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Abstract Let
∑

n�1 ann−s be the L-series of an elliptic curve E defined over the
rationals without complex multiplication. In this paper, we present certain similari-
ties between the arithmetic properties of the coefficients {an}∞n=1 and Euler’s totient
function ϕ(n). Furthermore, we prove that both the set of n such that the regular
polygon with |an| sides is ruler-and-compass constructible, and the set of n such that
n −an +1 = ϕ(n) have asymptotic density zero. Finally, we improve a bound of Luca
and Shparlinski on the counting function of elliptic pseudoprimes.
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1 Introduction

Let E be an elliptic curve over the field of rational numbers Q given by the minimal
global Weierstraß equation (cf. [15, Corollary 8.3])

E : y2 + A1xy + A3y = x3 + A2x2 + A4x + A6 (Ai ∈ Z) (1)

with discriminant �E and conductor NE . For each prime p, we put

ap = p + 1 − #E(Fp),

where E(Fp) is the reduction of E modulo p. If p | �E , then E(Fp) has a singularity
and

ap =
⎧
⎨

⎩

0, for the case of a cusp,
1, for the case of a split node,
−1, for the case of a non–split node.

It was conjectured by Artin and proved by Hasse (cf. [15, Ch.5 Theorem 1.1]) that the
inequality |ap| < 2

√
p holds for all primes p. The L-function associated with E is

defined by

L(s, E) =
∏

p|�E

1

1 − ap p−s

∏

p��E

1

1 − ap p−s + p1−2s
,

where the infinite product converges for Re(s) > 3/2, and thus yields the convergent
series L(s, E) = ∑

n�1 ann−s . The function n �→ an is multiplicative, and for a prime
number p the formula

apn = apapn−1 − pχ0(p)apn−2 , (n � 2)

holds, where χ0 is the trivial character modulo �E . Thus, we see that an ∈ Z for all
n ∈ N.

In this paper we study certain arithmetical properties of the sequence {an}n�1
determined by an elliptic curve E over Q without complex multiplication (CM), for
which End(E) � Z; that is, the endomorphisms are given by n : E → E which map
P to n P for n ∈ Z.

Let ϕ(n) be Euler’s totient function. In [11, Lemma 2], it was proved that there
exists a positive constant c1 such that the set

F = {n � 1 : q | ϕ(n) ∀q < c1 log2 n/ log3 n} (2)

is of asymptotic density 1, where here and in what follows q denotes a prime power
and logk x is defined in Sect. 2.1. The upper bound for the counting function for the
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Arithmetic properties of coefficients of L-functions of… 249

exceptional set was not very good. Our first result shows that the above property holds
also for the sequence {an}n�1 of coefficients. More precisely, for a fixed κ > 0, let

Gκ = {n � 1 : q | an ∀q < κ log2 n/ log3 n}. (3)

As usual, for a subset A of positive integers and a positive real number x , we write
A(x) := A ∩ [1, x].
Proposition 1 If κ < 1/100, then Gκ(x) contains all integers n � x with
OE (x/(log2 x)1/(3κ)) exceptions.

Next, we list some consequences of Proposition 1. Let τ(n), �(n), andω(n) denote
the number of divisors of n, and the number of prime divisors of n with and without
repetitions, respectively. Sets of positive integers such that one of these functions
divide a given arithmetic function f (n) have already been studied in the literature
when f (n) = ϕ(n), or σ(n), when f (n) is a polynomial, or when f (n) is the nth term
of any linearly recurrent sequence (see [1,3,8–10,12,17]).

Theorem 2 The sets

Aω = {n � 1 : ω(n) | an}, and A� = {n � 1 : �(n) | an}

both are of asymptotic density 1.

We have not succeeded in proving an analog of Theorem 2 for the function τ(n),
yet we claim the following:

Conjecture The set Aτ = {n � 1 : τ(n) | an} is also dense.

We shall prove this conjecture under some additional conditions.

Theorem 3 Aτ is of asymptotic density 1 provided that one of the following holds:

(i) E has a torsion point of order 2.
(ii) �E is odd and the Galois representation ρ2 associated with 2-division points (see

Sect. 2.3) is surjective.

Remark 1 Condition (ii) above is not too restrictive. Via Weierstrass equations (see
Sect. 2.2), we may assume that E is given by

y2 = x3 + Ax + B

with some integers A and B. If the cubic polynomial on the right is irreducible and
has odd discriminant which is not a perfect square, then condition (ii) holds.

For the next result, recall that a regular n-gon is ruler-and-compass constructible
if and only if ϕ(n) is a power of 2 (Gauss-Wantzel theorem). Below we address the
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250 A. M. Güloğlu et al.

instance in which the regular polygon with |an| sides is thus constructible. First, we
discard the cases in which an = 0 by recalling (cf. [14, Théorème 16]) that

ZE = {n � 1 : an 
= 0} � x,

and consider the set

CE = {n ∈ ZE : ϕ(|an|) is a power of 2}.

By Proposition 1, it follows that 7 | an for almost all n. Thus, 3 | ϕ(|an|) for almost all
n ∈ ZE and we can immediately conclude that CE is of asymptotic density 0. Below
we give a slightly better version of this result.

Theorem 4 The estimate

#CE (x) �E
x(log2 x)49/12(log3 x)−13/12

(log x)13/12

holds for all x > 100.

For the following result, we note that since the sets in (2) and (3) are dense, both an

and ϕ(n) are divisible by all small prime powers for most n, where small means up to
a certain multiple of log2 n/ log3 n. Furthermore, since |an| � τ(n)n1/2 � ϕ(n) for
large n, one may ask whether it could happen that an | ϕ(n). Below, we provide only
an upper bound for such n up to x .

Theorem 5 The estimate

#DE (x) �E
x

log2 x

holds for all x > 100, where DE = {n ∈ ZE : an | ϕ(n)}.
Note that whenever ap = 2, we get p − ap + 1 = p − 1 = ϕ(p). Motivated by

this observation, we give, in the next result, an upper bound for the counting function
of the set

FE = {n � 1 : n − an + 1 = ϕ(n)}.

