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Abstract
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1 INTRODUCTION

The purpose of this paper is to provide a complete description of the inclusion relations among the spaces mentioned in the title
by providing proofs of the missing cases and of simpler proofs of the known cases as well as exhibiting explicit examples in all
cases that show that the inclusions are strict and the best possible.

Let 𝔹 be the unit ball in ℂ𝑁 with respect to the usual hermitian inner product ⟨𝑧,𝑤⟩ = 𝑧1𝑤1 +⋯ + 𝑧𝑁𝑤𝑁 and the associated
norm |𝑧| = √⟨𝑧, 𝑧⟩. Let 𝐻(𝔹) and 𝐻∞ denote the spaces of all and bounded holomorphic functions on 𝔹, respectively.

We let 𝜈 be the Lebesgue measure on 𝔹 normalized so that 𝜈(𝔹) = 1. For 𝑞 ∈ ℝ, we also define on 𝔹 the measures

𝑑𝜈𝑞(𝑧) ∶=
(
1 − |𝑧|2)𝑞 𝑑𝜈(𝑧).

For 0 < 𝑝 <∞, we denote the Lebesgue classes with respect to 𝜈𝑞 by 𝐿𝑝𝑞 , using also the notation 𝐿𝑝0 = 𝐿
𝑝. The Lebesgue class

of essentially bounded functions on 𝔹 with respect to any 𝜈𝑞 is the same (see [14, Proposition 2.3]); we denote it by ∞. For
𝛼 ∈ ℝ, we also define the weighted classes

∞
𝛼 ∶=

{
𝜑 measurable on 𝔹 ∶

(
1 − |𝑧|2)𝛼 𝜑(𝑧) ∈ ∞

}
so that ∞

0 = ∞, which are normed by

‖𝜑‖∞
𝛼
∶= ess sup

𝑧∈𝔹

(
1 − |𝑧|2)𝛼 |𝜑(𝑧)|.
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For 𝑞 > −1 and 0 < 𝑝 < ∞, the weighted Bergman spaces are 𝐴𝑝𝑞 = 𝐿
𝑝
𝑞 ∩𝐻(𝔹). To extend this family to all real 𝑞, we resort

to derivatives. Given 𝑞 ∈ ℝ and 0 < 𝑝 <∞, let 𝑚 be a nonnegative integer such that 𝑞 + 𝑝𝑚 > −1. Then the Bergman–Besov
space 𝐵𝑝𝑞 consists of all 𝑓 ∈ 𝐻(𝔹) for which

(
1 − |𝑧|2)𝑚 𝜕𝑚𝑓

𝜕𝑧
𝛾1
1 ⋯ 𝜕𝑧

𝛾𝑁
𝑁

∈ 𝐿𝑝𝑞

for every multi-index 𝛾 = (𝛾1,… , 𝛾𝑁 ) with 𝛾1 +⋯ + 𝛾𝑁 = 𝑚.
The spaces 𝐵2

𝑞 are reproducing kernel Hilbert spaces whose kernels occupy a large part in our study of all 𝐵𝑝𝑞 spaces. Conse-
quently, even to define the spaces of interest in this work, it is more advantageous to use certain radial differential operators that
are compatible with the kernels. So we follow [14,16] and resort to invertible radial differential operators 𝐷𝑡𝑠 of order 𝑡 ∈ ℝ for
any 𝑠 ∈ ℝ that map 𝐻(𝔹) to itself. These are described in detail in Section 2. Consider the linear transformation 𝐼𝑡𝑠 defined for
𝑓 ∈ 𝐻(𝔹) by

𝐼𝑡𝑠𝑓 (𝑧) ∶=
(
1 − |𝑧|2)𝑡 𝐷𝑡𝑠𝑓 (𝑧).

Definition 1.1. For 𝑞 ∈ ℝ and 0 < 𝑝 < ∞, we define the Bergman–Besov space 𝐵𝑝𝑞 to consist of all 𝑓 ∈ 𝐻(𝔹) for which 𝐼𝑡𝑠𝑓
belongs to 𝐿𝑝𝑞 for some 𝑠, 𝑡 satisfying

𝑞 + 𝑝𝑡 > −1. (1.1)

The quantity ‖𝑓‖𝐵𝑝𝑞 ∶= ‖𝐼𝑡𝑠𝑓‖𝐿𝑝𝑞 for any such 𝑠, 𝑡 defines a norm on 𝐵𝑝𝑞 for 𝑝 ≥ 1 and a quasinorm for 0 < 𝑝 < 1.

Definition 1.2. For 𝛼 ∈ ℝ, we define the Bloch–Lipschitz space∞
𝛼 to consist of all 𝑓 ∈ 𝐻(𝔹) for which 𝐼𝑡𝑠𝑓 belongs to ∞

𝛼

for some 𝑠, 𝑡 satisfying

𝛼 + 𝑡 > 0. (1.2)

The quantity ‖𝑓‖∞
𝛼
∶= ‖𝐼𝑡𝑠𝑓‖∞

𝛼
for any such 𝑠, 𝑡 defines a norm on ∞

𝛼 .

Remark 1.3. By now, it is well-known that Definitions 1.1 and 1.2 are independent of 𝑠, 𝑡 under (1.1) and (1.2), respectively, and
also of the particular type of the derivative. Further, the norms on a given space depending on 𝑠, 𝑡 are equivalent to each other
under (1.1) or (1.2). For these, see, for example, [3, Theorem 5.12 (i)], [14,16,29]. So given a pair 𝑠, 𝑡, 𝐼𝑡𝑠 imbeds𝐵𝑝𝑞 isometrically
into 𝐿𝑝𝑞 if and only if (1.1) holds, and 𝐼𝑡𝑠 imbeds ∞

𝛼 isometrically into ∞
𝛼 if and only if (1.2) holds.

If 𝑞 > −1, we can take 𝑡 = 0 in (1.1) and obtain the weighted Bergman spaces 𝐵𝑝𝑞 = 𝐴
𝑝
𝑞 . Further, 𝐵2

−1 is the Hardy space𝐻2,

𝐵2
−(1+𝑁) is the Dirichlet space, and𝐵2

−𝑁 is the Drury–Arveson space. If 𝛼 > 0, we can take 𝑡 = 0 in (1.2) and obtain the weighted
Bloch spaces. If 𝛼 < 0, then the corresponding spaces are the holomorphic Lipschitz spaces Λ−𝛼 = ∞

𝛼 ; see, for example, [21,
Section 6.4].

Our use of 𝛼 follows [16] and [7], which is more logical in view of the operators 𝐼𝑡𝑠 and conforms well with the notation of
𝐵
𝑝
𝑞 , so the usual Bloch space ∞

0 = ∞ corresponds to 𝛼 = 0. Most other authors use 𝛼 + 1 while [29] uses −𝛼 where we use
𝛼. There is no discussion of little Bloch spaces in this paper.

The following three theorems in increasing intricacy are our main results. Unless otherwise specified, we use the full ranges
of the parameters, 0 < 𝑝 <∞ and 𝑞, 𝛼, 𝑠, 𝑡 ∈ ℝ, and all our results cover the standard weighted Bergman spaces as special cases.

Notation 1.4. If 𝑋𝑎 is a family of spaces indexed by 𝑎 ∈ ℝ, the symbol 𝑋<𝑎 denotes any one of the spaces 𝑋𝑏 with 𝑏 < 𝑎. For
functions, ℎ<𝑎 has a similar meaning.

Theorem 1.5. Given 𝐵𝑝𝑞 , we have the inclusions

∞
<

1+𝑞
𝑝

⊂ 𝐵𝑝𝑞 ⊂ ∞
1+𝑁+𝑞

𝑝

.

Theorem 1.6. Let 𝐵𝑝𝑞 be given.

(i) If 𝑝 ≤ 𝑃 , then 𝐵𝑝𝑞 ⊂ 𝐵𝑃𝑄 if and only if

1 +𝑁 + 𝑞
𝑝

≤ 1 +𝑁 +𝑄
𝑃

. (1.3)
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p

q

−1

−(1 + N)

Bp
q

⊂
⊂

I

II
III

IV

F I G U R E 1 If (𝑃 ,𝑄) ∈ I, then 𝐵𝑝𝑞 ⊂ 𝐵
𝑃
𝑄

; if (𝑃 ,𝑄) ∈ II, then 𝐵𝑃
𝑄
⊂ 𝐵

𝑝
𝑞 ; if (𝑃 ,𝑄) ∈ III ∪ IV, then neither 𝐵𝑝𝑞 nor 𝐵𝑃

𝑄
contains the other, but

𝐵
𝑝
𝑞 ∩ 𝐵𝑃𝑄 ≠ ∅

(ii) If 𝑃 < 𝑝, then 𝐵𝑝𝑞 ⊂ 𝐵𝑃𝑄 if and only if

1 + 𝑞
𝑝

<
1 +𝑄
𝑃

. (1.4)

Theorem 1.7.

(i) 𝐵𝑝𝑞 ⊂ 𝐻∞ if and only if 𝑞 < −(1 +𝑁), or 𝑞 = −(1 +𝑁) and 0 < 𝑝 ≤ 1.
(ii) 𝐻∞ ⊂ 𝐵

𝑝
𝑞 if and only if 𝑞 > −1, or 𝑞 = −1 and 𝑝 ≥ 2.

Theorem 1.5 can be equivalently stated from the point of view of the Bloch–Lipschitz spaces: Given ∞
𝛼 , the inclusions

𝐵
𝑝

𝛼𝑝−(1+𝑁) ⊂ ∞
𝛼 ⊂ 𝐵

𝑝

>𝛼𝑝−1 hold.

Note that both parts of Theorem 1.6 state if-and-only-if conditions, and there is no third alternative. Thus Theorem 1.6 covers
all possible inclusion relations between two members of the 𝐵𝑝𝑞 family of spaces.

There is a one-to-one correspondence between the points (𝑝, 𝑞) in the right half plane of the 𝑝𝑞-plane and the Bergman–Besov
family of spaces 𝐵𝑝𝑞 . The inclusions of Theorem 1.6 are shown graphically in Figure 1. There, the space 𝐵𝑝𝑞 is included in all
the spaces in region I and includes all the spaces in region II. The space 𝐵𝑝𝑞 does not contain nor is contained in the spaces

in regions III and IV, but has nonempty intersection with them since all 𝐵𝑝𝑞 spaces contain all holomorphic polynomials. A
very rudimentary version of this figure is in [13, p. 731]. In Figure 1, we call the quadrant {𝑞 > −1} the Bergman zone and its
complementary quadrant {𝑞 ≤ −1} the proper Besov zone. We show in Corollary 7.2 that the spaces in the proper Besov zone
require some kind of a derivative in their integral norms.

The proofs of the inclusions are often known, but we simplify them, give new ones, and complete the missing cases. The real
contribution and the strength of this paper is in finding categorical examples and counterexamples of functions that lie in some
spaces but not in some others, whose proofs turn out to be considerably more difficult than those of inclusions.

It turns out that whenever a space is included in 𝐻∞ in this paper, then it is also included in the ball algebra 𝐴(𝔹) of
holomorphic functions on 𝔹 that extend continuously to 𝔹. This fact is inherent in our proofs, but we make a note of it each
time. Both these spaces are normed with ‖𝑓‖∞ = sup𝑧∈𝔹 |𝑓 (𝑧)|.

