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We study standard and nonlocal nonlinear Schrödinger (NLS) equations obtained
from the coupled NLS system of equations (Ablowitz-Kaup-Newell-Segur (AKNS)
equations) by using standard and nonlocal reductions, respectively. By using the Hirota
bilinear method, we first find soliton solutions of the coupled NLS system of equations;
then using the reduction formulas, we find the soliton solutions of the standard and
nonlocal NLS equations. We give examples for particular values of the parameters
and plot the function |q(t, x)|2 for the standard and nonlocal NLS equations. Published
by AIP Publishing. https://doi.org/10.1063/1.4997835

I. INTRODUCTION

When the Lax pairs are sl(2, R) valued matrices (Ablowitz-Kaup-Newell-Segur (AKNS) scheme)
and polynomials of the spectral parameter of degree two, then the resulting equations are the following
coupled nonlinear Schrödinger (NLS) equations:1

a qt =
1
2

qxx − q2 r, (1)

a rt =−
1
2

rxx + r2 q, (2)

where q(t, x) and r(t, x) are complex dynamical variables, a is a complex number in general. We call
the above system of coupled equations a nonlinear Schrödinger system (NLS system). The standard
(local) reduction of this system is obtained by letting

r(t, x)= kq̄(t, x), (3)

where k is a real constant and q̄ is the complex conjugate of the function q. When this condition on
the dynamical variables q and r is used in the system of equations (1) and (2), they reduce to the
following nonlinear Schrödinger (NLS) equation:

a qt =
1
2

qxx − kq2 q̄, (4)

provided that ā = �a. Recently, Ablowitz and Musslimani2–4 found another integrable reduction. It
is a nonlocal reduction of the NLS system (1) and (2), which is given by

r(t, x)= kq̄(ε1t, ε2x), (5)

where (ε1)2 = (ε2)2 = 1. Under this condition, the NLS system (1) and (2) reduces to

a qt(t, x)=
1
2

qxx(t, x) − kq2(t, x) q̄(ε1t, ε2x), (6)

provided that ā = �ε1a. There is only one standard reduction where (ε1, ε2) = (1, 1) but there are
three different nonlocal reductions where (ε1, ε2) = {(�1, 1), (1, �1), (�1, �1)}. Hence for these
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values of ε1 and ε2 and for different signs of k (sign(k) = ±1), we have six different nonlocal
integrable NLS equations. They are, respectively, the time reflection symmetric (T-symmetric), the
space reflection symmetric (S-symmetric), and the space-time reflection symmetric (ST-symmetric)
nonlocal nonlinear Schrödinger equations, which are given by

1. T-symmetric nonlinear Schrödinger equation:

a qt(t, x)=
1
2

qxx(t, x) − kq2(t, x) q̄(−t, x), ā= a. (7)

2. S-symmetric nonlinear Schrödinger equation:

a qt(t, x)=
1
2

qxx(t, x) − k q2(t, x) q̄(t,−x), ā=−a. (8)

3. ST-symmetric nonlinear Schrödinger equation:

a qt(t, x)=
1
2

qxx(t, x) − kq2(t, x) q̄(−t,−x), ā= a. (9)

Nonlocal NLS equations have the focusing and defocusing cases when the sign(k) = �1 and
sign(k) = 1, respectively. All these equations are integrable. They possess Lax pairs and recur-
sion operators. In addition to the above Eqs. (7)–(9), we also have the equations for q(�t, x),
q(t, �x), and q(�t, �x), respectively. Since they are obtained from (7)–(9) by t→ �t; x→ �x; and
(t → �t, x→ �x) reflections, respectively, we do not display them here.

Ablowitz and Musslimani have observed2 that one-soliton solutions of the nonlocal NLS equa-
tions blow up in a finite time. Existence of this singular behavior of one-soliton solutions of
nonlocal NLS equations was also observed in Ref. 10. Ablowitz and Musslimani have found many
other nonlocal integrable equations such as nonlocal modified Korteweg-de Vries equation, nonlo-
cal Davey-Stewartson equation, nonlocal sine-Gordon equation, and nonlocal (2 + 1)-dimensional
three-wave interaction equations.2–4 After the work of Ablowitz and Musslimani, there is increas-
ing interest in obtaining the nonlocal reductions of systems of integrable equations and their
properties.5–19

The main purpose of this work is to search for possible integrable reductions of the NLS system
(1) and (2) and investigate the applicability of the Hirota direct method to find the (soliton) solutions
of the reduced nonlinear Schrödinger equations.

By using the Hirota method, we first find one- and two-soliton solutions of the NLS sys-
tem of equations (1) and (2). We then investigate whether the system of equations (1) and (2)
satisfy the Hirota integrability; i.e., existence of three-soliton solution.20–22 We showed that the
system possesses three-soliton solution. Then by using the reductions (3) and (5), we obtain one-,
two-, and also three-soliton solutions of the standard and nonlocal NLS equations, namely, Eqs. (4)
and (7)–(9), respectively. In this paper, we give the general soliton solutions but we study only
S-symmetric nonlocal NLS equations. We observe that all types of nonlocal NLS equations have
singular and non-singular solutions depending on the values of the parameters in the solutions. In
addition to the solitary wave solutions, there are regular and singular localized solutions. We give
examples for certain values of the parameters and plot the function |q(x, t)|2 for the S-symmetric
case.

For the case of S-symmetric nonlocal NLS equation (8), we are at variance with Stalin et al.’s
results19 (see Remark 2 and Remark 3 in Secs. IV A and IV B, respectively). They claim that
they produce soliton solutions of the nonlocal NLS equation (S-symmetric) but it seems that they
are solving the NLS system of equations (1) and (2) rather than solving nonlocal NLS equation
(8) because they ignore the constraint equations satisfied by the parameters of the one-soliton
solutions.