Theorem 6 The estimate

#FE (x) �E
x(log2 x)1/2(log3 x)1/4

(log x)5/4

holds for all x > 100.
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Remark 2 One may ask what we can conjecture about the true order of magnitude
of CE (x), DE (x) and FE (x). We conjecture that all these cardinalities have order of
magnitude x1/2+o(1) as x → ∞. For example, for CE (x), the accepted heuristic is
that there are only finitely many Fermat primes. If true, then there are only finitely
many odd integers m such that φ(m) is a power of 2. Hence, every positive integer
whose Euler function is a power of 2 should be just a product between one of these
finitely many odd numbers m and a power of 2. The number of such numbers which
are � max{|an| : n � x} is O(log x). Assuming that the multiplicity of each element
in {|an| : n � x} is x1/2+o(1) on the average as x → ∞, we get the heuristic for
#CE (x). ForDE (x), it is reasonable to conjecture that an and φ(n) have very different
arithmetical behaviors except from the fact that they are both divisible by all small
primes formost n. Thus, the “probability” that an | φ(n) should roughly be 1/n1/2+o(1)

as n → ∞. Summing this up over all n � x , we get that the cardinality of DE (x)

should be about x1/2+o(1) as x → ∞. Finally, for FE (x), the proof of Theorem 6
shows that most elements n ∈ FE (x) are of the form n = pq, where p, q are primes
of size around

√
x . Thus, an and n−φ(n)+1 = p+q are both of size x1/2. Assuming

that these two quantities are independent, the probability that they coincide should be
x−1/2. Summing this up over all numbers n = pq � x of the above form, we get an
answer of size x1/2+o(1).

For a positive integer n with prime factorization n = pe1
1 . . . pek

k , we put

En =
k∏

i=1

#E
(
Fp

ei
i

)
.

The next result is reminiscent of Proposition 1. For a fixed κ > 0, put

GE,κ = {n � 1 : q | En ∀q < κ log2 n/ log3 n}.

Proposition 7 If κ < 1/100, then GE,κ (x) contains all positive integers n � x with
OE (x/(log2 x)1/(3κ)) exceptions.

Finally, Luca and Shparlinski (cf. [13]), motivated by Silverman’s paper [16], put
tpe for the exponent of the group E(Fpe ), whenever e � 1 and p � �E , and considered
the set

ECE = {n : ω(n) > 1, gcd(n,�E ) = 1, tpe | n − an + 1 for pe‖n}.

The positive integers n belonging to ECE present certain similarities to Carmichael
numbers in the sense that although n is not a prime power, n − an + 1 acts as an
annihilator for any point P ∈ E(Fq) for all prime powers q‖n. They showed that

#ECE (x) = O

(
x log3 x

log2 x

)

.

Here, we improve this result as follows:
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252 A. M. Güloğlu et al.

Theorem 8 We have

#ECE (x) � x

exp
(
(1 + o(1))

√
log2 x

) as x → ∞.

2 Preliminaries and notation

2.1 Notation

The letters �, p and r below, with or without subscripts, stand for prime numbers,
while q denotes a prime power. We use μ(n), �(n), ω(n) and τ(n) for the Möbius
function of n, the number of prime divisors of n with and without repetitions, and the
number of positive divisors of n, respectively. For a subsetP of primes, we use ωP (n)

for the number of distinct prime factors of n which belong to P . We write P+(n) for
the largest prime factor of n, and rad(n) for the radical of n, which is the product of
all distinct prime factors of n. We use κ1, κ2, etc. for absolute constants.

For a positive real number x , we define log1 x = max{1, log x} and for k � 2, we
define logk x recursively by logk x = log1(logk−1 x). Note that logk x coincides with
the k-fold iterate of log x for large x , and equals 1 otherwise. For k = 1, we omit the
subscript but continue to assume that log x � 1.

Finally, we use the Landau notation O and o as well as the Vinogradov’s notations
� and � with their regular meanings, where the implied constants may depend on
the curve E .

2.2 Weierstrass equations

Using the standard birational transformation (cf. [15, Ch.III § 1]), replacing y in (1)
by (y − A1x − A3)/2 gives an equation of the form

y2 = 4x3 + B2x2 + 2B4x + B6,

where

B2 = A2
1 + 4A2; B4 = 2A4 + A1A3; B6 = A2

3 + 4A6.

Furthermore, defining the quantities

B8 = A2
1A6 + 4A2A6 − A1A3A4 + A2A2

3 − A2
4,

C4 = B2
2 − 24B4,

C6 = −B3
2 + 36B2B4 − 216B6,

and then replacing (x, y) by ((x − 3B2)/36, y/108) yields the simpler Weierstrass
equation

E : y2 = x3 + Ax + B,
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where A = −27C4 and B = −54C6. From now on, we shall work with this equation,
at least for p > 3, when the above transformations are well-defined modulo p.

2.3 Primes p with ap in a fixed residue class

We follow the exposition in [4, § 2]. We need to understand primes p with ap lying
in a fixed residue class modulo an integer m � 2.

Let E[m] = {P ∈ E(Q̄) : m P = 0E } be the group of m-torsion points of E . By
[15, Ch. III. Corollary 6.4b], E[m] � Z/mZ × Z/mZ. Let Lm = Q(E[m]) be the
Galois extension over Q obtained by adjoining the coordinates of m-torsion points
to Q. The action P → Pσ of the Galois group Gm = Gal(Lm/Q) on E[m] gives a
faithful representation (i.e., an injective homomorphism)

ρm : Gm → GL2(Z/mZ)

and we put G(m) = ρm(Gm).
If p � m NE , it follows from [5, Theorem 2.1] that

tr(ρm(σp)) ≡ ap (mod m), and det(ρm(σp)) ≡ p (mod m), (4)

where σp = [p, Lm/Q] is the conjugacy class of the Frobenius automorphisms of Gm

associated with p.
Define the sets

Ta(m) = {g ∈ G(m) : tr(g) ≡ a (mod m)},
Ca(m) = {g ∈ G(m) : det(g) + 1 − tr(g) ≡ a (mod m)}.

