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Highlights

• (2+1)-dimensional negative AKNS hierarchy (AKNS(-n) systems) is constructed.

• Hirota bilinear forms of AKNS(-n) systems for n=0, 1, 2 are found.

• One- and two-soliton solutions of AKNS(-n) systems for n=0, 1, 2 are obtained.

• We present all possible local reductions of AKNS(-n) systems for n=0, 1, 2.

• We give all possible nonlocal reduced equations obtained from AKNS(-n) systems for
n=0, 1, 2 by using the Ablowitz-Muslimani type of nonlocal reductions.

• By using the soliton solutions of the negative AKNS hierarchy we find one-soliton
solutions of the local and nonlocal reduced equations.
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Abstract

We first construct a (2+1)-dimensional negative AKNS hierarchy and then we give
all possible local and (discrete) nonlocal reductions of these equations. We find Hirota
bilinear forms of the negative AKNS hierarchy and give one- and two-soliton solutions.
By using the soliton solutions of the negative AKNS hierarchy we find one-soliton so-
lutions of the local and nonlocal reduced equations.

Keywords. Ablowitz-Musslimani reduction, (2 + 1)-dimensional negative AKNS hier-
archy, Hirota bilinear method, Soliton solutions

1 Introduction

Let R be the recursion operator of an integrable equation. Then the integrable hierarchy of

equations are defined as

vtn = Rn vx, n = 0, 1, 2, . . . . (1.1)

In [1], we proposed a system of equations

R[vtn − aRnσ0] = bσ1, n = 0, 1, 2, . . . , (1.2)

where σ0, σ1 are some classical symmetries of the same integrable equation. This hierarchy

represents the negative hierarchy of the integrable system defined in (1.1). For some specific

choices of the constants a, b, and σ0, σ1 we have studied the existence of three-soliton solutions

and Painlevé property of the negative KdV hierarchy where the recursion operator is R =

∗gurses@fen.bilkent.edu.tr
†Email:aslipekcan@hacettepe.edu.tr
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D2 + 8v + 4vxD
−1. For this case the system of equations in (1.2) is denoted as KdV(2n+4)

equations for n ≥ 1. When a = −1, b = 0, n = 1, and by letting v = ux to get rid of

nonlocal terms containing D−1 we obtain KdV(6). We have also obtained (2+1)-dimensional

extension of this equation, the (2 + 1)-KdV(6) equation, by choosing a = −1, b = −1, n = 1,

and σ0 = vx, σ1 = vy. The expanded form of (2 + 1)-KdV(6) equation with v = ux is given

as [2]

uxxxt + uxxxxxx + 40uxxuxxx + 20uxuxxxx + 8uxuxt + 120u2
xuxx + 4utuxx + uxy = 0. (1.3)

We showed that all (2 + 1)-KdV(6) equation and 2+1 dimensional KdV(2n+4) for n ≥ 1

possesses three-soliton solution having the same structure with the KdV equation’s three-

soliton solution and also Painlevé property. Negative flows have been considered earlier in

[3]-[5].

By using our approach (1.2), we obtain negative hierarchy of integrable equations which

are nonlocal in general. Here nonlocality is due to the existence of the terms containing the

operator D−1. In the KdV case the nonlocal terms disappear by redefinition of the dynamical

variable. This may not be possible for other integrable systems. A new type of nonlocal

reductions of integrable systems are obtained by relating one of the dynamical variable to the

time and space reflections of the other one. Such a nonlocal reduction was first introduced by

Ablowitz and Musslimani [6]-[8]. Ablowitz-Muslimani type of nonlocal reductions attracted

many researchers [10]-[33] to investigate new nonlocal integrable equations and find their

solitonic solutions. These nonlocal integrable equations have been obtained by applying

the Ablowitz and Musslimani nonlocal reductions of the AKNS [9] and other integrable

systems of equations. First example was the nonlocal nonlinear Schrödinger (NLS) equation

and then nonlocal modified KdV (mKdV) equation. Ablowitz and Musslimani proposed

later some other nonlocal integrable equations such as reverse space-time and reverse time

nonlocal NLS equation, sine-Gordon equation, (1 + 1)- and (2 + 1)- dimensional three-wave

interaction, Davey-Stewartson equation, derivative NLS equation, ST-symmetric nonlocal

complex mKdV and mKdV equations arising from symmetry reductions of general AKNS

scattering problem [6]-[8]. They discussed Lax pairs, an infinite number of conservation laws,

inverse scattering transforms and found one-soliton solutions of these equations. Ma, Shen,

and Zhu showed that ST-symmetric nonlocal complex mKdV equation is gauge equivalent

to a spin-like model in Ref. [24]. Ji and Zhu obtained soliton, kink, anti-kink, complexiton,

breather, rogue-wave solutions, and nonlocalized solutions with singularities of ST-symmetric

nonlocal mKdV equation through Darboux transformation and inverse scattering transform

[25], [26]. In [27], the authors showed that many nonlocal integrable equations like Davey-

Stewartson equation, T-symmetric NLS equation, nonlocal derivative NLS equation, and

ST-symmetric complex mKdV equation can be converted to local integrable equations by

simple variable transformations. Multidimensional nonlocal equations equations have been

considered in [29]-[31]. Recently we studied all possible nonlocal reductions of the AKNS

system. We have obtained one-, two-, and three-soliton solutions of the nonlocal NLS [32]
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and mKdV equations [33]. We also studied nonlocal reductions of Fordy-Kulish [34] and

super integrable systems [35], [36].

In this work, by the use of the formula (1.2) we obtain negative AKNS hierarchy denoted

by AKNS(−n) for n = 0, 1, 2, . . . with one time t and two space variables x and y. In [37],

Bogoyavlenski gave a type of AKNS(0) system which can be reduced to a single complex

equation that is a compatibility condition for a certain linear system. The reduced equation

admits the Lax representation, has breaking solitons, and can be embedded into some (3+1)-

dimensional complex integrable equation [38]. Strachan also presented a single equation

reduced from the same AKNS(0) system as a (2 + 1)-dimensional generalization of the NLS

equation and found one-soliton solution of this system by using Hirota method [39]. All these

systems are nonlocal due to the term D−1 in the recursion operator. We obtain the Hirota

bilinear form of these systems and obtain one- and two-soliton solutions for n = 0, 1, 2.