The lay out of the paper is as follows. In Sec. II, we apply the Hirota method to the NLS system (1)
and (2) and find one-, two-, and three-soliton solutions. In Sec. III, we obtain soliton solutions of the
standard NLS equation by using the standard reduction. In Sec. IV, we investigate soliton solutions
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of the S-symmetric nonlocal NLS equation and give some examples for one-soliton, two-soliton, and
three-soliton solutions and plot the function |q(x, t)|2 for each example.

II. HIROTA METHOD FOR COUPLED NLS SYSTEM

To find soliton solutions, we use the Hirota method for (1) and (2). For this purpose, we let

q=
F
f

, r =
G
f

. (10)

Equation (1) becomes

2aFt f
2 − 2aFft f − Fxxf 2 + 2Fxfxf − 2Ff 2

x + Ffxxf + 2GF2 = 0, (11)

which is equivalent to
f (2aDt − D2

x )F · f + F(D2
x f · f + 2GF)= 0. (12)

Similarly, Eq. (2) becomes

2aGt f
2 − 2aGft f + Gxxf 2 − 2Gxfxf + 2Gf 2

x − Gfxxf − 2G2F = 0, (13)

which is equivalent to
f (2aDt + D2

x )G · f − G(D2
x f · f + 2GF)= 0. (14)

Hence the Hirota bilinear form of the coupled NLS system (1) and (2) is

P1(D){F · f } ≡ (2aDt − D2
x + α){F · f } = 0, (15)

P2(D){G · f } ≡ (2aDt + D2
x − α){G · f } = 0, (16)

P3(D){f · f } ≡ (D2
x − α){f · f } =−2GF, (17)

where α is an arbitrary constant.

A. One-soliton solution of the NLS system

To find one-soliton solution, we use the following expansions for the functions F, G, and f :

F = εF1, G= εG1, f = 1 + ε2f2, (18)

where
F1 = eθ1 , G1 = eθ2 , θi = kix + ωit + δi, i= 1, 2. (19)

When we substitute (18) into Eqs. (15)–(17), we obtain the coefficients of ε as

P1(D){F1 · 1} = 2aF1,t − F1,xx + αF1 = 0, (20)

P2(D){G1 · 1} = 2aG1,t + G1,xx − αG1 = 0, (21)

yielding the dispersion relations

ω1 =
(k2

1 − α)

2a
, ω2 =

(α − k2
2 )

2a
. (22)

From the coefficient of ε2

f2,xx − αf2 =−G1F1, (23)

we obtain the function f 2 as

f2 =
e(k1+k2)x+(ω1+ω2)t+δ1+δ2

α − (k1 + k2)2
. (24)

The coefficients of ε3 vanish due to the dispersion relations and (24). From the coefficient of ε4

(D2
x − α){ f2 · f2} = 2( f2f2,xx − f 2

2,x) − αf 2
2 = 0, (25)

by using the function f 2 given in (24), we get that α = 0. In the rest of the paper, we will take α = 0.
Let us also take ε = 1. Hence a pair of solutions of the NLS system (1) and (2) is given by (q(t, x),
r(t, x)), where
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q(t, x)=
eθ1

1 + Aeθ1+θ2
, r(t, x)=

eθ2

1 + Aeθ1+θ2
, (26)

with θi = kix + ωit + δi, i = 1, 2, ω1 =
k2

1

2a
, ω2 =−

k2
2

2a
, and A=−

1

(k1 + k2)2
. Here k1, k2, δ1, and δ2

are arbitrary complex numbers.

B. Two-soliton solution of the NLS system

For two-soliton solution, we take

f = 1 + ε2f2 + ε4f4, G= εG1 + ε3G3, F = εF1 + ε3F3, (27)

where

F1 = eθ1 + eθ2 , G1 = eη1 + eη2 , (28)

with θi = kix + ωit + δi, ηi = `ix + mit + αi for i = 1, 2. When we insert the above expansions into
(15)–(17), we obtain the coefficients of ε as

P1(D){F1 · 1} = 2aF1,t − F1,xx = 0, (29)

P2(D){G1 · 1} = 2aG1,t + G1,xx = 0. (30)

Here we get the dispersion relations

ωi =
k2

i

2a
, mi =−

`2
i

2a
, i= 1, 2. (31)

The coefficient of ε2 gives

f2,xx =−G1F1, (32)

yielding the function f 2,

f2 = eθ1+η1+α11 + eθ1+η2+α12 + eθ2+η1+α21 + eθ2+η2+α22 =
∑

1≤i,j≤2

eθi+ηj+αij , (33)

where

eαij =−
1

(ki + `j)2
, 1 ≤ i, j ≤ 2. (34)

From the coefficients of ε3, we get

2a(F1,t f2 − F1f2,t) − F1,xxf2 + 2F1,xf2,x − F1f2,xx + 2aF3,t − F3,xx = 0, (35)

2a(G1,t f2 − G1f2,t) + G1,xxf2 − 2G1,xf2,x + G1f2,xx + 2aG3,t − G3,xx = 0. (36)

These equations give the functions F3 and G3 as

F3 =A1eθ1+θ2+η1 + A2eθ1+θ2+η2 , G3 =B1eθ1+η1+η2 + B2eθ2+η1+η2 , (37)

where

Ai =−
(k1 − k2)2

(k1 + `i)2(k2 + `i)2
, Bi =−

(`1 − `2)2

(`1 + ki)2(`2 + ki)2
, i= 1, 2. (38)

The coefficient of ε4 gives

f4,xx + ( f2 f2,xx − f 2
2,x) + G1F3 + G3F1 = 0, (39)

yielding the function f 4 as
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f4 =Meθ1+θ2+η1+η2 , (40)

where

M =
(k1 − k2)2(l1 − l2)2

(k1 + l1)2(k1 + l2)2(k2 + l1)2(k2 + l2)2
. (41)

The coefficients of ε5;

2a(F3,t f2 − F3f2,t) − F3,xxf2 + 2F3,xf2,x − F3f2,xx + 2a(F1,t f4 − F1f4,t)

