

Ψ(ab) = Ψ(a)Ψ(b) = aΨ(b), Ψ(ba) = Ψ(b)Ψ(a) = Ψ(b)a,

consequently Ψ is a conditional expectation.
Conversely, if Ψ is a conditional expectation, then MΦ = Ran(Ψ) is a

C∗-algebra, hence stable under multiplication.
(c) This is a consequence of the results proven at items (a) and (b). �
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3. Dynamics for Markov Processes: The Real Commutative
Case

In this section, we consider the setting of dynamics of Markov processes in the
framework of “stochastic mechanics” in the sense of [7] and [6]. As explained
there, many concepts are obtained by analogy with quantum systems and here
we show that the same mathematical tools we use for the analysis of quantum
systems, as in Sects. 2.1 and 2.2, can be used as well for “stochastic mechanics”.

Let (X;μ) be a σ-finite measure space. A probability distribution p is an
element in L1

R
(X;μ) which is positive and ‖p‖1 = 1. An observable O is an ele-

ment in L∞
R

(X;μ), identified with the operator of multiplication O : L1
R
(X;μ)

→ L1
R
(X;μ)

(Og)(x) = O(x)g(x), g ∈ L1
R
(X;μ), x ∈ X.

The expected value of the observable O with respect to a probability distribu-
tion g is

E(O; g) = 〈O, g〉 =
∫

X

O(x)g(x)dμ(x), (3.1)

the variance of O with respect to g is

V (O; g) = 〈O2, g〉 − 〈O, g〉2, (3.2)

while the standard deviation of O with respect to g is

σ(O; g) =
√

〈O2, g〉 − 〈O, g〉2. (3.3)

A stochastic operator is a bounded linear operator U : L1
R
(X;μ) →

L1
R
(X;μ) that maps probability distributions to probability distributions,

equivalently, U is positive, that is,

if g ∈ L1
R
(X;μ) and g ≥ 0 then Ug ≥ 0,

and ∫

X

(Ug)(x)dμ(x) =
∫

X

g(x)dμ(x), for all g ∈ L1
R
(X;μ).

The latter condition can also be written as

〈1, Ug〉 = 〈1, g〉, g ∈ L1
R
(X;μ).

A bounded linear operator T : L∞
R

(X;μ) → L∞
R

(X;μ) is called a Markov
map if it is w∗-continuous, positive, in the sense that for any f ∈ L∞

R
(X;μ)

with f ≥ 0 it follows Tf ≥ 0, and unital, that is, T1 = 1.
Given any bounded linear operator U : L1

R
(X;μ) → L1

R
(X;μ), there exists

its dual operator U � : L∞
R

(X;μ) → L∞
R

(X;μ), which is linear and bounded,
defined by

〈Ug, f〉 =
∫

X

(Ug)(x)f(x)dμ(x) =
∫

X

g(x)(U �f)(x)dμ(x)

= 〈g, U �f〉, f ∈ L1
R
(X;μ), g ∈ L∞

R
(X;μ).

In addition, U � is w∗-continuous. If U : L1
R
(X;μ) → L1

R
(X;μ) is a stochastic

operator, then its dual U � : L∞
R

(X;μ) → L∞
R

(X;μ) is a Markov operator.
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A discrete stochastic semigroup with respect to the measure space (X;μ)
is a sequence {Un}n≥0 subject to the following conditions:
(ms1) Un : L1

R
(X;μ) → L1

R
(X;μ) is stochastic for all n ≥ 0.

(ms2) Un+m = UnUm for all n,m ≥ 0.
(ms3) U0 = I.
Clearly, any discrete stochastic semigroup is of the form Un = Un, n ≥
0, where U = U1 is a stochastic operator. Considering the dual operator
U � : L∞

R
(X;μ) → L∞

R R(X;μ), which is actually a Markov operator, we can
equivalently discuss discrete Markov semigroups.

The equivalence of assertions (i), (ii), (i)′, and (ii)′ in the following the-
orem has been obtained in [7], for which we provide a proof based on Theo-
rem 2.2 of propagation of fixed points for completely positive maps, as well as
complete their theorem with two more equivalent assertions in terms of duals
of stochastic operators.

Theorem 3.1. Let (X;μ) be a σ-finite measure space, U : L1
R
(X;μ) →

L1
R
(X;μ) a stochastic operator and O ∈ L∞

R
(X;μ) an observable. The fol-

lowing assertions are equivalent:
(i) [O,U ] = 0.
(ii) For any probability distribution g on X, we have 〈O,Ug〉 = 〈O, g〉 and

〈O2, Ug〉 = 〈O2, g〉.
(i)′ [O,Un] = 0 for all n ≥ 0.
(ii)′ For any probability distribution g on X, the expected values of O and O2

with respect to Ung do not depend on n ≥ 0.
(i)′′ [O,U �] = 0.
(ii)′′ U �(O) = O and U �(O2) = O2.

Proof. The equivalences (i)⇔(i)′, (ii)⇔(ii)′, (i)⇔(i)′′, and (ii)⇔(ii)′′ are clear.
(i)′′ ⇒(ii)′′. Assume that [O,U �] = 0 hence, for any f ∈ L∞

R
(X;μ) we

have OU �(f) = U �(Of). Letting f = 1 and taking into account that U �(1) = 1,
it follows U �(O) = O, and then letting f = O, we have U �(O2) = OU �(O) =
O2.

(ii)′′ ⇒(i)′′. The spaces L1
R
(X;μ) and L∞

R
(X;μ) are naturally embedded

in L1
C
(X;μ) and, respectively, in L∞

C
(X;μ). The real stochastic operator U can

be naturally lifted to a complex stochastic operator U : L1
C
(X;μ) → L1

C
(X;μ).

More precisely, since

L1
C
(X;μ) = L1

R
(X;μ) ⊕ iL1

R
(X;μ),

we can define Ũ : L1
C
(X;μ) → L1

C
(X;μ) by

Ũ(g + if) = Ug + iUf, f, g ∈ L1
R
(X;μ),

and observe that Ũ has the following two properties:

if g ∈ L1
C
(X;μ) and g ≥ 0 then Ũg ≥ 0,

and ∫

X

(Ũg)(x)dμ(x) =
∫

X

g(x)dμ(x), for all g ∈ L1
C
(X;μ).
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Then, Ũ � : L∞
C

(X;μ) → L∞
C

(X;μ) is unital and positive. Since L∞
C

(X;μ) is a
commutative C∗-algebra, Ũ � is completely positive, cf. [34].