We then find all possible local and nonlocal reductions of the negative AKNS hierarchy

for n = 0, 1, 2. There are in total 30 reduced equations for n = 0, 1, 2. All these equations

constitute new examples of (2 + 1)-dimensional integrable system of equations. There exists

only one type of local reductions where the second dynamical variable is related to the

complex conjugation of the other variable. By the use of constraint equations we obtain one-

soliton solutions of the local and nonlocal reduced equations from the one-soliton solutions

of the negative AKNS system of equations. There are solutions which develop singularities

in a finite time and there are also solutions which are finite and bounded depending on the

parameters of the one-soliton solutions.

2 Negative AKNS System

The AKNS hierarchy [9] can be written as

utn = Rnux (n = 0, 1, 2, . . .), u =

(
p
q

)
i.e.

(
ptN
qtN

)
= RN−1

(
px
qx

)
,

where R is the recursion operator,

R =

(
−pD−1q + 1

2
D −pD−1p

qD−1q qD−1p− 1
2
D

)
.

Here D is the total x-derivative and D−1 =
∫ x

(standard anti-derivative).

Writing (1.2) in the following form

R(utn)− aRn(ux) = b uy for n = 0, 1, 2, . . . , (2.1)
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where u =

(
p
q

)
, here a, b are any constants, we obtain (2 + 1)-dimensional negative

AKNS(−n) systems for n = 0, 1, 2, . . . . In this work we will only consider the systems for

n = 0, 1, 2.

(1) (n = 0) (2 + 1)-AKNS(0) System:

When n = 0, Eq. (2.1) reduces to R(ut)− aux = buy. This yields the system

bpy =
1

2
ptx − a px − pD−1 (pq)t, (2.2)

bqy = −1

2
qtx − a qx + qD−1 (pq)t. (2.3)

(2) (n = 1) (2 + 1)-AKNS(-1) System:

When n = 1, Eq. (2.1) reduces toR(ut−aux) = buy. Letting ut−aux = ω, where ω =

(
ω1

ω2

)

we have

ut − aux = ω, Rω = buy.

This yields the system

ω1 = pt − apx
ω2 = qt − aqx
bpy =

1

2
ω1,x − pD−1(qω1 + pω2)

bqy = −1

2
ω2,x + qD−1(qω1 + pω2). (2.4)

Inserting ω1 and ω2 we obtain the system

bpy =
1

2
ptx −

a

2
pxx + ap2 q − pD−1 (pq)t, (2.5)

bqy = −1

2
qtx +

a

2
qxx − ap q2 + qD−1 (pq)t. (2.6)

(3) (n = 2) (2 + 1)-AKNS(-2) System:

When n = 2, Eq. (2.1) reduces to R(ut − aRux) = buy. Letting ut − aRux = ω, where

ω =

(
ω1

ω2

)
we have

ut − aRux = ω, Rω = buy.
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This yields the system

ω1 = pt − a(−p2q +
1

2
pxx)

ω2 = qt − a(pq2 − 1

2
qxx)

bpy =
1

2
ω1,x − pD−1(qω1 + pω2)

bqy = −1

2
ω2,x + qD−1(qω1 + pω2). (2.7)

Inserting ω1 and ω2 we obtain the system

bpy =
1

2
ptx −

a

4
pxxx +

3a

2
p q px − pD−1 (pq)t, (2.8)

bqy = −1

2
qtx −

a

4
qxxx +

3a

2
p q qx + qD−1 (pq)t. (2.9)

3 Hirota Method for Negative AKNS System

To obtain the Hirota bilinear form for the negative AKNS(−n) system, with n = 0, 1, and

n = 2, we let

p =
g

f
, q =

h

f
, (3.1)

and

gh

f 2
= −

(
fx
f

)

x

+ β, (3.2)

where β is an arbitrary constant.

(1) (n = 0) Hirota Bilinear Form for (2 + 1)-AKNS(0) System:

Using (3.1) and (3.2) in Eqs. (2.2) and (2.3) we have

b(fgy − gfy) =
1

2
(fgtx − gtfx − gxft + gftx)− a(fgx − gfx), (3.3)

b(fhy − hfy) = −1

2
(fhtx − htfx − hxft + hftx)− a(fhx − hfx). (3.4)

Hence we obtain the Hirota bilinear form as

P1(D){g · f} ≡ (bDy −
1

2
DtDx + aDx){g · f} = 0, (3.5)

P2(D){h · f} ≡ (bDy +
1

2
DtDx + aDx){h · f} = 0, (3.6)

P3(D){f · f} ≡ (D2
x − 2β){f · f} = −2gh. (3.7)
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(2) (n = 1) Hirota Bilinear Form for (2 + 1)-AKNS(-1) System:

Using (3.1) and (3.2) in Eqs. (2.5) and (2.6) we get

b(fgy − gfy) =
1

2
(fgtx − gtfx − gxft + gftx)−

a

2
(fgxx − 2fxgx + gfxx − 2βgf), (3.8)

b(fhy − hfy) = −1

2
(fhtx − htfx − hxft + hftx) +

a

2
(fhxx − 2fxhx + hfxx − 2βhf).