− F1,xxf4 + 2F1,xf4,x − F1f4,xx = 0,

2a(G3,t f2 − G3f2,t) + G3,xxf2 − 2G3,xf2,x + G3f2,xx + 2a(G1,t f4 − G1f4,t)

+ G1,xxf4 − 2G1,xf4,x + G1f4,xx = 0,

the coefficient of ε6;

f2,xxf4 − 2f2,xf4,x + f2f4,xx + G3F3 = 0,

the coefficients of ε7;

2a(F3,t f4 − F3f4,t) − F3,xxf4 + 2F3,xf4,x − F3f4,xx = 0,

2a(G3,t f4 − G3f4,t) + G3,xxf4 − 2G3,xf4,x + G3f4,xx = 0,

and the coefficient of ε8;

f4f4,xx − f 2
4,x = 0,

vanish directly due to the functions F1, G1, and F3, G3, f 2, f 4 that are previously found. If we take
ε = 1, then two-soliton solution of the NLS system (1) and (2) is given with the pair (q(t, x), r(t, x)),
where

q(t, x)=
eθ1 + eθ2 + A1eθ1+θ2+η1 + A2eθ1+θ2+η2

1 + eθ1+η1+α11 + eθ1+η2+α12 + eθ2+η1+α21 + eθ2+η2+α22 + Meθ1+θ2+η1+η2
, (42)

r(t, x)=
eη1 + eη2 + B1eθ1+η1+η2 + B2eθ2+η1+η2

1 + eθ1+η1+α11 + eθ1+η2+α12 + eθ2+η1+α21 + eθ2+η2+α22 + Meθ1+θ2+η1+η2
, (43)

with θi = kix +
k2

i

2a
t + δi, ηi = `ix −

`2
i

2a
t + αi for i = 1, 2. Here ki, `i, δi, and αi, i = 1, 2 are arbitrary

complex numbers.

C. Three-soliton solution of the NLS system

Hirota integrability is defined as the existence of three-soliton solutions. For this purpose, we
find three-soliton solutions of the NLS system (1) and (2) and all of its reductions.

For three-soliton solution, we take

f = 1 + ε2f2 + ε4f4 + ε6f6, G= εG1 + ε3G3 + ε5G5, F = εF1 + ε3F3 + ε5F5, (44)

and

F1 = eθ1 + eθ2 + eθ3 , G1 = eη1 + eη2 + eη3 , (45)

where θi = kix + ωit + δi, ηi = `ix + mit + αi for i = 1, 2, 3. We insert the expansions to the Hirota
bilinear form of the NLS system (15)–(17) and obtain the coefficients of εn, 1 ≤ n ≤ 12 as

ε : 2aF1,t − F1,xx = 0, (46)

2aG1,t + G1,xx = 0, (47)

ε2 : f2,xx + G1F1 = 0, (48)

ε3 : 2a(F1,t f2 − F1f2,t) − F1,xxf2 + 2F1,xf2,x − F1f2,xx + 2aF3,t − F3,xx = 0, (49)

2a(G1,t f2 − G1f2,t) + G1,xxf2 − 2G1,xf2,x + G1f2,xx + 2aG3,t + G3,xx = 0, (50)

ε4 : f4,xx + f2 f2,xx − f 2
2,x + G1F3 + G3F1 = 0, (51)
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ε5 : 2a(F3,t f2 − F3f2,t) − F3,xxf2 + 2F3,xf2,x − F3f2,xx + 2a(F1,t f4 − F1f4,t)

− F1,xxf4 + 2F1,xf4,x − F1f4,xx + 2aF5,t − F5,xx = 0, (52)

2a(G3,t f2 − G3f2,t) + G3,xxf2 − 2G3,xf2,x + G3f2,xx + 2a(G1,t f4 − G1f4,t)

+ G1,xxf4 − 2G1,xf4,x + G1f4,xx + 2aG5,t + G5,xx = 0, (53)

ε6 : f2,xxf4 − 2f2,xf4,x + f2f4,xx + f6,xx + G5F1 + G1F5 + G3F3 = 0, (54)

ε7 : 2a(F3,t f4 − F3f4,t) − F3,xxf4 + 2F3,xf4,x − F3f4,xx + 2a(F1,t f6 − F1f6,t)

− F1,xxf6 + 2F1,xf6,x − F1f6,xx + 2a(F5,t f2 − F5f2,t) − F5,xxf2
+ 2F5,xf2,x − F5f2,xx = 0, (55)

2a(G3,t f4 − G3f4,t) + G3,xxf4 − 2G3,xf4,x + G3f4,xx + 2a(G1,t f6 − G1f6,t)

+ G1,xxf6 − 2G1,xf6,x + G1f6,xx + 2a(G5,t f2 − G5f2,t) + G5,xxf2
− 2G5,xf2,x + G5f2,xx = 0, (56)

ε8 : f2,xxf6 − 2f2,xf6,x + f2f6,xx + f4f4,xx − f 2
4,x + G3F5 + G5F3 = 0, (57)

ε9 : 2a(F3,t f6 − F3f6,t) − F3,xxf6 + 2F3,xf6,x − F3f6,xx + 2a(F5,t f4 − F5f4,t)

− F5,xxf4 + 2F5,xf4,x − F5f4,xx = 0, (58)

2a(G3,t f6 − G3f6,t) + G3,xxf6 − 2G3,xf6,x + G3f6,xx + 2a(G5,t f4 − G5f4,t)

+ G5,xxf4 − 2G5,xf4,x + G5f4,xx = 0, (59)

ε10 : f4,xxf6 − 2f4,xf6,x + f4f6,xx + G5F5 = 0, (60)

ε11 : 2a(F5,t f6 − F5f6,t) − F5,xxf6 + 2F5,xf6,x − F5f6,xx = 0, (61)

2a(G5,t f6 − G5f6,t) + G5,xxf6 − 2G5,xf6,x + G5f6,xx = 0, (62)

