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1. Introduction

Nonlocal integrable equations studied so far are of integro-differential equation type, such as Benjamin-Ono equation.
Recently [1] Ablowitz and Musslimani have introduced a new type of nonlocal integrable equations. In these new types of
nonlocal equations, in addition to the terms at the space-time point (¢, x), there are terms at the mirror image point (t, —x).
All such new integrable equations seem to be obtained by a reduction from an integrable system of coupled integrable
equations. For instance when the Lax pair is a cubic polynomial of the spectral parameter we obtain coupled modified
Korteweg-de Vries system of equations from the AKNS formalism [6]. These equations are given by

1 3

aqer = —quxx + EquX’ (1)
1 3

are = = ZTooc + 51T (2)

where q(t, x) and r(t, x) are in general complex dynamical variables, a is a constant. We call the above system of coupled
equations as nonlinear modified Korteweg-de Vries system (mKdV system). We have two different local (standard) reduc-
tions of this system:

a)r(t, x) = kq(t, x), (3)
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byr(t.x) = kq(t.x), (4)

where k is a real constant and ¢ is the complex conjugate of the function q. When we apply the reduction (3) to the
Egs. (1) and (2) we obtain the complex modified Korteweg-de Vries (cmKdV) equation [2-4]

1 3
aqr = _ZqXXX + jquq» (5)

provided that @ = a. The second reduction (4) gives the usual mKdV equation [5]

1 3
aqr = _quxx + iqu%c, (6)

with no condition on a.

Most of the integrable nonlinear equations are local that is the solution’s behavior depends only on its local space
and time parameters. In [1,7,8] Ablowitz and Musslimani introduced integrable nonlocal reductions which yield the space-
time reflection symmetric (ST-symmetric), the space reflection symmetric (S-symmetric), and time reflection symmetric (T-
symmetric) equations. For instance in the S-symmetric case, the solution’s behavior at location (t, x) depends on the infor-
mation not only at the point (t, x) but also at the point (t, —x). Ablowitz and Musslimani introduced the ST-symmetric and
T-symmetric nonlocal mKdV and cmKdV equations and they only obtained one-soliton solutions of ST-symmetric ones by
using inverse scattering transform in [8]. A nonlocal reduction is given by

r(t,x) = kg(e1t, £2%), (7)

where 8% = 5% = 1. Under this condition the mKdV system (1) and (2) reduce to

1 3
aqe(t,x) = —qu(t, x) + jkq(em £2%)q(t, x)qx(t. %), (8)

provided that a = e1&,a. The case for (&1,¢&3) = (1, 1) yields the local equation (5). There are three different nonlocal re-
ductions where (g1,&,) ={(-1,1),(1,-1), (-1, -1)}. Hence for these values of &; and &, and for different signs of k
(sign(k)==1), we have six different nonlocal integrable cmKdV equations obtained by Ablowitz-Musslimani type reduc-
tion (7) which are respectively T-symmetric, S-symmetric, and ST-symmetric nonlocal cmKdV equations given below in part
A.

A. 1(t,x) = kq(eqt, e2x) (Nonlocal cmKdV equations)
1. T-symmetric cmKdV equation:

Il
|
Q
—
©
=

1 3, _
aqe (£, X) = =7 Qo (£.X) + 5 k(L. X)q(t. X)qx (£, %), @
2. S-symmetric cmKdV equation:
1 3,. _
0Ge (£, X) = =5 Goue(6.2) + SKG(E. =004 0Gu(E.2).  G=—a. (10)
3. ST-symmetric cmKdV equation:
1 3,. -
aqe (£, %) = =7 Qo (6. %) + 5 kG (=L, =X)q(E. 0)Gx(t. %), d=a. (11)
The second nonlocal reduction of the mKdV system is given by
r(t, x) = kq(&1t, £2%), (12)
yielding the equation
1 3
aqe (£, X) = — 7 Qo (£.X) + 5 kq (£, X)q (&1L, £2X)Gx (L. %), (13)
provided that ;& = 1. Therefore we have only one possibility (1, &) = (=1, —1) to have a nonlocal equation, without
any additional condition on the parameter a. The ST-symmetric nonlocal mKdV equation obtained here is given below

in part B.

B. 1(t,x) = kq(eqt, €2x%) (Nonlocal mKdV equation)
1. ST-symmetric mKdV equation:

aqy (t,x) = —%qm(t,x) + %kq(—t, —x)q(t, x)qx (t, x), (14)

with no condition on a.
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The nonlocal cmKdV and nonlocal mKdV equations have the focusing and defocusing cases when k <0 and k > 0, respec-
tively. All the above equations are integrable.

There is an increasing interest in obtaining the nonlocal reductions of systems of integrable equations and analyzing their
solutions and properties [9-24] after Ablowitz and Musslimani’s works [1] and [7,8] in which they proposed many nonlocal
nonlinear integrable equations such as nonlocal nonlinear Schrédinger (NLS) equation, cmKdV and mKdV equations, sine-
Gordon equation, (1+1) and (2 + 1) dimensional three-wave interaction, Davey-Stewartson equation, and derivative NLS
equation. They discussed Lax pairs, conservation laws, inverse scattering transforms, and obtained one-soliton solutions of
some of these equations. In Ref. [25], Ma et al. showed that ST-symmetric nonlocal cmKdV equation is gauge equivalent to
a spin-like model which shows that there exists significant difference between the nonlocal cmKdV and the local cmKdV
equation. They constructed Darboux transformations for nonlocal cmKdV and obtained different type of exact solutions in-
cluding dark-soliton, W-type soliton, M-type soliton, and periodic solutions. Ji and Zhu obtained soliton, kink, anti-kink,
complexiton, breather, rogue-wave solutions, and nonlocalized solutions with singularities of ST-symmetric nonlocal mKdV
equation through Darboux transformation and inverse scattering transform [26,27]. In [28], the authors showed that many
nonlocal integrable equations, such as Davey-Stewartson equation, T-symmetric NLS equation, nonlocal derivative NLS equa-
tion, and ST-symmetric cmKdV equation can be converted to local integrable equations by simple variable transformations.
They used these transformations to obtain solutions of the nonlocal equations from the solutions of the local equations and
to derive new nonlocal integrable equations, such as complex and real ST- and T-symmetric NLS equations and nonlocal
complex short pulse equations. For some possible application of nonlocal NLS and nonlocal mKdV equations one can check
[29-31]. Some of our solutions coincide with the solutions given in [8,25,27,28].

The main purpose of this work is to search for possible integrable nonlocal reductions of the mKdV system (1) and
(2) and find their soliton solutions by the application of the Hirota direct method. To find the soliton solutions of the
nonlocal mKdV and nonlocal cmKdV equations we first find soliton solutions of the mKdV system (1) and (2). By using
the reduction formulas (7) and (12) we find the soliton solutions of the nonlocal mKdV and nonlocal cmKdV equations.
Actually, here we introduce a general method for finding soliton solutions of nonlocal integrable equations. If a nonlocal
equation is consistently obtained by a nonlocal reduction of a system of equations having soliton solutions either by Hirota
direct method or by other techniques, such as the inverse scattering transform technique, one can automatically use the
reduction formulas (constraint equations) to find the soliton solutions of the reduced nonlocal equations.