On the other hand, the observable O can be naturally viewed as a real
valued function in L∞

C
(X;μ) and, if U �(O) = O and U �(O2) = O2, it follows

that Ũ �(O) = O and Ũ �(O2) = O2. Now, we can use Theorem 2.2 and conclude
that Ũ �(Of) = OŨ �(f) for all f ∈ L∞

C C(X;μ), hence [O, Ũ ] = 0 and then
[O,U ] = 0. �

A continuous stochastic semigroup on (X;μ) is a strongly continuous
semigroup of stochastic operators on L1

R
(X;μ). The infinitesimal generator of

{Ut}t≥0 is the closed and densely defined operator H in L1
R
(X;μ), see Sect. 2.2.

Let {Ut}t≥0 be a continuous stochastic semigroup with respect to (X;μ) and
H its infinitesimal generator. Then, {U �

t }t≥0 is a w∗-continuous semigroup
of Markov maps. The w∗-infinitesimal generator of {U �

t }t≥0 is the w∗-closed,
hence closed, and w∗-densely defined (but, in general, not densely defined)
operator H� in L∞

R
(X;μ) which, by Phillips Theorem [32], can be described

by

H�f = w∗- lim
t→0+

Utf − f

t
, f ∈ Dom(H�),

where

Dom(H�) =

{
f ∈ L∞

R
(X;μ) | w∗- lim

t→0+

U �
t f − f

t
exists in L∞

R
(X;μ)

}
.

The equivalence of assertions (i) and (ii) in the next theorem has been
obtained in [7], which we now obtain as a consequence of Theorem 2.2, via
Theorem 3.1. We complete their theorem with four more equivalent assertions
in terms of infinitesimal generators and their duals. The proofs are very sim-
ilar with those in Theorem 6.4, and we prefer to provide the details for the
more general theorem, in particular, the equivalence of assertions (ii)′ and (iii)′

follows from Theorem 2.4.

Theorem 3.2. Let (X;μ) be a σ-finite measure space, {Ut}t≥0 a continuous
stochastic semigroup with respect to (X;μ), H its infinitesimal generator, and
O ∈ L∞

R
(X;μ) an observable. The following assertions are equivalent:

(i) [O,Ut] = 0 for all real t ≥ 0.
(ii) For every probability distribution g on (X;μ), both the expected value and

the standard deviation of O with respect to Utg are constant with respect
to t ≥ 0.

(iii) [O,H] = 0, in the sense that the operator of multiplication with O leaves
Dom(H) invariant and OHg = HOg for all g ∈ Dom(H).

(i)′ [O,U �
t ] = 0 for all real t ≥ 0.

(ii)′ U �
t (O) = O and U �

t (O2) = O2 for all real t ≥ 0
(iii)′ Both O and O2 are in the kernel of H�, that is, O,O2 ∈ Dom(H�) and

H�(O) = H�(O2) = 0.
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4. Constants of Dynamical Quantum Systems

We now consider the setting of dynamical quantum systems closer to the set-
ting in [21]. Let H be a Hilbert space, let B(H) be the von Neumann algebra
of all bounded linear operators T : H → H and let B1(H) be the trace-class,
that is, the collection of all operators T ∈ B(H) subject to the condition
‖T‖1 = tr(|T |) < +∞, where |T | = (T ∗T )1/2 denotes the module of T and tr
denotes the usual normal faithful semifinite trace on B(H). Let D(H) denote
the set of states, or density operators, with respect to H, that is, the set of all
positive elements ρ ∈ B1(H) with tr(ρ) = ‖ρ‖1 = 1.

The map Ψ: B1(H) → B1(H) is called a quantum operation, if it is com-
pletely positive, see Sect. 2.1 for definition, and trace-preserving. Note that the
trace-class B1(H) is considered here as a ∗-subspace of the C∗-algebra B(H)
and, consequently, the concept of completely positive map on B1(H) makes
perfectly sense.

We note that the definition of a quantum operation we adopt here is a
bit more restrictive than usual. In quantum information theory, they use the
term of a quantum communication channel, or briefly a quantum channel, for
what we call here a quantum operation.

For a fixed Banach space X, recall that we denote its topological dual
space by X� and the duality map by X × X� � (x, f) 	→ 〈x, f〉, see Sect. 2.2.
The topics of this article refer to the Banach space (B1(H), ‖ ·‖1) and its topo-
logical dual Banach space (B(H), ‖ · ‖) with the duality map B1(H) × B(H) �
(T, S) 	→ 〈T, S〉 = tr(TS), e.g. see Theorem 19.2 in [12]. In particular, for
a quantum operation Ψ when viewed as a trace-preserving completely posi-
tive map Ψ: B1(H) → B1(H), one usually refers to the Schrödinger picture,
to which the Heisenberg picture is corresponding by duality: the dual map
Ψ� : B(H) → B(H) is defined by

〈Ψ(T ), S〉 = tr(Ψ(T )S) = tr(TΨ�(S)) = 〈T,Ψ�(S)〉, T ∈ B1(H), S ∈ B(H),

and it is a ultraweakly continuous (w∗-continuous) completely positive and
unital linear map.

There are many quantum operations. For example, if {Ak | k ∈ N} is
a collection of operators in B(H) such that

∑∞
k=1 AkA∗

k = I, then the linear
map B1(H) � T 	→

∑∞
k=1 A∗

kTAk ∈ B1(H) is a quantum operation. According
to Kraus [27,28], if H is separable, then any quantum operation with respect
to H has this form.

For a fixed Hilbert space H and A ∈ B(H), we have the left multi-
plication operator LA : B1(H) → B1(H) defined by LA(T ) = AT , for all
T ∈ B1(H), and the right multiplication operator RA : B1(H) → B1(H) defined
by RA(T ) = TA, for all T ∈ B1(H). Observe that, exactly with the same for-
mal definition, we may have the left multiplication operator LA : B(H) → B(H)
and, respectively, RA : B(H) → B(H). We will not use different notations for
these operators, hoping that which is which will be clear from the context. For
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example, when viewing LA : B1(H) → B1(H), its dual L�
A : B(H) → B(H) coin-

cides with the operator RA : B(H) → B(H). Also, considering MA(T ) = A∗TA,
the one-element quantum measurement operator, then MA = LA∗RA.