ε12 : f6f6,xx − f 2
6,x = 0. (63)

From the equalities (46) and (47), we obtain the dispersion relations

ωi =
k2

i

2a
, mi =−

`2
i

2a
, i= 1, 2, 3. (64)

Equation (48) gives the function f 2 as

f2 =
∑

1≤i,j≤3

eθi+ηj+αij , eαij =−
1

(ki + `j)2
, 1 ≤ i, j ≤ 3. (65)

From the coefficients of ε3, we obtain the functions F3 and G3

F3 =
∑

1≤i,j,s≤3
i<j

Aijse
θi+θj+ηs , Aijs =−

(ki − kj)2

(ki + `s)2(kj + `s)2
, 1 ≤ i, j, s ≤ 3, i < j, (66)

G3 =
∑

1≤i,j,s≤3
i<j

Bijse
ηi+ηj+θs , Bijs =−

(`i − `j)2

(`i + ks)2(`j + ks)2
, 1 ≤ i, j, s ≤ 3, i < j. (67)

Equation (51) yields the function f 4 as

f4 =
∑

1≤i<j≤3
1≤p<r≤3

Mijpreθi+θj+ηp+ηr , (68)

where

Mijpr =
(ki − kj)2(lp − lr)2

(ki + lp)2(ki + lr)2(kj + lp)2(kj + lr)2
, (69)

for 1 ≤ i < j ≤ 3, 1 ≤ p < r ≤ 3. From the coefficients of ε5, we obtain the functions F5 and
G5,



051501-7 M. Gürses and A. Pekcan J. Math. Phys. 59, 051501 (2018)

F5 =V12eθ1+θ2+θ3+η1+η2 + V13eθ1+θ2+θ3+η1+η3 + V23eθ1+θ2+θ3+η2+η3 , (70)

G5 =W12eθ1+θ2+η1+η2+η3 + W13eθ1+θ2+η1+η2+η3 + W23eθ2+θ3+η1+η2+η3 , (71)

where

Vij =
Sij

(k1 + k2 + k3 + `i + `j)2 − 2a(ω1 + ω2 + ω3 + mi + mj)
, (72)

Wij =−
Qij

(ki + kj + `1 + `2 + `3)2 + 2a(ωi + ωj + m1 + m2 + m3)
(73)

for 1 ≤ i < j ≤ 3. Here Sij and Qij are given in the Appendix of Ref. 23. Equation (54) gives the
function f 6,

f6 =Heθ1+θ2+θ3+η1+η2+η3 , (74)

where the coefficient H is also represented in the Appendix of Ref. 23. The rest of Eqs. (55)–(63) are
satisfied directly. Let us also take ε = 1. Hence three-soliton solution of the coupled NLS system (1)
and (2) is given with the pair (q(t, x), r(t, x)), where

q(t, x)=

eθ1 + eθ2 + eθ3 +
∑

1≤i,j,s≤3
i<j

Aijseθi+θj+ηs +
∑

1≤i,j≤3
i<j

Vijeθ1+θ2+θ3+ηi+ηj

1 +
∑

1≤i,j≤3 eθi+ηj+αij +
∑

1≤i<j≤3
1≤p<r≤3

Mijpreθi+θj+ηp+ηr + Heθ1+θ2+θ3+η1+η2+η3
, (75)

r(t, x)=

eη1 + eη2 + eη3 +
∑

1≤i,j,s≤3
i<j

Bijseηi+ηj+θs +
∑

1≤i,j≤3
i<j

Wijeθi+θj+η1+η2+η3

1 +
∑

1≤i,j≤3 eθi+ηj+αij +
∑

1≤i<j≤3
1≤p<r≤3

Mijpreθi+θj+ηp+ηr + Heθ1+θ2+θ3+η1+η2+η3
. (76)

Remark 1. Notice that the authors of Ref. 19 used another form of Hirota perturbation expansion
for one-soliton solution;

q(t, x)=
g(t, x)
f (t, x)

, (77)

where

g(t, x)= εg1 + ε3g3, f (t, x)= 1 + ε2f2 + ε4f4, (78)

different from the form (18) that we use. The solution found in Ref. 19,

q(t, x)=
α1eξ̄1 + eξ1+2ξ̄1+δ11

1 + eξ1+ξ̄1+δ1 + e2(ξ1+ξ̄1)+R
, (79)

the numerator and denominator are factorizable and it reduces to our solution (26)

q(t, x)=
α1eξ̄1 (1 + 1

α1
eξ1+ξ̄1+δ11 )

(1 + eξ1+ξ̄1+∆ )(1 + 1
α1

eξ1+ξ̄1+δ11 )
=

α1eξ̄1

1 + eξ1+ξ̄1+∆
. (80)

For two-soliton solution, the following form of Hirota perturbation expansion:

g(t, x)=
3∑

n=0

ε2n+1g2n+1, f (t, x)= 1 +
4∑

n=1

ε2nf2n, (81)

is used in Ref. 19. Our two-soliton solutions (42) and (43) are much simpler and shorter than the one
given in Ref. 19. Similar to one-soliton solution, one expects that the two-soliton solution given in
Ref. 19 is equivalent to the solutions (42) and (43).

III. STANDARD REDUCTION OF THE NLS SYSTEM

Here we consider the standard reduction (3) and obtain soliton solutions of the reduced Eq. (4)
with the condition
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ā=−a (82)

satisfied.