(3.9)

Hence we obtain the Hirota bilinear form as

P1(D){g · f} ≡ (bDy −
1

2
DtDx +

a

2
D2
x − aβ){g · f} = 0, (3.10)

P2(D){h · f} ≡ (bDy +
1

2
DtDx −

a

2
D2
x + aβ){h · f} = 0, (3.11)

P3(D){f · f} ≡ (D2
x − 2β){f · f} = −2gh. (3.12)

(3) (n = 2) Hirota Bilinear Form for (2 + 1)-AKNS(-2) System:

Using (3.1) and (3.2) in Eqs. (2.8) and (2.9) we have

4b(fgy − gfy) = 2(fgtx − gtfx − gxft + gftx)− a(fgxxx + 3fxxgx − 3gxxfx − gfxxx)
+ 6aβ(gxf − gfx), (3.13)

4b(fhy − hfy) = −2(fhtx − htfx − hxft + hftx)− a(fhxxx − 3fxhxx + 3hxfxx − hfxxx)
+ 6aβ(hxf − hfx). (3.14)

Hence we obtain the Hirota bilinear form as

P1(D){g · f} ≡ (bDy −
1

2
DtDx +

a

4
D3
x −

3a

2
βDx){g · f} = 0, (3.15)

P2(D){g · f} ≡ (bDy +
1

2
DtDx +

a

4
D3
x −

3a

2
βDx){h · f} = 0, (3.16)

P3(D){f · f} ≡ (D2
x − 2β){f · f} = −2gh. (3.17)

After having Hirota bilinear forms (3.5)-(3.7), (3.10)-(3.12), and (3.15)-(3.17), next step is

to find the functions g, h, and f by using the Hirota method (see Sec. VI).

4 Local Reductions

It is straightforward to show that there exist no consistent local reductions in the form of

q(x, y, t) = σ p(x, y, t) for all n = 0, 1, 2. Here we will give the local reductions in the form of

q(x, y, t) = σ p̄(x, y, t) for all n = 0, 1, 2 where σ is any real constant.

(1) Local Reductions for the System n = 0:

7
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Let q(x, y, t) = σ p̄(x, y, t) then two coupled equations (2.2) and (2.3) reduce consistently

to the following single equation:

bpy =
1

2
ptx − a px − σ pD−1 (p p̄)t, (4.1)

where σ is any real constant and a bar over a letter denotes complex conjugation. Here a

and b are pure imaginary numbers. In [37], Bogoyavlenski presented the system

iut − uxy − 2u∂−1
x (uv)y = 0, (4.2)

ivt + vxy + 2v∂−1
x (uv)y = 0. (4.3)

Note that if we interchange the variables t and y, take a = 0 and b = i
2

in the system

(2.2)-(2.3) we exactly get this system. Bogoyavlenski also mentioned about the reduction

u = αv̄, α ∈ R and obtained the single equation

vt = ivxy + 2iαv∂−1
x |v|2y. (4.4)

This equation has breaking solitons and Lax representation.

(2) Local Reductions for the System n = 1:

Let q(x, y, t) = σ p̄(x, y, t) then two coupled equations (2.5) and (2.6) reduce consistently

to the following single equation:

bpy =
1

2
ptx −

a

2
pxx + aσ p2 p̄− σ pD−1 (p p̄)t, (4.5)

where σ is any real constant and a bar over a letter denotes complex conjugation. Here a is

a real and b is a pure imaginary number.

(3) Local Reductions for the System n = 2:

Let q(x, y, t) = σ p̄(x, y, t) then two coupled equations (2.8) and (2.9) reduce consistently

to the following single equation:

bpy =
1

2
ptx −

a

4
pxxx +

3a

2
σ p p̄ px − σ pD−1 (pp̄)t, (4.6)

where σ is any real constant and a bar over a letter denotes complex conjugation. Here a

and b are pure imaginary numbers.
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5 Nonlocal Reductions

In order to have consistent nonlocal reductions we use the following representation for D−1

D−1 F =
1

2

(∫ x

−∞
−
∫ ∞

x

)
F (x′, y, t)dx′. (5.1)

We define the quantity ρ(x, y, t) which is invariant under the discrete transformations x →
ε1x, y → ε2y, and t→ ε3t as

ρ(x, y, t) = D−1 p pε ≡
(∫ x

−∞
−
∫ ∞

x

)
p(x′, y, t) p(ε1 x

′, ε2 y, ε3 t) dx
′, (5.2)

where ε21 = ε22 = ε23 = 1. It is easy to show that

ρ(ε1 x, ε2 y, ε3 t) = ε1 ρ(x, y, t). (5.3)

(1) Nonlocal Reductions for the System n = 0:

(a) Let q(x, y, t) = σ p(ε1x, ε2y, ε3t) then two coupled equations (2.2) and (2.3) reduce con-

sistently to the following single equation:

bpy =
1

2
ptx − a px − σ pD−1 (p pε)t, (5.4)

where σ is any real constant and pε = p(ε1x, ε2y, ε3t). The above reduced equation is valid

only when ε3 = −1 and ε1 ε2 = 1. We have only two possible cases; pε = p(x, y,−t) and

pε = p(−x,−y,−t) for time reversal and time and space reversals respectively.

(b) Let q(x, y, t) = σ p̄(ε1x, ε2y, ε3t) then two coupled equations (2.2) and (2.3) reduce con-

sistently to the following single equation:

bpy =
1

2
ptx − a px − σ pD−1 (p p̄ε)t, (5.5)

where σ is any real constant. This reduction is valid only when

ε1 ε2 ε3 b̄ = −b, ε3 ā = −a. (5.6)

In this case we have seven different time and space reversals:

(i) pε(x, y, t) = p(−x, y, t), where a is pure imaginary and b is real.

(ii) pε(x, y, t) = p(x,−y, t), where a is pure imaginary and b is real.

(iii. pε(x, y, t) = p(x, y,−t), where a and b are real.

(iv) pε(x, y, t) = p(−x,−y, t), where a and b are pure imaginary.

(v) pε(x, y, t) = p(−x, y,−t), where a is real and b is pure imaginary.
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(vi) pε(x, y, t) = p(x,−y,−t), where a is real and b is pure imaginary.

(vii) pε(x, y, t) = p(−x,−y,−t), where a and b are real.

Each case above gives a nonlocal equation in the form of (5.5) in 2+1 dimensions.

In [40] nonlocal reduction given in (v) and corresponding nonlocal equation have been con-

sidered for β = −1
2

in (3.7). Soliton solution have been also found.