Each inclusion in these results is strict and the best possible. Strict means that the two spaces in an inclusion are not equal.
Best possible means either a space that contains a given one is the smallest possible in the family, or the inclusion result is an
if-and-only-if condition. We make sure of these by exhibiting explicit functions that lie in one space but not in the other.

Moreover, each inclusion of ours is continuous, that is, if 𝑋 ⊂ 𝑌 , then the inclusion map 𝑖 ∶ 𝑋 → 𝑌 is continuous. This can
be checked by ‖ ⋅ ‖𝑌 ≲ ‖ ⋅ ‖𝑋 . Such an inequality is inherent in the proof of every inclusion we claim.

We prove Theorem 1.5 in Section 5, Theorem 1.6 in Section 6, and Theorem 1.7 in Section 7. We prove two other elementary
inclusions in Section 4. Our approach to Theorems 1.5 and 1.6 is to prove each inclusion first for one value of 𝑞 covering
all values of 𝑝 and then apply differentiation to pass to other spaces. Our proof of Theorem 1.7 is highly nontrivial and here
we supply the missing cases. It uses techniques varying from atomic decomposition to Littlewood–Paley inequalities and to



KAPTANOĞLU AND ÜREYEN 2239

Ryll–Wojtaszczyk polynomials. We also show that in essence the norm of 𝐵𝑝𝑞 requires a derivative of order specified by (1.1)
in Section 7. In Section 3, we construct the example functions we use repeatedly; they have the general property that each lies
in one space but not in a “nearby” space. In the last Section 8, we make a comparison of our inclusions with the holomorphic
counterparts of Sobolev imbeddings. It so happens that in most cases our imbeddings are sharper than those dictated by the
Sobolev imbedding theorem.

We do not make any comparisons with the Hardy spaces, because along with the Hardy Sobolev spaces and BMOA, those
should be the topic of a different work. In this respect,𝐻∞ is not a Hardy space, because the correct 𝑝 = ∞ version of the Hardy
spaces is BMOA.

2 PRELIMINARIES

In multi-index notation, 𝛾 = (𝛾1,… , 𝛾𝑁 ) ∈ ℕ𝑁 is an𝑁-tuple of nonnegative integers with |𝛾| = 𝛾1 +⋯ + 𝛾𝑁 , 𝛾! = 𝛾1!⋯ 𝛾𝑁 !,
00 = 1, and 𝑧𝛾 = 𝑧𝛾11 ⋯ 𝑧

𝛾𝑁
𝑁

. The number of distinct multi-indices 𝛾 with |𝛾| = 𝑚, that is, the dimension of the space of holo-

morphic homogeneous polynomials of degree 𝑚 in 𝑁 variables is 𝛿𝑚 =
(𝑁−1+𝑚
𝑁−1

)
.

The standard basis vectors ofℂ𝑁 are 𝑒𝑗 = (0,… , 0, 1, 0… , 0) with 1 in the 𝑗th position, 𝑗 = 1,… , 𝑁 . An overbar ( ) indicates
complex conjugate for functions and closure for sets. A quasinorm is given by the inequality ‖𝑓 + 𝑔‖ ≤ 𝐶(‖𝑓‖ + ‖𝑔‖) for some
constant 𝐶 > 1 in place of the triangle inequality. We use the term norm even when we mean quasinorm. The inner product of
a space of functions 𝑋 is denoted [ ⋅ , ⋅ ]𝑋 . The 𝑝th power summable sequence spaces are denoted 𝓁𝑝.

Let 𝕊 be the unit sphere in ℂ𝑁 . When 𝑁 = 1, 𝔹 is the unit disc 𝔻 and 𝕊 is the unit circle 𝕋 . We let 𝜎 be the Lebesgue
measure on 𝕊 normalized so that 𝜎(𝕊) = 1. For 0 < 𝑝 ≤ ∞, we denote the Lebesgue classes with respect to 𝜎 by 𝐿𝑝(𝜎). The
polar coordinates formula that relates 𝜎 and 𝜈 is the one in [21, § 1.4.3].

Let's also recall the definition of the Hardy spaces on 𝔹. For 0 < 𝑝 < ∞, we say an 𝑓 ∈ 𝐻(𝔹) belongs to 𝐻𝑝 whenever

‖𝑓‖𝑝
𝐻𝑝 = sup

0<𝑟<1∫𝕊 |𝑓 (𝑟𝜁 )|𝑝 𝑑𝜎(𝜁 ) < ∞.

Since 𝜎 is finite, clearly 𝐻∞ ⊂ 𝐻𝑝.
The Pochhammer symbol (𝑎)𝑏 is given by

(𝑎)𝑏 ∶=
Γ(𝑎 + 𝑏)
Γ(𝑎)

when 𝑎 and 𝑎 + 𝑏 are off the pole set −ℕ of the gamma function Γ. In particular, (𝑎)0 = 1 and for 𝑘 a positive integer, we have
(𝑎)𝑘 = 𝑎(𝑎 + 1)⋯ (𝑎 + 𝑘 − 1). The Stirling formula yields

Γ(𝑐 + 𝑎)
Γ(𝑐 + 𝑏)

∼ 𝑐𝑎−𝑏,
(𝑎)𝑐
(𝑏)𝑐

∼ 𝑐𝑎−𝑏, and
(𝑐)𝑎
(𝑐)𝑏

∼ 𝑐𝑎−𝑏 (Re 𝑐 → ∞), (2.1)

where 𝑥 ∼ 𝑦 means both 𝑥 = (𝑦) and 𝑦 = (𝑥) for all 𝑥, 𝑦 in question. If only 𝑥 = (𝑦), we write 𝑥 ≲ 𝑦.
An 𝑓 ∈ 𝐻(𝔹) can be written in terms of its homogeneous expansion and its Taylor series as

𝑓 (𝑧) =
∞∑
𝑘=0

𝑓𝑘(𝑧) =
∞∑

|𝛾|=0 𝑓𝛾𝑧
𝛾

in which 𝑓𝑘 is a holomorphic homogeneous polynomial in 𝑧1,… , 𝑧𝑁 of degree 𝑘.

Definition 2.1. For 𝑞 ∈ ℝ and 𝑧,𝑤 ∈ 𝔹, the Bergman–Besov kernels are

𝐾𝑞(𝑧,𝑤) ∶=

⎧⎪⎪⎨⎪⎪⎩
1

(1 − ⟨𝑧,𝑤⟩)1+𝑁+𝑞 =
∞∑
𝑘=0

(1 +𝑁 + 𝑞)𝑘
𝑘!

⟨𝑧,𝑤⟩𝑘, 𝑞 > −(1 +𝑁),

2𝐹1(1, 1; 1 − (𝑁 + 𝑞); ⟨𝑧,𝑤⟩) = ∞∑
𝑘=0

𝑘! ⟨𝑧,𝑤⟩𝑘
(1 − (𝑁 + 𝑞))𝑘

, 𝑞 ≤ −(1 +𝑁),

where 2𝐹1 ∈ 𝐻(𝔻) is the usual hypergeometric function.
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These kernels for 𝑞 < −(1 +𝑁) appear in the literature first in [3, p. 13]. Let the coefficient of ⟨𝑧,𝑤⟩𝑘 in the series expansion
of 𝐾𝑞(𝑧,𝑤) be 𝑐𝑘(𝑞). Note that 𝑐0(𝑞) = 1, 𝑐𝑘(𝑞) > 0 for any 𝑘, and by (2.1),

𝑐𝑘(𝑞) ∼ 𝑘𝑁+𝑞 (𝑘→ ∞),

for all 𝑞. The kernel 𝐾𝑞 is the reproducing kernel of the Hilbert space 𝐵2
𝑞 . These facts, coupled with the binomial expansion of⟨𝑧,𝑤⟩𝑘 give us another norm

‖𝑧𝛾‖2
𝐵2
𝑞

= 1
𝑐|𝛾|(𝑞)

𝛾!|𝛾|! ∼ 1|𝛾|𝑁+𝑞
𝛾!|𝛾|!

for𝐵2
𝑞 that is equivalent to the ones given in Definition 1.1. It also follows either from here by polarization or by [21, Proposition

1.4.8] that [𝑧𝛾1 , 𝑧𝛾2 ]𝐵2
𝑞
= 0 if 𝛾1 ≠ 𝛾2. Thus 𝑓 ∈ 𝐻(𝔹) belongs to 𝐵2

𝑞 if and only if

∑
𝛾

|𝑓𝛾 |2|𝛾|𝑁+𝑞
𝛾!|𝛾|! < ∞. (2.2)

Definition 2.2. For any 𝑠, 𝑡 ∈ ℝ, we define the radial differential operator 𝐷𝑡𝑠 on 𝐻(𝔹) by

𝐷𝑡𝑠𝑓 ∶=
∞∑
𝑘=0

𝑑𝑘(𝑠, 𝑡)𝑓𝑘 ∶=
∞∑
𝑘=0

𝑐𝑘(𝑠 + 𝑡)
𝑐𝑘(𝑠)

𝑓𝑘.

Note that 𝑑0(𝑠, 𝑡) = 1, 𝑑𝑘(𝑠, 𝑡) > 0 for any 𝑘, and

𝑑𝑘(𝑠, 𝑡) ∼ 𝑘𝑡 (𝑘→ ∞), (2.3)

for any 𝑠, 𝑡 by (2.1). So 𝐷𝑡𝑠 is a continuous operator on 𝐻(𝔹) and is of order 𝑡; for a proof of a similar continuity result, see [9,
Theorem 3.2]. In particular, 𝐷𝑡𝑠𝑧

𝛾 = 𝑑|𝛾|(𝑠, 𝑡)𝑧𝛾 for any multi-index 𝛾 , and hence 𝐷𝑡𝑠(1) = 1. More importantly,

𝐷0
𝑠 = 𝐼, 𝐷𝑢𝑠+𝑡𝐷

𝑡
𝑠 = 𝐷

𝑡+𝑢
𝑠 , and

(
𝐷𝑡𝑠

)−1 = 𝐷−𝑡
𝑠+𝑡 (2.4)

for any 𝑠, 𝑡, 𝑢. Thus any 𝐷𝑡𝑠 maps 𝐻(𝔹) onto itself.
Explicit forms of the norms of 𝐵𝑝𝑞 and ∞

𝛼 given in Definitions 1.1 and 1.2 are

‖𝑓‖𝐵𝑝𝑞 = ∫𝔹 |𝐷𝑡𝑠𝑓 (𝑧)|𝑝 (1 − |𝑧|2)𝑞+𝑝𝑡 𝑑𝜈(𝑧) (𝑞 + 𝑝𝑡 > −1), (2.5)

‖𝑓‖∞
𝛼
= sup
𝑧∈𝔹

|𝐷𝑡𝑠𝑓 (𝑧)| (1 − |𝑧|2)𝛼+𝑡 (𝛼 + 𝑡 > 0). (2.6)

One of the best things about the 𝐷𝑡𝑠 is that they allow us to pass easily from one kernel to the other and from one space to the
other in the same family. First, it is immediate that

𝐷𝑡𝑞𝐾𝑞(𝑧,𝑤) = 𝐾𝑞+𝑡(𝑧,𝑤) (2.7)

for any 𝑞, 𝑡, where differentiation is performed on the holomorphic variable 𝑧. But the more versatile result is the following.