Note that C0(m) 
= ∅ since the identity matrix lies in it.
Serre proved (cf. [14]) that there exists a positive integer ME , depending only on

E , such that ρm is surjective whenever (m, ME ) = 1. Taking any prime � � ME , one
can show (cf. [4, eqn. (2.1)]) that

#Cr (�) =
⎧
⎨

⎩

�(�2 − 2) if r ≡ 0 (mod �),

�(�2 − � − 1) if r ≡ 1 (mod �),

�(�2 − � − 2) if r 
≡ 0, 1 (mod �).

Similarly, [2, Lemma 2.7] yields that when � > 2 and d 
≡ 0 (mod �),

#Ad,a = �2 + �
(a2 − 4d

�

)
,

where
( ·

�

)
is the Legendre symbol and

Ad,a = {g ∈ GL2(Z/�Z) : det(g) ≡ d, tr(g) ≡ a (mod �)}. (5)

123

Author's personal copy



254 A. M. Güloğlu et al.

Thus, we conclude that

#Ta(�) =
�−1∑

d=1

#Ad,a =
{

�2(� − 1) if a ≡ 0 (mod �),

�(�2 − � − 1) if a 
≡ 0 (mod �).
(6)

Furthermore, #T0(2) = 4 provided that ρ2 is surjective. Finally, put

πCr (n)(x) = #{p � x : p � nNE and ρn(σp) ∈ Cr (n)},
πTa(n)(x) = #{p � x : p � nNE and ρn(σp) ∈ Ta(n)}.

Lemma 1 ([4, Proposition 2.1]). Let E be an elliptic curve defined over Q without
CM. Let n = dm be any positive integer where (d, ME ) = 1, and rad(m) | ME . Then,
uniformly for n12 log n � log x,

πCr (n)(x) = #Cr (m)

#G(m)

⎛

⎝
∏

�k‖d

#Cr (�
k)

#G(�k)

⎞

⎠ Li(x)

+OE
(
x exp(−An−2

√
log x)

)
,

where the implied constants depend only on E, and A > 0 is absolute. A similar
estimate holds with Cr replaced by Ta, or by Ab,a when (b, n) = 1 with (n, ME ) = 1.

2.4 Primes p with fixed ap

Lemma 2 (Elkies, see [6]). There exist infinitely many supersingular primes; that is,
primes p such that ap = 0.

Lemma 3 (Serre, [14, Théorème 20]). Let a 
= 0 and put Pa = {p : ap = a}. Then,

#Pa(x) �

⎧
⎪⎪⎨

⎪⎪⎩

x(log2 x)1/2(log3 x)1/4

(log x)5/4
if a = ±2,

x(log2 x)2/3(log3 x)1/3

(log x)4/3
if a 
= ±2.

2.5 A couple of useful estimates

Below we collect two useful estimates that we use frequently in what follows. Recall
that a squarefull number has the property that the exponent of every prime factor in
its factorization is at least 2.

Lemma 4 Uniformly in 1 � y � x we have

E�(x; y) = #{n � x : ∃ squarefull s | n with s > y} � x√
y
,
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Arithmetic properties of coefficients of L-functions of… 255

Eω(x; y) = #{n � x : |ω(n) − log2 x | > y
√
log2 x} � x

y2
.

Proof The claim about E�(x; y) follows by partial summation from the fact that the
number of squarefull s � t is O(

√
t) (which can be seen by writing each s in the form

a2b3). Namely, fix a squarefull s > y. The number of n � x which are multiples of s
is �x/s� � x/s. Hence,

#E�(x; y) �
∑

s>y
s squarefull

x

s
� x√

y
.

The claim about Eω(x; y) follows immediately from the Túran-Kubilius estimate
(cf. [19])

∑

n�x

(ω(n) − log2 x)2 = O(x log2 x).

��

3 Proofs of the results

3.1 Proof of Proposition 1

Given any fixed prime �, it follows from Lemma 2 that there are infinitely many
supersingular primes p � �NE . In particular, (4) implies that G(�) contains zero-trace
elements of GL2(Z/�Z). Therefore, T0(�) 
= ∅, and

δ� := #T0(�)

# G(�)
∈ Q×

satisfies
1

�4
� δ� � 1

�
. (7)

For odd � � ME , (6) and the fact that #GL2(Z/�Z) = �(� − 1)(�2 − 1) imply that

δ� = �

�2 − 1
∈
(1

�
,

1

� − 1

)
. (8)

Assume that x is large, κ < 1, y := log2 x
log3 x , and consider primes � � κy. Set

z = exp
(
(log2 x)13

)
and w = exp

(√
log x

)

and assume t ∈ (z, x]. Then, �12 log � = o(log t) and Lemma 1 yields

πT0(�)(t) = δ�Li(t) + OE (t exp(−B(log t)1/3)) (9)
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uniformly for � � κy. Put

S(�)
t :=

∑

p�t
�|ap

1

p
=

∑

p�z
�|ap

1

p
+

∑

z<p�t
�|ap

1

p
.

Assume that t ∈ [w, x]. Using the formula

∑

p�z

1

p
= log log z + C + O(1/ log z)

to bound the first sum on the right, and partial integration together with (9) for the
second sum, we obtain

S(�)
t = δ� log2 t + A log2 z + O(1) (|A| < 1)

= δ� log2 t + O(log3 t),
(10)

where the implied constant can be taken as 14 for sufficiently large x . Note also that
the first term above is � (2κ)−1 log3 x for t ∈ [w, x] and any � � κy. In particular,

S(�)
t ∈ [

0.5δ� log2 t, 2δ� log2 t
]

(11)

provided κ � 1/56. In fact, the above argument also gives

S(�)
t = (1 + o(1))δ� log2 t if � = o(y) as x → ∞. (12)

The above estimates (11) and (12) hold uniformly for t ∈ [w, x] and large x . Set

Eκ,1(x) = {n � x : p2 | n for some prime p > s},

where s = (log2 x)1/(3κ). Clearly, Eκ,1(x) ⊂ E�(x, s2), therefore, by Lemma 4,

#Eκ,1(x) � #E�(x; s2) � x

(log2 x)1/(3κ)
. (13)

Hence, we can and shall assume that n /∈ Eκ,1(x). Set L� := �(log3 x)/ log ��. Since

�L�+1 > �(log3 x)/ log � = log2 x > κy,

the largest power of � not exceeding κy can be at most L�. Write n = u�v�, where
gcd(u�, v�) = 1, and v� is made up only of primes p > s with � | ap. Note that v� is
square-free since n /∈ Eκ,1(x). Therefore, if ω(v�) � L�,

�L� | �ω(v�) | av�
| an .
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By the above remark, the largest power of � not exceeding κy also divides an . If
ω(v�) > L� for all � � κy, then n ∈ Gκ(x). Hence, we need to estimate the sets

Eκ,�(x) = {n = u�v� � x : ω(v�) � L�}

for � � κy. We fix �, v� and for simplicity of notation, drop the indices on u and v. We
see that u � x/v is a number that is free of primes p > s with � | ap. We distinguish
two cases.