A family indexed on the set of nonnegative real numbers Ψ = {Ψt}t≥0

is called a dynamical quantum system, sometimes called a dynamical quantum
stochastic system, with respect to a Hilbert space H, if it is a strongly con-
tinuous semigroup of quantum operations Ψt : B1(H) → B1(H), t ≥ 0. For a
dynamical quantum system Ψ, we consider its infinitesimal generator ψ, see
Sect. 2.2 for the general setting, which is a densely defined closed operator on
the Banach space B1(H). This definition makes a representation of the dynam-
ical quantum system Ψ into the Schrödinger picture. Transferring a dynamical
quantum system Ψ into the Heisenberg picture, we get its dual, usually called
dynamical quantum Markov system, Ψ� = {Ψ�

t}t≥0 which is a w∗-continuous
one-parameter semigroup of w∗-continuous, unital, completely positive linear
maps Ψ�

t : B(H) → B(H) to which one associates its w∗-infinitesimal genera-
tor ψ�, as in (2.16) and (2.17). Here, an important issue is that by Phillips’s
Theorem [32], ψ� is indeed the dual of ψ.

Note that our definitions are more general than those usually considered
in most mathematical models of quantum open systems, e.g. see [18,21] and
the rich bibliography cited there, which instead of strong continuity requires
the (operator) norm continuity, that is, the mapping R+ � t 	→ Ψt ∈ L(B1(H))
should be continuous with respect to the operator norm of L(B1(H)).

An operator A ∈ B(H) is called a constant of the dynamical quantum
system Ψ = {Ψt}t≥0, if, for any density operator ρ ∈ D(H), tr(Ψt(ρ)A) does
not depend on t ≥ 0, equivalently, tr(Ψt(ρ)A) = tr(ρA) for all t ≥ 0. Clearly,
A is a constant of Ψ if and only if for any T ∈ B1(H) we have tr(Ψt(T )A) =
tr(TA) for all t ≥ 0, equivalently, tr(TΨ�

t(A)) = tr(TA) for all T ∈ B1(H) and
all t ≥ 0. Consequently, A ∈ B(H) is a constant of Ψ if and only if Ψ�

t(A) = A

for all t ≥ 0, that is, A is a fixed point of Ψ�
t for all t ≥ 0. Formally, letting CΨ

denote the set of constants of Ψ

CΨ = {A ∈ B(H) | for all ρ ∈ D(H), tr(Ψt(ρ)A) is independent of t}
= {A ∈ B(H) | tr(Ψt(ρ)A) = tr(ρA) for all ρ ∈ D(H) and all t ≥ 0}

= {A ∈ B(H) | Ψ�
t(A) = A for all t ≥ 0} = B(H)Ψ

�

, (4.1)

where the last equality is actually the definition of B(H)Ψ
�

as the set of all
joint fixed points of Ψ�

t, t ≥ 0. In addition, as a consequence of Theorem 2.4,
we have

CΨ = B(H)Ψ
�

= Ker(ψ�) = {T ∈ B(H) | T ∈ Dom(ψ�), ψ�(T ) = 0}. (4.2)

Theorem 4.1. Let Ψ = {Ψt}t≥0 be a dynamical quantum stochastic system
with respect to the Hilbert space H, let ψ denote its infinitesimal generator,
and let A ∈ B(H). The following assertions are equivalent:

(i) [LA,Ψt] = 0 for all t ≥ 0.
(ii) A and A∗A are constants of Ψ.
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(iii) [RA,Ψ�
t] = 0 for all t ≥ 0.

(iv) A and A∗A are joint fixed points of Ψ�
t for all t ≥ 0.

(v) [LA, ψ] = 0, that is, LA leaves Dom(ψ) invariant and Aψ(T ) = ψ(AT )
for all T ∈ Dom(ψ).

(vi) A,A∗A ∈ Ker(ψ�), i.e., A,A∗A ∈ Dom(ψ�) and ψ�(A) = ψ�(A∗A) = 0.

Proof. In order to prove the equivalence of (i) through (iv), we show that, by
fixing Ψ = Ψt for some t ∈ [0,+∞), the following assertions are equivalent:

(i) [LA,Ψ] = 0.
(ii) A and A∗A are constants of Ψ.
(iii) [RA,Ψ�] = 0.
(iv) A and A∗A are fixed points of Ψ�.

(i)⇔(iii) and (ii)⇔(iv) are clear.
(iii)⇒(iv). If [RA,Ψ�] = 0, then Ψ�(SA) = Ψ�(S)A for all S ∈ B(H).

Letting S = I, we get Ψ�(A) = A and, since Ψ� is positive, hence selfad-
joint, it follows that Ψ�(A∗) = A∗. Then, letting S = A∗, we get Ψ�(A∗A) =
Ψ�(A∗)A = A∗A.

(iv)⇒(iii). Assume that Ψ�(A) = A and Ψ�(A∗A) = A∗A. Then, Ψ�(A∗)
= A∗ and Ψ�(A∗A) = A∗A = Ψ�(A∗)Ψ(A). By Theorem 2.1.(2).(i), we have
Ψ�(TA) = Ψ�(T )Ψ�(A) = Ψ�(T )A for all T ∈ B(H), hence [RA,Ψ�] = 0.

The equivalence of assertions (iv) and (vi) follows from (4.2). Finally, the
equivalence of assertions (i) and (v) is a straightforward consequence of the
definition of the infinitesimal generator ψ. �

There is a symmetric variant to Theorem 4.1, in which LA and RA are
interchanged and, correspondingly, A∗A and AA∗ are interchanged. We leave
the reader to formulate it.

In order to substantiate further definitions and questions, we record some
natural definitions from quantum probability in analogy with those from clas-
sical probability, compared with (3.1)–(3.3). Let A be a bounded observable
with respect to the Hilbert space H, that is, A ∈ B(H) and A = A∗. For any
state ρ ∈ D(H), one considers the expected value of A in the state ρ,

E(A; ρ) = 〈ρ,A〉 = tr(ρA), (4.3)

the variation of A in the state ρ,

V (A; ρ) = 〈ρ,A2〉 − 〈ρ,A〉2 = tr(ρA2) − tr(ρA)2, (4.4)

and its standard deviation,

σ(A; ρ) =
√

〈ρ,A2〉 − 〈ρ,A〉2 =
√

tr(ρA2) − tr(ρA)2. (4.5)

In case of a bounded observable A ∈ B(H)+, with expected value, varia-
tion, and standard deviation to an arbitrary state ρ ∈ D(H) as in (4.3) through
(4.5), Theorem 4.1 can be reformulated to a noncommutative analogue of the
Noether-type theorem as in [7], see Theorem 3.1.