Theorem 2.3. Let 𝑞, 𝑝, 𝛼, 𝑠, 𝑡 be arbitrary. Then the maps 𝐷𝑡𝑠 ∶ 𝐵
𝑝
𝑞 → 𝐵

𝑝
𝑞+𝑝𝑡 and 𝐷𝑡𝑠 ∶ ∞

𝛼 → ∞
𝛼+𝑡 are isomorphisms, and

isometries when the parameters of the norms of the spaces are chosen appropriately.

Proof. See [17, Proposition 3.1] and [15, Corollary 8.5]. The proofs require no more than Remark 1.3 and (2.4). See also [20,
Corollary 3.9] for a different proof.

Note that this theorem works both ways since 𝑡 < 0 is a possibility. □
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Remark 2.4. Invertibility of 𝐷𝑡𝑠 implies that only the zero function has zero norm in 𝐵𝑝𝑞 or ∞
𝛼 . The other types of derivatives

mentioned in Remark 1.3 that can be used in place of the 𝐷𝑡𝑠 are powers of the holomorphic gradient and the usual radial
derivative given by

∇𝑓 (𝑧) =
(
𝜕𝑓

𝜕𝑧1
,… ,

𝜕𝑓

𝜕𝑧𝑁

)
and 𝑅𝑓 (𝑧) = ⟨∇𝑓 (𝑧), 𝑧⟩.

Integrals of these derivatives define seminorms for the spaces 𝐵𝑝𝑞 or ∞
𝛼 .

The holomorphic automorphism of 𝔹 that exchanges 0 and 𝑧 is the map

𝜑𝑧(𝑤) =
𝑧 − 𝑃𝑧(𝑤) −

√
1 − |𝑧|2(𝐼 − 𝑃𝑧)(𝑤)

1 − ⟨𝑤, 𝑧⟩ (𝑤 ∈ 𝔹), (2.8)

where 𝑃𝑧(𝑤) = ⟨𝑤, 𝑧⟩𝑧∕|𝑧|2 is the projection on the complex line passing through 0 and 𝑧. It reduces to the well-known function
𝜑𝑧(𝑤) = (𝑧 −𝑤)∕(1 − 𝑧𝑤) for 𝑤 ∈ 𝔻 when 𝑁 = 1. The Bergman metric on 𝔹 is

𝑑(𝑧,𝑤) = 1
2
log

1 + |𝜑𝑧(𝑤)|
1 − |𝜑𝑧(𝑤)| = tanh−1 |𝜑𝑧(𝑤)|.

This metric is invariant under compositions with the automorphisms of 𝔹. We denote the balls centered at 𝑎 with radius 𝑟 in the
Bergman metric by 𝑏(𝑎, 𝑟). A sequence {𝑎𝑘} in 𝔹 is called separated if there is a 𝜌 > 0 such that 𝑑(𝑎𝑘, 𝑎𝑚) ≥ 𝜌 for all 𝑘 ≠ 𝑚,
and we call 𝜌 the separation constant.

The following growth rate estimate turns out to be surprisingly effective for obtaining several inclusion relations.

Lemma 2.5. If 𝑓 ∈ 𝐵𝑝𝑞 , then for any 𝑠, 𝑡 satisfying 𝑞 + 𝑝𝑡 > −(1 +𝑁), we have

|𝐷𝑡𝑠𝑓 (𝑧)| ≲ ‖𝑓‖𝐵𝑝𝑞
(1 − |𝑧|2)(1+𝑁+𝑞+𝑝𝑡)∕𝑝 (𝑧 ∈ 𝔹).

Proof. When 𝑓 belongs to the Bergman space 𝐴𝑝𝑞 , 𝑞 > −1, and 𝑡 = 0, the result is derived from the subharmonicity of |𝑓 |𝑝
using Möbius transformations and is in [3, Corollary 3.5 (ii)], although rediscovered later several times. If 𝑓 belongs to the
general Besov space 𝐵𝑝𝑞 , by Definition 1.1 and Remark 1.3, 𝐷𝑡𝑠𝑓 ∈ 𝐴𝑝𝑞+𝑝𝑡 for any 𝑠, 𝑡 satisfying (1.1). By the same reason,‖𝑓‖𝐵𝑝𝑞 = ‖𝐼𝑡𝑠𝑓‖𝐿𝑝𝑞 = ‖𝐷𝑡𝑠𝑓‖𝐴𝑝𝑞+𝑝𝑡 . The result for 𝑡 satisfying (1.1) follows by applying the Bergman space case to 𝐷𝑡𝑠𝑓 .

What we have so far can be written also in the form ‖𝑓‖𝛼(1+𝑁+𝑞)∕𝑝
≲ ‖𝑓‖𝐵𝑝𝑞 . But by Remark 1.3, the parameter 𝑡 used in the

norm ‖𝑓‖𝛼(1+𝑁+𝑞)∕𝑝
< ∞ can be as low as to satify 𝑞 + 𝑝𝑡 > −(1 +𝑁). □

Corollary 2.6. If 𝑓 ∈ 𝐵𝑝−(1+𝑁), then ‖𝑓‖∞ ≲ ‖𝑓‖𝐵𝑝−(1+𝑁)
.

This corollary appears also in [10, Proposition 3.3] as well as in [3, Corollary 5.5] more generally.

3 BASIC EXAMPLES

We now develop and collect interesting functions that lie in certain Besov or Bloch spaces but not in certain others. We use them
frequently for the strict and the best possible inclusion results.

Example 3.1. The functions in the Hilbert spaces 𝐵2
𝑞 can be characterized by their Taylor series, so it is easy to write a function

ℎ ∈ 𝐵2
𝑄
⧵ 𝐵2

𝑞 if 𝑞 < 𝑄. Let

ℎ(𝑧) ∶=
∑
𝑘

𝑘(2(𝑁−1)+𝑞+𝑄)∕4𝑧𝑘1 (𝑧 ∈ 𝔹).

Then by (2.2),

‖ℎ‖2
𝐵2
𝑞

∼
∑
𝑘

1
𝑘1−(𝑄−𝑞)∕2

= ∞ while ‖ℎ‖2
𝐵2
𝑄

∼
∑
𝑘

1
𝑘1+(𝑄−𝑞)∕2

< ∞.
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Example 3.2. An example that is essential for the Bloch–Lipschitz spaces is the family of functions

𝑓𝛼(𝑧) ∶=
∞∑
𝑘=0

𝑐𝑘(𝛼 − (1 +𝑁))𝑧𝑘1 (𝑧 ∈ 𝔹)

indexed by 𝛼 ∈ ℝ. For any branch of the logarithm, by Definition 2.1,

𝑓𝛼(𝑧) =
1

(1 − 𝑧1)𝛼
(𝛼 > 0) and 𝑓0(𝑧) =

1
𝑧1

log 1
1 − 𝑧1

(𝑧 ∈ 𝔹). (3.1)

Note that, by (2.7),

𝐷𝑡
𝛼−(1+𝑁)𝑓𝛼 = 𝑓𝛼+𝑡. (3.2)

Now Definition 1.2 and Remark 1.3 show immediately that 𝑓1 ∈ ∞
1 . The same reasoning shows that also 𝑓1 ∉ ∞

𝛽
if 𝛽 < 1.

Applying (3.2) and Theorem 2.3 yields

𝑓𝛼 ∈ ∞
𝛼 ⧵ ∞

<𝛼 (𝛼 ∈ ℝ). (3.3)

Further, [28, (16) and (17)] say that

𝑓
<

1+𝑁
𝑝

∈ 𝐴𝑝0 but 𝑓 1+𝑁
𝑝

∉ 𝐴𝑝0. (3.4)

Finally, applying (3.2) and Theorem 2.3 yields as before

𝑓
<

1+𝑁+𝑞
𝑝

∈ 𝐵𝑝𝑞 but 𝑓 1+𝑁+𝑞
𝑝

∉ 𝐵𝑝𝑞 . (3.5)

We give a proof of (3.4) simpler than the one in [28]. For 𝛼 > 0, by (3.1), for 𝑤 = 𝑟𝜁 with 𝜁 ∈ 𝕊 and 𝑟 ≥ 0, we have

|||𝑓𝛼(𝑤)|||𝑝 = 1|1 −𝑤1|𝛼𝑝 = 1|1 − ⟨𝑟𝜁, 𝑒1⟩|𝛼𝑝 .
Then by polar coordinates,

∫𝔹 |𝑓 |𝑝 𝑑𝜈 ∼ ∫
1

0 ∫𝕊
𝑑𝜎(𝜁 )|1 − ⟨𝑟𝑒1, 𝜁⟩|𝛼𝑝 𝑟2𝑁−1 𝑑𝑟.

If 𝛼 = (1 +𝑁)∕𝑝, then 𝛼𝑝 = 1 +𝑁 , and [21, Proposition 1.4.10] yields

∫𝔹 |𝑓 |𝑝 𝑑𝜈 ∼ ∫
1

0

𝑟2𝑁−1

1 − 𝑟2
𝑑𝑟,

which diverges. If 𝛼 < (1 +𝑁)∕𝑝, then 𝛼𝑝 < 1 +𝑁 , say 𝛼𝑝 −𝑁 = 𝑐 < 1, and [21, Proposition 1.4.10] again yields

∫𝔹 |𝑓 |𝑝 𝑑𝜈 ≲ ∫
1

0

𝑟2𝑁−1

(1 − 𝑟2)𝑐
𝑑𝑟,

which converges, where we use ≲ to incorporate the cases 𝑐 ≤ 0 too.
Since 𝑐𝑘(𝛼 − (1 +𝑁)) ∼ 𝑘𝛼−1, it is clear that 𝑓𝛼 ∈ 𝐻∞ if and only if 𝛼 < 0.

We say a sequence {𝑛𝑘} in ℕ has Hadamard gaps if there is a 𝜏 > 1 such that 𝑛𝑘+1 ≥ 𝜏𝑛𝑘. For such a sequence, if the
homogeneous expansion of an 𝑓 ∈ 𝐻(𝔹) has the form 𝑓 =

∑
𝑘 𝑓𝑛𝑘 , we write 𝑓 ∈ 𝐻𝐺.

Theorem 3.3. Let 𝐻 =
∑
𝑘 𝐻𝑛𝑘

∈ 𝐻𝐺.

(i) 𝐻 ∈ 𝐵𝑝𝑞 if and only if
∑
𝑘 𝑛

−(1+𝑞)
𝑘

‖‖‖𝐻𝑛𝑘

‖‖‖𝑝𝐿𝑝(𝜎) <∞.