Case 1. Assume x/v > w.
Then, by Brun’s sieve, the number of choices for u is

� x

v

∏

s<p�x/v
�|ap

(

1 − 1

p

)

� x

v

∏

s<p�w
�|ap

(

1 − 1

p

)

� x

v
exp

(
−S(�)

w + log4 x + O(1)
)

� x log3 x

v exp(S(�)
w )

.

Summing over square-free v with at most L� prime factors p > s with � | ap, we see
that the contribution to Eκ,�(x) in Case 1 is

� x log3 x exp
(
−S(�)

w

)
T (�)

x , (14)

where

T (�)
x =

∑

k�L�

∑

μ2(v)=1, ω(v)=k
p|v⇒(�|ap and p>s)

1

v

�
∑

k�L�

1

k!

⎛

⎜
⎜
⎝

∑

s<p�x
�|ap

1

p

⎞

⎟
⎟
⎠

k

�
∑

k�L�

(S(�)
x )k

k! � (S(�)
x )L�

L�! .

Here, the last estimate holds uniformly for � � y and follows easily since

(
S(�)

x

)k+1
/(k + 1)!

(
S(�)

x

)k
/k!

� δ� log2 x

L�

� δ� log �

(
log2 x

log3 x

)

� log3 x,

whether � | ME or not. Using the inequality k! � (k/e)k with k = L�, we obtain by
(11) that

T (�)
x �

(
S(�)

x

L�

)L�

�
(

c1δ� log � log2 x

log3 x

)log3 x/ log �

,
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where we can take c1 := 2e. If � | ME ,

T (�)
x = exp

(
OE

(
(log3 x)2

))
.

By (11), we have S(�)
w �E log2 x so that

T (�)
x � exp

(
o
(

S(�)
w

))
when � | ME and as x → ∞. (15)

If � � ME , then δ� < 1/(� − 1) � 2/�, yielding

T (�)
x �

(
2c1 log � log2 x

� log3 x

)log3 x/ log �

.

To show that
T (�)

x � exp
(

o
(

S(�)
w

))
when � � ME and � � y (16)

holds as x → ∞, we take logarithms of both sides and use (11), then the problem
reduces to establishing that

(
log3 x

log �

)

log

(
2c1 log � log2 x

� log3 x

)

= o

(
log2 x

�

)

.

Rewriting this as

X log

(
eY

X

)

= o

(
log2 x

log3 x

)

, (17)

where X := �/ log � andY := (2c1e−1) log2 x/ log3 x := c2y, where c2 := 2c1e−1 =
4, it is easy to see that the function X �→ X log(eY/X) is increasing for X � Y . Since
X = �/ log � = o(log2 x/ log3 x) = o(Y ), it follows that the maximum on the right is
obtained when � = y, in which case the left-hand side of (17) yields a contribution

O

(
log2 x log4 x

(log3 x)2

)

,

which gives the desired estimate as x → ∞. Thus, (16) holds uniformly for � � y.
Inserting the estimates (15) and (16) into (14), together with the estimate

log3 x = exp(log4 x) = exp
(

o
(

S(�)
w

))
as x → ∞, ∀� � y,

we see that the contribution to Eκ,�(x) in Case 1 is

� x

exp
(
(1 + o(1))S(�)

w

)

as x → ∞ uniformly for � � y.
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Case 2. Assume x/v � w. In this case, u � w. Furthermore, v � x/w � x1/2 for
sufficiently large x . Since L� � 2 log3 x , it follows that P = P+(v) � x1/(4 log3 x).
Write v = Pv1 and fix v1u. Then, the number of choices for the prime P � x/(v1u)

is

π

(
x

uv1

)

� x

uv1 log(x/uv1)
� x log3 x

uv1
,

where we used the fact that x/(uv1) � P > x1/(4 log3 x). Summing over all u � w and
square-free v1 with less than L� prime factors p > s with � | ap, we get a contribution
to Eκ,�(x) which is

� x log3 x

log x

∑

u�w

1

u
·

⎛

⎜
⎜
⎜
⎝

∑

k<L�

∑

μ2(v1)=1, ω(v1)=k
p|v⇒(�|ap and p>s)

1

v1

⎞

⎟
⎟
⎟
⎠

� x(log3 x)T (�)
x√

log x
.

Using the bounds on T (�)
x (the bound (15) for small �, say � � 10 or � | ME , and the

bound (16) for large �, say � � ME and 11 � � � y), the above contribution is seen to
be

� x

(log x)1/2+o(1)
.

Finally combining the estimates from both cases, we conclude that

#Eκ,�(x) � x
(
min

{
exp

(
S(�)
w

)
, (log x)1/2

})1+o(1)
.

It follows from (10) that

exp
(

S(�)
w

)
� (log2 x)1/(2κ)−14

uniformly for � � κy, and large x . Hence, for κ < 1/100,

#Eκ,�(x) � x

(log2 x)18/(51κ)

uniformly for � � κy. Summing this over all �, we conclude that

∑

��κy

#Eκ,�(x) � xy

(log2 x)18/(51κ)
� x

(log2 x)18/(51κ)−1
� x

(log2 x)1/(3κ)
,

which together with the bound (13) finishes the proof of Proposition 1.
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Remark 3 The above argument also shows the following. Let 2 � y � x be such that
y → ∞ and y = o(log2 x/ log3 x) as x → ∞. Let

Ey(x) = {n � x : q � an for some prime power q � y}.

Then,

#Ey(x) = x

(log x)(1+o(1))/y

as x → ∞.