Corollary 4.2. Let Ψ = {Ψt}t≥0 be a dynamical quantum stochastic system
with respect to the Hilbert space H, let ψ denote its infinitesimal generator,
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and let A ∈ B(H), A = A∗, be a bounded observable. The following assertions
are equivalent:

(i) [LA,Ψt] = 0 for all t ≥ 0.
(i)′ [RA,Ψt] = 0 for all t ≥ 0.
(ii) In any state ρ ∈ D(H), A and A2 have expected values with respect to Ψt

independent of t ≥ 0.
(ii)′ In any state ρ ∈ D(H), A has expected value and standard deviation with

respect to Ψt independent of t ≥ 0.
(iii) [RA,Ψ�

t] = 0 for all t ≥ 0.
(iii)′ [LA,Ψ�

t] = 0 for all t ≥ 0.
(iv) A and A2 are joint fixed points of Ψ�

t for all t ≥ 0.
(v) [LA, ψ] = 0, that is, LA leaves Dom(ψ) invariant and Aψ(T ) = ψ(AT )

for all T ∈ Dom(ψ).
(v′) [RA, ψ] = 0, that is, RA leaves Dom(ψ) invariant and ψ(T )A = ψ(TA)

for all T ∈ Dom(ψ).
(vi) A,A2 ∈ Ker(ψ�), that is, A,A2 ∈ Dom(ψ�) and ψ�(A) = ψ�(A2) = 0.

In order to put the investigations from [21] in a perspective closer to our
approach, we now consider a scale of sets of constants of Ψ, more precisely, let

CΨ
2 = {A ∈ B(H) | A,A∗A,AA∗ ∈ CΨ}, (4.6)

CΨ
p = {A ∈ B(H) | p(A,A∗) ∈ CΨ for all complex polynomials p

in two noncommutative variables}, (4.7)

CΨ
c = {A ∈ B(H) | C∗(I,A) ⊆ CΨ}, (4.8)

CΨ
w = {A ∈ B(H) | W ∗(A) ⊆ CΨ}, (4.9)

where C∗(I,A) denotes the C∗-algebra generated by I and A, while W ∗(A)
denotes the von Neumann algebra generated by A. Transferring these classes
in the Heisenberg picture, we have

CΨ
2 = {A ∈ B(H) | A,A∗A,AA∗ ∈ B(H)Ψ

�} = B(H)Ψ
�

2 , (4.10)

CΨ
p = {A ∈ B(H) | p(A,A∗) ∈ B(H)Ψ

�

for all complex polynomials p

in two noncommutative variables} = B(H)Ψ
�

p , (4.11)

CΨ
c = {A ∈ B(H) | C∗(I,A) ⊆ B(H)Ψ

�} = B(H)Ψ
�

c , (4.12)

CΨ
w = {A ∈ B(H) | W ∗(A) ⊆ B(H)Ψ

�} = B(H)Ψ
�

w . (4.13)

It is easy to see that CΨ is an operator system, that is, a vector space stable
under taking adjoints and containing the identity I, and w∗-closed, hence
closed with respect to the operator norm as well. As any other operator system,
CΨ is linearly generated by the set of its positive elements but, in general, not
stable under multiplication, cf. [3,4,9].

On the other hand, as in (4.6)–(4.9), we have the joint versions of the
scale of sets of constants

CΨ
w ⊆ CΨ

c ⊆ CΨ
p ⊆ CΨ

2 ⊆ CΨ,



Vol. 19 (2018) Symmetries Versus Conservation Laws 1805

in the Schrödinger picture, more precisely,

CΨ
• =

⋂

t≥0

CΨt• , where • = 2,p, c,w, (4.14)

and, as in (4.10)–(4.13), the sets of joint fixed points

B(H)Ψ
�

w ⊆ B(H)Ψ
�

c ⊆ B(H)Ψ
�

p ⊆ B(H)Ψ
�

2 ⊆ B(H)Ψ
�

,

in the Heisenberg picture,

B(H)Ψ
�

• =
⋂

t≥0

B(H)Ψ
�
t• , where • = 2,p, c,w. (4.15)

CΨ = B(H)Ψ is a w∗-closed operator system and w∗-closed, hence closed with
respect to the operator norm on B(H) as well, linearly generated by the set of
its positive elements but, in general, not stable under multiplication.

Theorem 4.3. Let Ψ be a dynamical quantum system with respect to the Hilbert
space H.
(a) For any dynamical quantum system Ψ, we have CΨ

2 = CΨ
p = CΨ

c = CΨ
w

and this set is a von Neumann algebra.
(b) The following assertions are equivalent:

(i) CΨ is stable under multiplication.
(ii) CΨ = CΨ

2 .
(iii) CΨ is a C∗-algebra.
(iv) CΨ is a von Neumann algebra.

Proof. Clearly, without loss of generality, it is sufficient to prove these equiv-
alences for the case of a single quantum operation Ψ.

(a) Clearly, CΨ
2 ⊇ CΨ

p ⊇ CΨ
c ⊇ CΨ

w . Due to the density of the set of
all operators p(A,A∗), where p is an arbitrary complex polynomial in two
noncommutative variables, in C∗(I,A), the w∗-density of C∗(I,A) in W ∗(A),
as well as the continuity and w∗-continuity of the map A 	→ tr(Ψ(ρ)A), we have
the equality CΨ

p = CΨ
c = CΨ

w . On the other hand, using the dual representations
as in (4.10) and (4.12), from Theorem 2.2 we obtain CΨ

2 = CΨ
c .

In order to prove that this set is a von Neumann algebra, it is preferable to
use its representation in the Heisenberg picture as B(H)Ψ

�

2 , see (4.10). Since Ψ�

is positive it is selfadjoint, hence B(H)Ψ
�

2 is stable under taking the involution
A 	→ A∗. If A,B ∈ B(H)Ψ

�

2 , by Theorem 2.2 we have

Ψ�(AB) = AΨ�(B) = AB, (4.16)

hence B(H)Ψ
�

2 is stable under multiplication. On the other hand,

Ψ�((A + B)∗(A + B)) = Ψ�(A∗A + A∗B + B∗A + B∗A)

= Ψ�(A∗A) + Ψ�(A∗B) + Ψ�(B∗A) + Ψ�(B∗A)

hence, taking into account of (4.16),

= A∗A + A∗B + B∗A + B∗A = (A + B)∗(A + B).
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Similarly, we prove that (A + B)(A + B)∗ is a fixed point of Ψ�. Since clearly
A + B is a fixed point of Ψ�, it follows that B(H)Ψ

�

2 is stable under addition
as well. On the other hand, since Ψ� is w∗-continuous, it follows that B(H)Ψ

�

2

is a von Neumann algebra.
(b) This is actually a reformulation of Lemma 2.2 in [2]. �

Remarks 4.4. (a) The main theorem in [21] states that, for a dynamical quan-
tum (stochastic) system Ψ under two additional constraints, namely, that the
semigroup is (operator) norm continuous and that there exists a stationary
strictly positive density operator, that is, there exists ρ ∈ B1(H)+ that is
strictly positive and such that Ψt(ρ) = ρ for all real t ≥ 0, then CΨ = B(H)Ψ

�

is a von Neumann algebra. This theorem remains true under the general as-
sumption that the semigroup Ψ is strongly continuous: we use Theorem 4.3
while the existence of a stationary strictly positive density operator ρ implies
the existence of a normal faithful stationary state ω(T ) = tr(ρT ), T ∈ B(H),
and then Theorem 2.3 in [2].