(ii) 𝐻 ∈ ∞
𝛼 if and only if sup𝑘 𝑛−𝛼𝑘

‖‖‖𝐻𝑛𝑘

‖‖‖𝐿∞(𝜎)
< ∞.
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Proof. See [15, Lemmas 9.4 and 9.2]. See also [29, Propositions 61 and 63]. For unweighted Bergman spaces 𝐴𝑝0, see also [28,
Proposition 3]. For the spaces ∞

𝛼 with 𝛼 > −1, see also [28, Proposition 2]. □

Several of our examples are constructed using the Ryll–Wojtaszczyk polynomials 𝑊𝑚, 𝑚 = 0, 1, 2,…. Each 𝑊𝑚 is a homoge-
neous polynomial of degree 𝑚 with the properties

‖𝑊𝑚‖𝐿∞(𝜎) = 1 and ‖𝑊𝑚‖𝐿𝑝(𝜎) ≳ 1 (0 < 𝑝 < ∞). (3.6)

These polynomials are invented with the first property and the second with 𝑝 = 2 in [22, Theorem 1.2]. The second property for
general 𝑝 is due to [24, Corollary 1]. Clearly also

‖𝑊𝑚‖𝐿𝑝(𝜎) ≤ ‖𝑊𝑚‖𝐿∞(𝜎) = 1. (3.7)

When 𝑁 = 1, we can simply take 𝑊𝑚 = 𝑧𝑚. However, taking something like 𝑧𝑚1 for simplicity when 𝑁 > 1 would not be as
useful, because it does not satisfy the second property in (3.6).

Example 3.4. The example that is indispensable for the Bergman–Besov spaces is the family of functions

𝐺𝑞𝑝(𝑧) ∶=
∑
𝑘

2𝑘(1+𝑞)∕𝑝 𝑊2𝑘 (𝑧) (𝑧 ∈ 𝔹)

indexed by 𝑞 and 𝑝. By Theorem 3.3 and (3.6), it is clear that 𝐺𝑞𝑝 ∉ 𝐵
𝑝
𝑞 . But the real question is to determine those spaces 𝐵𝑃

𝑄

that 𝐺𝑞𝑝 lies in. The answer is that 𝐺𝑞𝑝 lies in 𝐵𝑃
𝑄

if and only if (1 + 𝑞)∕𝑝 < (1 +𝑄)∕𝑃 , that is, 𝐺𝑞𝑝 lies in those 𝐵𝑃
𝑄

whose
(𝑃 ,𝑄) lies precisely in regions I and IV of Figure 1.

If (1 + 𝑞)∕𝑝 < (1 +𝑄)∕𝑃 , then by Theorem 3.3 and (3.7),∑
𝑘

2−𝑘(1+𝑄)
(
2𝑘(1+𝑞)∕𝑝

)𝑃 ‖𝑊2𝑘‖𝑃𝐿𝑃 (𝜎) ≤ ∑
𝑘

1
2𝑘𝑃 ((1+𝑄)∕𝑃−(1+𝑞)∕𝑝)

<∞,

and 𝐺𝑞𝑝 ∈ 𝐵𝑃𝑄. On the other hand, if (1 + 𝑞)∕𝑝 ≥ (1 +𝑄)∕𝑃 , then by Theorem 3.3 and (3.6),∑
𝑘

2−𝑘(1+𝑄)
(
2𝑘(1+𝑞)∕𝑝

)𝑃 ‖𝑊2𝑘‖𝑃𝐿𝑃 (𝜎) ≳∑
𝑘

1
2𝑘𝑃 ((1+𝑄)∕𝑃−(1+𝑞)∕𝑝)

= ∞,

and 𝐺𝑞𝑝 ∉ 𝐵𝑃𝑄.
By Theorem 3.3 and (3.6), it is clear that 𝐺𝑞𝑝 ∈ ∞

𝛼 if and only if (1 + 𝑞)∕𝑝 ≤ 𝛼. Further, 𝐺𝑞𝑝 ∈ 𝐻∞ by (3.6) if 𝑞 < −1. On
the other hand, if 𝐺−1,𝑝 ∈ 𝐻∞ were true, then also 𝐺−1,𝑝 ∈ 𝐻2. Then we would have ‖𝐺−1,𝑝‖𝐻2 =

∑
𝑘 ‖𝑊2𝑘‖𝐿2(𝜎) < ∞ by

[21, Proposition 1.4.8]. But this is impossible since
∑
𝑘 ‖𝑊2𝑘‖𝐿2(𝜎) = ∞ by (3.6).

The use of Ryll–Wojtaszczyk polynomials to show exclusions between pairs of function spaces is advocated in [28] and [19].

Example 3.5. We now construct functions in every Besov space using the atomic decomposition idea. The atomic decomposition
of Besov spaces is developed in several places starting with [6, Theorem 2], but most proofs use hypotheses that are too much
for our purposes, so we construct our functions from scratch using minimal assumptions. We start with a sequence {𝑎𝑘} in 𝔹
that is merely separated with separation constant 2𝜌. Given 𝑞 and 𝑝, we also take a sequence 𝜆 = {𝜆𝑘} in 𝓁𝑝. For 0 < 𝑝 ≤ 1, we
take an 𝑠 satisfying the inequality 1 +𝑁 + 𝑞 < 𝑝(1 +𝑁 + 𝑠); for 1 < 𝑝 <∞, we take an 𝑠 satisfying 1 + 𝑞 < 𝑝(1 + 𝑠). We set

𝐹𝑞𝑝(𝑧) ∶=
∑
𝑘

𝜆𝑘
(
1 − |𝑎𝑘|2)1+𝑁+𝑠−(1+𝑁+𝑞)∕𝑝

𝐾𝑠(𝑧, 𝑎𝑘) (𝑧 ∈ 𝔹).

We start by showing that the series defining 𝐹𝑞𝑝 converges uniformly on any compact set 𝑀 ⊂ 𝔹 and hence 𝐹𝑞𝑝 ∈ 𝐻(𝔹). Let
𝑧 ∈𝑀 ; then |𝐾𝑠(𝑧, 𝑎𝑘)| ∼ 1 for any 𝑘, and

|𝐹𝑞𝑝(𝑧)| ≲∑
𝑘

|𝜆𝑘|(1 − |𝑎𝑘|2)1+𝑁+𝑠−(1+𝑁+𝑞)∕𝑝
.

First for 0 < 𝑝 ≤ 1, by the first choice of 𝑠, the power on 1 − |𝑎𝑘|2 is positive and hence

|𝐹𝑞𝑝(𝑧)| ≲∑
𝑘

|𝜆𝑘| ≤ ∑
𝑘

|𝜆𝑘|𝑝 < ∞ (𝑧 ∈𝑀).
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Second for 1 < 𝑝 < ∞, by the Hölder inequality and that 𝜆 ∈ 𝓁𝑝, we have

|𝐹𝑞𝑝(𝑧)| ≲ (∑
𝑘

(
1 − |𝑎𝑘|2)(𝑝(1+𝑁+𝑠)−(1+𝑁+𝑞))∕(𝑝−1)

)(𝑝−1)∕𝑝

(𝑧 ∈𝑀).

Call the power on 1 − |𝑎𝑘|2 by 𝑝. By the second choice of 𝑠, we see that 𝑝 > 𝑁 . Then since the balls 𝑏(𝑎𝑘, 𝜌) are disjoint, using
[15, Lemmas 2.1 and 2.2], we obtain

|𝐹𝑞𝑝(𝑧)|𝑝∕(𝑝−1) ≲∑
𝑘

(
1 − |𝑎𝑘|2)𝑝 ∼ ∑

𝑘
∫𝑏(𝑎𝑘,𝜌)

(
1 − |𝑤|2)𝑝−(1+𝑁)

𝑑𝜈(𝑤)

= ∫⋃
𝑘 𝑏(𝑎𝑘,𝜌)

(
1 − |𝑤|2)𝑝−(1+𝑁)

𝑑𝜈(𝑤) ≤ ∫𝔹
(
1 − |𝑤|2)𝑝−(1+𝑁)

𝑑𝜈(𝑤)

for all 𝑧 ∈𝑀 . But the last integral is finite.
To show that 𝐹𝑞𝑝 ∈ 𝐵

𝑝
𝑞 , we define a linear map 𝑇 by 𝑇𝜆 ∶= 𝐹𝑞𝑝 for 𝜆 ∈ 𝓁𝑝. Let 𝑡 satisfy (1.1); then 𝑠 + 𝑡 > −1 for any value

of 𝑝. Then using (2.7),

𝐷𝑡𝑠𝑇 𝜆(𝑧) =
∑
𝑘

𝜆𝑘

(
1 − |𝑎𝑘|2)1+𝑁+𝑠−(1+𝑁+𝑞)∕𝑝

(1 − ⟨𝑧, 𝑎𝑘⟩)1+𝑁+𝑠+𝑡 (𝑧 ∈ 𝔹).

First for 0 < 𝑝 ≤ 1,

|𝐼𝑡𝑠𝑇 𝜆(𝑧)|𝑝 ≤ (
1 − |𝑧|2)𝑝𝑡∑

𝑘

|𝜆𝑘|𝑝 (1 − |𝑎𝑘|2)𝑝(1+𝑁+𝑠)−(1+𝑁+𝑞)

|1 − ⟨𝑧, 𝑎𝑘⟩|𝑝(1+𝑁+𝑠+𝑡) .

Then by [21, Proposition 1.4.10],

‖𝑇𝜆‖𝑝
𝐵
𝑝
𝑞

≤ ∑
𝑘

|𝜆𝑘|𝑝 (1 − |𝑎𝑘|2)𝑝(1+𝑁+𝑠)−(1+𝑁+𝑞)
∫𝔹

(
1 − |𝑧|2)𝑞+𝑝𝑡|1 − ⟨𝑧, 𝑎𝑘⟩|𝑝(1+𝑁+𝑠+𝑡) 𝑑𝜈(𝑧)

∼
∑
𝑘

|𝜆𝑘|𝑝 = ‖𝜆‖𝑝𝓁𝑝 .
Second for 1 < 𝑝 < ∞, by [15, Lemma 2.1],

|𝐷𝑡𝑠𝑇 𝜆(𝑧)| ≲∑
𝑘

|𝜆𝑘| (1 − |𝑎𝑘|2)1+𝑁−(1+𝑁+𝑞)∕𝑝

𝜈(𝑏(𝑎𝑘, 𝜌)) ∫𝑏(𝑎𝑘,𝜌)
(
1 − |𝑤|2)𝑠|1 − ⟨𝑧,𝑤⟩|1+𝑁+𝑠+𝑡 𝑑𝜈(𝑤)

and |𝐼𝑡𝑠𝑇 𝜆(𝑧)| ≤ 𝑆𝜙(𝑧), where

𝜙(𝑤) =
∑
𝑘

|𝜆𝑘| (1 − |𝑎𝑘|2)1+𝑁−(1+𝑁+𝑞)∕𝑝

𝜈(𝑏(𝑎𝑘, 𝜌))
𝜒𝜈(𝑏(𝑎𝑘,𝜌))(𝑤),

𝑆 is as in [30, Theorem 2.10], and 𝜒 denotes the characteristic function. Now we use that {𝑎𝑘} is separated and [15, Lemma
2.2] to write

‖𝜙‖𝑝
𝐿
𝑝
𝑞

=
∑
𝑘

|𝜆𝑘|𝑝 (1 − |𝑎𝑘|2)𝑝(1+𝑁)−(1+𝑁+𝑞)

𝜈(𝑏(𝑎𝑘, 𝜌))𝑝
𝜈𝑞(𝑏(𝑎𝑘, 𝜌))

∼
∑
𝑘

|𝜆𝑘|𝑝 (1 − |𝑎𝑘|2)𝑝(1+𝑁)−(1+𝑁+𝑞)(
1 − |𝑎𝑘|2)𝑝(1+𝑁) (1 − |𝑎𝑘|2)1+𝑁+𝑞

=
∑
𝑘

|𝜆𝑘|𝑝 = ‖𝜆‖𝑝𝓁𝑝 .
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Applying [30, Theorem 2.10] implies that 𝑆 ∶ 𝐿𝑝𝑞 → 𝐿
𝑝
𝑞 is bounded by the conditions imposed above on 𝑠, 𝑡. It follows that‖𝑇𝜆‖𝐵𝑝𝑞 ≤ ‖𝑆𝜙‖𝐿𝑝𝑞 ≲ ‖𝜙‖𝐿𝑝𝑞 ≲ ‖𝜆‖𝓁𝑝 .