3.2 The Proof of Theorem 2

I. Aω is dense. Let x be large. Put

Aω,1(x) =
{

n � x : |ω(n) − log2 x | > y
√
log2 x

}

for some y �
√
log2 x to be determined below. By Lemma 4, we have

#Aω,1(x) = #Eω(x; y) � x

y2
. (18)

Assume in what follows that n /∈ Aω,1(x). Set z := κ log2 x/ log3 x with κ = 10−3,
and consider those n satisfying x/ log x < n ∈ G2κ(x). For sufficiently large x ,
z < 2κ log2 n/ log3 n. Since n ∈ G2κ(x), ω(n) | ∏q�z q | an , provided that each
prime power q dividing ω(n) satisfies q � z.

Next, we bound n � x with ω(n) = k = qm for some q > z, and fixed k. Since
n /∈ Aω,1(x),

m < k/z � 1000 log3 x

(

1 + y
√
log2 x

)

� 2000 log3 x .

Fixing m, the Brun-Titchmarsh inequality (cf. [18, Theorem 9, page 93]) implies that

#
{

q : log2 x−y
√

log2 x
m � q � log2 x+y

√
log2 x

m

}
� y

√
log2 x

m log3 x
.

Thus, the contribution from these n is

� y
√
log2 x

log3 x

∑

m<2000 log3 x

1

m
� y

√
log2 x log4 x

log3 x
. (19)
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By [7, page 303]) we have the uniform bound

πk(x) = #{n � x : ω(n) = k} � x
√
log2 x

. (20)

Therefore, multiplying the bounds in (19) and (20), we obtain

#{n � x : n /∈ Aω,1(x) and q | ω(n) for some q > z} � xy log4 x

log3 x
. (21)

Choosing y := (log3 x/ log4 x)1/3 balances the bounds in (18) and (21), and yields
that Aω(x) contains all n � x with

� x

(
log4 x

log3 x

)2/3

(22)

exceptions, finishing the first part of the proof..

II.A� is dense.LetA�,1(x) be the set of n � x having a squarefull divisor s exceeding
(log3 x)2. By Lemma 4,

#A�,1(x) � #E�(x; (log3 x)2) � x

log3 x
.

We assume below that n /∈ A�,1(x). Writing n = n1s, with (n1, s) = 1, n1 squarefree
and s squarefull, we have �(n) = ω(n1) + �(s). Since s � (log3 x)2, it follows that
�(s) < J = �4 log4 x�. Fix s. Then, n1 � x/s. It follows from Proposition 1 and the
estimate

∑

s squarefull

1

s
= O(1), (23)

that the number of n � x for which n1 /∈ G2κ(x/s) with κ = 0.001 has cardinality
O(x/(log2 x)666).

Using (23) together with Lemma 4 we see that the set

A�,2(x) = {n � x : n /∈ A�,1(x), |ω(n1) − log2(x/s)| > y
√
log2(x/s)}

is � x/y2. We shall henceforth assume that n /∈ A�,2(x) ∪ A�,1(x). Put j := �(s)
and k := ω(n1). As in the proof of the first part, if we consider those n satisfying
x/ log x < n ∈ G2κ(x) and if all prime powers of k+ j are atmost z = κ log2 x/ log3 x ,
then �(n) | an . So, it suffices to count the cardinality of the set A�,3(x) of n � x
such that k + j = qm, where q > z is some prime power. Then, m < 2000 log3 x for
large x and

q ∈
[
log2(x/s)+ j+y

√
log2(x/s)

m ,
log2(x/s)+ j−y

√
log2(x/s)

m

]
.
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The number of such q, as in the preceding case, is � y
√
log2 x/(m log3 x) uniformly

in m � 2000 log3 x , in j ∈ {0, 1, . . . , J }, and in s � (log3 x)2. Summing over m, we
get that the number of such k is of order

y
√
log2 x(log4 x)

m log3 x
.

Multiplying this bound with x/(s
√
log2 x), the maximum order of πk(x/s) as given

in (20), we conclude that the number of such n1 � x/s is

� xy(log4 x)

s log3 x
.

Finally, summing over s yields

#A�,3(x) � xy(log4 x)

log3 x
,

which is the same as in the first proof. The optimal choice for y is also the same and
shows that the number of n � x for which �(n) � an is of the order shown in (22).
This completes the proof of the second part of Theorem 2.

3.3 The Proof of Theorem 3

As in the proof of Theorem 2, by Lemma 4, we have

#Aτ,1(x) = #{n � x : s | n for some squarefull s > log2 x}
� x

(log2 x)1/2
.

From now on, assume that n � x and n /∈ Aτ,1(x). Write n = n1s, where n1 is the
square-free part of n. Then, τ(n) = 2ω(n1)τ (s). Since s � log2 x and τ(s) = so(1) as
s → ∞, it follows that τ(s) � κ log2 x/(2 log3 x) with κ = 0.001, provided that x
is large enough. By Proposition 1, it follows that if x/ log x < n ∈ Gκ(x), then the
largest odd divisor of τ(n) (hence, all odd divisors of τ(n)) divides an , and that Gκ(x)

contains all integers n � x with O(x/(log2 x)333) exceptions. Thus, it is sufficient to
consider, as we shall do below, numbers in Gκ (x)\Aτ,1(x).

Let ε > 0 be small but fixed. By Lemma 4, it follows that

#Aτ,2(x) = #{n � x : |ω(n) − log2 x | > ε log2 x} = Oε

(
x

log2 x

)

.

From now on, we assume that n /∈ Aτ,2(x). Writing ν2(m) for the exponent of 2 in
the factorization of m, we have

ν2(τ (n)) = ω(n1) + ν2(τ (s)) = ω(n1) + O(log3 x),
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so ν2(τ (n)) ∈ [(1−2ε) log2 x, (1+2ε) log2 x], provided that x > xε, since s � log2 x
and n /∈ Aτ,2(x).

Let P be a subset of primes of positive density δP satisfying

#P(t) = δP
t

log t

(
1 + OP

( 1

log t

))
. (24)

Then, the estimate (see [19] or [18, Ch. 3.4])

∑

n�x

|ωP (n) − δP log2 x |2 = OP (x log2 x)

holds, where ωP (n) is the number of primes divisors of n in P . Thus, as before

#Aτ,3(x) = #{n � x : |ωP (n) − δP log2 x | > ε log2 x} �ε,P
x

log2 x
.