A. One-soliton solution for the standard NLS equation

We first obtain the conditions on the parameters of one-soliton solution of the NLS system to
satisfy the equality (3); i.e.,

ek2x−
k2
2

2a t+δ2

1 + Ae(k1+k2)x+
(k2

1−k2
2 )

2a t+δ1+δ2

= k
ek̄1x+

k̄2
1

2ā t+δ̄1

1 + Āe(k̄1+k̄2)x+
(k̄2

1−k̄2
2 )

2ā t+δ̄1+δ̄2

. (83)

Hence one of the sets of the constraints that the parameters must satisfy the following:

(i) k2 = k̄1, (ii) −
k2

2

2a
=

k̄2
1

2ā
, (iii) eδ2 = keδ̄1 , (iv) A= Ā,

(v) (k1 + k2)= (k̄1 + k̄2), (vi)
(k2

1 − k2
2 )

2a
=

(k̄2
1 − k̄2

2 )

2ā
, (vii) eδ1+δ2 = eδ̄1+δ̄2 . (84)

Consider the condition (ii). We have

−
k2

2

2a
=−

k̄1

−2ā
=

k̄2
1

2ā
, (85)

by (82) and the condition (i). Similarly, the conditions (iv) − (vi) are also satisfied directly by (82)
and (i). Now consider the relation eδ2 = keδ̄1 or eδ̄2 = keδ1 given in (iii) of (84). Note that since k is a
real constant, we have k̄ = k. Consequently, we have

eδ1+δ2 = keδ1 eδ̄1 and eδ̄1+δ̄2 = keδ̄1 eδ1 ,

yielding the equality eδ1+δ2 = eδ̄1+δ̄2 .
Therefore the parameters of one-soliton solution of Eq. (4) must have the following properties:

(1) ā=−a, (2) k2 = k̄1, (3) eδ2 = keδ̄1 . (86)

Example 1. Let us illustrate a particular example of one-soliton solution of (4). For
(k1, k2, eδ1 , eδ2 , k, a)= (1 + i, 1 − i, i, i,−1, i

2 ), one-soliton solution becomes

q(t, x)=
ie(1+i)x+2t

1 + 1
4 e2x+4t

. (87)

To sketch the graph of this solution in a real plane, we will consider q(t, x)q̄(t, x)= |q(t, x)|2,

|q(t, x)|2 =
16e2x+4t

(4 + e2x+4t)2
. (88)

The graph of (88) is given in Fig. 1.

B. Two-soliton solution for the standard NLS equation

Similar to the one-soliton solution case, we obtain the conditions on the parameters of two-soliton
solution given by (42) and (43) of the NLS system to satisfy the equality (3);

(1) ā=−a, (2) `i = k̄i, i= 1, 2, (3) eαi = keδ̄i , i= 1, 2. (89)

Example 2. Consider the following parameters: (k1, `1, k2, `2) = (1 + i, 1 � i, 2 + 2i, 2 � 2i) with
(eαj , eδj , k, a)= (−1 + i, 1 + i,−1, i) for j = 1, 2. In this case, two-soliton solution is
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FIG. 1. One-soliton solution for (88).

q(t, x)=
Y1

Y2
, (90)

where

Y1 = (1 + i)e(1+i)x+t + (1 + i)e(2+2i)x+4t +
(
−

1
50

+
7

50
i
)
e(4+2i)x+6t +

(
−

7
200

+
1

200
i
)
e(5+i)x+9t

and

Y2 = 1 +
1
2

e2x+2t +
( 4
25

+
3
25

i
)
e(3−i)x+5t +

( 4
25
−

3
25

i
)
e(3+i)x+5t +

1
8

e4x+8t +
1

400
e6x+10t .

The graph of the function |q(t, x)|2 corresponding to the solution (90) is given in Fig. 2(a).

Example 3. In this example, we just give the graphs of two-soliton solutions defined by the
function |q(t, x)|2 corresponding to (k1, `1, k2, `2)=

(
− 1

2 −
2
5 i,− 1

2 + 2
5 i,− 13

25 + 2
5 i,− 13

25 −
2
5 i

)
and

(k1, `1, k2, `2)=
(
− 1

2 −
2
5 i,− 1

2 + 2
5 i, 13

25 −
2
5 i, 13

25 + 2
5 i

)
with (eαj , eδj , k, a)= (−1 + i, 1 + i,−1, i) for

j = 1, 2 in Figs. 2(b) and 2(c), respectively.

FIG. 2. Different types of two-soliton solutions for Eq. (4).
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FIG. 3. Different types of three-soliton solutions for Eq. (4).

C. Three-soliton solution for the standard NLS equation

The conditions on the parameters of three-soliton solution of the standard NLS equation (4) can
be easily found by the same analysis used in Sec. III A as

(1) ā=−a, (2) `i = k̄i, i= 1, 2, 3, (3) eαi = keδ̄i , i= 1, 2, 3. (91)

Example 4. To illustrate some examples of three-soliton solution for the standard NLS equation,
we give particular values, satisfying above constraints, to the parameters of the solution. The graphs
of the functions |q(t, x)|2 corresponding to (k1, l1, k2, l2, k3, l3)=

(
− 1

2 −
2
5 i,− 1

2 + 2
5 i,− 13

25 −
2
5 i,− 13

25 +
2
5 i,− 27

50 −
2
5 i,− 27

50 + 2
5 i

)
, (k1, l1, k2, l2, k3, l3)=

(
− 1

2 −
2
5 i,− 1

2 + 2
5 i,− 13

25 −
2
5 i,− 13

25 + 2
5 i,− 27

50 + 2
5 i,− 27

50 −
2
5 i

)
,

and (k1, l1, k2, l2, k3, l3)=
(
− 1

2 −
2
5 i,− 1

2 + 2
5 i,− 13

25 + 2
5 i,− 13

25 −
2
5 i, 27

50 −
2
5 i, 27

50 −
2
5 i

)
with (eαj , eδj , k, a)

= (−1 + i, 1 + i,−1, i), j = 1, 2, 3 are given in Figs. 3(a)–3(c), respectively.

IV. NONLOCAL REDUCTION OF THE NLS SYSTEM

In this section, we use the reduction (5) introduced by Ablowitz and Musslimani2–4 to obtain
soliton solutions for three different nonlocal NLS equations (7)–(9) with the condition

ā=−ε1a (92)

satisfied.