(b) In case the dynamical quantum system Ψ is (operator) norm contin-
uous, the infinitesimal generator ψ is bounded and, by a result of Lindblad
[29] (and, in the finite-dimensional case, of Gorini et al. [20]), it takes the form

ψ(S) =
∞∑

k=1

(
LkSL∗

k − 1
2
SL∗

kLk − 1
2
L∗

kLkS

)
+ i[S,H], S ∈ B1(H), (4.17)

for a collection of operators Lk ∈ B(H), k = 1, 2, . . . , and a selfadjoint operator
H ∈ B(H). It is easy to see that its adjoint, which is the infinitesimal generator
of the dual quantum Markov semigroup {Ψ�

t}t≥0, is

ψ�(T ) =
∞∑

k=1

(
L∗

kTLk − 1
2
L∗

kLkT − 1
2
TL∗

kLk

)
− i[T,H], T ∈ B(H). (4.18)

Consequently, using (4.2), it follows that the constants of Ψ are exactly the
solutions T ∈ B(H) of the equation

∞∑

k=1

(
L∗

kTLk − 1
2
L∗

kLkT − 1
2
TL∗

kLk

)
− i[T,H] = 0, (4.19)

which is an operator Riccati equation.
(c) In case the dynamical quantum system Ψ is (operator) norm contin-

uous, hence (4.17) and (4.18) hold, and Ψ has a stationary strictly positive
density operator, it is proven in [21] that the set CΨ

w coincides with the com-
mutant {H,Lk, L∗

k | k = 1, 2, . . .}′, in particular, it is a von Neumann algebra.

5. Are the Conditions on A and A2 (AA∗ and A∗A)
Independent?

We are in a position to approach the following question: to what extent are
the latter conditions on A∗A or AA∗ as in Theorem 4.1.(ii), and the latter
condition on A2 as in Corollary 4.2, really necessary? Note that a positive
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answer to this question will answer the similar question asked for the more
general case of dynamical stochastic systems as in Sect. 6, see Remark 6.7.(b).

Example 5.1. As in [2], let F2 denote the free group on two generators g1 and
g2, and let �2(F2) denote the Hilbert space of all square summable functions
f : F2 → C. In �2(F2), a canonical orthonormal basis is made up by {δx}x∈F2 ,
where δx(y) = 0 for all y ∈ F2, y �= x, and δx(x) = 1. Since F2 is infinitely
countable, it follows that �2(F2) is infinite dimensional and separable. Let
Uj ∈ B(�2(F2)) denote the unitary operators Ujδx = δgjx, x ∈ F2 and j = 1, 2.

We consider the linear bounded operator ψ : B1(�2(F2)) → B1(�2(F2))
defined by

ψ(S) = U1SU∗
1 + U2SU∗

2 − 2S, S ∈ B1(�2(F2)), (5.1)

and then let

Ψt(S) = exp(tψ(S)), S ∈ B1(�2(F2)), t ≥ 0. (5.2)

From [29], see Remark 4.4.(b), it follows that Ψ = {Ψt}t≥0 is a (operator)
norm continuous semigroup of quantum operations with respect to �2(F2).

Also, let L(F2) = W ∗(U1, U2) denote the group von Neumann algebra of
F2. We observe, e.g. by means of (4.19), that the commutant von Neumann
algebra L(F2)′ is included in the set of constants CΨ.

Lemma 5.2. Let Ψ be the dynamical quantum system as in Example 5.1. Then,
CΨ is stable under multiplication if and only if it coincides with L(F2)′.

Proof. It is sufficient to prove that, if CΨ is stable under multiplication then
it coincides with L(F2)′. To see this, assume that CΨ is stable under multi-
plication hence, by Theorem 4.3.(b), it is a von Neumann algebra. By Re-
mark 4.4.(b), it follows that for any orthogonal projection E ∈ CΨ equation
(4.19) holds which, in our special case, is

U∗
1 EU1 + U∗

2 EU2 = 2E. (5.3)

Consequently, for each vector h ∈ �2(F2) that lies in the range of E, we have

‖EU1h‖2 + ‖EU2h‖2 = 〈U∗
1 EU1h, h〉 + 〈U∗

2 EU2h, h〉 = 2〈Eh, h〉 = 2‖h‖2,

from which, after a moment of thought, we see that Ujh should lie in the range
of E for j = 1, 2. We have shown that Uj leaves the range of E invariant,
j = 1, 2. Since the same is true for the range of I − E, it follows that Uj

commutes with all orthogonal projections in the von Neumann algebra CΨ,
hence CΨ ⊆ {U1, U

∗
1 , U2, U

∗
2 }′ = L(F2)′. The converse inclusion was observed

at the end of Example 5.1. �

During the proof of the next theorem, we use terminology as in Sect. 2.3.

Theorem 5.3. On any infinite dimensional separable Hilbert space H, there
exists a (operator) norm continuous semigroup of quantum operations Φ =
{Φt}t≥0 with respect to H, for which:
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(a) The set of constants CΦ is not a von Neumann algebra, equivalently, it
is not stable under multiplication.

(b) There exists A ∈ B(H)+ which is a constant of Φ, but A2 is not.

Proof. We first show that the (operator) norm continuous dynamical quantum
system Ψ as in Example 5.1 has all the required properties. To this end, it
is sufficient to prove assertion (b), then assertion (a) will follow from Theo-
rem 4.3. By a classical result of Hakeda and Tomiyama [23], a von Neumann
algebra M is injective if and only if its commutant M′ is injective. By another
classical result of Schwartz [33], see also Tomiyama [37], the von Neumann al-
gebra L(F2) is not injective hence, its commutant L(F2)′ is not injective either.
Consequently, by Lemma 5.2 and Theorem 2.5, the set of joint fixed points
B(�2(F2))Ψ

�

= CΨ is strictly larger than the joint bimodule set I(Ψ�). Since
B(�2(F2))Ψ

�

is an operator system, hence linearly generated by its positive
cone, there exits A ∈ B(�2(F2))Ψ

� \ I(Φ) with A ≥ 0. In view of Theorem 2.1,
this implies A2 �∈ B(�2(F2))Ψ

�

.
In general, if H is an infinite dimensional separable Hilbert space, then

there exists a unitary operator U : �2(F2) → H and let Φt = U∗ΨtU , for all
real t ≥ 0. Then, Φ = {Φt}t≥0 has all the required properties. �

Theorem 5.3 answers, in the negative, also the question on whether the
condition that A2 is a joint fixed point, as in Theorem 6.4.(i), is a consequence
of the condition that A is a joint fixed point.