Assume condition (i) of the theorem. Then, for all odd p � NE , we have that E(Fp)

has even order (cf. [15, Ch VII, Prop 3.1b]). Hence, ap is even. Let P be the set of
primes such that 4 | ap. By Lemma 2, 4 | ap for infinitely many super-singular odd
primes p � NE . Thus, T0(4) 
= ∅ and Lemma 1 can be used to conclude that P has
positive density δP and estimate (24) holds. We shall assume below that n /∈ Aτ,3(x).
Then, n1 is divisible by at least (1 − δP − 2ε) log2 x odd primes not in P and by at
least (δP − 2ε) log2 x odd primes in P . We deduce by the multiplicativity of an that

ν2(an) � (1 + δP − 6ε) log2 x > (1 + 2ε) log2 x � ν2(τ (n))

for all sufficiently large n, provided ε < δP/8. Thus, τ(n) | an for such n, since the
largest odd divisor of τ(n) already divides an as mentioned above.

Assume condition (ii) of the theorem now. Then, it is easy to compute the density
δk of the primes p such that ap ≡ 0 (mod 2k). Indeed, all we have to compute is the
number of matrices in GL2(Z/2kZ). These matrices are either of the form

(
0 b
c 0

)

, or a

(
1 b/a

c/a −1

)

modulo 2k , where on the left b and c are odd, while on the right, a is odd and the
product of (b/a) and (c/a) is not 1 modulo 2k . The number of possibilities on the left
is ϕ(2k)2 = 22k−2, while the number of possibilities on the right is

ϕ(2k)(2k + 2k − 1 + ϕ(2k)(ϕ(2k) − 1)) = 2k−1(2k+1 − 1 + 22k−2 − 2k−1).

Hence, the total number of elements is

2k−1(22k−2 + 2k+1 − 1),
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and #GL2(Z/2kZ) = 6 · 24k−4 since each one of the 6 elements of GL2(Z/2Z) has
(2k−1)4 lifts to GL2(Z/2kZ). Hence,

δk = 2k−1(22k−2 + 2k+1 − 1)

6 × 24(k−1)
= 1

6
· 1

2k−1 + 2

3
· 1

4k−1 − 1

6
· 1

8k−1 .

Then,

∑

k�1

δk = 1

6

∑

k�1

1

2k−1 + 2

3

∑

k�1

1

4k−1 − 1

6

∑

k�1

1

8k−1 = 2

3
+ 8

9
− 4

21
= 67

65
> 1.

This shows via the preceding arguments that for all fixed ε > 0, the exponent of 2 in
the factorization of an is at least (67/65 − ε) log2 x for all n � x with Oε(x/ log2 x)

exceptions. If ε is chosen such that 67/65−ε > 1+2ε (so ε < 2/195), then τ(n) | an

as claimed.

3.4 The Proof of Theorem 5

As in the previous subsections,

#DE,1(x) = #
{

n � x : s | n for some squarefull s > (log2 x)2
}

� x

log2 x
.

(25)

Let y := exp(log x/ log3 x) and

DE,2(x) = {n � x : P+(n) � y}.

By [18, III.5.3. Theorem 6], uniformly for x � y � 2, we have

#DE,2(x) = �(x, y) = xρ(u) + O
( x

log y

)
,

where ρ(u) is the Dickman’s function and u = log x/ log y. Since u = log3 x ,
u log u = (log3 x)(log4 x), and ρ satisfies ρ(u) < eu−u log u+O(1) (cf. [18, III.5.3. The-
orem 5 (iv)], we obtain

#DE,2(x) � x

log2 x
. (26)

Assume thatn ∈ DE (x)\ (DE,1(x) ∪ DE,2(x)
)
.Writen = Pm, where P = P+(n) >

y, and fix m. Then, P � x/m can be chosen in

π
( x

m

)
� x

m log(x/m)
� x(log3 x)

m log x
(27)
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ways.We putw = exp(
√
log x), and writem = m1m2 with P+(m1) � w, and p > w

for all p | m2. Fix m2 and sum up the bound (27) over m1 with P(m1) � w. We then
obtain a bound

� x(log3 x)

m2 log x
·

∑

P(m1)�w

1

m1
� x(log3 x)

m2
√
log x

, (28)

by using the fact that

∑

P(m1)�w

1

m1
=

∏

p�w

(

1 − 1

p

)−1

� exp

⎛

⎝
∑

p�w

1

p

⎞

⎠ � √
log x .

Suppose there is at least one prime p | m2 satisfying the following:

Condition A. ap has a prime factor �p ∈ Ip = [(log2 p)3, (log p)1/(130 log3 p)] such
that �p � p − 1.

Since p > w, �p � (log2 x)3. Since p is large and n /∈ DE,1(x), it follows that
p‖n. Thus, �p | ap | an | ϕ(n). It is not possible that �2p | n for large x because
�p � (log2 x)3 and n /∈ DE,1(x). Thus, there exists a prime factor r 
= p of n such
that �p | r − 1. Then, pr | n with �p | ap and �p ∈ Ip. LetDE,3(x) be the set of such
n. Then,

#DE,3(x) �
∑

p∈[w,x]

x

p

∑

r�x
r≡1 (mod �p)

1

r
�

∑

p∈[w,x]

x

p(log2 x)2
� x

log2 x
. (29)

It turns out that we have to bound the set DE,4(x) of n � x for which Condition A
fails for all prime factors p of m2. In this case, every prime divisor p of m2 satisfies
one of the following:

(i) There exists a prime factor �p ∈ Ip of ap such that �p | p − 1,
(ii) ap is free of primes in Ip.

LetP1 andP2 be the sets of primes p satisfying (i) and (ii), respectively. We show that
both sets have small counting functions so that #DE,4(x) is negligible, thus completing
the proof.

For P1, let t be a large real number and let p ∈ P1(t). We may assume that p >

t/(log2 t)2. Let y = 0.5(log2 t)3 and z = (log t)1/(130 log3 x). Fix an � ∈ Jt = [y, z].
We count p ∈ P1(x) for which � = �p. Let P1,�(t) be the set of such primes. Thus,

p ≡ 1 (mod �), ap ≡ 0 (mod �).