A. One-soliton solution for nonlocal NLS equation

Here we find the conditions on the parameters of one-soliton solution of the NLS system to
satisfy the equality (5). We must have

ek2x−
k2
2

2a t+δ2

1 + Ae(k1+k2)x+
(k2

1−k2
2 )

2a t+δ1+δ2

= k
ek̄1ε2x+

k̄2
1

2ā ε1t+δ̄1

1 + Āe(k̄1+k̄2)ε2x+
(k̄2

1−k̄2
2 )

2ā ε1t+δ̄1+δ̄2

, (93)

yielding the conditions

(i) k2 = ε2k̄1, (ii) −
k2

2

2a
=

k̄2
1

2ā
ε1, (iii) eδ2 = keδ̄1 , (iv) Ā=A,

(v) (k1 + k2)= (k̄1 + k̄2)ε2, (vi)
(k2

1 − k2
2 )

2a
=

(k̄2
1 − k̄2

2 )

2ā
ε1, (vii) eδ1+δ2 = eδ̄1+δ̄2 . (94)
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From (i) we have k2
2 = k̄2

1 . If we use this relation on the left-hand side of (ii) with (92), we get that the
condition (ii) is satisfied directly since

−
k2

2

2a
=−

k̄2
1

2a
=

k̄2
1

2ā
ε1.

For (iv), we only need that the equality (k1 + k2)2 = (k̄1 + k̄2)2 holds. Indeed it is satisfied directly
since

(k1 + k2)2 = (k̄2ε2 + k̄1ε2)2 = (k̄1 + k̄2)2

with the condition given in (i).
The condition (v) is already true since

(k1 + k2)= (k̄2ε2 + k̄1ε2)= (k̄1 + k̄2)ε2

by the condition k2 = k̄1ε2 or equivalently k1 = k̄2ε2. Similarly, (vi) is satisfied directly since

(k2
1 − k2

2 )

2a
=

(k̄2
2 − k̄2

1 )

−2ε1ā
=

(k̄2
1 − k̄2

2 )

2ā
ε1,

by k2
2 = k̄2

1 , k2
1 = k̄2

2 , and ā = �ε1a.
In Sec. III A, we proved that the condition (vii) is satisfied automatically by the condition (iii).

Hence for one-soliton solutions of the nonlocal reductions of the NLS system, we have obtained the
following conditions:

(1) ā=−ε1a, (2) k2 = k̄1ε2, (3) eδ2 = keδ̄1 . (95)

Therefore one-soliton solution of the nonlocal NLS equations is given by

q(t, x)=
ek1x+

k2
1

2a t+δ1

1 − e
(k1+k2)x+

(
k2
1

2a −
k2
2

2a

)
t+δ1+δ2

(k1+k2)2

(96)

with conditions (95) satisfied.
Now and then we will consider only the case (ε1, ε2) = (1, �1) (S-symmetric case). Here the

nonlocal reduction is r(t, x)= kq̄(t,−x) giving ā = �a, k2 =−k̄1, and

aqt(t, x)=
1
2

qxx(t, x) − kq(t, x)q̄(t,−x)q(t, x), (97)

with eδ2 = keδ̄1 . From ā = �a, we have a = iy, y ∈R. If k1 = α + iβ, α, β ∈R, then the solution of (97)
becomes

q(t, x)=
e(α+iβ)x+ (α+iβ)2

2iy t+δ1

1 + k e2iβx+ 2αβ
y t+δ1+δ̄1

4β2

, (98)

where β , 0. Here the solution is complex valued. Hence let us consider the real valued function
|q(t, x)|2. We have

|q(t, x)|2 =
16β4e2αx+ 2αβ

y t+δ1+δ̄1

(ke
2αβ

y t+δ1+δ̄1 + 4β2 cos(2βx))2 + 16β4 sin2(2βx)
. (99)

This function is singular at x =
nπ
2β

, ke
2αβ

y t+δ1+δ̄1 + 4β2 (−1)n = 0 both for focusing and defocusing

cases. If α = 0, the function (99) becomes

|q(t, x)|2 =
2β2

k[B + cos(2βx)]
, (100)
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for B=
ρ2 + 16β4

8ρβ2
, where ρ= keδ1+δ̄1 . Clearly, the solution (100) is non-singular if B > 1 or

B < � 1.

Example 5. For the set of parameters (k1, k2, eδ1 , eδ2 , k, a)= (i, i, i,−i, 1, i
2 ), we get the solution

q(t, x)=
4ieix+it

4 + e2ix
, (101)

and therefore,

|q(t, x)|2 =
16

17 + 8 cos(2x)
. (102)

This solution represents a periodic solution. Its graph is given in Fig. 4.

Example 6. In addition to the solution given with conditions (95), we have another possible
solution of r(t, x)= kq̄(t,−x), which is given by

q(t, x)= e
k2
1

2a t+δ1
ek1x

1 + e2k1x
, (103)

where eδ2 = keδ̄1 , Akeδ̄1+δ1 = 1, k2 = k1, and k1 is real. Here ā = �a. Hence

|q(t, x)|2 =−
k2

1

k
sech2(k1x), (104)

which represents a stationary soliton solution for the focusing case (k < 0). For example, if we

consider k1 =
1
2

and eδ1 = 1 + i giving k =−
1
2
< 0, the above function becomes

|q(t, x)|2 =
1
2

sech2
(1
2

x
)
, (105)

which represents a soliton. Its graph is given in Fig. 5.