6. Dynamical Systems of Stochastic/Markov Maps: The
Noncommutative Case

Notation is as in Sect. 4. A linear map Ψ: B1(H) → B1(H) is called stochastic
if it maps states into states, equivalently, if it is positive, that is, Ψ(A) ≥ 0
for all A ∈ B1(H)+, and trace-preserving, that is, tr(Ψ(T )) = tr(T ) for all
T ∈ B1(H). Clearly, any quantum operation is a stochastic map.

Similarly as in Sect. 4, if Ψ is a stochastic linear map, then its dual Ψ�

is a ultraweakly continuous positive and unital linear map on B(H), called a
Markov map.

The following example shows that there exist stochastic maps that are
not quantum operations. The idea of using the transpose map for this kind of
examples can be tracked back to Arveson [3,4]. Stochastic maps that are not
quantum operations, in particular, the transpose map, play an important role
in entanglement detectors in quantum information theory, e.g. see Chruscinski
and Kossakowski [13], Horodecki et al. [25] and the rich bibliography cited
there.

Example 6.1. Let H be an arbitrary Hilbert space with dimension at least 2,
for which we fix an orthonormal basis {ej}j∈J . We consider the conjugation
operator J : H → H defined by Jh = h where, for arbitrary h =

∑
j∈J hjej ,
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we let h =
∑

j∈J hjej . Then, J is conjugate linear, conjugate selfadjoint, that
is, it has the following property

〈Jh, k〉 = 〈Jk, h〉, h, k ∈ H, (6.1)

isometric, and J2 = I.
Further on, let τ : B(H) → B(H) be defined by τ(S) = JS∗J , for all

T ∈ B(H). It is easy to see that τ is isometric, that is, ‖τ(S)‖ = ‖S‖ for all
S ∈ B(H), and that τ(I) = I. On the other hand, if S ∈ B(H)+, then

〈τ(S)h, h〉 = 〈JSJh, h〉 = 〈Jh, SJh〉 = 〈SJh, Jh〉 ≥ 0, h ∈ H,

hence τ is positive. Let us also observe that, with respect to the matrix repre-
sentation of operators in B(H) associated with the orthonormal basis {ej}j∈J ,
τ is the transpose map: if T has the matrix representation [ti,j ]i,j∈J , then τ(T )
has the matrix representation [tj,i]j,i∈J .

We claim now that τ leaves B1(H) invariant and the corresponding re-
striction map B1(H)→ B1(H) is stochastic. To see this, we first observe that if
T ∈ B1(H)+, we have τ(T ) ∈ B1(H)+, e.g. using that τ is the transpose map
with respect to the matrix representations of operators in B1(H) associated
with the orthonormal basis {ej}j∈J , and the definition of the trace in terms of
any orthonormal basis of H. Also, ‖τ(T )‖1 = tr(τ(T )) = tr(T ) = ‖T‖1. Since
any operator T ∈ B1(H) is a linear combination of four positive trace-class
operators, the claim follows.

Finally, we show that τ is not completely positive, more precisely, it is
not 2-positive. To see this, we consider the matrix units {Ei,j}i,j∈J , that is,
for any i, j ∈ J , Ei,j denote the rank 1 operator on H with Ei,jej = ei and
Ei,jek = 0 for all k �= j and observe that τ(Ei,j) = Ej,i. Since dimH ≥ 2,
there exist i, j ∈ J with i �= j. Then, consider the positive finite rank operator
in M2(B1(H)) defined by

E =
[
Ei,i Ei,j

Ej,i Ej,j

]

and observe that

τ2(E) =
[
τ(Ei,i) τ(Ei,j)
τ(Ej,i) τ(Ej,j)

]
=

[
Ei,i Ej,i

Ei,j Ej,j

]

which is not positive, e.g. see [31], p. 5. Therefore, τ is a stochastic map but
not a quantum operation.

Remarks 6.2. (1) By means of the matrix transpose interpretation of τ as in
Example 6.1, it follows easily that its dual τ � : B(H) → B(H) has the same for-
mal definition: τ(S) = JS∗J , for all S ∈ B(H), and the same matrix transpose
interpretation with respect to a fixed orthonormal basis of H.

(2) The stochastic map τ described in Example 6.1 is invertible, τ−1 = τ ,
and antimultiplicative, that is, τ(ST ) = τ(T )τ(S) for all S, T ∈ B1(H). The
same properties are shared by its dual τ �. In particular, both τ and τ � are
∗-antihomomorphisms.

(3) In addition to the map τ described in Example 6.1, many other sto-
chastic maps that are not quantum operations can be obtained by considering
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convex combinations of linear maps of type τ ◦Ψ or Ψ◦τ , where Ψ are quantum
operations.

With notation as in the previous section, we consider a strongly contin-
uous one-parameter semigroup Ψ = {Ψt}t≥0 of stochastic maps with respect
to some Hilbert space H. Under these assumptions, we observe that {Ψt}t≥0

is uniformly bounded on B1(H). Most of the following facts that we briefly
recall refer to a particular situation of the general theory of one-parameter
semigroup theory on Banach spaces, e.g. see [24] and [15], see Sect. 2.2. Given
a strongly continuous semigroup Ψ = {Ψt}t≥0 of stochastic maps with respect
to some Hilbert space H, the infinitesimal generator ψ exists as a densely de-
fined closed operator on B1(H). For every strongly continuous one-parameter
semigroup Ψ = {Ψt}t≥0 of stochastic maps, the dual one-parameter semigroup
Ψ� = {Ψ�

t}t≥0 of Markov maps exists, that is,

〈Ψt(T ), S〉 = tr(Ψt(T )S) = tr(TΨ�
t(S))

= 〈T,Ψ�
t(S)〉, T ∈ B1(H), S ∈ B(H), t ≥ 0. (6.2)

Then {Ψ�
t}t≥0 is a w∗-continuous semigroup of contractions on B(H) and

hence, the w∗-infinitesimal generator ψ� exists as a w∗-closed operator on
B(H), hence a closed operator on B(H). By Phillips’ Theorem [32], the w∗-
infinitesimal generator ψ� of the dual w∗-continuous semigroup {Ψ�

t}t≥0 of
Markov maps is indeed the dual operator of the infinitesimal generator ψ of the
strongly continuous semigroup {Ψt}t≥0 of stochastic maps and, consequently,
the notation for ψ� is fully justified.