Note that there exist matrices in GL2(Z/�Z) of determinant 1 and trace 0, such as(
0 1−1 0

)
. For t large enough, y > NE so that � � NE . By Lemma 1 and (5), we have

that P1,�(t) has cardinality
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#P1,�(t) � #A1,0(�)π(t)

# GL2(Z/�Z)
� t

�2 log t

so that

#P1(t) � t

log t

∑

�∈Jt

1

�2
� t

(log t)(log2 t)3
.

We deduce that
∑

p∈P1

1

p
= O(1). (30)

Now we deal with P2. Apply the Brun-pure sieve (see Corollary 1.1 and its proof on
Page 58 in [18]) to the set of ap with p ∈ P2(t). Put P := ∏

�∈Jt
� where w � t � x .

Then,

#P2(t) �
∑

d|P
ω(d)�2h

μ(d)πT0(d)(t),

where 2h is chosen as the largest even number not exceeding 10 log3 t so that all
moduli d satisfy d12 log d � log t for large t . Then, by Lemma 1

πT0(d)(t) = δdπ(t) + O(t/ log2 t),

uniformly for all d above, where δd = ∏
�|d δ� is the product of densities. Since

δ� � �−1, we obtain

#P2(t) �
∑

d|P
ω(d)�2h

μ(d)
(
δdπ(t) + O(t/ log2 t)

)

= π(t)
∑

d|P
μ(d)δd + OE

⎛

⎜
⎜
⎝

t

(log t)2
∑

d|P
ω(d)�2h

1 + t

log t

∑

d|P
ω(d)>2h

1

d

⎞

⎟
⎟
⎠ .

The first term above is

� π(t)
∏

�∈Jt

(1 − δ�) � π(t)

(
(log3 t)2

log2 t

)

,

which dominates the other error terms with our choice of the parameters. Thus, given
a large x , partial summation gives

∑

w�p�x
p∈P2

1

p
�

∫ x

w

(log3 t)2dt

t (log t)(log2 t)
� (log3 t)3

∣
∣
∣
t=x

t=w
� (log3 x)2. (31)
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Write m2 = k1k2 such that all prime factors of ki lie in Pi . Going back to equation
(28) and summing up over all possible values of k1 and k2, we derive using (30), (31)
that

|DE,4(x)|√log x

x log3 x
�

⎛

⎜
⎜
⎜
⎝

∑

μ2(k1)=1
p|k1⇒p∈P1

1

k1

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

∑

μ2(k2)=1
p|k2⇒p∈P2∩[w,x]

1

k2

⎞

⎟
⎟
⎟
⎠

�
∏

p∈P1

(

1 + 1

p

) ∏

p∈P2
w�p�x

(

1 + 1

p

)

� exp

⎛

⎜
⎜
⎝

∑

p∈P1

1

p
+

∑

p∈P2
w�p�x

1

p

⎞

⎟
⎟
⎠ = exp(O((log3 x)2)).

Thus,

#DE,4(x) � x

(log x)1/2+o(1)
.

Combining this with (25), (26) and (29), we obtain the claimed result.

3.5 The Proof of Theorem 4

Define

P = {p : ϕ(|ap|) is a power of 2}.

We shall prove that

#P(t) � t (log2 t)3

(log t)13/12
. (32)

Let c4 be the constant appearing in the statement of Lemma 1 in the inequality
n12 log n � c4 log x . Assume t is large, and let U := U (t) be maximal such that
n := 2U (t) satisfies n12 log n � c4 log t . Clearly, the inequality n12 log n > c5 log t
holds for t large enough, where we can take c5 := c4/3. Recall that if ϕ(m) is a power
of 2, then

m = 2α Fn1 Fn2 . . . Fnt ,
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where α � 0 and 0 � n1 < n2 < · · · < nt are such that Fni = 22
ni + 1 are primes

for i = 1, . . . , t . Put

A(t) = {±2α Fn1 . . . Fns : α � U (t), and 2ns < U (t)
}
.

Since α � U (t) and 212U (t) log(2U (t)) � c4 log t , we have U (t) = O(log2 t),
and hence, α = O(log2 t). Furthermore, we have 2ns = O(log2 t), so ns �
(1/ ln 2) log3 t + c6, we see that ni ∈ {0, 1, . . . , �(1/ ln 2) log3 t + c6�}. The num-
ber of subsets of this set is at most

2(1/ ln 2) log3 t+c6+1 = O(log2 t).

Thus, α and
∏

i Fni can be chosen in O(log2 t) ways, showing that

#A(t) � (log2 t)2.

Take p ∈ P(t). Write

ap = ±2α1 Fn1 . . . Fns . . . Fns+1 . . . Fnt ,

where 0 � n1 < · · · < nt , and ns is maximal such that 2ns � U (t). Since 22
ni � 2U (t)

for i � s + 1, we see that

ap ≡ a (mod 2U (t)),

for some a either zero (say if α1 � U (t)), or inA(t). This can be done is #A(t)+1 =
O((log2 t)2) ways. For each such choice, Lemma 1 implies

πTa(2U (t))(t) �
(
#Ta(2U (t))

#G(2U (t))

)
t

log t
.

It is clear that #Ta(2U (t)) = O(23U (t)). In fact, certainly the number of matri-
ces in GL2(Z/2U (t)Z) having trace congruent to a (mod 2U (t)) is O(23U (t)), while
#G(2U (t)) � 24U (t). Thus, for a fixed a,

πTa(2U (t))(t) � t

2U (t) log t
� t (log2 t)

(log t)13/12
.

Summing over all a ∈ A(t), we obtain

#P(t) � t (log2 t)#A(t)

(log t)13/12
� t (log2 t)3

(log t)13/12
,

which is what we wanted. It follows that
∑

p∈P p−1 = O(1).
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Let x be large and let CE,1(x) be the set of n � x which have a squarefull factor
s � (log x)4. As before,

#CE,1(x) � x

(log x)2
. (33)

Put y = exp
(
log x log3 x/2 log2 x

)
, and consider

CE,2 := {n � x : P+(n) � y}.