Thus 𝑇 ∶ 𝓁𝑝 → 𝐵
𝑝
𝑞 is bounded and 𝐹𝑞𝑝 = 𝑇𝜆 ∈ 𝐵𝑝𝑞 for any value of 𝑝. Note that we need the separation property of {𝑎𝑘} only

for 𝑝 > 1.

4 SOME INITIAL INCLUSIONS

Here we take care of a few better-known and straightforward inclusions that are part of the full picture although not listed among
our main results.

Theorem 4.1.

(i) If 𝑞 < 𝑄, then 𝐵𝑝𝑞 ⊂ 𝐵
𝑝

𝑄
.

(ii) If 𝛼 < 𝛽, then ∞
𝛼 ⊂ ∞

𝛽
.

Proof. For both (i) and (ii), the inclusion follows directly from Definitions 1.1 and 1.2 and Remark 1.3.
The inclusion in (ii) is strict because of (3.3). This part appears earlier in [28, (12) and (13)] with 𝑓𝛼 for 𝛼 > 0 and in [16,

Example 2.2].
The inclusion in (i) is strict too, because 𝐺𝑞𝑝 ∈ 𝐵

𝑝

𝑄
⧵ 𝐵𝑝𝑞 by Example 3.4, since (𝑝,𝑄) lies in region I with respect to 𝐵𝑝𝑞 . A

similar example when 𝑁 = 1 appears earlier in [17, Example 4.5]. □

Theorem 4.2. ∞
<0 ⊂ 𝐻

∞ ⊂ ∞.

Proof. The left hand inclusion on 𝔹 is in [21, Theorem 6.4.10]. There is a different proof in [16, Theorem 5.4] using Bergman
projections. Both proofs show also ∞

<0 ⊂ 𝐴(𝔹).
The right hand inclusion for𝑁 = 1 is commonly proved using the Schwarz–Pick lemma, but the proof for𝑁 > 1 is nowhere

to be found, so we provide one. Let 𝑓 ∈ 𝐻∞, and without loss of generality, assume 𝑓 ∶ 𝔹 → 𝔻 so that ‖𝑓‖∞ ≤ 1. Let also
𝑤 = 𝑓 (𝑧), and set 𝑔 = 𝜑𝑤◦𝑓◦𝜑𝑧, where 𝜑𝑤 on 𝔻 and 𝜑𝑧 on 𝔹 are as in (2.8). Then 𝑔 ∈ 𝐻(𝔹), 𝑔(0) = 0, and |𝑔′(0)𝜁 | ≤ 1 for
all 𝜁 ∈ 𝔹, where 𝑔′(0) is called the hyperbolic derivative of 𝑓 at 𝑧; see [12, p. 651]. Applying the chain rule yields that 𝑔′(0) =(
1 − |𝑤|2)−1∇𝑓 (𝑧)𝜑′

𝑧(0), where𝜑′
𝑧(0) = −

(
1 − |𝑧|2)𝑃𝑧 +√

1 − |𝑧|2(𝐼 − 𝑃𝑧) by [21, Theorem 2.2.2 (ii)]. Since |𝑤| ≤ 1, using
the special value 𝜁 = 𝑧, we obtain that |∇𝑓 (𝑧)|(1 − |𝑧|2)|𝑧| ≤ 1 for all 𝑧 ∈ 𝔹. This proves that 𝑓 ∈ ∞.

By Example 3.2, the function 𝑓0 ∈ ∞ ⧵𝐻∞ shows that the right hand inclusion is strict. If 𝛼 < 0, choose 𝛽 such that
𝛼 < 𝛽 < 0. Then 𝑓𝛽 ∈ 𝐻∞ ⧵ ∞

𝛼 by (3.3), and the left hand inclusion is also strict. □

5 A BERGMAN–BESOV AND A BLOCH–LIPSCHITZ SPACE

In this section, we prove Theorem 1.5. This theorem already appears in [29, Theorem 66] with a proof that follows the same long
path as the proof of the case 𝑞 = 0 of unweighted Bergman spaces in [28, Theorem]. However, once the result is established for
this case, we can use the idea in Example 3.2 to differentiate and obtain the full result in all Besov spaces. We follow a different
path though. We prove the right hand inclusion for a different value of 𝑞, because it has a much more direct proof. For the left
hand inclusion, we simplify the proof given in [28].

The right hand inclusion for general 𝑞 appears in [3, Corollary 5.5]. It is probably known for some time that the Lipschitz
spaces and the usual Bloch space ∞ lie in all Bergman spaces, which are special cases of the left hand inclusion and are direct
consequences of Remark 1.3.

Proof of Theorem 1.5. Corollary 2.6 supplies us with a sufficiently general instance of the right hand inclusion, which is

𝐵
𝑝

−(1+𝑁) ⊂ ∞. (5.1)

We take from [28, Theorem (a)] the case 𝑞 = 0 of the left hand inclusion, which is

∞
<

1
𝑝

⊂ 𝐴
𝑝

0. (5.2)
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Here's a proof of this that depends on Remark 1.3 and is slightly simpler than the one given in [28]. It is sufficient to take
0 < 𝛼 < 1∕𝑝 and show that ∞

𝛼 ⊂ 𝐴
𝑝

0; for such an 𝛼, the norm ‖ ⋅ ‖∞
𝛼

does not require any derivative. If 𝑓 ∈ ∞
𝛼 , it holds that|𝑓 (𝑧)|𝑝 ≲ (

1 − |𝑧|2)−𝛼𝑝 for all 𝑧 ∈ 𝔹. Then by polar coordinates,

∫𝔹 |𝑓 |𝑝 𝑑𝜈 ≲ ∫
1

0

𝑟2𝑁−1

(1 − 𝑟2)𝛼𝑝 ∫𝕊 𝑑𝜎 𝑑𝑟 ≲ ∫
1

0

𝑟

(1 − 𝑟2)𝛼𝑝
𝑑𝑟,

which is finite since 𝛼𝑝 < 1.
To boost all these to 𝐵𝑝𝑞 with arbitrary 𝑞, we simply apply 𝐷(1+𝑁+𝑞)∕𝑝

𝑠 to the spaces in (5.1), and we apply 𝐷𝑞∕𝑝𝑠 to the spaces
in (5.2). These yield all the inclusions claimed in the statement of the theorem by Theorem 2.3.

We follow the proof of [28, Theorem (b)] and exhibit functions that show the inclusions just obtained are strict and the best
possible. We use (3.3) and (3.5) three times. The right hand inclusion is strict because we have 𝑓 1+𝑁+𝑞

𝑝

∈ ∞
1+𝑁+𝑞

𝑝

⧵ 𝐵𝑝𝑞 , and the

left hand inclusion is strict because we have 𝑓 1+𝑞
𝑝

∈ 𝐵𝑝𝑞 ⧵ ∞
<

1+𝑞
𝑝

. Next, if 𝛽 < 𝜂 < (1 +𝑁 + 𝑞)∕𝑝, then 𝑓𝜂 ∈ 𝐵
𝑝
𝑞 ⧵ ∞

𝛽
, and in

view of Theorem 4.1, this shows the right hand inclusion is the best possible. Finally, 𝐺𝑞𝑝 ∈ ∞
1+𝑞
𝑝

⧵ 𝐵𝑝𝑞 by Example 3.4, and

this shows the left hand inclusion is the best possible. □

6 TWO BERGMAN–BESOV SPACES

This section is devoted to a new proof of Theorem 1.6. Its both parts appear also in [29, Theorems 69 and 70], but their proofs
rely on difficult Carleson measure results. We give totally different direct proofs of the two parts based on two representative
cases, Theorem 1.5, and the differentiation idea in Example 3.2. Our proof also sheds more light on the relationships among the
𝐵
𝑝
𝑞 spaces.
There are several earlier partial results. [11, p. 703] and [18, Theorem 1] have a mixture of the two cases in certain Bergman

spaces. Again for Bergman spaces with 0 < 𝑝 < 𝑃 = 1 and (2 + 𝑞)∕𝑝 = 2 +𝑄, the inclusion in (i) is obtained in [23, Theorem 3].
With 0 < 𝑝 < 𝑃 ≤ 1 and (1 +𝑁 + 𝑞)∕𝑝 = (1 +𝑁 +𝑄)∕𝑃 , the inclusion in (i) is shown in [6, Proposition 4.2] still for Bergman
spaces. The full inclusion in (i) for Besov spaces is in [3, Theorem 5.13]. With 1 < 𝑝 < 𝑃 < ∞ and 𝑞 = 𝑄 = −(1 +𝑁), the
inclusion in (i) is developed in [10, Proposition 3.3] using Möbius invariance, and [20, Theorem 2.5] adds the 𝑝 = 1 case to the
previous inclusions. None of these results contain the only if parts.

Proof of Theorem 1.6. (i) Assume 𝑝 ≤ 𝑃 and (1.3). We follow the method of [9, Proposition 13.3] to obtain the desired inclusion.
First let 𝑠, 𝑡 satisfy (1.1) with 𝑞 = −(1 +𝑁) and 𝑝; then 𝑠, 𝑡 clearly satisfy (1.2) with 𝛼 = 0. Let also 𝑓 ∈ 𝐵𝑝−(1+𝑁). Then by
Corollary 2.6,

‖𝑓‖𝑃
𝐵𝑃−(1+𝑁)

= ∫𝔹 |𝐼𝑡𝑠𝑓 |𝑃 𝑑𝜈−(1+𝑁) = ∫𝔹 |𝐼𝑡𝑠𝑓 |𝑃−𝑝 |𝐼𝑡𝑠𝑓 |𝑝 𝑑𝜈−(1+𝑁)

≤ ‖𝑓‖𝑃−𝑝∞ ∫𝔹 |𝐼𝑡𝑠𝑓 |𝑝 𝑑𝜈−(1+𝑁) ≲ ‖𝑓‖𝑃−𝑝
𝐵
𝑝

−(1+𝑁)
‖𝑓‖𝑝

𝐵
𝑝

−(1+𝑁)
= ‖𝑓‖𝑃

𝐵
𝑝

−(1+𝑁)
,

which gives us one of the two fundamental inclusions 𝐵𝑝−(1+𝑁) ⊂ 𝐵
𝑃
−(1+𝑁).