Also, let us observe that, since Ψ�
t(I) = I, it follows that

I ∈ Dom(ψ�) and ψ�(I) = 0. (6.3)

In addition, one of the major differences between the two infinitesimal gen-
erators ψ and ψ� is that Dom(ψ�) may not be dense in B(H), although it is
always w∗-dense, while Dom(ψ) is always dense in B1(H).

From the quantum measurements point of view, given a quantum oper-
ation Ψ, it is of interest to characterise those elements A ∈ B(H) with the
property that [Ψ,MA] = 0, that is, Ψ(A∗XA) = A∗Ψ(X)A for all X ∈ B1(H),
where MA : B1(H) → B1(H) denotes the one-element measurement, that is,
the linear map MA(X) = A∗XA for all X ∈ B1(H) and the commutator is
defined as usually [Φ,Ψ] = ΦΨ − ΨΦ. Note that, since B1(H) is a two-sided
ideal of B(H), MA can be defined either as a linear map B1(H) → B1(H) or
as a linear map B(H) → B(H). Actually, if we consider MA : B1(H) → B1(H),
then its dual map M �

A : B(H) → B(H) is the one-element measurement map
MA∗ .

Remark 6.3. Let Ψ: B1(H) → B1(H) be a bounded linear map and A ∈ B(H).
Then, [Ψ,MA] = 0 if and only if [Ψ�,MA∗ ] = 0.

The one-element measurement operator MA is usually associated to a
positive operator A. In this case, due to a certain mathematical model for
quantum measurements, one rather considers the one-element measurement
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in the Lüders form MA1/2 for some positive operator A, e.g. see [2] or Gud-
der [22]. In order to briefly explain this, let us recall that in yes–no experi-
ments quantum effects are modelled by operators A ∈ B(H)+ with A ≤ I,
for some Hilbert space H. In case A is a projection, it corresponds to a sharp
quantum measurement, while, in general, A corresponds to a unsharp (more
realistic) quantum measurement. Given a state ρ ∈ D(H), that is, the prob-
ability that the quantum effect A occurs (has a yes outcome) in the state ρ
is Pρ(A) = tr(ρA) = tr(A1/2ρA1/2) = tr(MA1/2(ρ)) and, consequently, the
postmeasurement state is MA1/2(ρ)/Pρ(A).

The equivalence of (ii)–(v) in the following theorem has been obtained in
[8], compared with Theorem 3.2. Here, we show that these equivalences can be
obtained as a direct consequence of Corollary 2.3. We add two more equivalent
characterisations, assertions (vi) and (vii), in terms of the dual infinitesimal
generator, which actually make the proofs simpler, while assertion (i) is an
equivalent formulation that points out the Noether’s type theorem character.
In this respect, assertions (iii) and (vi) express a symmetry property, while
assertions (i), (ii), and (vii) express a conservation law of the system.

Theorem 6.4. Let Ψ = {Ψt}t≥0 be a strongly continuous one-parameter semi-
group of stochastic maps on B1(H), ψ its infinitesimal generator, and let
A ∈ B(H)+. With notation as before, the following assertions are equivalent:

(i) For any density operator ρ, both the expected value and the standard de-
viation of A with respect to Ψt(ρ) are constant with respect to t ≥ 0.

(ii) Ψ�
t(A) = A and Ψ�

t(A2) = A2 for all t ≥ 0.
(iii) [MA1/2 ,Ψt] = 0 for all t ≥ 0.
(iv) [MA1/2 ,Ψ�

t] = 0 for all t ≥ 0.
(v) [MA1/2 , ψ] = 0 that is, for all T ∈ Dom(ψ) we have A1/2TA1/2 ∈ Dom(ψ)

and ψ(A1/2TA1/2) = A1/2ψ(T )A1/2.
(vi) [MA1/2 , ψ�] = 0 that is, for all S ∈ Dom(ψ�) we have A1/2SA1/2 ∈

Dom(ψ�) and ψ�(A1/2TA1/2) = A1/2ψ�(T )A1/2.
(vii) A,A2 ∈ Ker(ψ�), that is, A,A2 ∈ Dom(ψ�) and ψ�(A) = ψ�(A2) = 0.

Before proceeding to the proof of this theorem, we prove two preliminary
results. The first one is essentially Remark 5.4 in [8] for which we provide a
coordinate free proof.

Lemma 6.5. If E is a projection and C ∈ B1(H)+ such that tr(C) = tr(ECE),
then C = CE = EC.

Proof. Taking into account that C1/2EC1/2 ≤ C and that

0 ≤ tr(C − C1/2EC1/2) = tr(C) − tr(C1/2EC1/2) = tr(C) − tr(ECE) = 0,

it follows that C = C1/2EC1/2 hence,

0= C1/2(I −E)C1/2 = C1/2(I −E)(I −E)C1/2 = ((I −E)C1/2)∗((I −E)C1/2),

which implies (I − E)C1/2 = 0 hence (I − E)C = 0. From here, it follows
EC = C and then taking adjoints we have CE = C as well. �
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The second preliminary result is a short cut of Corollary 5.5, Corol-
lary 5.6, and Lemma 5.7 in [8].

Lemma 6.6. Let Ψ be a stochastic map with respect to a Hilbert space H and
let E be a projection such that Ψ�(E) = E. Then,

(i) Ψ(ETE) = EΨ(ETE) = Ψ(ETE)E for all T ∈ B1(H).
(ii) EΨ�(ESE) = Ψ�(ESE)E = Ψ�(ESE) for all S ∈ B(H).
(iii) Ψ�(ESE) = EΨ�(S)E for all S ∈ B(H).

Proof. (i) It is sufficient to prove this for all T ∈ B1(H)+. With this assump-
tion, we have

tr(EΨ(ETE)E) = tr(EΨ(ETE)) = 〈E,Ψ(ETE)〉
= 〈Ψ�(E), ETE〉 = 〈E,ETE〉 = tr(ETE) = tr(Ψ(ETE)),

and, consequently, applying Lemma 6.5 for C = Ψ(ETE), the conclusion fol-
lows.

(ii) To see this, without loss of generality it is sufficient to assume that
S ∈ B(H)+ is a contraction, that is, 0 ≤ S ≤ I. Then, 0 ≤ ESE ≤ E and
hence 0 ≤ Ψ�(ESE) ≤ Ψ�(E) = E, which implies that the range of Ψ�(ESE)
is contained in the range of E. This implies EΨ�(ESE) = Ψ�(ESE), and then
by taking adjoints, we have Ψ�(ESE)E = Ψ�(ESE) as well.