(2) Nonlocal Reductions for the System n = 1:

(a) Let q(x, y, t) = σ p(ε1x, ε2y, ε3t) then two coupled equations (2.5) and (2.6) reduce con-

sistently to the following single equation:

bpy =
1

2
ptx −

a

2
pxx + aσp2pε − σpD−1(ppε)t, (5.7)

where σ is any real constant and pε = p(ε1x, ε2y, ε3t). The above reduced equation is valid

only when ε2 = −1 and ε1ε3 = 1. We have only two possible cases; pε = p(x,−y, t) and

pε = p(−x,−y,−t) for space reversal and time and space reversals respectively.

(b) Let q(x, y, t) = σ p̄(ε1x, ε2y, ε3t) then two coupled equations (2.5) and (2.6) reduce con-

sistently to the following single equation:

bpy =
1

2
ptx −

a

2
pxx + aσp2p̄ε − σpD−1(pp̄ε)t, (5.8)

where σ is any real constant. This reduction is valid only when

ε1 ε2 ε3 b̄ = −b, ε1 ε3 ā = a. (5.9)

In this case we have seven different time and space reversals:

(i) pε(x, y, t) = p(−x, y, t), where a is pure imaginary and b is real.

(ii) pε(x, y, t) = p(x,−y, t), where a and b are real.

(iii) pε(x, y, t) = p(x, y,−t), where a is pure imaginary and b are real.

(iv) pε(x, y, t) = p(−x,−y, t), where a and b are pure imaginary.

(v) pε(x, y, t) = p(−x, y,−t), where a is real and b is pure imaginary.

(vi) pε(x, y, t) = p(x,−y,−t), where a and b are pure imaginary.

(vii) pε(x, y, t) = p(−x,−y,−t), where a and b are real.

Each case above gives a nonlocal equation in the form of (5.8) in 2+1 dimensions.

(3) Nonlocal Reductions for the System n = 2:

10
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(a) Let q(x, y, t) = σ p(ε1x, ε2y, ε3t) then two coupled equations (2.8) and (2.9) reduce con-

sistently to the following single equation:

bpy =
1

2
ptx −

a

4
pxxx +

3a

2
σppεpx − σpD−1(ppε)t, (5.10)

where σ is any real constant and pε = p(ε1x, ε2y, ε3t). The above reduced equation is valid

only when ε3 = −1 and ε1ε2 = 1. We have only two possible cases; pε = p(x, y,−t) and

pε = p(−x,−y,−t) for time reversal and time and space reversals respectively.

(b) Let q(x, y, t) = σ p̄(ε1x, ε2y, ε3t) then two coupled equations (2.5) and (2.6) reduce con-

sistently to the following single equation:

bpy =
1

2
ptx −

a

4
pxxx +

3a

2
σpp̄εpx − σpD−1(pp̄ε)t, (5.11)

where σ is any real constant. This reduction is valid only when

ε1 ε2 ε3 b̄ = −b, ε3 ā = −a. (5.12)

In this case we have seven different time and space reversals:

(i) pε(x, y, t) = p(−x, y, t), where a is pure imaginary and b is real.

(ii) pε(x, y, t) = p(x,−y, t), where a is pure imaginary and b is real.

(iii) pε(x, y, t) = p(x, y,−t), where a and b are real.

(iv) pε(x, y, t) = p(−x,−y, t), where a and b are pure imaginary.

(v) pε(x, y, t) = p(−x, y,−t), where a is real and b is pure imaginary.

(vi) pε(x, y, t) = p(x,−y,−t), where a is real and b is pure imaginary.

(vii) pε(x, y, t) = p(−x,−y,−t), where a and b are real.

Each case above gives a nonlocal equation in the form of (5.11) in 2+1 dimensions. At the

end we obtain 27 nonlocal equations from negative AKNS hierarchy in 2+1 dimensions.

Remark. In all the above nonlocal equations we can use D−1 =
∫ x

when there exist only y

and t reversals, pε = p(x, ε2 y, ε3 t).

6 Soliton Solutions for Negative AKNS Hierarchy

In the following sections we solve the Hirota bilinear equations of (2+1)-AKNS(−n) systems

for n = 0, 1, 2 when β = 0 and find one- and two-soliton solutions.

6.1 One-Soliton Solution of (2 + 1)-AKNS(−n) System (n = 0, 1, 2)

Here we will present how to find one-soliton solution of (2 + 1)-AKNS(0) system. For n = 1

and n = 2 the steps for finding one-soliton solution are same with n = 0 case except the

dispersion relations.
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Consider the system (3.5)-(3.7). To find one-soliton solution we use the following expansions

for the functions g, h, and f ,

g = εg1, h = εh1, f = 1 + ε2f2, (6.1)

where

g1 = eθ1 , h1 = eθ2 , θi = kix+ τiy + ωit+ δi, i = 1, 2. (6.2)

When we substitute (6.1) into the equations (3.5)-(3.7), we obtain the coefficients of ε as

P1(D){g1 · 1} = bg1,y −
1

2
g1,xt + ag1,x = 0, (6.3)

P2(D){h1 · 1} = bh1,y +
1

2
h1,xt + ah1,x = 0, (6.4)

yielding the dispersion relations

τ1 =
1

b
(
1

2
k1ω1 − ak1), τ2 =

1

b
(−1

2
k2ω2 − ak2). (6.5)

From the coefficient of ε2

f2,xx = −g1h1, (6.6)

we obtain the function f2 as

f2 = −e
(k1+k2)x+(τ1+τ2)y+(ω1+ω2)t+δ1+δ2

(k1 + k2)2
. (6.7)

The coefficients of ε3 vanish with the dispersion relations and (6.7). From the coefficient of

ε4 we get

f2f2,xx − f 2
2,x = 0, (6.8)

and this equation also vanishes immediately due to the dispersion relations and (6.7). With-

out loss of generality let us also take ε = 1. Hence a pair of solutions of (2 + 1)-AKNS(0)

system (2.2)-(2.3) is given by (p(x, y, t), q(x, y, t)) where

p(x, y, t) =
eθ1

1 + Aeθ1+θ2
, q(x, y, t) =

eθ2

1 + Aeθ1+θ2
, (6.9)

with θi = kix + τiy + ωit + δi, i = 1, 2, τ1 = 1
b
(1

2
k1ω1 − ak1), τ2 = 1

b
(−1

2
k2ω2 − ak2), and

A = − 1
(k1+k2)2

. Here ki, ωi, and δi, i = 1, 2 are arbitrary complex numbers.