To pass to the remaining Bergman–Besov spaces, we use (1.3) and call its two fractions−𝑡 and −𝑇 ; then we have the equalities
𝑞 + 𝑝𝑡 = −(1 +𝑁) = 𝑄 + 𝑃𝑇 . We apply𝐷−𝑇

𝑠 to both sides of the fundamental inclusion in the previous paragraph. Theorem 2.3
implies 𝐵𝑝−(1+𝑁)−𝑝𝑇 ⊂ 𝐵

𝑃
𝑄

, that is, 𝐵𝑝
𝑞+𝑝(𝑡−𝑇 ) ⊂ 𝐵

𝑃
𝑄

. Since 𝑡 − 𝑇 ≥ 0, we obtain 𝐵𝑝𝑞 ⊂ 𝐵
𝑃
𝑄

by Theorem 4.1.

Conversely, suppose that 𝑝 ≤ 𝑃 and 𝐵𝑝𝑞 ⊂ 𝐵
𝑃
𝑄

. Since 𝐵𝑃
𝑄
⊂ ∞

1+𝑁+𝑄
𝑃

by Theorem 1.5, we also have 𝐵𝑝𝑞 ⊂ ∞
1+𝑁+𝑄

𝑃

. By the best

possible assertion of that theorem, we conclude that (1.3) holds.
(ii) Assume now 𝑃 < 𝑝 and (1.4). The proof is a variant of those of [9, Proposition 13.2] and part (i). For any 𝑟 > −1, the

finiteness of the measure 𝜈𝑟 gives us the other fundamental inclusion 𝐴𝑝𝑟 ⊂ 𝐴
𝑃
𝑟 .

Next we pass to the remaining Bergman–Besov spaces. Let

𝑟 = 𝑄𝑝 − 𝑞𝑃
𝑝 − 𝑃

, that is,
−𝑟 +𝑄
𝑃

= −𝑟 + 𝑞
𝑝

.
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p

q

−1

−(1 + N)

1 2

V

VI

VII

F I G U R E 2 If (𝑝, 𝑞) ∈ V, then 𝐵𝑝𝑞 ⊂ 𝐻
∞; if (𝑝, 𝑞) ∈ VI, then 𝐻∞ ⊂ 𝐵

𝑝
𝑞 ; if (𝑝, 𝑞) ∈ VII, then neither 𝐵𝑝𝑞 nor 𝐻∞ contains the other, but 𝐵𝑝𝑞 ∩

𝐻∞ ≠ ∅

Then 𝑟 > −1 by (1.4). Now call the common value of the two fractions on the right 𝑡; then 𝑟 + 𝑃 𝑡 = 𝑄 and 𝑟 + 𝑝𝑡 = 𝑞. We apply
𝐷𝑡𝑠 to the fundamental inclusion in the previous paragraph. Theorem 2.3 implies that 𝐵𝑝𝑞 ⊂ 𝐵

𝑃
𝑄

.

Conversely, suppose that 𝑃 < 𝑝 and 𝐵𝑝𝑞 ⊂ 𝐵
𝑃
𝑄

. Since ∞
<

1+𝑞
𝑝

⊂ 𝐵
𝑝
𝑞 by Theorem 1.5, also ∞

<
1+𝑞
𝑝

⊂ 𝐵𝑃
𝑄

. By the best possible

assertion of that theorem, we can only conclude that (1.4) holds with ≤. We prove that equality cannot occur by assuming
(1 + 𝑞)∕𝑝 = (1 +𝑄)∕𝑃 and showing that the claimed inclusion does not hold. We do it through a gap series of Ryll–Wojtaszczyk
polynomials once again. Let

𝐺𝑄𝑃 =
∑
𝑘

2𝑘(1+𝑄)∕𝑃

𝑘1∕𝑃
𝑊2𝑘 . (6.1)

By Theorem 3.3, (3.6), and (3.7), we see that𝐺𝑄𝑃 ∈ 𝐵𝑝𝑞 ⧵ 𝐵𝑃𝑄. This proves (1.4). In the last part,𝐺𝑄𝑃 in place of𝐺𝑄𝑃 would not
work, because the𝐺𝑄𝑃 are designed for the regions in Figure 1, and a point (𝑃 ,𝑄) satisfying 𝑃 < 𝑝 and (1 + 𝑞)∕𝑝 = (1 +𝑄)∕𝑃
lies not in region I but on its boundary with respect to 𝐵𝑝𝑞 .

(i), (ii) The inclusions are the best possible since they are given by if and only if conditions. They are also strict because
Example 3.4 says exactly that. □

7 A BERGMAN–BESOV SPACE AND 𝑯
∞

We are now ready to prove Theorem 1.7. We have nothing new to say on the inclusion part, but for certain cases in the strict and
the best possible parts, the functions developed in Section 3 are not good enough, and we have to attempt even more elaborate
constructions.

The inclusions of Theorem 1.7 are shown graphically in Figure 2. The space 𝐻∞ includes all the 𝐵𝑝𝑞 spaces in region V and
is included all the 𝐵𝑝𝑞 in region VI. A 𝐵

𝑝
𝑞 in region VII has nonempty intersection with 𝐻∞ without one including the other.

Proof of Theorem 1.7. (i) The inclusions are already proved in [29, Theorems 21 and 22] in their entirety as well as 𝐵𝑝𝑞 ⊂ 𝐴(𝔹).
What is left is to show that they are strict and the best possible. Strictness is easy. Example 3.4 explains that𝐺𝑞𝑝 ∉ 𝐵

𝑝
𝑞 . But (3.6)

shows that 𝐺𝑞𝑝 ∈ 𝐻∞ for 𝑞 ≤ −(1 +𝑁) and any 𝑝.
For the best possible claim, we consider the two cases

𝑞 > −(1 +𝑁) and 0 < 𝑝 ≤ 1, or 𝑞 = −(1 +𝑁) and 1 < 𝑝 <∞.

Example 3.5 furnishes us with 𝐹𝑞𝑝 ∈ 𝐵
𝑝
𝑞 , and we have to pick suitable {𝑎𝑘} and {𝜆𝑘} to force 𝐹𝑞𝑝 ∉ 𝐻∞ in these two cases.

We take 𝑏𝑘 = 1 − 2−𝑘 and 𝑎𝑘 = 𝑏𝑘𝑒1. Then 𝑃𝑎𝑘(𝑎𝑚) = 𝑎𝑚, and for 𝑚 < 𝑘, we compute that |𝑎𝑘 − 𝑎𝑚| = (
2𝑘 − 2𝑚

)
2−(𝑘+𝑚) and
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|1 − ⟨𝑎𝑘, 𝑎𝑚⟩| = 2−𝑘 + 2−𝑚 − 2−(𝑘+𝑚) <
(
2𝑘 + 2𝑚

)
2−(𝑘+𝑚). Hence

|𝜑𝑎𝑘 (𝑎𝑚)| ≥ 2𝑘 − 2𝑚
2𝑘 + 2𝑚

≥ 1
4

and 𝑑(𝑎𝑘, 𝑎𝑚) ≥ tanh−1 1
4
=∶ 2𝜌;

in other words, {𝑎𝑘} is separated.
For 𝑐 ∈ ℂ, we write sgn(𝑐) = 𝑐∕|𝑐| if 𝑐 ≠ 0 and sgn(0) = 0. Next we pick 𝜆𝑘 = 𝑘−1−sgn(1+𝑁+𝑞)∕𝑝; explicitly, 𝜆𝑘 = 1∕𝑘 for

𝑞 = −(1 +𝑁) and 𝜆𝑘 = 1∕𝑘1+1∕𝑝 for 𝑞 ≠ −(1 +𝑁); but for both cases under consideration, {𝜆𝑘} ∈ 𝓁𝑝. Also by the choice of
𝑠 in Example 3.5, in both cases 1 +𝑁 + 𝑠 > 0, which means that the kernel used in the definition of 𝐹𝑞𝑝 is binomial and not
hypergeometric. If 𝑧 = 𝑟𝑒1, then ⟨𝑧, 𝑎𝑘⟩ = 𝑟𝑏𝑘. Then

𝐹𝑞𝑝(𝑟𝑒1) =
∑
𝑘

1
𝑘1+sgn(1+𝑁+𝑞)∕𝑝

(
1 − 𝑏2

𝑘

)1+𝑁+𝑠−(1+𝑁+𝑞)∕𝑝

(1 − 𝑟𝑏𝑘)1+𝑁+𝑠 .

Since 1 − 𝑏2
𝑘
∼ 1 − 𝑏𝑘, by the monotone convergence theorem,

lim
𝑟→1−

𝐹𝑞𝑝(𝑟𝑒1) ∼
∑
𝑘

(1 − 𝑏𝑘)−(1+𝑁+𝑞)∕𝑝

𝑘1+sgn(1+𝑁+𝑞)∕𝑝 =
∑
𝑘

2𝑘(1+𝑁+𝑞)∕𝑝

𝑘1+sgn(1+𝑁+𝑞)∕𝑝 = ∞

in both cases, and thus 𝐹𝑞𝑝 ∉ 𝐻∞.
(ii) Evidently 𝐻∞ lies in all weighted Bergman spaces 𝐴𝑝𝑞 simply by the finiteness of the measures 𝜈𝑞 for 𝑞 > −1. The

next question is whether the Besov spaces 𝐵𝑝−1 at the boundary of the Bergman zone are large enough to include 𝐻∞. Here a
Littlewood–Paley inequality helps us. For 𝑝 ≥ 2, [5, Theorem] states that

∫𝔹
(|∇𝑓 (𝑧)|2 − |𝑅𝑓 (𝑧)|2)𝑝∕2 (1 − |𝑧|2)𝑝∕2−1 𝑑𝜈(𝑧) ≲ ‖𝑓‖𝑝

𝐻𝑝 .

But |𝑅𝑓 (𝑧)| ≤ |𝑧| |∇𝑓 (𝑧)|. Substituting this into the Littlewood–Paley inequality, we obtain

∫𝔹 |∇𝑓 (𝑧)|𝑝 (1 − |𝑧|2)𝑝−1 𝑑𝜈(𝑧) ≲ ‖𝑓‖𝑝
𝐻𝑝 (2 ≤ 𝑝 < ∞).

By virtue of Remark 2.4, this says nothing but 𝐻𝑝 ⊂ 𝐵
𝑝

−1 for 𝑝 ≥ 2. In fact, because both are Hilbert spaces, 𝐵2
−1 = 𝐻

2. Thus
𝐻∞ ⊂ 𝐵

𝑝

−1 for 𝑝 ≥ 2. Note that Littlewood–Paley inequalities are in general reversed for 0 < 𝑝 < 2.
With the same {𝑎𝑘} in the proof of part (i) and 𝜆𝑘 = 𝑘−1−sgn(1+𝑞)∕𝑝, we have 𝐹𝑞𝑝 ∈ 𝐵

𝑝
𝑞 ⧵𝐻∞ with the same proof as above

in all 𝑞, 𝑝 combinations mentioned in the statement of this part since now 1 +𝑁 + 𝑞 ≥ 𝑁 > 0. This shows strictness.
By construction, 𝐺𝑞𝑝 ∉ 𝐵

𝑝
𝑞 , and for 𝑞 < −1 and any 𝑝, also 𝐺𝑞𝑝 ∈ 𝐻∞ by Example 3.4; this shows that the inclusions of this

part are the best possible for 𝑝 ≥ 2. Here's another proof of this fact. If𝐻∞ ⊂ 𝐵
𝑝
𝑞 for some 𝑞 < −1, let (1 + 𝑞)∕𝑝 < 𝛽 < 0. Then

by Theorem 4.2, also ∞
𝛽
⊂ 𝐵

𝑝
𝑞 . But this is impossible by the best possible conclusion of Theorem 1.5.