In a previous paper [32], we have studied the soliton solutions of the NLS system and nonlocal NLS equations. In this
work, we study soliton solutions of the nonlocal mKdV equations of all types. Following the work of Iwao and Hirota [2] we
first find one-, two-, and three-soliton solutions of the coupled mKdV system (1) and (2) by using the Hirota direct method.
Then by using the Ablowitz-Musslimani type reductions (7) and (12), we obtain soliton solutions of the nonlocal cmKdV
(including T-, S-, and ST-symmetric equations) and nonlocal ST-symmetric mKdV equations. We show that there are two
different types of one-soliton solution of the reduced mKdV system. We give the corresponding two- and three-soliton
solutions of the first type. We also present the graphs of some solutions for certain values of the parameters. They include
one-, two-, and three-soliton waves, complexitons, breather-type, and kink-type waves.

The lay out of the paper is as follows. In Section 2 we apply Hirota method to the coupled mKdV system (1) and (2) and
find soliton solutions. In Section 3 we find soliton solutions of T-symmetric, S-symmetric, and two different ST-symmetric
mKdV equations and we give some examples for one-, two-, and three-soliton solutions together with their graphs.

2. Hirota method for the coupled MKdV system

Following the work of Iwao and Hirota [2] let ¢ = F and r = E Eq. (1) becomes

f f
4aF, f* — 4aF f f + Fooef* — 3Facfuf? + 6K f7 f — 3Fcfu f
—6F f2 + 6F fy fuxf — F fonf? — 6GFE f + 6GF? f, = 0, (15)

which is equivalent to

f?(4aD; + D3)F - f —3(D2f - f 4+ 2GF)(D4F - f) = 0.
Similarly, the Eq. (2) can be written as

f2(4aD; + D3)G - f —3(DAf - f +2GF)(D«G - f) = 0.
Hence the Hirota bilinear form of the mKdV system is

P (D){F - f} = (4aD; + D} —3aDy){F - f} =0 (16)
P(D){G- f} = (4aD; + D3 — 3aDy){G- f} =0 (17)
Ps(D){f - f} = (D} —a){f - f} = —2GF, (18)

where « is an arbitrary constant. Note that for mKdV system we obtain similar solutions as in the NLS system case [32].
For a detailed work of the application of the Hirota method to the mKdV system one can check [33].
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2.1. One-soliton solution of the MKdV system

To find one-soliton solution we use the following expansions for the functions F, G, and f,

F=¢F, G=¢G, f=1+¢f,, (19)
where

F=e", G =e" O=kx+wt+68, i=1,2. (20)
We insert these expansions into (16)-(18). The coefficient of & gives

(D —a){1-1} =0 (21)
yielding that o = 0. Analyzing the coefficients of ", 1 <n <4 give the dispersion relations

B
Wi = =g i=1,2, (22)

and the function f,

e(ki+ka)x+ (w1 +03)t+81+8,

fa=- 1 h)? (23)

Take ¢ = 1. Hence a pair of solutions of the mKdV system (1) and (2) is given by (q(t, x), r(t, x)) where
1 02

q(t,x) = T Ach o r(t,x) = e (24)

with 6; = kix — k—?t +6,i=1,2,and A= —é. Here kq, k5, §1, and &, are arbitrary complex numbers.
4q (ky + k)2
2.2. Two-soliton solution of the MKdV system
For two-soliton solution, we take

F=¢F +&%F, G=¢G +&Gs, f=1+¢&*f,+¢&fs (25)
where

F=el+eP2 G =eh+eh, (26)

with 6; = kix + w;t + 8;, n; = ¢;x +m;t +«; for i =1,2. When we insert above expansions into (16)-(18) and consider the
coefficients of ¢", 1 <n <8 we obtain the dispersion relations

k3 o
a)i=74—’a, mi=74—'a, l=1,2, (27)
the function f,,
fo= etitmtan | pbitmtan 4 phhtim+an 4 phtmten Z 891+7]j+a|‘1’ (28)
1<i,j<2
where
1
= 1<ij<2, (29)
(k; + @j)z
the functions F; and Gs,
E = y1691+02+711 + ]/2801+92+n2, Gs = ﬂ1691+711+772 + /32502+711+712’ (30)
where
ki — kp)? 0 —£3)?
(k1 — kp) B = (¢4 = £2) _1.2 (31)

M= Tl 02 + 602 CETAICEN A
and the function f,

fa= Metr+0atm+nz (32)
where

M= (ky —k2)2(h — 1)?
(k1 4+ 1)2 (ke + )2 (ky +11)% (ky + )2
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Let us also take ¢ = 1. Then two-soliton solution of the mKdV system (1) and (2) is given with the pair (q(t, x), (¢, x)),

391 + 692 + e91+92+7]1 + y2901+92+712

q(t’ X) = 1+ et +ni+on + eth+n+ary + et +ni+az + et +na+axn + Mebti+02+nm+n2’ (34)
e e’z 691+’}1+7}2 392+771+772
r(t.x) = e + B * P , (35)
1 + etrtm+an 4 ebr+mtan 4 ebatm+an 4 ebh+m+azn 4 Mebi+ba+n1+n2
3 o3
with 6; = kix — ﬁt + 6, ;=X — 4—'at +«; for i =1, 2. Here k;, ¢;, §;, and «;, i = 1, 2 are arbitrary complex numbers.
2.3. Three-soliton solution of the MKdV system
To find three-soliton solution, we take
f=1+6’f,+e*f4+6%f, G=6G +63G3+6°G;5, F=c¢F +&F+¢&°F, (36)
and
Fr=e" +e” e G =ehtemeh, (37)

where 6; = kix + w;t +6;, n; = ¢ix +m;t +«; for i = 1,2, 3. Inserting (36) into (16)-(18) and analyzing the coefficients of &",
1 <n <12 give the dispersion relations

k3 03
—4—'0, m=—--\, i=1,2,3, (38)

@i = 4a
the function f,

1
o= ehitmite i — ____ © ] <fj<3, (39)
2 1;:53 (ki + ¢5)?
the functions F; and G3
"y (k; — kj)2 .. .