For n = 1 that is for the system (2.5)-(2.6) one-soliton solution is given by (6.9) where

θi = kix+ τiy + ωit+ δi, i = 1, 2 with

τ1 =
1

b
(
1

2
k1ω1 −

a

2
k2

1), τ2 =
1

b
(−1

2
k2ω2 +

a

2
k2

2). (6.10)

For n = 2 that is for the system (2.8)-(2.9) one-soliton solution is again given by (6.9) where

θi = kix+ τiy + ωit+ δi, i = 1, 2 with

τ1 =
1

b
(
1

2
k1ω1 −

a

4
k3

1), τ2 =
1

b
(−1

2
k2ω2 −

a

4
k3

2). (6.11)
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6.2 Two-Soliton Solution of (2 + 1)-AKNS(−n) System (n = 0, 1, 2)

Here as in the previous section, we will only deal with (2 + 1)-AKNS(0) system and find

two-soliton solution of this system. For n = 1 and n = 2 we have the same form of two-soliton

solution only with difference of the dispersion relations.

Consider the system (3.5)-(3.7). For two-soliton solution, we take

g = εg1 + ε3g3, h = εh1 + ε3h3, f = 1 + ε2f2 + ε4f4, (6.12)

where

g1 = eθ1 + eθ2 , h1 = eη1 + eη2 , (6.13)

with θi = kix + τiy + ωit + δi, ηi = `ix + siy + mit + αi for i = 1, 2. When we insert above

expansions into (3.5)-(3.7), we get the coefficients of εn, 1 ≤ n ≤ 8 as

ε : bg1,y −
1

2
g1,xt + ag1,x = 0, (6.14)

bh1,y +
1

2
h1,xt + ah1,x = 0, (6.15)

ε2 : f2,xx + g1h1 = 0, (6.16)

ε3 : b(g1,yf2 − g1f2,y)−
1

2
(g1,xtf2 − g1,tf2,x − g1,xf2,t + g1f2,xt) + a(g1,xf2 − g1f2,x)

+ bg3,y −
1

2
g3,xt + ag3,x = 0, (6.17)

b(h1,yf2 − h1f2,y) +
1

2
(h1,xtf2 − h1,tf2,x − h1,xf2,t + h1f2,xt) + a(h1,xf2 − h1f2,x)

+ bh3,y +
1

2
h3,xt + ah3,x = 0, (6.18)

ε4 : f2f2,xx − f 2
2,x + f4,xx + g1h3 + g3h1 = 0, (6.19)

ε5 : b(g1,yf4 − g1f4,y)−
1

2
(g1,xtf4 − g1,tf4,x − g1,xf4,t + g1f4,xt) + a(g1,xf4 − g1f4,x)

+ b(g3,yf2 − g3f2,y)−
1

2
(g3,xtf2 − g3,tf2,x − g3,xf2,t + g3f2,xt) + a(g3,xf2 − g3f2,x) = 0,

(6.20)

b(h1,yf4 − h1f4,y) +
1

2
(h1,xtf4 − h1,tf4,x − h1,xf4,t + h1f4,xt) + a(h1,xf4 − h1f4,x)

+ b(h3,yf2 − h3f2,y) +
1

2
(h3,xtf2 − h3,tf2,x − h3,xf2,t + h3f2,xt) + a(h3,xf2 − h3f2,x) = 0,

(6.21)

ε6 : f2,xxf4 − 2f2,xf4,x + f2f4,xx + g3h3 = 0, (6.22)

ε7 : b(g3,yf4 − g3f4,y)−
1

2
(g3,xtf4 − g3,tf4,x − g3,xf4,t + g3f4,xt) + a(g3,xf4 − g3f4,x) = 0,

(6.23)

b(h3,yf4 − h3f4,y) +
1

2
(h3,xtf4 − h3,tf4,x − h3,xf4,t + h3f4,xt) + a(h3,xf4 − h3f4,x) = 0.

(6.24)

ε8 : f4f4,xx − f 2
4,x = 0. (6.25)
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The equations (6.14) and (6.15) give the dispersion relations

τi =
1

b
(
1

2
kiωi − aki), si =

1

b
(−1

2
`imi − a`i), i = 1, 2. (6.26)

From the coefficient of ε2 we obtain the function f2,

f2 = eθ1+η1+α11 + eθ1+η2+α12 + eθ2+η1+α21 + eθ2+η2+α22 =
∑

1≤i,j≤2

eθi+ηj+αij , (6.27)

where

eαij = − 1

(ki + `j)2
, 1 ≤ i, j ≤ 2. (6.28)

The equations (6.17) and (6.18) give the functions g3 and h3,

g3 = A1e
θ1+θ2+η1 + A2e

θ1+θ2+η2 , h3 = B1e
θ1+η1+η2 +B2e

θ2+η1+η2 , (6.29)

where

Ai = − (k1 − k2)2

(k1 + `i)2(k2 + `i)2
, Bi = − (`1 − `2)2

(`1 + ki)2(`2 + ki)2
, i = 1, 2. (6.30)

The equation (6.19) yields the function f4 as

f4 = Meθ1+θ2+η1+η2 , (6.31)

where

M =
(k1 − k2)2(l1 − l2)2

(k1 + l1)2(k1 + l2)2(k2 + l1)2(k2 + l2)2
. (6.32)

Other equations (6.20)-(6.25) vanish immediately by the dispersion relations (6.26) and the

functions f2, f4, g3, and h3.