When 𝑞 = −1 and 0 < 𝑝 < 1, then from (6.1), 𝐺−1,𝑝 ∈ 𝐴(𝔹) ⧵ 𝐵
𝑝

−1 by (3.6), and this shows that the inclusion is the best
possible for the 𝑞, 𝑝 at hand.

This leaves us with proving that the inclusion is the best possible for the case 𝑞 = −1 and 1 ≤ 𝑝 < 2. This is the most involved
part of the proof, so we isolate it as the next theorem, which is also of independent interest. □

Theorem 7.1. (i) If {𝑐𝑘} ∈ 𝓁2, there is a 𝐺 ∈ 𝐴(𝔹) such that [𝐺,𝑊2𝑘 ]𝐿2(𝜎) = 𝑐𝑘. (ii) For every 1 ≤ 𝑝 < 2, there is a �̆�𝑝 ∈
𝐴(𝔹) ⧵ 𝐵𝑝−1.

Proof. (i) This is just [27, Proposition] written in different words. There is a constructive proof for𝑁 = 1 in [8, Theorem]. Let's
write carefully what this part says. If𝐺 =

∑
𝑚 𝐺𝑚 is the homogeneous expansion of𝐺, then we have no control on𝐺𝑚 if 𝑚 ≠ 2𝑘

for some 𝑘. When 𝑚 = 2𝑘, both 𝐺2𝑘 and 𝑊2𝑘 are finite sums of 𝛿2𝑘 monomials possibly with different coefficients and possibly
with different sets of coefficients equal to zero; yet ∫𝕊𝐺2𝑘 (𝜁 )𝑊2𝑘(𝜁 ) 𝑑𝜎(𝜁 ) = 𝑐𝑘 by [21, Proposition 1.4.8].

(ii) We follow the sketch of the proof of [26, Lemma 1.6], which is for 𝑁 = 1, and fill in all its details. Let 1 ≤ 𝑝 < 2 and
suppose 𝐺 ∈ 𝐴(𝔹) of part (i) lies in 𝐵𝑝−1. Let 𝑠, 𝑡 satisfy (1.1) for 𝑞 = −1 and such 𝑝. So 𝐷𝑡𝑠𝐺(𝑟𝜁 ) =

∑
𝑚 𝑑𝑚(𝑠, 𝑡)𝑟𝑚𝐺𝑚(𝜁 ) for

0 < 𝑟 < 1. By [21, Proposition 1.4.8] and (2.3),

∫𝕊𝐷
𝑡
𝑠𝐺(𝑟𝜁 )𝑊2𝑘(𝜁 ) 𝑑𝜎(𝜁 ) = 𝑑2𝑘𝑟2

𝑘

∫𝕊𝐺2𝑘 (𝜁 )𝑊2𝑘(𝜁 ) 𝑑𝜎(𝜁 ) = 𝑑2𝑘𝑟2
𝑘
𝑐𝑘 ∼ 2𝑡𝑘𝑐𝑘𝑟2

𝑘
.
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Then by the convexity of the 𝑝th power function and (3.6),

2𝑝𝑡𝑘|𝑐𝑘|𝑝 𝑟𝑝 2𝑘 ≲ ∫𝕊 |𝐷𝑡𝑠𝐺(𝑟𝜁 )|𝑝 𝑑𝜎(𝜁 ) (0 < 𝑟 < 1).

Now by the polar coordinates formula,

∑
𝑘

2𝑝𝑡𝑘|𝑐𝑘|𝑝∫ 1−2−(1+𝑘)

1−2−𝑘
𝑟2𝑁−1+𝑝 2𝑘(1 − 𝑟2)−1+𝑝𝑡 𝑑𝑟 ≲∫𝔹 |𝐷𝑡𝑠𝐺(𝑧)|𝑝(1 − |𝑧|2)−1+𝑝𝑡 𝑑𝜈(𝑧).

On the interval
[
1 − 2−𝑘, 1 − 2−(1+𝑘)

]
of length 2−𝑘, we have 1 − 𝑟2 ∼ 1 − 𝑟 ∼ 2−𝑘, and

𝑟2𝑁−1+𝑝 2𝑘 ≥ (
1 − 2−𝑘

)2𝑁+𝑝 2𝑘 ≥ (
𝑒−2

1−𝑘
)2𝑁+𝑝 2𝑘 ≥ 𝑒−𝑁22−𝑘−2𝑝 ≥ 𝑒−4𝑁−2𝑝 > 0

for large enough 𝑘 since 1 − 𝑥 ≥ 𝑒−2𝑥 for small enough 𝑥 > 0. Hence the integral on this interval is ∼ 2−𝑝𝑡𝑘. We therefore obtain∑
𝑘 |𝑐𝑘|𝑝 ≲ ‖𝐺‖𝑝

𝐵
𝑝

−1
. This implies that {𝑐𝑘} ∈ 𝓁𝑝 if 𝐺 ∈ 𝐵𝑝−1. If we take a {𝑐𝑘} ∈ 𝓁2 ⧵ 𝓁𝑝, then the function 𝐺 ∈ 𝐴(𝔹) obtained

in part (i) is the desired �̆�𝑝 ∉ 𝐵
𝑝

−1. □

The fact that there are functions in the ball algebra that do not lie in certain Bergman–Besov spaces has an interesting
consequence: Essentially, the derivative on the function in the integral norm (2.5) of 𝐵𝑝𝑞 cannot be dispensed with when
(𝑝, 𝑞) ∈ V ∪ VII. This fact is first noticed in [2, p. 180] for the Drury–Arveson space 𝐵2

−𝑁 .

Corollary 7.2. Let 𝜅 ∶ [0,∞) → ℝ be an increasing function with 𝜅(0) = 0, and let 𝜇 be a positive Borel measure with support
in 𝔹. Define 𝐸𝜅𝜇 as the set of all 𝑓 ∈ 𝐻(𝔹) for which

lim sup
𝑟→1− ∫𝔹 𝜅(|𝑓 (𝑟𝑧)|) 𝑑𝜇(𝑧) <∞.

Then 𝐸𝜅𝜇 ≠ 𝐵𝑝𝑞 if 𝑞 < −1, or if 𝑞 = −1 and 0 < 𝑝 < 2.

Proof. We imitate the proof of [4, Theorem 4.3] that takes care of the Hardy–Sobolev-space counterpart. Let 𝑞, 𝑝 be as in the
statement of the corollary, and suppose 𝐵𝑝𝑞 = 𝐸𝜅𝜇 for some 𝜅 and 𝜇. Applying the definition of 𝐸𝜅𝜇 to 𝑓 = 1 ∈ 𝐵𝑝𝑞 , we obtain

𝜅(1)𝜇
(
𝔹
)
< ∞; so 𝜇 must be finite. If 𝑓 ∈ 𝐴(𝔹), then

lim sup
𝑟→1− ∫𝔹 𝜅(|𝑓 (𝑟𝑧)|) 𝑑𝜇(𝑧) ≤ 𝜅(‖𝑓‖𝐿∞(𝜎)

)
𝜇
(
𝔹
)
<∞,

which yields that 𝑓 ∈ 𝐵𝑝𝑞 too. This contradicts the fact that there are functions in 𝐴(𝔹) ⧵ 𝐵𝑝𝑞 for the values of 𝑞, 𝑝 considered.

For 𝑞 < −1, one such function is𝐺𝑞𝑝 of Example 3.4 by (3.6); for 𝑞 = −1 and 0 < 𝑝 < 1, one such function is𝐺−1,𝑝 as indicated

in the proof of Theorem 1.7 (ii); for 𝑞 = −1 and 1 ≤ 𝑝 < 2, one such function is �̆�𝑝 as indicated in Theorem 7.1 (ii). □

Remark 7.3. We do not know whether or not the norm of 𝐵𝑝−1 with 𝑝 > 2 can be written as an integral without using a derivative

on the function. On the other hand, 𝐵2
−1 is the Hardy space𝐻2 and its norm is the same as that of 𝐿2(𝜎). If 𝑞 > −1, then the 𝐵𝑝𝑞

are the Bergman spaces and clearly have integral norms without derivatives.

The following can be considered the 𝑝 = ∞ version of Corollary 7.2 and concerns the derivative in (2.6).

Corollary 7.4. Let 𝜅 ∶ [0,∞) → ℝ be an increasing function with 𝜅(0) = 0, and let 𝜔 ∶ 𝔹 → [0,∞). Define 𝜅𝜔 as the set of
all 𝑓 ∈ 𝐻(𝔹) for which

sup
𝑧∈𝔹

𝜅(|𝑓 (𝑧)|)𝜔(𝑧) < ∞.

Then 𝜅𝜔 ≠ ∞
𝛼 if 𝛼 < 0.

Proof. Let 𝛼 < 0 and suppose ∞
𝛼 = 𝜅𝜔 for some 𝜅 and 𝜔. Applying the definition of 𝜅𝜔 to 𝑓 = 1 ∈ ∞

𝛼 , we obtain
𝜅(1) sup𝑧∈𝔹 𝜔(𝑧) < ∞; so 𝜔 is bounded. If 𝑓 ∈ 𝐻∞, then

sup
𝑧∈𝔹

𝜅(|𝑓 (𝑧)|)𝜔(𝑧) ≤ 𝜅(‖𝑓‖∞) sup
𝑧∈𝔹

𝜔(𝑧) < ∞,
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which yields that 𝑓 ∈ ∞
𝛼 too. This contradicts the fact that there are functions in 𝐻∞ ⧵ ∞

𝛼 for 𝛼 < 0. One such function is 𝑓𝛼
of Example 3.2. □

Remark 7.5. We do not know whether or not the norm of ∞ can be written without using a derivative on the function. On the
other hand, the ∞

𝛼 with 𝛼 > 0 have norms without derivatives by (1.2).

Remark 7.6. There are characterizations of Bergman–Besov and Bloch–Lipschitz spaces that do not use a derivative directly but
use a difference quotient of some sort; see, for example, [25] and the references therein. But a difference quotient behaves very
much like a derivative. When we say “without using a derivative” in Remarks 7.3 and 7.5, we exclude such characterizations
too.

8 SOBOLEV IMBEDDINGS

Our final intention is to compare the inclusions in Theorems 1.5 and 1.6 with those predicted by the holomorphic versions of
the Sobolev imbedding theorems.

Following [1, Chapter 3], for 1 ≤ 𝑝 < ∞, we let the Sobolev space 𝑊 𝑚,𝑝 be the space of all locally integrable functions on
𝔹 all of whose generalized partial derivatives of order up to and including 𝑚 = 1, 2,… belong to 𝐿𝑝. The subspace of 𝑊 𝑚,𝑝

consisting of holomorphic functions on 𝔹 can be regarded as the Besov space 𝐵𝑝−𝑚𝑝 in which always 𝑞 = −𝑚𝑝 ≤ −1.
The Sobolev imbedding theorem we are interested in is [1, Theorem 4.12] and concerns the continuous inclusion of 𝑊 𝑚,𝑝 in

Lebesgue or Lipschitz spaces. It is for Sobolev spaces defined on some types of domains in ℝ𝑛 for all of which 𝔹 is a standard
example. We read this theorem by setting 𝑛 = 2𝑁 and taking the intersections of all spaces with𝐻(𝔹). We analyze our findings
in five regions of the parameters.