B = Ap 0t AL — . 1=<ijs<3, i<j 40
1<§<3 ijs ijs (ki‘f’zs)z(kj"‘zs)z J J ( )
<=

. (€ —€)? . .
Gs = Bjj ettt Bio= — J . 1<ijs<3, i<j 41
3 1<§<3 ijs ijs (Zi T ks)z(zj T ks)2 =LJSs= J ( )
<hiss
the function fy

fim X My, 42)
1<i<j<3
1<p<r<3

where
ki — k)2 (1, —1,)?
Mijpr = 2( : j)z o r)z 2’ (43)
(ki +1p)2 (ki + 1) (kj + 1p)* (kj + 1)
for 1<i<j<3,1<p<r<3, and the functions Fs and Gs
F = V12691+92+93+’]1+’Iz + V]3391+92+93+’]1+TI3 + V23391+92+93+le+773’ (44)
Gs = Wypelit0tmanmatis 4y efi+02tmitintns | A, ef2tOstnitiatns (45)
where
Sii
Vii = J , 46
Yy 4a(a)1+a)2+w3+mi+mj)+(k1—|—k2+k3 +Zi+2j)3 ( )
w; Q& (47)

= 4a(a),-+a)j+m1 + my +m3) + (kj-i-kj-‘re] + 4y +£3)3’
for 1<i<j<3. Here S; and Q; are given in Appendix of Ref. [33]. We also obtain the function fs as

fo = Het +02+0s+m+nztns (48)
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where the coefficient H is also given in Appendix of Ref. [33]. Let us also take & = 1. Hence three-soliton solution of the
coupled mKdV system (1) and (2) is given with the pair (q(t, x), r(t, x)) where

e@l + 692 + 693 + Zlfi‘,j,§§3 Aijse91+9j+7]s + Zlili»j§3 ‘/'.j691+92+93+7]i+77j

<] <]
t,X) = , 49
. T 312 €I 3 i o3 Mijpr @0t - Heb+ OO+ (49)
- 1<p<r<3

e e 4 e 4+ 2121.‘]"553 Bijseﬂﬁr'?ﬁ s+ 215“.53 VVije i+0j+m+n2+13

i<j i<j
r(t, x) = - (50)
1+ 215“53 ebitnj+ai + lei<j§3 Mijpreei+91+flp+'7r + Heth+0:+03+m+n2+n3
1<p<r<3

Having obtained the one-, two-, and three-soliton solutions of the mKdV system we now ready to obtain such soliton
solutions of the nonlocal reductions of the mKdV system. Soliton solutions of the local reductions of the mKdV system can
be found in [33]. Here in our solutions we focus on the domain t>0, x € R.

3. Nonlocal reductions of the MKdV system

To find the soliton solutions of the nonlocal integrable equations which are obtained by consistent nonlocal reductions
of an integrable system of equations we use the following three steps.

(i) Find consistent reduction formulas which reduce the integrable system equations to integrable nonlocal equations.
(ii) Find soliton solutions of the system equations by use of the Hirota direct method or by inverse scattering transform
technique, or by use of Darboux Transformation.
(iii) Use the reduction formulas on the soliton solutions of the system equations to obtain the soliton solutions of the
reduced nonlocal equations. By this way one obtains many different relations among the soliton parameters of the
system equations.

In this section, using the above method, we will first use the reduction (7) given by Ablowitz and Musslimani [1] and
[7,8] and obtain soliton solutions for three different nonlocal cmKdV equations (9)-(11) with the condition
a=¢16,a (51)

satisfied. Secondly, we will deal with the reduction (12) and obtain one- and two-soliton solutions of the nonlocal mKdV
equation (14).

3.1. One-soliton solution for the nonlocal CMKdV equations: (r = kq(e1t, £2X))

We have two types of soliton solutions of the reduced nonlocal equations. The main idea here is to use the one-soliton
solutions (24) of the mKdV system equations (1)-(2) and then use the reduction formulas (7) and (12). By this procedure
we obtain two types of soliton solutions of the reduced nonlocal equations.

3.1.1. Type 1
Firstly, we find the conditions on the parameters of one-soliton solution of the mKdV system to satisfy the constraint
equation (7). Using this constraint equation we get

K3 - 3 -
ekzx—ﬁtﬁ—&z eklaz?‘—f]ﬂ-flf‘*'sl
(13 +13) =k - T (B3+13) s s (52)
1 +Ae(l<1+k2)x— L t+81+6; 1 +Ae(l<1+k2)szx— La2e1t+01+0;

This equation gives two different relations among the soliton parameters. One of the case (type-1) includes the following
equalities that must be satisfied by the parameters:

o ) )
g1, i) e =ke®, iw)A=A,
o k) @k -
V) (k1 + ko) = (ky + ka)go, Vi) ( 1;; D _( ];% 2)81, vif) ed1+02 = eh1+é: (53)
If we use the conditions (51) and i) on the left hand side of the equality ii), it is clear that this equality is satisfied
directly since
K ekd I_ﬁg
40 ~ dgis,a  4a v
With the condition given in i) it is obvious that iv) is satisfied directly since
1 1 1

B (kl + k2)2 T (’_(282 + I_{]Ez)z T (’_(1 + ’_(2)2 .

. T .o k% 1
i) ky = &5ky, i) do = ac
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The condition v) is satisfied since
(ki + ko) = (kagz + k162) = (ki + k)&
by the condition k, = £,k; or equivalently k; = £5k,. By the same manner vi) is already true since
K+ (3+k) (K + l'<g)8l

4a 41604  4a

_ Finally, consider the relation % = ket or e% = ke®t given in vii). Since k is a real constant we have e%1+%2 = ke b and
e%1+%2 = ked1ed1 that yield the equality ef192 = ed1+%2,
Thus the parameters of one-soliton solution of the Eq. (8) must have the following properties:

1)d=6180, 2)ky =e3k;, 3)ed = ke’ (54)

The case (&1,&;) = (1,1) gives local equation. For particular choice of the parameters let us check the solutions of the
nonlocal reductions of the mKdV system for (g1, &;) = {(-1,1), (1, -1), (-1, -1)}.

3.1.11. Case a. (T-symmetric). r = kd(—t,x). This case gives @ = —a, k, = k;, and
1 3.
aqe (£, %) = =7 G (£, %) + FkG(=t. )q(£, X)qx (t. ), (55)

with e%2 = keb1. Since @ = —a, a is pure imaginary say a = ib, for nonzero b e R. Let ky = @ +if so k, =« —if for o, B € R,
o #0. Then the solution of (55) becomes

pa+if)x+ Esapi@dtap) g,
(56)

q(t.x) =

1— %EZaeri%tJr&JrSl ’
o

This solution is also given in [28]. The corresponding function |q(t, x)|? is

" eZaeri(ﬂ}’;fﬂ)tMﬁSl
lq(t,x)|” = . (57)
3_ 2 . 3_ 2
[ ez(xx+81+81 _ COS((O‘ 30!/3 )t)] + SmZ((Ol 231301/9 )t)

When o3 — 32 £0and t = a32n3bg,32’ = e2x+81+81 _ (_1)" = 0 where n is an integer, for both focusing and defocusing
cases, the solution is singular. When a3 — 3a 82 = 0 the solution for focusing case is non-singular. When « = 0 the solution
is exponentially growing for % > 0 and exponentially decaying for ﬂ—; < 0. Now for particular choices of the parameters

satisfying the conditions (54) we give an example of a solution of the Eq. (55) and present the graph of the solution.