(iii) Let T ∈ B1(H) and S ∈ B(H) be arbitrary. Using assertion (ii), we
have

〈Ψ�(ESE), T 〉 = 〈EΨ�(ESE)E, T 〉 = 〈Ψ�(ESE), ETE〉
= 〈ESE,Ψ(ETE)〉 = 〈S,EΨ(ETE)E〉

and then, using assertion (i), we have

= 〈S,Ψ(ETE)〉 = 〈Ψ�(S), ETE〉 = 〈EΨ�(S)E, T 〉,
hence assertion (iii) follows. �

Proof of Theorem 6.4. In order to prove the equivalence of assertions (i), (ii),
and (iii), we actually prove an equivalent reformulation, taking into account
(4.3)–(4.5), namely that the following assertions are mutually equivalent:

(i) [Ψ,MA1/2 ] = 0, that is, Ψ(A1/2TA1/2) = A1/2Ψ(T )A1/2 for all T ∈
B1(H).

(ii) [Ψ�,MA1/2 ] = 0, that is, Ψ�(A1/2SA1/2) = A1/2Ψ�(S)A1/2 for all S ∈
B(H).

(iii) Ψ�(A) = A and Ψ�(A2) = A2.
(i)⇔(ii). This is a consequence of Remark 6.3.
(ii)⇒(iii). Since Ψ� is unital it follows that Ψ�(A) = Ψ�(A1/2IA1/2) =

A1/2Ψ�(I)A1/2 = A1/2A1/2 = A and then Ψ�(A2) = Ψ�(A1/2AA1/2) =
A1/2Ψ�(A)A1/2 = A1/2AA1/2 = A2.

(iii)⇒(ii). Letting Ψ� = Φ in Corollary 2.3, it follows that Ψ�(S) = S
for all S ∈ C∗(I,A). Since Ψ� is w∗-continuous, by functional calculus with
bounded Borel functions on σ(A), it follows that Ψ�(S) = S for all S ∈ W ∗(A),
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the von Neumann algebra generated by A in B(H). In particular, for any
spectral projection E of A we have Ψ�(E) = E. From Lemma 6.6, it follows

Ψ�(ETE) = EΨ�(T )E, T ∈ B(H). (6.4)

From here, by the Spectral Theorem for A, it follows that for any function f
that is continuous on σ(A), we have

Ψ�(f(A)Tf(A)) = f(A)Ψ�(T )f(A), T ∈ B(H). (6.5)

Letting f(t) =
√

t, t ∈ σ(A), the assertion follows.
(iii)⇔(iv) is a direct consequence of the duality.
(iii)⇒(v). For arbitrary T ∈ Dom(ψ) and t ≥ 0, we have

Ψt(A1/2TA1/2) − A1/2TA1/2

t
=

A1/2Ψt(T )A1/2 − A1/2TA1/2

t

= A1/2 Ψt(T ) − T

t
A1/2 −−−−→

t→0+
A1/2ψ(T )A1/2,

hence A1/2TA1/2 ∈ Dom(ψ) and ψ(A1/2TA1/2) = A1/2ψ(T )A1/2.
(v)⇒(vi). Let S ∈ Dom(ψ�). Then, for any T ∈ Dom(ψ) we have

A1/2TA1/2 ∈ Dom(ψ) and ψ(A1/2TA1/2) = A1/2ψ(T )A1/2, hence

〈ψ(T ), A1/2SA1/2〉 = 〈A1/2ψ(T )A1/2, S〉 = 〈ψ(A1/2TA1/2), S〉
whence, taking into account of the continuity of the map B1(H) � T 	→
A1/2TA1/2 ∈ B1(H), it follows that A1/2SA1/2 ∈ Dom(ψ�). Consequently,

〈T, ψ�(A1/2SA1/2)〉 = 〈ψ(T ), A1/2SA1/2〉 = 〈ψ(A1/2TA1/2), S〉
= 〈A1/2TA1/2, ψ�(S)〉 = 〈T,A1/2ψ�(S)A1/2〉,

hence, ψ�(A1/2SA1/2) = A1/2ψ�(S)A1/2.
(vi)⇒(vii). By (6.3), we have A = A1/2IA1/2 ∈ Dom(ψ�) and ψ�(A) =

A1/2ψ�(I)A1/2 = 0. Then, A2 = A1/2AA1/2 ∈ Dom(ψ�) and ψ�(A2) = A1/2

ψ�(A)A1/2 = 0.
(vii)⇒(ii). This is a consequence of Theorem 2.4. �

Remarks 6.7. (a) Under the assumptions of Theorem 6.4, each of the assertions
(i)–(vii) is equivalent with each of the following assertions, cf. [8]:

(viii) d
dt 〈Ψt(T ), A〉 = d

dt 〈Ψt(T ), A2〉 = 0 for all T ∈ B1(H).
(ix) d

dt 〈Ψt(T ), An〉 = 0 for all T ∈ B1(H) and all n ≥ 0.
(x) For every spectral projection E of A we have [ME , ψ] = 0, that is, for

any T ∈ Dom(ψ) we have ETE ∈ Dom(ψ) and ψ(ETE) = Eψ(T )E.
The equivalence of assertion (x) is short cut in our proof, but it is an important
step during the proof provided in [8]. Assertion (viii) is clearly equivalent with
assertion (ii), while assertion (ix) is equivalent with assertion (viii) in view of
Corollary 2.3.

(b) A natural question is whether the condition that A2 is a joint fixed
point of Ψ, as in Theorem 6.4.(i), is a consequence of the condition that A is
a joint fixed point of Ψ. The answer is negative, in general, and it is obtained
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as a consequence of Theorem 5.3, since any quantum operation is a stochastic
map as well.
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România

Communicated by Claude Alain Pillet.

Received: November 12, 2017.

Accepted: February 26, 2018.


	Symmetries Versus Conservation Laws  in Dynamical Quantum Systems:  A Unifying Approach Through Propagation of Fixed Points
	Abstract
	1. Introduction
	2. Preliminary Results
	2.1. Propagation of Fixed Points in C*-Algebras
	2.2. Fixed Points of w*-Continuous One-Parameter Semigroups
	2.3. An Ergodic Theorem in von Neumann Algebras

	3. Dynamics for Markov Processes: The Real Commutative Case
	4. Constants of Dynamical Quantum Systems
	5. Are the Conditions on A and A2 (AA* and A*A) Independent?
	6. Dynamical Systems of Stochastic/Markov Maps: The Noncommutative Case
	Acknowledgements
	References