Take ε = 1. Then two-soliton solution of the system (2.2)-(2.3) is given with the pair

(p(x, y, t), q(x, y, t)),

p(x, y, t) =
eθ1 + eθ2 + A1e

θ1+θ2+η1 + A2e
θ1+θ2+η2

1 + eθ1+η1+α11 + eθ1+η2+α12 + eθ2+η1+α21 + eθ2+η2+α22 +Meθ1+θ2+η1+η2
, (6.33)

q(x, y, t) =
eη1 + eη2 +B1e

θ1+η1+η2 +B2e
θ2+η1+η2

1 + eθ1+η1+α11 + eθ1+η2+α12 + eθ2+η1+α21 + eθ2+η2+α22 +Meθ1+θ2+η1+η2
, (6.34)

with θi = kix + τiy + ωit + δi, ηi = `ix + siy + mit + αi for i = 1, 2 with the dispersion

relations τi = 1
b
(1

2
kiωi − aki), si = 1

b
(−1

2
`imi − a`i), i = 1, 2. Here ki, `i, ωi,mi, δi, and αi,

i = 1, 2 are arbitrary complex numbers.

For n = 1 i.e. for the system (2.5)-(2.6) two-soliton solution is given by (6.33)-(6.34) where

θi = kix+ τiy + ωit+ δi, ηi = `ix+ siy +mit+ αi for i = 1, 2 with the dispersion relations

τi =
1

b
(
1

2
kiωi −

a

2
k2
i ), si =

1

b
(−1

2
`imi +

a

2
`2
i ), i = 1, 2. (6.35)

For n = 2 that is for the system (2.8)-(2.9) two-soliton solution is also given by (6.33)-(6.34)

where θi = kix + τiy + ωit + δi, ηi = `ix + siy + mit + αi for i = 1, 2 with the dispersion

relations

τi =
1

b
(
1

2
kiωi −

a

4
k3
i ), si =

1

b
(−1

2
`imi −

a

4
`3
i ), i = 1, 2. (6.36)
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7 Soliton Solutions of Reduced Equations

In our studies of nonlocal NLS and nonlocal mKdV equations we introduced a general method

[32]-[36] to obtain soliton solutions of nonlocal integrable equation. This method consists of

three main steps:

• Find a consistent reduction formula which reduces the integrable system of equations

to integrable nonlocal equations.

• Find soliton solutions of the system of equations by use of the Hirota bilinear method

or by inverse scattering transform technique, or by use of Darboux Transformation.

• Use the reduction formulas on the soliton solutions of the system of equations to obtain

the soliton solutions of the reduced nonlocal equations. By this way one obtains many

different relations among the soliton parameters of the system of equations.

In the following sections we mainly follow the above method in obtaining the soliton solu-

tions of AKNS(−n) systems for n = 0, 1, and n = 2 by using Type 1 and Type 2 approaches

given in [33].

7.1 One-Soliton Solutions of Local Reduced Equations

The constraints that one-soliton solutions of the local equations (4.1), (4.5), and (4.6) which

are reduced from AKNS(−n) for n = 0, 1, and n = 2 systems respectively can be found by

the local reduction formula q(x, y, t) = σp̄(x, y, t) that is

ek2x+τ2y+ω2t+δ2

1 + Ae(k1+k2)x+(τ1+τ2)y+(ω1+ω2)t+δ1+δ2
=

σek̄1x+τ̄1y+ω̄1t+δ̄1

1 + Āe(k̄1+k̄2)x+(τ̄1+τ̄2)y+(ω̄1+ω̄2)t+δ̄1+δ̄2
. (7.1)

If we use the Type 1 approach, we obtain the following constraints:

1) k2 = k̄1, 2)ω2 = ω̄1, 3) eδ2 = σeδ̄1 , (7.2)

so that the equality (7.1) is satisfied for each n = 0, 1, and n = 2. Note that under the above

constraints, the dispersion relations give τ2 = τ̄1. Hence one-soliton solutions of (4.1), (4.5),

and (4.6) are given by

p(x, y, t) =
ek1x+τ1y+ω1t+δ1

1− σ
(k1+k̄1)2

e(k1+k̄1)x+(τ1+τ̄1)y+(ω1+ω̄1)t+δ1+δ̄1
, (7.3)

where

i. for n = 0, a and b are pure imaginary numbers and τ1 = 1
b
(1

2
k1ω1 − ak1),
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ii. for n = 1, a is a real and b is a pure imaginary number and τ1 = 1
b
(1

2
k1ω1 − a

2
k2

1),

iii. for n = 2, a and b are pure imaginary numbers and τ1 = 1
b
(1

2
k1ω1 − a

4
k3

1).

If sign(σ) < 0 we can let

σ = −(k1 + k̄1)2 eµ, (7.4)

where µ is another real constant. Then the above one-soliton solution becomes

p(x, y, t) =
eφ

2 cosh θ
, (7.5)

where

θ =
1

2
[(k1 + k̄1)x+ (τ1 + τ̄1)y + (w1 + w̄1)t+ δ1 + δ̄1 + µ], (7.6)

φ =
1

2
[(k1 − k̄1)x+ (τ1 − τ̄1)y + (w1 − w̄1)t+ δ1 − δ̄1 − µ], (7.7)

Hence one-soliton solutions of the locally reduced equations for n = 0, 1, 2 are finite and

bounded when sign(σ) < 0. The norm of p becomes

|p(x, y, t)|2 =
e−µ

4 cosh2 θ
. (7.8)

Note that in [39], Strachan studied one-soliton solutions of the generalization of NLS equation

given by

i∂tψ = ∂xyψ + V (|ψ|)ψ
∂xV = 2∂y|ψ|2. (7.9)

Indeed the single equation (4.1) is equivalent to the above system if we interchange the

variables t and y, take a = 0, σ = −1, and b = i
2

in (4.1). To obtain one-soliton solution,

Strachan applied the Hirota method directly on the Hirota bilinear form of this single equa-

tion. One of the solutions given in [39] is same with our one-soliton solution (7.3). Notice

that there is a typo in the Hirota bilinear form of the (7.9) and so in the dispersion relation

in [39]. In addition to that solution, Strachan obtained more general solution by changing

the solution ansatz.