Example 1. For the parameters (kq, k. €%, e% k, a) = (2v/3 +2i,2+/3 = 2i,1+1i,—1+1i,—1, 10i) we obtain the non-singular
solution of (55) as

24(1 + i)e(2ﬁ+2i)x7§t

q(t,x) = 24 1 ot : (58)
so the function |q(t, x)|? is
lq(t, x)|? = 12~ Ftsech? (2v3x + §), (59)
where § = —5 11n(24). The solution is an asymptotically decaying solution for t> 0. The graph of (59) is given in Fig. 1.
3.1.1.2. Case b. (S-symmetric): r = kq(t, —x). In this case we have @ = —a, k, = —k;, and
1 3,
aqe (£, X) = = 7 Gouc (£, X) + kG (L, =X)q(E, )G (€, %) (60)

with €% = ke®1. Since @ = —a, it is pure imaginary, say a = ib for nonzero b € R. Let also k; = o +if and so k; = -« +if3
for o, B € R, B#0. Then the solution of (60) becomes

. 3 392 (3 2
e(a+[ﬁ)x+wt+sl

t,x , 61
q( ) 1+ /’.‘(3 eZlﬂx+l°‘3 sap? t4+81+8; ( )
and so the function |q(t, x)|? is
X p2ax+ B2 45,15,
lq(t. x)|* = . (62)

[#e“gg P2D 18148 4 cos(2,3x)] + sin®(28x)
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Fig. 1. A non-singular localized wave for (57) with the parameters k; = o +if = 2v/3 +2i,e® =1+i,k=—-1,a=ib = 10i.

nx K EP3B) s 1§ n ; ; PR 2 2
For x = 2% and rread 2b 1791 4 (~1)" = 0, where n is an integer, the solution is unbounded but for 8 = 3«“ and

#e‘sﬁgl + (=1)" £ 0 we have a periodical solution. For o = 0, the solution (62) becomes

5+(§
2 eorTa
|Q(t"()|

B lyl ’ (63)
yloxcosh(55t +In(5)) + cos(28x)]

where y = #esﬁgl, or=1if k>0, and o, = —1 if k<O0. This solution is non-singular for |y|> 2, ﬂ—; >0 and |y| <2,
% < 0. Let us give the following example for a solution of (60).
Example 2. For the parameters (k;,ky, e%1,e% k a) = (;’i, }l, 1+i,1-1,1, %), we get the solution q(t, x) of (60) as

1+ i)e%i"‘*'];*sf

At = (64)
Hence the function |q(t, x)|? is
1
lq(t. x)*> = (65)

8[cosh(&; +In8) + cos(§x)]’

This is a periodic and bounded solution for x € R and decreases with respect to t for all real t # —1921In2. The graph of
the solution (65) is given in Fig. 2.

3.1.1.3. Case c. (ST-symmetric): r = kg(—t, —x). For this case we have @ = a, k, = —k;, and
1 3.
aqe (t.X) = = 7 quoc (6, %) + k(=L =X)q(t, X)qx (t. %), (66)

with e%2 = ked1. Let ki =a+if and so ky; = —a +ip for o, B € R, B #0. Then the solution q(t, x) of (66) becomes

. 3_ 2y 1i3a2 B3
pl@tif)x— B iCa g 5,

q(t.x) = 14 #eziﬂx—i%waw& ' (67)
Then we obtain the function |q(t, x)|? as
Q0P eZax+%t+?+S, . (68)
[#em& + cos(2Bx + 1%%3&“2@0] +sin®(28x + @3%3‘?2@0
Let 0 = 2ax + Wt +8;+68; and ¢ =28x+ Wt In this case the solution (68) can be written as
late. 0 = ¢ ¢ (69)

1+”T2+,ucos¢ “[(,lf"%)—i-cosqj]’
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Fig. 2. A periodical decaying wave for (62) with the parameters k; = o +iff = }1, e =1+ik=1,a=ib= %

where @ = 2%6814&_ This solution is non-singular for all i except u = 42. Note that if we take k=1, a= %, o =2b,

B =2a, et = —4ai, in our solution (67) which corresponds to the case for y = 2 then the solution (67) reduces to one of
the solutions given in [25]. For particular choice of parameters let us present the following examples for this case.

Example 3. When « =0, then 6 becomes constant and the solution (69) is finite and periodical. As an example choose the
parameters as (kq, ky, €01, €% k, a) = (. 4.1+1i,1—1i,1,2). We have the solution of (66) as

1+ i)e},ix+5}—2it

qt.x) = 1+ Sedivtosit (70)
Then we obtain the function |q(t, x)|2,
la(t. 01 = 65+16c052( Ix+5t) (71)
2% T 756
which is a periodical solution. The graph of (71) is given in Fig. 3.
Example 4. For the parameters (kq. k. €%, €%, k. a) = (i + 1t5i. — 15 + 165i. 1. 1.1, —4), we have the solution of (66),
(343 Dx+(— 150500 + 7000000 )t
q(t,x) = 1 S5 el didnt (72)
Therefore the function |q(t, x)|? is found as
(e = 194481e3% st 73)

2 (292553 +275625 cos(Zx + 1(}833%00)
The above solution is an asymptotically growing wave solution as x — oo.

3.1.2. Type 2
From the Eq. (52), we obtain a second set of relations among the soliton parameters by performing the cross multiplica-
tion in (52) as

P @+k3)e; 13 = =
ekzx—gtﬂ?z +Ae[(k1+k2)62+k2]x [721+ﬁ]t+61+82+62

(k +k ) l? =
+ 5 E]]I-HS] +82+61

— kel-€1£z)€—71£1t+51 +Al [(kr-tho)+Ha ezl |:

Here in addition to the Type 1 conditions, we find the following new conditions in Type 2:
B+l i

Dky=ki+ ko +kiga, i) ;2 = =2 2nen, iii) e% — Aked1+52+01
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Fig. 3. A periodical wave for (68) with the parameters k; = o +if8 = ‘i,, e =1+ik=1,a=2.

i3 + k3 K3

SN 7 7 L _M i\ Apd1+82+8: _ b1
i) ki&x +kyey +ky = ki85, V) 1+ 40 = 4¢ &1, Vi)Ae ke,
Clearly, these conditions are simplified as
1)d= 6160, 2)ki = —k162, 3) ko= —kpey, 4)Ake® ™ =1, 5)Aeb+% — k. (75)

Let us present some particular examples satisfying the above constraints.