Remark 2. In Ref. 19, the authors studied a particular form of S-symmetric nonlocal NLS

equation (8), where a=
i
2

and k = �1,

iqt(t, x)= qxx(t, x) + 2q(t, x)q∗(t,−x)q(t, x). (106)

Here ∗ is used for complex conjugation. In Ref. 19, one-soliton solution of the nonlocal equation
(106) is given as

FIG. 4. Periodic solution for (102).
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FIG. 5. One-soliton solution for (105).

q(t, x)=
α1ei ¯̀1x+i ¯̀2

1 t+ξ̄ (0)
1

1 − α1β1

(`1+ ¯̀1)2 ei( ¯̀1+`1)x+i( ¯̀2
1−`

2
1 )t+ξ̄ (0)

1 +ξ1
(0)

. (107)

Here we expressed their parameters k1, k̄1 of Ref. 19 as `1, ¯̀1, respectively, not to mix with our k1,

k2. Under the conditions a=
i
2

, k = �1, eδ1 = α1eξ̄
(0)
1 , and eδ̄1 = β1eξ

(0)
1 , the solution (107) becomes

equivalent to our case. They also give the function q∗(t, �x) as

q∗(t,−x)=
β1ei`1x−i`2

1 t+ξ1
(0)

1 − α1β1

(`1+ ¯̀1)2 ei( ¯̀1+l1)x+i( ¯̀2
1−`

2
1 )t+ξ̄ (0)

1 +ξ1
(0)

(108)

and define the constants `1, ¯̀1, α1, β1, ξ(0)
1 , and ξ̄(0)

1 as arbitrary complex constants. But obviously
from the relation between the functions q(t, x) and q∗(t, �x), the following constraints must be
satisfied:

α∗1 = β1, `1 = ( ¯̀1)∗, ξ(0)
1 = (ξ̄(0)

1 )∗. (109)

These conditions are equivalent to our conditions coming from the reduction (5) for the S-symmetric
case which were missed in Ref. 19. Because of this fact, the example given in Ref. 19 with the
parameters chosen as `1 = 0.4 + i, ¯̀1 =−0.4 + i, α1 = 1 + i, and β1 = 1 � i is not valid. They claim that
they find the non-singular most general one-bright soliton solution of Eq. (106) which is not correct
because the above constraints (109) are not satisfied by the parameters they have chosen. Indeed
such specific parameters they use are not allowed since `1 = 0.4 + i,−0.4− i= ( ¯̀1)∗. Note that if we

use the parameters not satisfying (109) that they give and, e.g., eξ̄
(0)
1 = 1 + i and eξ1

(0)
=−1 + i in the

solution then the solution (107) and q∗(t, �x) becomes

q(t, x)=
2ie(−1− 2

5 i)x+( 4
5−

21
25 i)t

1 − e−2x+ 8
5 t

, q∗(t,−x)=
−2ie(1− 2

5 i)x+( 4
5 + 21

25 i)t

1 − e2x+ 8
5 t

. (110)

One can easily check that the nonlocal NLS equation (106) is not satisfied by the above functions.

If we take the parameters satisfying (109), for instance `1 = 0.4 + i, ¯̀1 = 0.4 − i, α1 = 1 + i, and
β1 = 1 � i with ξ(0)

1 = ξ̄
(0)
1 = 0, then the solution (107) becomes

q(t, x)=
(1 + i)e(1+ 2

5 i)x+( 4
5−

21
25 i)t

1 − 25
8 e

4
5 ix+ 8

5 t
(111)

and so
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|q(t, x)|2 =
2e2x+8t

( 25
8 e

8
5 t − cos( 4

5 x))2 + sin2( 4
5 x)

, (112)

which is not a solitary wave. Indeed it has singularity at (x, t)=
(

5
2 nπ, 5

8 ln( 8
25 )

)
, n is an integer.

We understand that the authors of Ref. 19 are solving the NLS system of equations (1) and (2)
rather than solving nonlocal NLS equation (8) as they claim. They treat q∗(t, �x) as a separate quantity
than q(t, x) rather than using the equivalence q∗(t, �x) = (q(t,x))∗|x→�x. That is the reason why they
miss the constraint equations (109) for the parameters of the one-soliton solution.

B. Two-soliton solution for nonlocal NLS equation

We obtain the conditions on the parameters of two-soliton solution of the NLS system to satisfy
the equality (5), where the function r(t, x) is given in (43) and kq̄(ε1t, ε2x) is

kq̄(ε1t, ε2x)= k
eθ̄1 + eθ̄2 + Ā1eθ̄1+θ̄2+η̄1 + Ā2eθ̄1+θ̄2+η̄2

1 + eθ̄1+η̄1+ᾱ11 + eθ̄1+η̄2+ᾱ12 + eθ̄2+η̄1+ᾱ21 + eθ̄2+η̄2+ᾱ22 + M̄eθ̄1+θ̄2+η̄1+η̄2
, (113)

where

θ̄i = ε2k̄ix + ε1
k̄2

i

2ā
t + δ̄i,

η̄i = ε2 ¯̀ix − ε1

¯̀2
i

2ā
t + ᾱi,

for i = 1, 2. Here we have the following conditions that must be satisfied:

(i) eηi = keθ̄i , i= 1, 2, (ii) eθ1+η1+η2 = keθ̄1+θ̄2+η̄1 , (iii) Bi = Āi, i= 1, 2,

(iv) eθ2+η1+η2 = keθ̄1+θ̄2+η̄2 , (v) eθ1+η1 = eθ̄1+η̄1 , (vi) eθ1+η2 = eθ̄2+η̄1 ,

(vii) eθ2+η1 = eθ̄1+η̄2 , (viii) eθ2+η2 = eθ̄2+η̄2 , (ix) eαij = eᾱji , i, j = 1, 2,

(x) M = M̄, (xi) eθ1+θ2+η1+η2 = eθ̄1+θ̄2+η̄1+η̄2 .

(114)

From the condition (i), we get

`ix −
`2

i

2a
t = ε2k̄ix + ε1

k̄2
i

2ā
t, eαi = keδ̄i , i= 1, 2, (115)

yielding `i = ε2k̄i, i = 1, 2. The coefficients of t in the above equality are directly equal with this
relation and ā = �ε1a that we have previously obtained. All the other conditions (ii)−(xi) are also
satisfied automatically by the following conditions:

(1) ā=−ε1a, (2) `i = ε2k̄i, i= 1, 2, (3) eαi = keδ̄i , i= 1, 2. (116)

For particular choice of the parameters, let us present some solutions of the nonlocal reduction of the
NLS system only for (ε1, ε2) = (1, �1) (S-symmetric case). In this case, we have ā = �a, `i =−k̄i,
and eαi = keδ̄i for i = 1, 2.