7.2 One-Soliton Solutions of Nonlocal Reduced Equations

Firstly let us consider the nonlocal reduction q(x, y, t) = σp(ε1x, ε2y, ε3t). Here the con-

straints that one-soliton solutions of the nonlocal equations (5.4), (5.7), and (5.10) which

are reduced from AKNS(−n) for n = 0, 1, and n = 2 systems respectively can be found by

ek2x+τ2y+ω2t+δ2

1 + Ae(k1+k2)x+(τ1+τ2)y+(ω1+ω2)t+δ1+δ2
=

σeε1k1x+ε2τ1y+ε3ω1t+δ1

1 + Aeε1(k1+k2)x+ε2(τ1+τ2)y+ε3(ω1+ω2)t+δ1+δ2
, (7.10)
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where A = − 1
(k1+k2)2

and τi, i = 1, 2 can be written in terms of ki and ωi due to the dispersion

relations of each case n = 0, 1, 2.

If we use the Type 1 approach, we obtain

1) k2 = ε1k1, 2)ω2 = ε3ω1, 3) eδ2 = σeδ1 . (7.11)

When we use these constraints with the possibilities for (ε1, ε2, ε3) given in Sects. 7.4, 7.5,

and 7.6 on the dispersion relations of the cases n = 0, 1, 2, we get τ2 = ε2τ1.

For n = 0 we have (ε1, ε2, ε3) = (1, 1,−1) and one-soliton solution of the reduced equation

(5.4) is

p(x, y, t) =
ek1x+τ1y+ω1t+δ1

1− σ
4k21
, e2k1x+2τ1y+2δ1

, (7.12)

where τ1 = 1
b
(1

2
k1ω1−ak1). Assume that all the parameters; k1, ω1, δ1, a, and b so τ1 are real.

Let σ = −4k2
1e

2µ then

p(x, y, t) =
eφ

1 + e2θ+2µ
, (7.13)

where µ is a real constant and

φ = k1x+ τ1y + ω1t+ δ1, (7.14)

θ = k1x+ τ1y + δ1. (7.15)

Eq. (7.13) can further be simplified as

p(x, y, t) =
eω1t−µ

2 cosh(θ + µ)
. (7.16)

Hence for the defocusing case, sign(σ) < 0, one-soliton solution is bounded for all t ≥ 0 for

ω1 ≤ 0 and finite for all (x, y, t).

For n = 1 we have (ε1, ε2, ε3) = (1,−1, 1) and one-soliton solution of the reduced equation

(5.7) is

p(x, y, t) =
ek1x+τ1y+ω1t+δ1

1− σ
4k21
e2k1x+2ω1t+2δ1

, (7.17)

where τ1 = 1
b
(1

2
k1ω1− a

2
k2

1). Assume that all the parameters; k1, ω1, δ1, a, and b so τ1 are real.

Let σ = −4k2
1e

2µ then

p(x, y, t) =
eφ

1 + e2θ+2µ
, (7.18)

where µ is a real constant and

φ = k1x+ τ1y + ω1t+ δ1, (7.19)

θ = k1x+ ω1t+ δ1, (7.20)
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which can be simplified as

p(x, y, t) =
eτ1y−µ

2 cosh(θ + µ)
. (7.21)

Hence for sign(σ) < 0, one-soliton solution is finite for all (x, y, t) but not bounded.

For n = 2 we have (ε1, ε2, ε3) = (1, 1,−1) and one-soliton solution of the reduced equation

(5.10) is

p(x, y, t) =
ek1x+τ1y+ω1t+δ1

1− σ
4k21
e2k1x+2τ1y+2δ1

, (7.22)

where τ1 = 1
b
(1

2
k1ω1− a

4
k3

1). Hence, similar to n = 0 case, the solution (7.22) can be simplified

to the form (7.16) with only difference in τ1. And that solution is bounded for all t ≥ 0 for

ω1 ≤ 0 and finite for all (x, y, t) when sign(σ) < 0.

Note that other possibility in each of the cases for (ε1, ε2, ε3) is (−1,−1,−1). Clearly, because

of the definition of the constant A, if we use Type 1 approach we obtain trivial solution.

Hence we use Type 2 on

eθ2

1 + Aeθ1+θ2
= σ

eθ
−
1

1 + Aeθ
−
1 +θ−2

. (7.23)

From the application of the cross multiplication we get

eθ2 + Ae2δ2eθ
−
1 = keθ

−
1 + Ake2δ1eθ2 , (7.24)

where

θj = kjx+ τjy + ωjt+ δj, θ−1 = −kjx− τjy − ωjt+ δj, j = 1, 2.

Hence we obtain the conditions

1)Aσe2δ1 = 1, 2)Ae2δ2 = σ, (7.25)

yielding eδ1 = ξ1i
(k1+k2)√

σ
and eδ2 = ξ2i

√
σ(k1 +k2) for ξj = ±1, j = 1, 2. Therefore one-soliton

solutions of the equations (5.4), (5.7), and (5.10) are given by

p(x, y, t) =
iξ1e

k1x+τ1y+ω1t(k1 + k2)√
σ(1 + ξ1ξ2e(k1+k2)x+(τ1+τ2)y+(ω1+ω2)t)

, ξj = ±1, j = 1, 2, (7.26)

with corresponding dispersion relations; (6.5) for n = 0, (6.10) for n = 1, and (6.11) for

n = 2. We can further simplify the solution (7.26) as

p(x, y, t) =
eφ+δ1

2 cosh θ
, (7.27)

where

φ =
1

2
[(k1 − k2)x+ (τ1 − τ2)y + (ω1 − ω2)t], (7.28)

θ =
1

2
[(k1 + k2)x+ (τ1 + τ2)y + (ω1 + ω2)t]. (7.29)
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The solution (7.27) is finite if k1 + k2, τ1 + τ2, and ω1 + ω2 are real. In addition to that it is

bounded if k1−k2 = 0, τ1−τ2 = 0, and ω1−ω2 ≤ 0 for t ≥ 0. For n = 0 and n = 2 cases, these

conditions are satisfied if k1, τ1, ω1 are real, k1 = k2, τ1 = τ2, ω2 = −ω1, and ω1 ≤ 0 for t ≥ 0.