3.1.2.1. Case a. (T-symmetric): r =kq(—t,x). Here the parameters satisfy a=—a, k; = —kq, ky = —k, with Akeb1+1 — 1,
Aeb2+%2 — k. In this case the parameters a, k;, and k, are pure imaginary, say a =i, k; =i, and ky =iy for . B,y € R.

. 5 X ) )
Therefore we have ed191 = WTV) and e%21%2 = k(B + y)2. Let also €% =a; +ib; and % = a, +ib, for ay, by, ay. by € R.
Then one-soliton solution becomes

) 3
e+t (a) +iby)

q(t’ X) = : B3+r3) . . . (76)
1+ gy PV 0y + iby) (0 + iby)
Hence the function |q(t, x)|? is
Beoa p2
e='(as +b7)
lq(t. x)|*> = (77)

i) By

+gpe = (1(a162 = biby) cos((B +y)x) — (a1bz + azby) sin((B + y)x)] +e

where a2 + b2 = M and a? + b3 = k(B +y)% B # —y. Let aja; — b1b, = Bcoswy, arb, + ayby = Bsinw, for B> 0. Hence
B? = (ai +b7) (a3 +b3) = (B + )™, (78)
yielding B = (B + y)2. In this case, the solution (77) can be written as

3,3
e(ﬂ V)t( 2+b2)

lg(t.x)|> = 2[cosh( (ﬁ3+y3)t) + c059] (79)
where 6 = (8 + ¥ )x + wy. This solution is singular only at t =0, 6 = (2n+ 1)7 for n integer.
Example 5. Choose (kq, k;. %1, €%, k,a) = (i, —4,1, 1, 1, 2i). Hence the solution becomes
eix+gt
qt.x) = ——F——. (80)

1 +e%zx+§t
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so we obtain the function |q(t, x)|? as

2 ess!
la. 0" = 2[cosh( t)+cos( x)] (81)

The above function has singularity at (t,x) = (0,2(2n + 1)), n integer.

3.1.2.2. Case b. (S-symmetric): r = kq(t, —x). For this case we have @ = —a, k; = kq, ky = ko with Akeb1+81 — 1, Aed2tdr — k.
Thus a is pure imaginary, say a = i, @ € R and the parameters k; and k, are real. Let %1 = a; +ib; and e%2 = a, + ib, for
ai, by, az, by € R. Hence one-soliton solution becomes

ekix+i 4u[(a1 4 lb] )

q(t,x) = (82)
1 We(k1+l(2)x+l 40‘ [(a‘l + lb1)(a2 + lbz)
Therefore we obtain the function |q(t, x)|? as
2kiX (42 1 2
90 = G L (83)
) etk +ep)x (k3 + 2) (k1 +k ) 20k +kp)x
_ i _ _
i,y [Cos(Fgg =) (@102 — byby) — sin(Zgt) (a1 + braz)] + e2ithe

2
where a? + b2 = —w and a3 + b3 = —k(ky +k2), ky # —ko. Let ayay —byby = —Bcoswy, a1by +byay = Bsinw, for

B> 0. Therefore B = (kq + k;)2. The solution (83) can be expressed as
e(ki—ka)x (a% + b%)

t,x)|? = , 84
la(t, )l 2[cosh((ky + k)x) + cos 6] (84)
3.3
where 6 = Wf — wyg. This solution has singularity at x =0, 8 = (2n+ 1)z for n integer.
Example 6. Take (kq, ky, e%1,e%2 k, a) = (1,1, -2,2, —1, 2i). So the solution q(t, x) becomes
_Dex+iit
q(t,x) = PERC e (85)
1 4 e2x+git
and the function |q(t, X)|? is
2
la(t, %)[* = : (86)

cosh(2x) + cos(5t)
The above function has singularity at (t,x) = (4(2n+ 1), 0), n integer.
3.1.2.3. Case c. (ST-symmetric): r = k§(—t, —x). Here the parameters satisfy @ =a, k; =k;, ky =k, with Akeb1+81 — 1,

Aeb2+%2 — k. Therefore q, kq, and ky are real. Let also e’ = a; +ib; and e%2 = a, + ib, for a;, b;, ay, b, € R. Then one-soliton
solution becomes

i3
el<1x—4—}1t(al +ibq)

q(t,x) = e . (87)
1- (k1+lk2)2 etk t(al + lbl)(GZ + lb2)
Hence we have the function |q(t, x)|? as
|q(t x)|2 _ e2k1x77r(az +b2) (88)
1 _ 2(@18,-b1by) (ks -+ky)x—" h AP TP ML i 1P
k)2 © wote
where a2 + b2 = —517K)% and a2 4 B2 = —k(ky + ky)2, ky # —ky. If we let 6 = (ky + ky)x — & +" 2t ¢ = 2kyx — t, and y =
(ugkalzib)bzz) then the solution (88) becomes
e®
[0 | i — 89
lg(t.x)| T2y 1 o® (89)

The above function has singularity when the function f(0) =e%’ —2ye? +1 vanishes. It becomes zero when ¢ =y +
V¥2 — 1. Hence for y <1 and k; > k; the solution is non-singular and bounded.

Note that if we let k= —1, a= 1, ky = =27, ky = —21, €1 = —2(1+7)ei?, and e = 2(y + 7)ei?, then one-soliton solu-
tion that we obtain here turns to be the same solution given by Ablowitz and Musslimani [8].
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Example 7. Consider the following set of the parameters: (ky, ky, €1, €%, k,a) = (1, ;. -3, 3. ~1,2). We obtain the follow-
ing asymptotically decaying soliton

_3erx—dt
tLX)= ——— . 90
q(t.x) a0 (90)
The graph of this function is given in Fig. 4.
Example 8. For the parameters (k;, ks, %1, %2 k a) = (0,1,i,1,—1,2) we have the solution
i
(LX) = ——, 91
9N = (91)
and so
1
2 _
la€0P = - (92)

This solution represents a kink-type wave and its graph is given in Fig. 5.
3.2. Two-soliton solution for the nonlocal CMKdV equations: (r = kq(eqt, £3x))

We first obtain the conditions on the parameters of two-soliton solution of the mKdV system to satisfy (7). Here the
function r(t, x) is given in (35) and kq(e1t, £2x) is

eél + eéz + 7 €é1+0-2+'_“ + )-/269-‘ +0+1
1+ e01+if1+n + ebr+ila+an + e0a+il1+1 + er o+ + Meb+02+ii+712

kq(eqt, 2%) = k (93)

where
_ - k3 -
0; =¢ekix —e1 Lt +6;,i=1,2,
i 21 14(1 i
i, 2
N = Ex0iX — 81—t +a;, i=1,2.
Ui 24 14(1 i
We get the following conditions that must be satisfied:
Dem =keh i=1,2, ii)eltm+m = kel +Ori i) efrmn — ehiOrtz
i) Bi=yni=12 ) ehtm — 901+ﬁ1, vi) e tm — efatin ,
vii) et = et yiji) et — 02tz jx) e%i — i i j=1,2,

X)M=M, xi)elrt0atm+in — O+l +i2 (94)
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Fig. 5. Kink-type wave for (88) with the parameters k; =0,k, =1, =ay +ib; =i, e =ay +ib, =1, k=-1,a=2.