Example 7. Consider the set of the parameters (k1, `1, k2, `2)= (
i
4

,
i
4

, i, i) with (eαj , eδj , k, a)=

(1, 1, 1,
i
2

) for j = 1, 2. The solution q(t, x) becomes

q(t, x)=
e

1
4 ix+ 1

16 it + eix+it + 36
25 e

3
2 ix+it + 9

100 e
9
4 ix+ 1

16 it

1 + 4e
1
2 ix + 16

25 e
5
4 ix− 15

16 it + 16
25 e

5
4 ix+ 15

16 it + 1
4 e2ix + 81

625 e
5
2 ix

(117)
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FIG. 6. Breather type of wave solution for (118).

and so the function |q(t, x)|2 is

|q(t, x)|2 =
Y1

Y2
, (118)

where

Y1 = 625
(
20 000 cos

(3
4

x +
15
16

t
)

+ 28 800 cos
(5
4

x +
15
16

t
)

+ 2 592 cos
(
−

3
4

x +
15
16

t
)

+ 1 800 cos
(
−

5
4

x +
15
16

t
)

+ 28 800 cos
(1
2

x
)

+ 1 800 cos 2x + 40 817
)

and

Y2 = 100
(
340 000 cos

(3
4

x +
15
16

t
)

+ 90 368 cos
(5
4

x +
15
16

t
)

+ 340 000 cos
(
−

3
4

x +
15
16

t
)

+ 90 368 cos
(
−

5
4

x +
15
16

t
)

+ 504 050 cos
(1
2

x
)

+ 125 000 cos
(3
2

x
)

+ 16 200 cos
(5
2

x
)

+ 96 050 cos 2x + 51 200 cos
(15

8
t
))

+ 111 865 601.

The graph of (118) is given in Fig. 6.

Remark 3. Two-soliton solution presented in Ref. 19 has the same flaw as stated in Remark
2. They chose the parameters of their solution not satisfying the constraint equations. Because of
the relation between the functions q(t, x) and q∗(t, �x), their parameters must satisfy the following
constraints:

(1) α∗p = βp, (2) `p = ( ¯̀p)∗, p= 1, 2, (3) eγj = (e∆j )∗, (119)

where j = {1, 2, 3, 4, 11, 12, 21, 22, 23, 24, 25, 26, 31, 32}. Remember that we use ` and ¯̀

instead of the parameters k and k̄ (parameters of Ref. 19), respectively. However, they have taken
the parameters as in the form ¯̀1 = a1 + b1i, `1 = �a1 + b1i, ¯̀2 = c1 + d1i, and `2 = �c1 + d1i for
some specific values of ap, bp, cp, and dp, p = 1, 2. Clearly, the parameters do not satisfy the above
constraints, hence two-soliton solution of Ref. 19 does not satisfy the nonlocal nonlinear Schrödinger
equation (106).

C. Three-soliton solution for nonlocal NLS equation

Similar to one- and two-soliton solution for nonlocal NLS equations, we first obtain the conditions
on the parameters of three-soliton solution of the NLS system to satisfy the equality (5), where
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r(t, x) is given by (76) and

kq̄(ε1t, ε2x)= k

eθ̄1 + eθ̄2 + eθ̄3 +
∑

1≤i,j,s≤3
i<j

Āijseθ̄i+θ̄j+η̄s +
∑

1≤i,j≤3
i<j

V̄ijeθ̄1+θ̄2+θ̄3+η̄i+η̄j

1 +
∑

1≤i,j≤3 eθ̄i+η̄j+ᾱij +
∑

1≤i<j≤3
1≤p<r≤3

M̄ijpreθ̄i+θ̄j+η̄p+η̄r + H̄eθ̄1+θ̄2+θ̄3+η̄1+η̄2+η̄3
, (120)

where

θ̄i = ε2k̄ix + ε1
k̄2

i

2ā
t + δ̄i, i= 1, 2, 3

η̄i = ε2 ¯̀ix − ε1

¯̀2
i

2ā
t + ᾱi, i= 1, 2, 3.

Here we obtain that (5) is satisfied by the following conditions:

(1) ā=−ε1a, (2) `i = ε2k̄i, i= 1, 2, 3, (3) eαi = keδ̄i , i= 1, 2, 3. (121)

For (ε1, ε2) = (1, �1) (S-symmetric case), the constraints are ā = �a, `i =−k̄i, and eαi = keδ̄i for
i = 1, 2, 3. Examples of bounded and non-singular three-soliton solutions are under investigation.

V. CONCLUSION

In this work, by using the standard Hirota method, we found one-, two-, and three-soliton solutions
of the integrable coupled NLS system. Then we have studied the standard and nonlocal (Ablowitz-
Musslimani type) reductions of the NLS system and obtained integrable time T-, space S-, and
space-time ST-reversal symmetric nonlocal NLS equations. By using the reduction formulas on the
soliton solutions of the coupled NLS system, we obtained one-, two-, and three-soliton solutions
of the nonlocal NLS equations. It is important to note that to obtain these soliton solutions of the
nonlocal NLS equations the parameters of the soliton solutions of NLS system must satisfy certain
constraints for each type of nonlocal NLS equations. These constraints play a critical role to obtain
the soliton solutions of the nonlocal NLS equations. Although we found solutions of all types of
nonlocal NLS equations, we gave only the solutions of the S-symmetric case. Furthermore, we gave
particular values to the parameters (satisfying the constraint equations) of the solutions and plot the
graphs of |q(t, x)|2 to illustrate the solutions.
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