For n = 1 case, they are satisfied if k1, τ1, ω1, a are real, k1 = k2, τ1 = τ2, ω2 = 2ak1−ω1, and

ω1 − ak1 ≤ 0 for t ≥ 0.

The second nonlocal reduction formula is q(x, y, t) = σp̄(ε1x, ε2y, ε3t). The constraints that

one-soliton solutions of the nonlocal equations (5.5), (5.8), and (5.11) which are reduced

from AKNS(−n) for n = 0, 1, and n = 2 systems respectively can be found by

ek2x+τ2y+ω2t+δ2

1 + Ae(k1+k2)x+(τ1+τ2)y+(ω1+ω2)t+δ1+δ2
=

σeε1k̄1x+ε2τ̄1y+ε3ω̄1t+δ̄1

1 + Āeε1(k̄1+k̄2)x+ε2(τ̄1+τ̄2)y+ε3(ω̄1+ω̄2)t+δ̄1+δ̄2
, (7.30)

where A = − 1
(k1+k2)2

and τi, i = 1, 2 satisfy the dispersion relations given for each case

n = 0, 1, 2.

By applying the Type 1 approach, we obtain

1) k2 = ε1k̄1, 2)ω2 = ε3ω̄1, 3) eδ2 = σeδ̄1 . (7.31)

Using these constraints besides the conditions (5.6), (5.9), and (5.12) in the dispersion rela-

tions of the cases n = 0, 1, 2 we get τ2 = ε2τ̄1.

Thus one-soliton solutions of the reduced equations (5.5), (5.8), and (5.11) are given by

p(x, y, t) =
ek1x+τ1y+ω1t+δ1

1− σ
(k1+ε1k̄1)2

e(k1+ε1k̄1)x+(τ1+ε2τ̄1)y+(ω1+ε3ω̄1)t+δ1+δ̄1
, (7.32)

with the corresponding dispersion relations τ1 = 1
b
(1

2
k1ω1 − ak1), τ1 = 1

b
(1

2
k1ω1 − a

2
k2

1), and

τ1 = 1
b
(1

2
k1ω1− a

4
k3

1) given respectively. It is clear that there are finite and singular solutions

(7.32) depending on the parameters of the solutions.

Note that since there are 21 nonlocal reduced equations by the reduction formula q(x, y, t) =

σp̄(ε1x, ε2y, ε3t) for n = 0, 1, 2 let us only consider y-reflection that is when (ε1, ε2, ε3) =

(1,−1, 1) as an example. Let σ = −(k1 + k̄1)2eµ, µ is a real constant. Then one-soliton

solutions of the nonlocal equations:

(n = 0), bpy(x, y, t) =
1

2
ptx(x, y, t)− apx(x, y, t)− σp(x, y, t)D−1(p(x, y, t)p̄(x,−y, t))t,

(7.33)

where a is a pure imaginary, b is a real number,

(n = 1), bpy(x, y, t) =
1

2
ptx(x, y, t)−

a

2
pxx(x, y, t) + aσp2(x, y, t)p̄(x,−y, t)

− σp(x, y, t)D−1(p(x, y, t)p̄(x,−y, t))t, (7.34)

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

where a and b are real numbers,

(n = 2), bpy(x, y, t) =
1

2
ptx(x, y, t)−

a

4
pxxx(x, y, t) +

3a

2
σp(x, y, t)p̄(x,−y, t)px(x, y, t)

− σp(x, y, t)D−1(p(x, y, t)p̄(x,−y, t))t, (7.35)

where a is a pure imaginary, b is a real number, become

p(x, y, t) =
eφ

2 cosh(θ)
, (7.36)

where

φ =
1

2
[(k1 − k̄1)x+ (τ1 + τ̄1)y + (ω1 − ω̄1)t+ (δ1 − δ̄1 − µ))], (7.37)

θ =
1

2
[(k1 + k̄1)x+ (τ1 − τ̄1)y + (ω1 + ω̄1)t+ (δ1 + δ̄1 − µ))]. (7.38)

The solution (7.36) is finite if τ1 − τ̄1 ∈ R which happens when τ1 ∈ R. In addition to that

it is bounded if k1 − k̄1 = 0, τ1 + τ̄1 = 2τ1 = 0, and ω1 − ω̄1 ≤ 0 for t ≥ 0. This occurs only

when k1 ∈ R and τ1 = 0. But taking τ1 = 0 reduces the dimension of the solution from 2 + 1

to 1 + 1.

8 Conclusion

In this work we obtained a new negative AKNS hierarchy denoted by AKNS(−n) for

n = 0, 1, 2, . . . in 2 + 1 dimensions. We obtained the Hirota bilinear forms of these sys-

tems and found one- and two-soliton solutions for n = 0, 1, 2. We then found all possible

local and nonlocal reductions of these systems. Using the constraint equations among the dy-

namical variables for n = 0, 1, 2 we found 3 new local and 27 new nonlocal reduced equations

in 2 + 1 dimensions. These new nonlocal equations contain two different types of nonlocal-

ity. They contain terms with D−1 (integro-differential equations) and terms p(ε1x, ε2y, ε3t)

(mirror symmetric terms) where ε21 = ε22 = ε23 = 1. From the one-soliton solutions of the neg-

ative AKNS system of equations we obtained one-soliton solutions of the local and nonlocal

reduced equations. Among all these one-soliton solutions there are solutions which develop

singularities in a finite time and there are also solutions which are finite and bounded de-

pending on the parameters of the solutions.
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