3 B a ]
From the condition i) we have e~ 7a'+% = ke®2ki*~#125!+% j — 1,2 which gives ¢; = e;k; and e% = ke%, i = 1, 2. Since
I3 £,k3 k?
4a = das e, 4ad’

the coefficients of t are equal without any additional condition. The other conditions are also satisfied by the following
constraints:

1)d =660 2)6 =gk, i=1,2 3)e%=ked, i=1,2. (95)

Now by giving particular values to the parameters satisfying the constraints (95), we present some examples of two-
soliton solutions for three different types of nonlocal cmKdV equations. Note that since the expressions for the real-valued
function |q(t, x)|? are very long, we will only give the functions q(t, x).

3.2.1. Case a. (T-symmetric): r = kq(—t, x) i
In this case we have @ = —a, ¢; = k;, and e® = ke®, i = 1,2. We give an example below for this case.

Example 9. For the parameters (kq,¢1,ky. ) = (5. 3. -3, —3) with €%, e% k,a) = (=1+i,1+i,-1,10i), j=1,2, then
the solution |q(t, x)|? becomes

a0l =%, (96)
where
A = e %(288 cos(Lt) +72 cos(Lt)) + cos(Lt)(ZSSe%" + 72e74%)
1280 160 2560
+ cos(%t)(Sl%e‘%" + 4e~i%) (97)
and

1
B = 4096e~ 2 + 4e~2 + 16796166 % + 64€* + 1 + c0S(===~1)(5184e~2* + 16e7%)

1280
1 x 7 —3x —1x
+cos(ﬁt)(20736+4e )+cos(mt)(165888e 1% 4+ 128e74%)
9 1x TR 7 9
+cos(mt)(1024e4 +256e7%%) 4 e72 (2592cos(mt)+32cos(mt)). (98)

The solution (96) is a singular function.
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3.2.2. Case b. (S-symmetric): r = kq(t, —x) i
This case gives @ = —a, £; = —k;, and e = ke%i, i = 1, 2. Consider the following example.

Example 10. Choose the parameters as (k;, ¢1, k. €2) = (4, £, —4, —1) with (e%, €% k,a) = (1,1,1,2i), j=1,2. Then the
solution |q(t, x)|> becomes

A
lat. 0 = 3. (99)
where

x) (725" + 18emnt)

N

A= e 5[81 + em! + e’ 4 1296e0" + cos (
3 Bt Dt 4t
+ cos (ZX) (2ezwt + 648ezw') + 18 cosxew! |
and

1 .
B = 1+ 1024e~ ™! + 104976e 50! + e~ 4 16e50! + cos (Zx) [64e~ @t 4 20736e 70!

+ cos (%x>[6486’ﬁ‘ +8emn! 4 648e 56| + 8e~ ! cos (%x)

+ cos (%x)[256e*s+zf 4 64e~ B0t] + cosx[2e~ ! + 2592¢ sh!].
The solution (99) is singular.

3.2.3. Case c. (ST-symmetric): r = kG(—t, —x)

In this case the parameters satisfy d = a, ¢; = —k;, and e% = kegi, i=1,2. Here we give the following example.
Example 11. For the parameters (ki, £1, ky, £3) = (2i, 2i,1i,i) with (e%, ik, a)=(1,1,1,1), j=1,2, we have the solution
lq(t, x)I?
A
a0 =5, (100)
where
5185 7 5 9 1 1 1 41489
= 3502 cos (x + Zt> + 7 cos (3x+ Zt> + 18 cos (2x+ it) + 7 cos(4x + 4t) + 20736 (101)
and
5 7 1 7 5185 9 1 9
B = 36 cos (X+ Zt> + EV) cos (2x+ jt) + 11664 cos <3x+ Zt> + 5592 cos <6x+ it)
20737 1 1297 29985553
2X + = 4x + 4 ——— 102
+ 21472 COS( X+ 2t) * 70368 0¥ 40 + 56573856 (102)

The graph of the solution (100) is given in Fig. 6. It represents a periodical breather-type wave solution.

3.3. Three-soliton solution for the nonlocal CMKdV equations:

(r=kq(e1t, &2%))
We first find the conditions on the parameters of three-soliton solution of the mKdV system to satisfy the equality
(7) where r(t, x) is given by (50) and

6‘91 + 692 + e93 + 2151..},’553 Aij569i+91'+'_75 + 215“53 ‘/ijeGI +02+03+1i+1];

kg(ert, e2x) = k ) < (103)
1+ lei,st efirt+d 4 D i<i<j<3 1VIijpr€'0‘Jrngrn”H7r + Het+02+0s-+ih+7243
1<p<r<3

where

B
9,' =82kiX*814fdt+8i, i=1,2,3,

73

_ - 4 -
ni = 82(1){—81th+0{,‘, i=1,2,3.
Here we obtain that (7) is satisfied by the following conditions:
1)d=e60a 2)6=ek, i=123, 3)e%=ked i=1,2,3. (104)

Now we will present some examples of three-soliton solutions of the nonlocal reductions of the mKdV system for par-
ticular parameters.
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Fig. 6. A periodical breather-type wave plotted for (100) with the parameters k; = ¢; = 2i,k, = ¢, =i,e% =eli =k=a=1, j=1,2.

3.3.1. Case a. (T-Symmetric): r = kq(—t, x) i

Here the parameters satisfy @ = —a, ¢; = k;, and % = ke®, i =1,2, 3. We give the following example.
Example 12. For the set of parameters given by (ki,l1,ky, I, ks, I3) = (3,3, -3, =3, =1, —1) with (e%,e% k,a) = (-1 +
i,1+1,-1,10i), j =1, 2,3 the solution q(t, x) becomes

q(t,x) = % (105)

where

1

A=(1+10) [e%)&ﬁit +e—%x—mit +e*%"*selwit +729*123W"t + ]Se—%x—sf—zit
+ 8896_%)(_%11 + 2009%X+%it T 4509—117X+ﬁit + %e—%x—%it
+ ge—%x-%"f +5400e 3 5%l 4 202500e~ 3%~ 5wt 4 —2(1125 e—%x—%"]
and
B =1+ 9e 5%zl | 64e~ % mwil 4 2592~ ¥ sl 4 1296~ 2% w0t
+2e Wit 4 16200e s% wn i 4 18¢~ 3% mnll 4 ettt il | %e-%x-ﬁ“
+903474¢~ 8% 5wt 4 7200e" =X~ Al 4 576X winil - 90000e X T
which is a singular solution.
3.3.2. Case b. (S-symmetric): r = kq(t, —x)

In this case we have @ = —a, ¢; = —k;, and e% = ke%i, i = 1,2, 3. Consider the following example.