(a) If 𝑚𝑝 < 2𝑁 (that is, −2𝑁 < 𝑞 ≤ −1), the Sobolev imbedding is 𝑊 𝑚,𝑝 ⊂ 𝐿𝑝
∗
, which translates to the holomorphic setting

as 𝐵𝑝−𝑚𝑝 ⊂ 𝐵
𝑝∗

0 , where 1
𝑝∗

= 1
𝑝
− 𝑚

2𝑁 . The sharpest (that is, into smallest space) inclusion that Theorem 1.6 (i) gives is

𝐵
𝑝
−𝑚𝑝 ⊂ 𝐵

𝑝2
0 , where 1

𝑝2
= 1

𝑝
− 𝑚

1+𝑁 . Since this 𝑝2 > 𝑝
∗, our inclusion is sharper than that of the Sobolev imbedding theorem

for 𝑁 > 1. The two results say the same for 𝑁 = 1.

(b) If 𝑚𝑝 = 2𝑁 (that is, 𝑞 = −2𝑁), the Sobolev imbedding is 𝑊 𝑚,𝑝 ⊂ 𝐿𝑝
∗

for any 𝑝∗ ≥ 1, which yields 𝐵𝑝−2𝑁 ⊂ 𝐵
𝑝∗

0 . The

inclusions that Theorem 1.6 (i) gives are 𝐵𝑝−2𝑁 ⊂ 𝐵
𝑝2
0 , where 1

𝑝2
≥ 1−𝑁

1+𝑁
1
𝑝
, which says 0 < 𝑝2 <∞ for all 𝑁 . So the two

imbeddings are equivalent for 𝑞 = −2𝑁 .

(c) If 2𝑁 < 𝑚𝑝 < 2𝑁 + 𝑝 (that is, −2𝑁 − 𝑝 < 𝑞 < −2𝑁), the Sobolev imbedding is 𝑊 𝑚,𝑝 ⊂ Λ𝛽 , where 𝛽 = 𝑚 − 2𝑁∕𝑝 and
0 < 𝛽 < 1, which yields 𝐵𝑝−𝑚𝑝 ⊂ ∞

−𝛽 . The inclusion that Theorem 1.5 gives is 𝐵𝑝−𝑚𝑝 ⊂ ∞
𝛼 , where 𝛼 = (1 +𝑁)∕𝑝 − 𝑚.

Since this 𝛼 < −𝛽, our inclusion is sharper than that of the Sobolev imbedding theorem for 𝑁 > 1. The two results say the
same for 𝑁 = 1.

(d) If 𝑚𝑝 = 2𝑁 + 𝑝 (that is, 𝑞 = −2𝑁 − 𝑝), the Sobolev imbedding is𝑊 𝑚,𝑝 ⊂ Λ𝛽 for any 0 < 𝛽 < 1, yielding 𝐵𝑝−2𝑁−𝑝 ⊂ ∞
−𝛽 .

If also 𝑝 = 1, then 𝑊 𝑚,1 ⊂ Λ1, that is, 𝐵1
−2𝑁−1 ⊂ ∞

−1. The inclusion that Theorem 1.5 gives is 𝐵𝑝−2𝑁−𝑝 ⊂ ∞
𝛼 for any

1 ≤ 𝑝 < ∞, where 𝛼 = (1 −𝑁)∕𝑝 − 1. Since this 𝛼 < −𝛽, our inclusion is sharper than that of the Sobolev imbedding
theorem for 𝑁 > 1 or 𝑝 > 1. The two results say the same when both 𝑁 = 1 and 𝑝 = 1.

(e) If 𝑚𝑝 > 2𝑁 + 𝑝 (that is, 𝑞 < −2𝑁 − 𝑝), the Sobolev imbedding is 𝑊 𝑚,𝑝 ⊂ Λ1, which yields 𝐵𝑝−𝑚𝑝 ⊂ ∞
−1. The inclusion

that Theorem 1.5 gives is 𝐵𝑝−𝑚𝑝 ⊂ ∞
𝛼 , where 𝛼 = (1 +𝑁)∕𝑝 − 𝑚. Since now 𝛼 < −1, our inclusion is sharper than that of

the Sobolev imbedding theorem.

We can compare the number of derivatives lost in the imbeddings in (c), (d), and (e), which are all in the form 𝑊 𝑚,𝑝 ⊂ Λ𝛽 .
The number of derivatives we lose is indicated by the difference 𝑚 − 𝛽 and is 2𝑁∕𝑝. On the other hand, the derivatives needed
for 𝐵𝑝−𝑚𝑝 is given by −𝑚𝑝 + 𝑝𝑡 > −1 and is 𝑡 > 𝑚 − 1∕𝑝, while for Λ𝑚−2𝑁∕𝑝 it is given as 𝑡 > 𝑚 − 2𝑁∕𝑝; hence the number of
derivatives we lose is 𝑚 − 1∕𝑝 − (𝑚 − 2𝑁∕𝑝) = (2𝑁 − 1)∕𝑝. So in our imbeddings, we lose derivatives of order 1∕𝑝 less than
those lost in the Sobolev imbeddings. This difference has already been noted in [3, pp. 39–40].

The fact that our inclusions are stronger and our loss of derivatives is less in general than those predicted by the Sobolev
imbedding theorem should come as no surprise, because our spaces consist of holomorphic functions that are very smooth on a
very nice domain.



KAPTANOĞLU AND ÜREYEN 2251

R E F E R E N C E S
[1] R. A. Adams and J. J. F. Fournier, Sobolev spaces, 2nd ed., Pure Appl. Math., vol. 140, Academic, Amsterdam, 2003.

[2] W. Arveson, Subalgebras of 𝐶∗-algebras III: Multivariable operator theory, Acta Math. 181 (1998), 159–228.

[3] F. Beatrous and J. Burbea, Holomorphic Sobolev spaces on the ball, Dissertationes Math. 276 (1989), 57 pp.

[4] F. Beatrous and J. Burbea, Multipliers for Hardy–Sobolev spaces, Proc. Amer. Math. Soc. 136 (2008), 2125–2133.

[5] J. S. Choa and H. O. Kim, A Littlewood and Paley-type inequality on the ball, Bull. Aust. Math. Soc. 50 (1994), 265–271.

[6] R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in 𝐿𝑝, Astérisque 77 (1980), 12–66.

[7] Ö. F. Doğan and A. E. Üreyen, Weighted harmonic Bloch spaces on the ball, Complex Anal. Oper. Theory 12 (2018), 1143–1177.

[8] J. J. F. Fournier, An interpolation problem for coefficients of 𝐻∞ functions, Proc. Amer. Math. Soc. 42 (1974), 402–408.

[9] S. Gergün, H. T. Kaptanoğlu, and A. E. Üreyen, Harmonic Besov spaces on the ball, Internat. J. Math. 27 (2016), no. 1650070, 59 pp.

[10] K. T. Hahn and E. H. Youssfi, Möbius invariant Besov 𝑝-spaces and Hankel operators in the Bergman space on the ball in ℂ𝑛, Complex Var.
Theory Appl. 17 (1991), 89–104.

[11] C. Horowitz, Zeros of functions in the Bergman spaces, Duke Math. J. 41 (1974), 693–710.

[12] H. T. Kaptanoğlu, Some refined Schwarz–Pick lemmas, Michigan Math. J. 50 (2002), 649–664.

[13] H. T. Kaptanoğlu, Besov spaces and Bergman projections on the ball, C. R. Math. Acad. Sci. Paris 335 (2002), 729–732.

[14] H. T. Kaptanoğlu, Bergman projections on Besov spaces on balls, Illinois J. Math. 49 (2005), 385–403.

[15] H. T. Kaptanoğlu, Carleson measures for Besov spaces on the ball with applications, J. Funct. Anal. 250 (2007), 483–520.

[16] H. T. Kaptanoğlu and S. Tülü, Weighted Bloch, Lipschitz, Zygmund, Bers, and growth spaces of the ball: Bergman projections and characteriza-
tions, Taiwanese J. Math. 15 (2011), 101–127.

[17] H. T. Kaptanoğlu and A. E. Üreyen, Analytic properties of Besov spaces via Bergman projections, Contemp. Math. 455 (2008), 169–182.

[18] A. Nakamura, F. Ohya, and H. Watanabe, On some properties of functions in weighted Bergman spaces, Proc. Fac. Sci. Tokai Univ. 15 (1980),
33–44.

[19] C. Ouyang, Proper inclusions of function spaces and Ryll–Wojtaszczyk polynomials on the unit ball of ℂ𝑛, Finite or Infinite Dimensional Complex
Analysis, Lecture Notes Pure Appl. Math., vol. 214, Dekker, New York, 2000, pp. 409–426.

[20] M. M. Peloso, Möbius invariant spaces on the unit ball, Michigan Math. J. 39 (1992), 509–536.

[21] W. Rudin, Function theory in the unit ball of ℂ𝑛, Grundlehren Math. Wiss., Band 241, Springer, New York, 1980.

[22] J. Ryll and P. Wojtaszczyk, On homogeneous polynomials on a complex ball, Trans. Amer. Math. Soc. 276 (1983), 107–116.

[23] J. H. Shapiro, Mackey topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces, Duke Math. J. 43 (1976), 187–202.

[24] D. C. Ullrich, Radial divergence in BMOA, Proc. London Math. Soc. 68 (1994), 145–160.

[25] A. E. Üreyen, Oscillation of holomorphic Bergman–Besov kernels on the ball, Monatsh. Math. 184 (2017), 297–323.

[26] S. A. Vinogradov, Multiplicaion and division in the space of analytic functions with area integrable derivative, and in some related spaces,
J. Math. Sci. 87 (1997), 3806–3827.

[27] P. Wojtaszczyk, On functions in the ball algebra, Proc. Amer. Math. Soc. 85 (1982), 184–186.

[28] W. Yang and C. Ouyang, Exact location of 𝛼-Bloch spaces in𝐿𝑝𝑎 and𝐻𝑝 of a complex unit ball, Rocky Mountain J. Math. 30 (2000), 1151–1169.

[29] R. Zhao and K. Zhu, Theory of Bergman spaces in the unit ball of ℂ𝑛, Mém. Soc. Math. Fr. (N.S.) 115 (2008), 103 pp.

[30] K. Zhu, Spaces of holomorphic functions in the unit ball, Grad. Texts in Math., vol. 226, Springer, New York, 2005.

How to cite this article: Kaptanoğlu HT, Üreyen AE. Precise inclusion relations among Bergman–Besov
and Bloch–Lipschitz spaces and 𝐻∞ on the unit ball of ℂ𝑁 . Mathematische Nachrichten. 2018;291:2236–2251.
https://doi.org/10.1002/mana.201700236

https://doi.org/10.1002/mana.201700236