By [18, III.5.5 Corollary 9.3], uniformly for

x � 2 and exp
(
(log x)5/3+ε

)
� y � x,

we have

#CE,2(x) = �(x, y) = xρ(u)
{
1 + O

( log(u + 1)

log y

)}
� xeu−u log u+O(1),

where u = log x/ log y. For u = 2 log2 x/ log3 x , it follows that u log u = (2 +
o(1)) log2 x . Therefore,

#CE,2(x) � x

(log x)2+o(1)
as x → ∞. (34)

Assume that n ∈ CE (x)\ (CE,1(x) ∪ CE,2(x)
)
. Write n = Pm, where P = P+(n) >

y. Since y > (log x)4 for large x and n /∈ CE,1(x), P � m. For fixed m, by multi-
plicativity of an , P ∈ P(x/m). So, by (32), we obtain that the number of choices for
P � x/m is

� x(log2 x)3

m(log(x/m))13/12
� x(log2 x)49/12(log3 x)−13/12

m(log x)13/12
.

Write m = m1s, where m1 is squarefree. Then, every prime dividing m1 is in P .
Summing up the above bound over all possible m1 and s, we derive that

#CE,3 � x(log2 x)49/12(log3 x)−13/12

(log x)13/12
. (35)

The desired conclusion follows now from estimates (33), (34) and (35).
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3.6 The Proof of Theorem 6

Let x be large and n ∈ FE (x). Then, n − ϕ(n) = an − 1. If p is the smallest prime
factor of n, then

n

p
� n − ϕ(n) = |an − 1| � n1/2τ(n) + 1 � n1/2+o(1). (n → ∞)

Therefore, p > n1/2−o(1) as n → ∞. In particular, p > n0.49 if n is sufficiently large.
This shows that n = p, p2 or pq for primes p and q with p 
= q. Let FE,1(x) be
the set of such n � x with n = p a prime. Then, p − ap + 1 = ϕ(p) = p − 1, so
ap = 2 as noted in the introduction. The set of numbers p � x with this property has
counting function

#FE,1(x) � x(log2 x)1/2(log3 x)1/4

(log x)5/4
(36)

by Serre’s result, Lemma 3. Let FE,2(x) be the set of n � x with n = p2. Then,
p2−(a2

p −2p)+1 = ϕ(p2) = p2− p, so a2
p = 3p+1. This gives (ap −1)(ap +1) =

3p. Thus, either ap ± 1 = ±1 and ap ∓ 1 = ±3p, or ap ± 1 = ±3 and ap ∓ 1 = ±p.
The only possibilities are p = 5 and ap = ±4. Thus, FE,2(x) contains at most one
element, namely 25.

Let FE,3(x) be the set of n = pq. Then,

pq − apaq + 1 = (p − 1)(q − 1) = pq − p − q + 1,

so apaq = p + q. Assume p < q. Then,

√
q

p
<

√
p

q
+
√

q

p
= |apaq |√

pq
< 4,

showing that q < 16p. Since pq � x , we have p <
√

x . Furthermore, given a fixed
q, we have that q ∈ (p, 16p) and q ≡ −p (mod ap). Brun-Titchmarsh inequality
implies that the number of such q is at most

π
(
x/p; ap,−p

) � x

pϕ(|ap|) log(x/p|ap|) � x log2 x

p|ap| log x
,

where we used p|ap| � 2x3/4, so log(x/(p|ap|)) � log x , and that ϕ(a)/a �
1/ log2 x for a � x . Assume that n ∈ [x/2, x]. Then,

p < q + p = |apaq | � 2|ap|√q � 8p1/2|ap|,
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so |ap| > p1/2/8. Furthermore, x/2 � n = pq � 16p2, so p � c3x1/2 with
c3 := 2−2.5. Thus, |ap| � p1/2 � x1/4. Hence,

#
(FE,3(x)\FE,3(x/2)

) � x(log2 x)

(log x)2

∑

c3x1/2�p�x

1

p|ap|

� x3/4 log2 x

(log x)2

∑

c3x1/2�p�x

1

p

� x3/4 log2 x

(log x)2

Replacing x by x/2, then by x/4, etc., and summing up the resulting inequalities,
we conclude that

#FE,3(x) � x3/4 log2 x

(log x)2
,

which together with (36) and the fact that FE,2(x) has at most one element gives us
the desired conclusion.

3.7 The Proof of Proposition 7

This is identical with the proof of Proposition 1. It is based on the fact that C0(n) is
non-empty since it always contains the identity element in G(n). Furthermore, if we
put

ρ� := #C0(�)

# G(�)
,

then ρ� is a positive rational number satisfying the same structural properties as δ�

from the proof of Proposition 1 for primes � � y. In particular, estimates (7) and (8)
hold for � � ME because of (6) and the fact that #GL2(Z/�Z) = �(� − 1)(�2 − 1).
Furthermore, the estimate (9) holds with T0 replaced by C0 by Lemma 1 uniformly
for � � y and t ∈ (z, x]. Thus, the proof carries through identically and even Remark
3 holds if we replace an by En .

3.8 The Proof of Theorem 8

Let tn := LCM{tpe : pe‖n}. Since E(Fpe ) = Z/tpeZ × Z/dpe Z holds with some
divisor dpe of tpe , it follows easily that

rad(En) = rad(tn). (37)

Let x be large and y be some parameter tending to infinity with x such that y = o(x).
By Remark 3 and its analogue concerning the exceptional set of numbers n � x such
that En is not a multiple of every prime power q � y, we obtain
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#ECE,1(x) = #{n � x : q � gcd(an, En) for some prime power q � y}
� x

(log x)(1+o(1))/y
as x → ∞.

Assume now that n ∈ ECE,2(x) := ECE (x)\ECE,1(x). From (37) it follows that for
such n, both tn and an are divisible by all primes � � y. Since tn | n − an + 1,
n ≡ −1 (mod M), where M = ∏

��y �. The number of such n � x is at most
�x/M� + 1 � 2x/M . By the Prime Number Theorem, M = exp((1 + o(1))y).
Hence,

#ECE,2(x) � x

exp((1 + o(1))y)
,

and therefore,

#ECE (x) � x

(log x)(1+o(1))/y
+ x

exp((1 + o(1))y)
. (38)

The optimal choice for y is y = √
log2 x , which leads to the desired conclusion via

inequality (38).
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