Example 13. Let us take the set of parameters as: (k. Iy kp, b, ks 1) = (4, 5, 4 4 — & 1) with (%, €d k.a)=
(1,1,1, %), j=1,2,3. Then we have the solution q(t, x)

A
4.0 = 3. (106)
where

lip, 1 lipy_ 1 1j 1 3 3 15
A :ezlirmt_'_efflx—ﬁt+67€1X—mt+366—ﬁt+gelex—mt
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+ Sige’%i"*%t + 1ooe%ix+%t + 2258—%1’)&%[ + %e—%ix—%t
+ %e*%fxf%f +1350e 3% st 4 50625¢ 37 1t 4 %e’%”"%f

and
B:-l+4e%ix+ét+3ze—%ix—%t+288€%ix+%t+e—ix—%t+ge—gix—%t

Qe 3 aist 4 648e~ X~ 3 4 4050e~ 5T 4+ 1800 X~ !

+324e 1@ 4 22500eb Xt Tt %e*%fxfs%f 4 45{4737

97

55
e~ sX— 1wl

It is a singular solution.

3.3.3. Case c. (ST-symmetric): 1 = kq(—t, —x)
Here we have d=a, ¢; = —k;, and e% = kedi, i = 1,2, 3. We give the following example.

Example 14. Consider the following set of the parameters: (k;, Iy, ky, o, k3, I3) = (4, 4, &, 3 & 1y with (e%, €% k,a) =
(-=1+1i,1+1i,-1,2), j=1,2,3. Then the solution q(t, x) becomes

A
q(t,x) = B (107)
where

A=(1+ i)[e%"”ﬁ“ + erixtagit 4 o= §ix— il _ geiwr%it _ %egm%it

_ 3956z @it _ 500e it dhit _ 450~ it miait _ gedivt it
_ 726%ix+%it + %egbﬁ%it +400006%1X+%it + 16006%1')(+%it]

and
B=1-— 186—%1')(—S1ﬁit + 900003%”4—%“ + Slze%ixﬁ—%it _ %e%ix+%i[
+ 576e%ix+%it _ 36€%ix+%it _ 576e%ix+%it _ 2eix+;7it + 8003%'-)‘*6193*112“
47?;;?%006@”%& + ge%ier%it.
The graph of the solution (107) is given in Fig. 7.

5 i 227 ; 1j 1
+ 128006ﬁ1x+ e lt _ 8eflx+mlt _

3.4. One-soliton solution for the nonlocal MKdV equations: r = kq(—t, —x)
When we apply the nonlocal reduction r(t, x) = kq(eqt, €,x) to the mKdV system (1) and (2) we obtain the equation

1 3
aq(t,x) = —qu(t, x) + ikq(t, x)q(&1t, £2X)qx (t, x) (108)

provided that £,&, =1 which is possible when (¢1,&;) = (1,1) or (&1, &) = (-1, —1). The first case gives a local equation.
By the latter one the nonlocal reduction becomes r = kq(—t, —x) and we get the nonlocal ST-symmetric mKdV equation (14).

If we consider one-soliton solution (24) obtained by the Hirota direct method with the reduction r = kq(—t, —x) through
the Type 1 approach, we get k; = —k, which gives trivial solution q(t,x) = 0. Thus we will use the Type 2 approach to find
nontrivial one-soliton solution of the nonlocal equation (14).

We have
6, 0;

1+/e\eel+ez :kl +Ze16);+9;’ (109)
so from the application of the cross multiplication we get

e? + Ae* el = kePr + Ake*1e?:, (110)
where

3 3
0; =kix — 4—i1t+5,~, 0; = —kjx + 4—2t+8j, ji=12.

Hence we obtain the conditions
i)Ake® =1, ii)Ae?2 =k, (111)
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Fig. 7. A periodical wave plotted for |q(t, x)|> corresponding to (107) with the parameters k; = ¢; = ;. ko =€, = 1, ks =t3=—}. e% = -1 +i.e% =1+,
i=1,2.3, k=-1,a=2.

yielding €1 = ii(klijﬁkz) and %2 = +ivk(k; + k). Therefore one-soliton solution of the Eq. (14) is

. i
iojek*=at (ky + ko)
(3+k3)
V(1 + oq0qetkitk)x——z%1)
Let a e R, ky = a1 +iB;. and ky = o +iB,. Then the solution |q(t, x)|? corresponding to (112) becomes

» ((+ @)+ (B + B2)?)
lact. )" = 2k[cosh (¢) + o105 cos (¢)]’ (113)

q(t,x) = . oj=41,j=12. (112)

3_ 2_.3 2
where 0 = (a1 — a)X — %t, ¢ = A1x + Bqt, and ¢ = Ayx + B,t. Here

(0} = 3o B} + a3 —3waf3)
4a ’
P —3aipi+ B3 — 303
A= Pi+Bo By P 1/314aﬂ2 362)

There are cases where the solution (113) is nonsingular.
(a) If we have ky = k, for real k; and o705 = 1 then the solution (112) becomes

Ai=a1+az, Bi=

; 3
q(t,x) = li}_’li] sech(klx - %t). (114)

Assuming a = %, k= -1, k;y = -2n, and k, = —217), the solution (112) is reduced to the one given by Ablowitz and Mussli-
mani [8]. In [26], Ji and Zhu also considered the Eq. (14) and found one- and two-soliton solution of this equation by using
the Darboux transformation. The solution (112) can be transformed to the one-soliton solution in [26] by taking a = }l,
k= -1, ky =4inq, and k, = —2v7 + 2ip4. Besides this type of solution they obtained rogue-wave and rational solutions of

(14). In [27], Ji and Zhu obtained the same one-soliton solution through inverse scattering transform. Let us now consider
some examples.

Example 15. Consider the following set of the parameters (kq, ky, 01,07, k, a) = (%, % 1,1, -1,2). Then the solution be-
comes

1 1
eXwat 1 1 1
q(t,x) = m = isech(ix - at). (115)
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Fig. 8. One-soliton for (112) with the parameters k; =k, = %,01 =0y=1,k=-1,a=2.

It is one-soliton solution. The graph of (115) is given in Fig. 8.
(b) If B1A; = ByA; then the solution (113) becomes

e’ (a1 +02)? + (B1 + B2)?)
2k[cosh (¢) + 0107 cos (5 d))] '
Example 16. Take (k;.k;. 09,05k, a) = (i, 1+ 5.1,1, -1, %). Then we have the one-soliton solution
(1 + %i)eix-H't

qt.x) = 14 e 30e(h+3ir (117)

lq(t. 0)” = (116)

so
13e74

8[cosh(u) + cos(3u)]’

lg(t.x)|> = (118)

where u =x — Zt. This is a complexiton solution. The graph of (118) is given in Fig. 9.
3.5. Two-soliton solution for the nonlocal MKdV equations: r = kq(—t, —x)

Similar to the one-soliton solution case, if we use two-soliton solution (34)-(35) with the nonlocal reduction r =
kq(—t,—x) and apply cross multiplication we obtain the following constraints to be satisfied by two-soliton solution of
(14),

5. ,(kj-i-ﬁl)(kj-i-fz) o . (k1+€j)(k2 +€j)
el =i——rnr— " %N =pivk————— " 1 =+1, 0, =21,1r=1,2, 119
T Jk(ky —ky) Lr \/— ) T Lr (119)

for j =1, 2. Hence two-soliton solution of (14) is

q(t,x) = % (120)

)

where

13 3
«/_(k k )[Tl (k1 + €2) (ky + €0)ek* @t 1y (ky + €3) (kg + £1) €k @]
11—k

l‘L'] Ty

" Vk(ty - £3)

+ (k1 + €1) (kg + €1) ppethithattax=

31343
[(ky + £) (kz + £5) pyethrsht =St

3103403
(k3 +k35+£3)
— da

3 (121)

and

1
B = ]—|—— T ki+¢5)(ky + ¢ e(ki+t)x——7
T —T) @y = [T101 (k1 + €2) (k2 + €1)

l+€1]
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Fig. 9. A complexiton for |q(t, x)|?> corresponding to (112) with the parameters k; =i,k, =1+ %,al =0=1,k=-1,a= ‘l‘.

k3+63) k3+63)

+T1p2 (ke + €1) (kp + £2)e X TG 1y (Ky + £2) (K + £ )tk ix=
(3+63)

+Tap2(ky + 1) (ky + £) ekt XG0 4 117y py pyelhithattittax

3 k30343
(k1+k2+l’1+l )
4a

<t (122)

Now we consider some particular examples.

Example 17. Take the parameters as (ky.ka. €1, 65, k. a) = (1, 3.1, 3. —1, 1) with 7; = p; = 1, j = 1, 2. The solution becomes

Ge* ! + 3e2*wl 4 3e3t Wl 4 GeRx it
1+ 9e2-2t 4 16e3%~ 80 4 9eX~al 4 @33t

This is a non-singular solution and its graph is given in Fig. 10.

q(t,x) = (123)

Example 18. Consider the following set of parameters: (kq, ko, £1, £, k, a) = (1,0,1, % -1, %) with ;= p; =1, j=1,2. We

have the solution

1+ 3ext 4 %e2x—2t + 4e3x—3t

q(t,x) = (124)

17+
5t

1+ 3622t 4 2e3*—§0 4 Qex—t 4 3ei*—il 4 3%~
The graph of (124) is given in Fig. 11. It represents interaction of soliton and kink-type wave.
Example 19. Choose (kq, ko, €1, €2, k,a) = (1,0, 2, % -1, }l) with 7; = p; = -1, j=1,2. The two-soliton solution becomes
1+ %ex—[+ %e3x79t+4egx7§r
14239 4 3% 50 4 e2x-8t 4 DeiX 5 4 1% F!

q(t,x) =— (125)

The graph of the above solution is given in Fig. 12. This solution represents interaction of soliton and kink-type wave.
Example 20. Choose (ki.kp. ¢1.¢.k,a)=(1+ 4, -1+ 5 1+ 4, 144, -1,%) with 7;=p; =1, j=1,2. Then the two-
soliton solution becomes

8sinh(x — 1t)sin(% — Ut) —4cosh(x — 1t) cos(3 — Lt)

t,Xx) =
q(t.%) 4cos(x — 4t) —cosh(2x — §) -5

(126)

This solution is a breather-type wave solution. The graph of (126) is given in Fig. 13.
Note that in [26,27], Ji and Zhu also obtained two-soliton solution of the Eq. (14) representing interactions of bright-
bright solitons, bright-dark solitons, soliton-kink, and also breather solutions, by using the Darboux transformation and
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Fig. 11. Soliton and kink-type wave for (120) with the parameters ky = ¢; =1,k =0,(, = . k=-1l,a=}.1;=p; =1, j=1,2.

inverse scattering transform, respectively. Actually, if we let a = %, k=-1, ky = =2vy — 2ipy, ky =20y — 2ipy, Iy = =207 +
2ipy, b =2v1 +2ipy, and pj=7;=1, j=1,2, our solution (120) with (121) and (122) can be transformed to the two-
soliton solution given in Ref. [26]. Similarly, assuming a = %, k =—1, and using the notations for the parameters in Ref.
[27] as ky = =2iky, ky = =2iky, I = 2iky, I, = 2iky, and t; = &}, pj =0}, j= 1,2, our two-soliton solution turns to be the
solution given in Ref. [27].

4. Concluding remarks

In this work, we have studied nonlocal reductions of the mKdV system of nonlinear equations. There are two nonlocal
reductions of these equations. Nonlocal reductions provide us time (T)-, space (S)-, and space-time (ST)-reversal symmetric
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Fig. 12. Soliton and kink-type wave for (120) with the parameters ky =1,k =0,¢1 =2, ¢, = % k=-1,a= }7, Tj=pj=-1,j=12.

(I
YLK
i

0
f

Fig. 13. A breather-type wave plotted for (120) with the parameters k; = ¢; =1+ % ky=10=-1+ % k=-1,a= };, T=p=1j=1.2

nonlocal cmKdV equations and space-time (ST)-reversal symmetric nonlocal mKdV equation. Each reduced equations are
integrable by construction. It means that they have Lax pairs and recursion operators. Starting from any one of the nonlo-
cal cmKdV equations we can generate infinitely many other nonlocal higher order cmKdV equations. Here in this work we
mainly focus on the soliton solutions of the nonlocal cmKdV and nonlocal mKdV equations. When we use the Hirota method
to obtain soliton solutions of these equations we observed that there are two different types. We present one-soliton solu-
tions of the nonlocal equations of all types but we present only one type of two- and three- soliton solutions. We also plot
the graphs of these solutions for particular values of the parameters of the solutions.

From the study of NLS and mKdV systems we observed that they both have local and nonlocal reductions. More-
over in both of these systems there corresponds at least one nonlocal reduction to a local reduction. Both systems have
r(t,x) = kq(t,x) as local reduction and the corresponding nonlocal reductions are r(t,x) = kG(et, £,x) where k is real con-
stant and (&1, &) ={(1,-1),(-1,1), (=1, -1)}. From these reductions we obtain local and nonlocal NLS equations and lo-
cal and nonlocal complex mKdV equations. The mKdV system has additional local and nonlocal reductions. Local reduction
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r(t,x) = kq(t,x), k is real constant, and its corresponding nonlocal reduction r(t,x) = kq(—t, —x) give the nonlocal mKdV
equation. From all these experiences we conclude with a conjecture: If a system of equations admits a local reduction then
there exists at least one corresponding nonlocal reduction of the same system.
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